
Department of Probability and Mathematical Statistics

Robert Navrátil
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Definition of the model
Evolution of prices

The investor is allowed to invest to assets S1, . . . ,Sn+1 with price
evolution for i 6= j

dSij (t) = Sij (t)σT
ij (t)dW j (t) and Sij (0) = 1,

where σij =
(
σij1, . . . , σijn

)T satisfies for every T > 0 the integrability

condition
∫ T

0 σT
ij (t)σij (t)dt <∞ a.s. and W j =

(
W j1, . . . ,W jn

)T
is an

n-dimensional Brownian motion. To simplify formulas we set σiik = 0
for every i and k .
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Definition of the model II

We define the index of the market as

I(t) = S1(t) + · · ·+ Sn+1(t),

and the portfolio as

X (t) = ∆1(t)S1(t) + · · ·+ ∆n+1(t)Sn+1(t),

where ∆i represents number of units of asset Si held by the investor
at time t .
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Evolution of portfolio

It can be shown, that the price of the portfolio X with respect to the
index I follows stochastic differential equation

dSXI(t) =
n+1∑
i=1

n+1∑
j=1

SjI(t)SiI(t)∆i (t)σT
ij (t)dW I(t).
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Independence on the choice of parameters

Theorem. Independence on choice of σ’s

Suppose that volatilities of price processes Sij are known for fixed j .
That is, we know

∑n
k=1 σ

2
ijk for every i . Then independently of choice

of specific estimates of σijk the models are equivalent.
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Passport option
Definition of the option

The buyer of the passport option pays a premium upfront and is
allowed to actively trade with no shorting allowed. At the strike time T
he keeps the trading profits while he is forgiven any loss.
Mathematically, the holder of the option wants to maximize

EI [(SXI(T )− 1)+
]
,

where EI is expected value with respect to martingale measure of the
asset I and

∆i (t) ≥ 0, t ∈ [0,T ], i ∈ {1, . . . ,n + 1}.
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Passport option
Optimal strategy for the option for two assets

Theorem. Optimal strategy for the option for two assets

The strategy that maximizes EI [(SXI(T ) − 1)+] is being fully invested
in the cheaper asset.

Properties of the optimal strategy
The optimal strategy is equivalent to maximizing EI [〈SXI〉T ];
Is also optimal for every convex payoff function;
Slightly modified optimal strategy maximizes probability of
outperforming index I by α > 0 at time T .
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Examples
Numerical simulation for two assets

Figure: Histogram for 50 000
simulations with parameters T = 1
and σ = 0.25.

Figure: Histogram for 50 000
simulations with parameters T = 1
and σ = 0.75.
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Examples
Numerical Example II

Figure: Evolutions with respect to
index.

Figure: Optimality regions of
assets with evolution of (S1I ,S2I).

Used parameters: T = 5, volatility(S12) = 0.3, volatility(S13) = 0.35
and volatility(S32) = 0.4.
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Examples
Real example

Figure: Evolution of the portfolio
and USD, GBP, and EUR.

Figure: Evolution of the portfolio
and USD, JPY, and EUR.

Application of the optimal strategy on currencies.
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Thank you for your attention!
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