10 Groups

10.1. Decide whether the following sets with binary operation can form a group. If so, describe the neutral element and inverses.

```
(a) (\mathbb{Z}, +) and (\mathbb{Z}, \cdot)
```

(b)
$$(\mathbb{Q}^+, +); (\mathbb{Q}^+, \cdot); (\mathbb{Q}, +); (\mathbb{Q}, -)$$

- (c) Positive rationals with $a \circ b := a^b$
- (d) Let (R, +, -, 0, *, 1) be a ring: (R, +) and (R, *)

10.2. Write the following permutations as the product of independent cycles and for each permutation σ determine σ^{-1} and σ^{2020} :

(a)
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix} \in \S_5,$$

(b)
$$\tau = (46512) \in \S_6$$
,

(c)
$$\sigma = (156)(23847) \in \S_8$$
,

(d)
$$\rho = (435) \circ (512) \in \S_5$$
.

10.3. Show that if $\pi(a) = b$ and $\sigma = \tau \pi \tau^{-1}$, then $\tau(b)$ is right after the element $\tau(a)$, i.e. $\sigma(\tau(a)) = \tau(b)$, and determine $\pi \tau \pi^{-1}$ and $\tau \pi \tau^{-1}$ for the permutations π and τ from example 10.2.

Recall that the operation $\pi^{\tau} = \tau \pi \tau^{-1}$ is called *conjugation of the permutation* π *by* the permutation τ and the permutation π^{τ} is then *conjugated* with π .

- **10.4.** Prove that the conjugation relation is an equivalence.
- **10.5.** Find all permutations of α on the set $\{1, 2, 3, 4\}$ for which $\alpha \circ (123) \circ \alpha^{-1} = (124)$.
- **10.6.** Determine the order of the following elements:
 - (a) 4 and 15 in \mathbb{Z}_{75} ,
 - (b) 7 and 9 in \mathbb{Z}_{20}^* ,
 - (c) 4 and 15 in \mathbb{Z} ,
 - (d) (1234)(567)(89), (12)(5689) in \S_9 and \mathbf{A}_{2020} .