2 Congruences and Euler's theorem

Recall that $a \equiv b \pmod{m}$ whenever $m \mid (a - b)$.

- **2.1.** Solve the following congruences in \mathbb{Z} :
 - (a) $x \equiv 2 \pmod{8}$,
 - (b) $3x \equiv 2 \pmod{5}$,
 - (c) $27x \equiv 16 \pmod{41}$,
 - (d) $6x \equiv 2 \pmod{8}$,
 - (e)* $ax \equiv b \pmod{m}$ for $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$.
- **2.2.** Solve the following congruences in \mathbb{Z} :
 - (a) $x^2 + 5x \equiv 0 \pmod{19}$,
 - (b) $x^2 \equiv 1 \pmod{p}$ for p prime,
 - (c)* $x^2 + 10x + 6 \equiv 0 \pmod{17}$.
- **2.3.** Divide polynomials using an analogue of the division with remainder you know from \mathbb{Z} :
 - (a) $x^4 + 3x^3 + 4x^2 + x + 3$ a $x^2 + 2$ in $\mathbb{Q}[x]$,
 - (b) $x^{10} + x^9 + x^7 + x^5 + x^3 + x^2 + x$ a x + 1 in $\mathbb{Z}_2[x]$ (here we deal with coefficients in the field \mathbb{Z}_2)
- **2.4.** Calculate the greatest common divisor and the corresponding Bézout coefficients using analogue of Euclid's algorithm:
 - (a) $gcd(x^3 1, x^2 1)$ in $\mathbb{R}[x]$,
 - (b) $gcd(2x^2 + x 1, x^2 + 1)$ in $\mathbb{R}[x]$,
 - (c) $gcd(x^4 + x + 1, x^3 + x + 1)$ in $\mathbb{Z}_2[x]$
- **2.5.** Show that $n^2 \equiv 1 \pmod{8}$ for every odd $n \in \mathbb{N}$.
- **2.6.** Determine the value
 - (a) $\varphi(600)$,
 - (b) $\varphi(7425)$ (it might be useful to know that $7425 = 27 \cdot 25 \cdot 11$),
 - (c)* of all natural n such that $\phi(n) = 18$.
- 2.7. Calculate
 - (a) $3^{5^7} \mod 28$,
 - (b) $100^{99^{98}} \mod 39$,

- (c)* $100^{99^{98}} \mod 40$.
- **2.8.** Find the last
 - (a) one digits of 1357^{246} ,
 - (b) two digits of $999^{888^{777}}$,
 - (c)* three digits of 249^{19} .
- **2.9.** Prove that $13 \mid 16^{20} + 29^{21} + 42^{22}$.
- **2.10.** Find all $x \in \mathbb{Z}$ satisfying
 - (a) $x \equiv 2 \pmod{3}$, $x \equiv 4 \pmod{7}$, $x \equiv 3 \pmod{8}$.
 - (b) $2x + 1 \equiv 2 \pmod{3}$, $3x + 2 \equiv 3 \pmod{4}$, $4x + 3 \equiv 2 \pmod{5}$.
 - (c) $10x \equiv 6 \pmod{32}$, $3x \equiv 1 \pmod{5}$.
- **2.11.** Find all $x \in \mathbb{Z}$ such that
 - (a) $x^2 \equiv 1 \pmod{3}$, $x^2 \equiv 1 \pmod{7}$.
 - (b) $x^2 \equiv -1 \pmod{66}$.
 - (c) $x^2 \equiv -1 \pmod{65}$.