Stochastické optimalizační schéma s hodinkami

Petr Lachout Universita Karlova, Praha Petr.Lachout@mff.cuni.cz

ROBUST, Rybník, 21.-26. ledna 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

We consider an oriented graph G = (V, H), where V is a set of nodes, H is a set of oriented edges, and, A is a set of possible actions. Each node $v \in V$ is equipped with a random time $\tau_v : \Omega \to [0, +\infty)$ and with a non-empty set of allowed actions $A_v \subset A$. V. A are finite sets, consequently, H, A_v for $v \in V$ are finite sets, also.

(日) (同) (三) (三) (三) (○) (○)

We denote an edge leading from node v to node w by \overrightarrow{vw} . For a given node $v \in V$, we will employ a set of all its parents $\partial_{-}(v) = \{w \in V : \overrightarrow{wv} \in H\}$ and its children $\partial_{+}(v) = \{w \in V : \overrightarrow{vw} \in H\}$.

Lemma

Any oriented graph G = (V, H) without any oriented circle can be equivalently described as a partial ordering on the set of nodes (V, \leq_G) . For $v, w \in V$, the ordering is defined by $v \leq_G w$ iff there is a path $u_0, u_1, \ldots, u_k \in V$ for some $k \in \mathbb{N}_0$ such that $\overrightarrow{u_0, u_1, \ldots, u_k} \in V$ and $\overrightarrow{u_0 = v}, u_k = w$.

Using this equivalent description, we are adding a notation. For a given node $v \in V$, we will employ a set of all its ancestors $\partial_{<}(v) = \{w \in V : w \leq_{G} v, w \neq v\}$ and its offspring $\partial_{>}(v) = \{w \in V : w \geq_{G} v, w \neq v\}$.

Assumptions:

- Considered oriented graph G = (V, H) is without any oriented circle.
- There is precisely one node v₀ ∈ V with ∂_− (v₀) = Ø. This node is called the root of graph G.

- Any node $v \in V$ with $\partial_+(v) = \emptyset$ is called <u>a leaf of graph G</u>.
- For each $v \in V$ we have $\tau_v \ge 0$.
- ▶ We have τ_{v0} = 0.
- For each $v, w \in V$, $\overrightarrow{v w} \in H$ we have $\tau_v < \tau_w$.

We consider a movement on nodes V expressed as a function $\varphi : [0, +\infty) \to V$. We say φ is non-decreasing if $\varphi(s) \leq_G \varphi(t)$ whenever $0 \leq s \leq t$. We say φ is right-continuous if $\varphi(t) = \varphi(t+)$ for each $0 \leq t$. Let us denote $\Phi = \{\varphi \in V^{[0,+\infty)} : \varphi \text{ is non-decreasing and right-continuous}\}.$

We control profit by a policy expressed as a right-continuous function $a : [0, +\infty) \rightarrow A$. Let us denote $\mathcal{A} = \{a \in A^{[0, +\infty)} : a \text{ is right-continuous}\}.$

Given $\omega \in \Omega$, we call $\varphi \in \Phi$ admissible if $\varphi(0) = v_0$ and $\tau_{\varphi(t)}(\omega) \leq t$ for each $t \geq 0$. Given $\omega \in \Omega$, $\varphi \in \Phi$, $a \in A$, the couple (φ, a) is called admissible if φ is admissible, $a(t) \in A_{\varphi(t)}$ for each $t \geq 0$ and if $a(t) \neq a(t-)$ then $\varphi(t) \neq \varphi(t-)$ for each t > 0.

We would like to optimize a profit at a given horizon T > 0. Thus, we have to consider a utility function $U : [0,T] \times V \times A \rightarrow \mathbb{R}$. Given $\omega \in \Omega$, $\varphi \in \Phi$, $a \in A$, the couple (φ, a) is admissible, we are receiving a profit $\int_{[0,T]} U(t,\varphi(t), a(t)) dt$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Our task is to find an optimal solution of the problem. We assume a horizon $\mathsf{T}>0$ at which we want to optimize.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Start with optimization on each time segment. Take a node $v \in V$ and times $0 \le s < t$. We maximize our profit

$$\mathsf{F}_{s,t}(v) = \max\left\{\int_{s}^{t} \mathsf{U}(u, v, a) \, \mathsf{d}u \, : \, a \in \mathsf{A}_{v}\right\} = \int_{s}^{t} \mathsf{U}(u, v, \widehat{a}_{s,t}(v)) \, \mathsf{d}u.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider a movement $\varphi \in \Phi$, then φ possesses a finite number of jumps at the time interval [0, T], say $t_0 = 0 < t_1 < t_2 < \cdots < t_k = T$, and optimal profit from the movement would be

$$\begin{split} \widehat{\mathsf{F}}(\varphi) &= \sup\left\{\int_{0}^{\mathsf{T}} \mathsf{U}\left(u,\varphi\left(u\right),a\left(u\right)\right) \mathsf{d}u \, : \, a \in \mathcal{A}\right\} \\ &= \sup\left\{\sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}} \mathsf{U}\left(u,\varphi\left(u\right),a\left(u\right)\right) \mathsf{d}u \, : \, a \in \mathcal{A}\right\} \\ &= \sup\left\{\sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}} \mathsf{U}\left(u,\varphi\left(t_{i}\right),a\left(t_{i}\right)\right) \mathsf{d}u \, : \, a\left(t_{i}\right) \in \mathsf{A}_{\varphi\left(t_{i}\right)}\right\} \\ &= \sum_{i=0}^{k-1} \mathsf{F}_{t_{i},t_{i+1}}\left(\varphi\left(t_{i}\right)\right). \end{split}$$

Corresponding optimal policy is

$$\widehat{a}\left(t
ight) \;\;=\;\; \widehat{a}_{t_{i},t_{i+1}}\left(arphi\left(t_{i}
ight)
ight) \; ext{if}\; t_{i} \leq t < t_{i+1}.$$

The last step is to determine optimal or ε -optimal policy for $\varepsilon > 0$.

$$\begin{split} \widehat{\mathsf{F}} &= \mathsf{sup}\left\{\widehat{\mathsf{F}}\left(\varphi\right) \,:\, \varphi \in \Phi \text{ admissible}\right\},\\ \widehat{\varphi}_{\varepsilon} &\in \Phi \text{ admissible with } \widehat{\mathsf{F}}\left(\widehat{\varphi}_{\varepsilon}\right) < \widehat{\mathsf{F}} + \varepsilon. \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Thanks for your attention !

<□ > < @ > < E > < E > E のQ @