Cellwise robust regression on compositional variables

Nikola Štefelová,

Andreas Alfons, Javier Palarea-Albaladejo, Peter Filzmoser, Karel Hron

25th January 2018

Compositional data (CoDa)

- Composition: *D*-part vector $\mathbf{x} = (x_1, \dots, x_D)'$ of strictly **positive** values (compositional parts) carrying **relative information** [Pawlowsky-Glahn and others, 2015]
- Data representing parts of some whole, e.g. proportions, percentages
- All the relative information about x contained in the ratios between its parts
- Working with logratios \Rightarrow moves range from positive numbers to real axis $\Rightarrow \ln \frac{x_i}{x_j} = -\ln \frac{x_j}{x_i}$
- Compositions follow the Aitchison geometry on simplex
- Logratio methodology ⇒ mapping compositions from simplex into real Euclidean space

Pivot coordinates

 Composition expressed in orthonormal coordinate system that highlights the role of a single compositional part

$$\mathbf{x} = (x_1, \dots, x_D)' \to \mathbf{z} = (z_1, \dots, z_{D-1})',$$
 $z_j = \sqrt{\frac{D-j}{D-j+1}} \ln \frac{x_j}{\sqrt[D-j]{\prod_{k=j+1}^D x_k}}, \quad j = 1, \dots, D-1$

z₁ explains all the relative information about part x₁

$$\mathbf{x}^{(I)} = (x_I, \dots, x_{I-1}, x_{I+1}, \dots, x_D)' = (x_1^{(I)}, \dots, x_D^{(I)})' \to$$

$$z_j^{(I)} = \sqrt{\frac{D-j}{D-j+1}} \ln \frac{x_j^{(I)}}{\sqrt[D-j]{\prod_{k=j+1}^D x_k^{(I)}}}, \quad j = 1, \dots, D-1,$$

 D different orthonormal coordinate systems which are just rotations of each other

Cellwise outliers

- Casewise outlier observation outlying as a whole
 Cellwise outlier contamination only at a cell level
- Outlyingness of a cell in composition results from outlying pairwise logratio(s) with the respective part
- Ordinary robust estimators designed to deal with casewise outliers
- If contamination occurs only at the cell level ⇒ unnecessary loss of information

Regression settings

- Real response Y
- Explanatory variables
 - *D*-part composition $\mathbf{x} = (x_1, \dots, x_D)'$
 - p real variables V_1, \ldots, V_p
 - (Factor with k levels \Rightarrow dummy variables F_1, \dots, F_{k-1})
- n observations available

Designed procedure

- Detection of cellwise outliers
 ⇒ replacing them by missing values (NA's)
- Imputation of NA's
- Compositional MM-regression
- Multiple imputation

Detection of cellwise outliers

- Bivariate filter [Rousseeuw and Van den Bossche, 2017]
- Assumption data follow multivariate normal distribution but after some cells were contaminated
- Detecting deviating cells in each column of standardized data
- Flagging cells that deviate from the correlation structure of data
 - Each cell predicted based on the unfiltered cells in the same row whose column correlate (robust $\rho>0.5$) with the column in question
 - Observed value differs much from its predicted value ⇒ cell detected as outlying

- Filter performed on the matrix with p + 1 + D(D 1)/2 columns
 - p + 1... real (explanatory and response) variables
 - D(D-1)/2... detecting deviating cells in CoDa via matrix of pairwise logratios
- For some observation at least half of the logratios with part x_i detected as outliers ⇒ x_i flagged as outlying
- Flagged cells replaced by missing values (NA's)

Imputation of missing values (NA's)

- Adaptation of iterative model-based imputation for CoDa [Hron and others, 2010]
- Separate ordering of compositional parts and real variables based on amount of outliers
- Initialization geometric/arithmetic mean
- First *D* steps in each iteration for updating x_l , l = 1, ..., D
 - $z_1^{(l)}$ set as a response, the rest of the variables as covariates
 - Observations with not outlying x_l used for the regression coefficients estimation
 - Obtained coefficients estimates taken to predict $z_1^{(l)}$ in observations with outlying x_l
 - Inverse mapping \Rightarrow updated values of x_l

- Next p + 1 steps in each iteration for updating real variables analogy (each time, different variable serves as response)
- Stop when the Frobenius norm of difference between the present and the previous empirical covariance matrix is smaller than a chosen boundary η ($\eta=0.5$) few iterations needed
- Robust MM-regression used in the iteration process

Compositional MM-regression

- Highly efficient robust MM-regression conducted on imputed data
- Compositional regression with interpretable regression coefficients [Hron and others, 2012]
- D different models

$$Y = \alpha + \beta_1^{(I)} z_1^{(I)} + \ldots + \beta_{D-1}^{(I)} z_{D-1}^{(I)} + \gamma_1 V_1 + \ldots + \gamma_p V_p + \varepsilon,$$

$$I = 1, \ldots, D$$

• Interest in $(\hat{\alpha}, \hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(D)}, \hat{\gamma}_1, \dots, \hat{\gamma}_m)$

- Default standard errors and test statistics assume data to be complete
- Standard errors underestimated, significance inflated
 - ⇒ MI estimation of the regression

Multiple imputation

- Regression analysis carried out on m different datasets [Rubin and Schenker, 1986]
 - m set as number of observations containing outlying cells
- In each of the m datasets random error term is added to each imputed values (to the z₁^(l) for CoDa)
- Noise sample from $N(0, \sigma_j^2)$ multiplied by correction factor

$$\sqrt{1+\frac{1}{n}m_j}$$

- m_j denotes the number of NA's in the jth response, j = 1, ..., D + p + 1
- σ_j taken as a scale estimate of the reweighted residuals from *j*th step of the last iteration

- Final coefficient estimate taken as the average of the m estimates
- Estimation of variance of the estimator sum of within-imputation variance and between-imputation variance multiplied by correction factor $\frac{m+1}{m}$.

Simulation study

Simulation settings:

$$S=500$$
 # simulations
 $n=300$ # observations
 $D=6$ # compositional parts
 $c=\frac{5n}{100}$ # outlying cells in each compositional part
 $m=3$ multiplicator for outlying parts

Generating data for in each simulation run:

$$\mathbf{z}_i = (z_{i,1}, \dots, z_{i,D-1})' \sim \mathcal{N}_{D-1}(\mathbf{0}, \Sigma), \quad \Sigma \text{ from VFA data}$$
 $\mathbf{z}_i \to \mathbf{x}_i = (x_{i,1}, \dots, x_{i,D})'$ $y_i = \beta_0 + \beta_1 z_{i,1} + \dots + \beta_{D-1} z_{i,D-1} + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 0.5),$ $(\beta_0, \beta_1, \dots, \beta_{D-1}) = (0, 1, \dots, 1)$

• Creating outlying cells:

$$I_{j} = \{I_{j_{1}}, \dots, I_{j_{c}}\} \subset \{1, 2, \dots, n\}, \quad j = 1, \dots, D$$

$$\hat{x}_{i,j} = \begin{cases} x_{i,j}m & \text{if} \quad i \in I_{j} \\ x_{i,j} & \text{otherwise} \end{cases}, \quad i = 1, \dots, n, \quad j = 1, \dots, D$$

• The performance of the filter

• The performance of the procedure

Example with VFA data

- 239 observations
- 3 real variables, 6-part composition and 1 factor
- Response
 - CH4: methane emissions [g/kgDMI]
- Explanatory variables
 - Volatile fatty acid (VFA) composition in mmol/mol (closed to 1000):
 Acetate, Propionate, Butyrate, Isobutyrate, Isovalerate, Valerate
 - DMI: actual dry matter intake [kg/day]
 - Weight [kg]
 - Diet factor with 2 levels: Concentrate/Mixed

Logratios flagged as outlying

Variables/parts flagged as outlying (3.25%)

 Estimates of the regression coefficients, standard errors and p-values for ordinary vs. cellwise MM-regression

		Ordinary			Cellwise	
Variable	Coeff.	Std. Error	<i>p</i> -value	Coeff	Std. Error	<i>p</i> -value
Intercept	0.075	0.945	0.937	-0.760	0.922	0.410
$Z_1^{\text{(Acetate)}}$	0.147	0.089	0.102	0.191	0.088	0.030
$Z_1^{(Propionate)}$	-0.281	0.062	< 0.001	-0.322	0.060	< 0.001
$Z_1^{(Butyrate)}$	0.074	0.053	0.162	0.075	0.052	0.149
$Z_1^{(Isobutyrate)}$	0.011	0.047	0.816	0.012	0.043	0.783
$Z_1^{\text{(Isovalerate)}}$	0.013	0.034	0.715	0.041	0.034	0.228
$Z_1^{\text{(Valerate)}}$	0.037	0.036	0.305	0.003	0.030	0.921
log(DMI)	-0.379	0.061	< 0.001	-0.388	0.051	< 0.001
log(Weight)	0.554	0.156	< 0.001	0.680	0.151	< 0.001
$F_{ m Mixed}$	0.265	0.041	< 0.001	0.228	0.038	< 0.001

• Regression diagnostics for ordinary MM-regression

• Regression diagnostics for cellwise MM-regression

References

Hron, K., Filzmoser, P., Thompson, K. (2012).

Linear regression with compositional explanatory variables.

Journal of Applied Statistics 39(5), 1115 – 1128.

Hron, K., Templ, M., Filzmoser, P. (2010).

Imputation of missing values for CoDa using classical and robust methods.

Computational Statistics & Data Analysis 54(12), 3095 – 3107.

Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delgado, R. (2015).

Modeling and analysis of compositional data.

Chichester: Wiley.

Rousseeuw, P.J., Van den Bossche, W (2017).

Detecting deviating data cells.

Technometrics, DOI: 10.1080/00401706.2017.1340909.

Rubin, D.B, Schenker (1986).

Multiple imputation for interval estimation from simple random samples with ignorable nonresponse.

Journal of the American Statistical Association 81 (394), 366 – 374.