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Design of experiment to get a “best” estimate of parameters of a
stochastic model.

Y1, . . . ,Yn . . . data
θ = (θ1, . . . , θp)

T . . . parameters of interest
ξ = (ξ1, . . . , ξm)

T . . . design parameters

frequency approach

θ̂ =
(
θ̂1 = T1(Y1, . . . ,Yn), . . . , θ̂p = Tp(Y1, . . . ,Yn)

)T
Eθθ̂ = θ . . . unbiased estimator
Varθθ̂ = ||cov(θ̂i , θ̂j)||pi ,j=1.

CRITERIA

Var θ̂1
θ21

+ · · ·+ Var θ̂p
θ2p

. . . F criterium

det
(
Var θ̂

)
. . . D criterium



Experiment in thermophysics - Ruffio et al. (2012)
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Initial temperature:

T(0) = 0 ◦C

Steps of measurement:

ti = 1, . . . , τ s

τ = 60 s

Fixed thermal capacity:

C = 1700000 Jm−3K−1



The solution may be approximated by:

T (t;λx , λy ; x , y) = θx(t;λx ;C ;ϕ; x) + θy(t;λy ;C ;ϕ; y),
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Cλx

√
tF
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)
,
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,
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dv
)
, z ≥ 0.

with x̃ = (x/2)
√

C/λx , ỹ = (y/2)
√

C/λy .



It is assumed that temperature is measured at n time points
(n = 60) by a fixed number of sensors with measurement errors
{ei} that are distributed according to N(0, σ2

e ) where σ2
e is known.

The measurement errors corresponding to different time points are
independent. For one sensor we may expressed dependence of
measured temperatures {Yi} on λx , λy :

Yi = T (i/n;λx , λy ; x , y) + ei , i = 1, . . . , n.

Goal is to find an “optimal” position (x , y) to get the “best”
estimate of thermal conductivities λx , λy . (Thermal capacity C
and heat flux φ are supposed to be known.)

Non-linear regression:

λx , λy are parameters of interest and x , y are design parameters.



Non-linear regression

Yi = f (i/n;β) + ei , i = 1, . . . , n.

β̂ = argminβ

n∑
i=1

(
Yi − f (i/n;β)

)2



For n large (β∗ is a true value of β):

δ̂ =
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δ
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that

depends on the true value of β∗. The optimal choice od the design
parameters depends on the true value of β∗.



Prior information on β∗:
a density φ(β∗) with a bounded support [βb
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(Non)linear regression with random parameters

Measured temperature may be affected by some other random
parameters, e.g. by deviations of the real position of a sensor from
the design position denoted here by Δx ,Δy . The value of this
parameter remains the same in one experiment but varies from an
experiment to the other. It is supposed that its fluctuation is
known, i.e. its density function is known.

In Ruffio et al. Δx and Δy were independent normally distributed
N(0, σ2

γ ):

Yi = T (i/n;λx , λy ;Δx ,Δy ; x , y) + ei , i = 1, . . . , n.

There are at least two approaches how to deal with the design
problem (how to find “optimal” values for x and y).



(Non)linear regression with random parameters

To explain a difference between two approaches we start with a
linear regression problem with one-dimensional parameter of
interest β, one-dimensional random parameter γ and a design
parameter ξ:

Yi = β b(i/n; ξ) + γ h(i/n, ξ) + ei , i = 1, . . . , n.

{ei} are i.i.d. distributed according to a known normal distribution
N(0, σ2

e ) and γ is distributed according to a known normal
distribution N(0, σ2

γ). The true value of β is β∗.

Designer × experimenter-statisticien



Approach A
In one single experiment the value of random parameter is γ.
The experimenter-statisticien thinks that γ = 0 so that he/she
estimates β by minimizing

β̂ = argminβ

n∑
i=1

(
Yi − β b(i/n; ξ)

)2
β̂ =

∑
b(i/n, ξ)Yi∑
b2(i/n; ξ)

= β∗ + C1(n) γ +
1√
n
C2(n)εn

where εn ∼ N(0, σ2
e ).

C1(n) =

∑
b(i/n; ξ)g(i/n; ξ)∑

b2(i/n; ξ)
→
∫ 1
0 b(t, ξ)g(t, ξ) dt∫ 1

0 b2(t, ξ) dt
,

C2(n) =
1√

(1/n)
∑

b2(i/n; ξ)
→ 1√∫ 1

0 b2(t; ξ) dt
.

For n large the variability of β̂ is given by fluctuation of γ.



For n large:

E β̂ = β∗.

Var β̂ expresses how much fluctuates values of β̂ around β∗ in
repeated experiments. Repetitions are made under different
conditions, i.e. in repeated experiments values of the random
parameters fluctuate (according to a known distribution).
Minimizing Var β̂ with respect to ξ by a designer means that
he/she desires that the difference in estimating β in repeated
experiments is as small as possible.

Var β̂ ≈
(∑

b(i/n;ξ)g(i/n;ξ)∑
b2(i/n;ξ)

)2

σ2
γ ≈

( ∫ 1
0 b(t,ξ)g(t,ξ) dt∫ 1

0 b2(t;ξ) dt

)2

σ2
γ



Approach B

The experimenter-statisticien knows that the random parameter
might be different from zero. In one single experiment he/she
estimates together with a parameter of interest. Let the value of
the random parameter in one single experiment be γ. The
experimenter-statisticien considers the model:

Yi = β b(i/n; ξ) + γ g(i/n; ξ) + ei , i = 1, . . . , n.

(
β̃
γ̃

)
=
(
XTX

)−1
XTY,

X =

⎛⎜⎝b(1/n; ξ) g(1/n; ξ)
...

...
b(1; ξ) g(1; ξ)

⎞⎟⎠



E β̃ = β∗

A variance (conditional variance) Var β̃ says how accurate is the
estimate in one single experiment. In the other words how much β̃
varies if we repeatedly perform the experiment under the
assumption that the random parameter attains the same value in
all repetitions.

Var β̃ =

∑
g2(i/n; ξ)(∑

b2(i/n; ξ)
)(∑

g2(i/n; ξ)
)− (∑ b(i/n; ξ)g(i/n; ξ)

)2 σ2
e

≈
∫ 1
0 g2(t, ξ) dt( ∫ 1

0 b2(t, ξ) dt
)(
g2(t; ξ) dt

)− ( ∫ 1
0 b(t; ξ)g(t; ξ) dt

)2 σ2
e

n



Minimizing Var β̃ designer desires that the estimate in one single
experiment is as much accurate as possible. In the other words
he/she desires that the estimates of the parameter of interest in
repeated experiments under the same conditions (the same value
of random parameters) vary as less as possible.



Nonlinear regression

We consider one-dimensional parameter of interest β and
one-dimensional random parameter γ.

Yi = f (i/n;β; γ; ξ) + ei , i = 1, . . . , n.

f (i/n;β; γ; ξ) ≈
≈ f (i/n;β∗; 0; ξ) +

∂f

∂β
(i/n;β∗; 0; ξ)(β − β∗) +

∂f

∂γ
(i/n;β∗; 0; ξ) γ.



Approach A

β̂ = argminβ

n∑
i=1

(
Yi − f (i/n;β, 0, ξ)

)2
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Approach B

(β̃, γ̃) = argmin(β,γ)

n∑
i=1

(
Yi − f (i/n;β; γ; ξ)

)2
.
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Var β̃ depends on β∗ and γ.



1. We may minimize∫ ∫ (
Var β̃(β∗, γ)

)
ϕβ∗(β∗)ϕγ(γ) dβ

∗ dγ.

2. We may consider a minmax criterium, i. e. to minimize the
“worst situation” with respect to both parameters.

3. We combine the both approaches.



L = 0.05 [m], C = 1700 000 [Jm−3K−1], φ = 25000 [Wm−2],
σe = 0.1 [0C ], σx = σy = 0.0005 [m].

λ∗
x = 0.6, λ∗

y = 4.7

F criterium (one sensor):

Approach optimal coordinates of sensor value of F

exact position xop = 0.0024, yop = 0 0.0016

A xop = 0.0165, yop = 0.0158 0.04

B xop = 0.0057, yop = 0 0.0131



Problems

1. Linearization is not justified by an asymptotic theory. Is it
possible to apply a linear approximation in Approach A? Would it
be better to use simulations and numerical optimization?
Jarušková and Kučerová (2017).
2. Problem with the distribution of a random parameters:
distribution of Δx and Δy cannot be normal - optimal solution is
on the border.
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