Department of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Robert Navrátil

Maximum Volatility Portfolio

25. 1 2018

The investor is allowed to invest to assets S_1, \ldots, S_{n+1} with price evolution for $i \neq j$

 $dS_{ij}(t) = S_{ij}(t)\sigma_{ij}^{T}(t)dW^{j}(t)$ and $S_{ij}(0) = 1$,

where $\sigma_{ij} = (\sigma_{ij1}, \ldots, \sigma_{ijn})^{T}$ satisfies for every T > 0 the integrability condition $\int_{0}^{T} \sigma_{ij}^{T}(t)\sigma_{ij}(t)dt < \infty$ a.s. and $W^{j} = (W^{j1}, \ldots, W^{jn})^{T}$ is an n-dimensional Brownian motion. To simplify formulas we set $\sigma_{iik} = 0$ for every *i* and *k*.

Definition of the model II

We define the index of the market as

$$I(t)=S_1(t)+\cdots+S_{n+1}(t),$$

and the portfolio as

$$X(t) = \Delta_1(t)S_1(t) + \cdots + \Delta_{n+1}(t)S_{n+1}(t),$$

where Δ_i represents number of units of asset S_i held by the investor at time *t*.

It can be shown, that the price of the portfolio X with respect to the index I follows stochastic differential equation

$$dS_{XI}(t) = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} S_{jI}(t) S_{iI}(t) \Delta_i(t) \sigma_{ij}^T(t) dW^I(t).$$

Robert Navrátil

Theorem. Independence on choice of σ 's

Suppose that volatilities of price processes S_{ij} are known for fixed *j*. That is, we know $\sum_{k=1}^{n} \sigma_{ijk}^2$ for every *i*. Then independently of choice of specific estimates of σ_{ijk} the models are equivalent.

The buyer of the passport option pays a premium upfront and is allowed to actively trade with no shorting allowed. At the strike time T he keeps the trading profits while he is forgiven any loss. Mathematically, the holder of the option wants to maximize

 $\mathbb{E}^{\prime}\left[(S_{XI}(T)-1)^{+}\right],$

where \mathbb{E}^{\prime} is expected value with respect to martingale measure of the asset \emph{I} and

$$\Delta_i(t) \geq 0, \quad t \in [0, T], \ i \in \{1, \ldots, n+1\}.$$

Robert Navrátil

Theorem. Optimal strategy for the option for two assets

The strategy that maximizes $\mathbb{E}^{l}[(S_{Xl}(T) - 1)^{+}]$ is being fully invested in the cheaper asset.

Properties of the optimal strategy

- The optimal strategy is equivalent to maximizing $\mathbb{E}^{I}[\langle S_{XI} \rangle_{T}];$
- Is also optimal for every convex payoff function;
- Slightly modified optimal strategy maximizes probability of outperforming index *I* by α > 0 at time *T*.

Examples Numerical simulation for two assets

Figure: Histogram for 50 000 Figure: Histogram for 50 000 simulations with parameters T = 1 simulations with parameters T = 1

Robert Navrátil

Figure: Evolutions with respect to index.

Figure: Optimality regions of assets with evolution of (S_{1I}, S_{2I}) .

Used parameters: T = 5, volatility(S_{12}) = 0.3, volatility(S_{13}) = 0.35 and volatility(S_{32}) = 0.4.

Robert Navrátil

Examples Real example

Figure: Evolution of the portfolio and USD, GBP, and EUR.

Figure: Evolution of the portfolio and USD, JPY, and EUR.

Application of the optimal strategy on currencies.

Thank you for your attention!