3 CRT, Rings, Integral Domains and Fields

- **3.1.** Find all $x \in \mathbb{Z}$ satisfying
 - (a) $x \equiv 2 \pmod{3}$, $x \equiv 4 \pmod{7}$, $x \equiv 3 \pmod{8}$.
 - (b) $2x + 1 \equiv 2 \pmod{3}$, $3x + 2 \equiv 3 \pmod{4}$, $4x + 3 \equiv 2 \pmod{5}$.
 - (c) $10x \equiv 6 \pmod{32}$, $3x \equiv 1 \pmod{5}$.
- **3.2.** Find all $x \in \mathbb{Z}$ such that
 - (a) $x^2 \equiv 1 \pmod{3}$, $x^2 \equiv 1 \pmod{7}$.
 - (b) $x^2 \equiv -1 \pmod{66}$.
 - (c) $x^2 \equiv -1 \pmod{65}$.
- **3.3.** Using the Chinese remainder theorem, calculate $12^{100} \pmod{30}$.
- **3.4.** Let $\mathcal{Z}^2 = (\mathbb{Z}^2, +, -, \cdot, (0, 0))$, where $(a, b) \pm (c, d) = (a \pm c, b \pm d)$ and $(a, b) \cdot (c, d) = (a \cdot c, b \cdot d)$. Sketch the proof that \mathcal{Z}^2 is a commutative ring with identity which is not a domain.
- **3.5.** Describe the quotient fields of the domains
 - (a) integers \mathbb{Z} ,
 - (b) real polynomials $\mathbb{R}[x]$
 - (c)* arbitrary field F.
- **3.6.** Let $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ (the Gaussian integers). Prove that
 - (a) $\mathbb{Z}[i]$ forms a subring of the field of complex numbers \mathbb{C} ,
 - (b) $(\mathbb{Z}[i], +, -, \cdot, 0)$ is a domain,
 - (c)* $\mathbb{Q}[i] = \{a + ib \colon a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$ is a quotient field of $\mathbb{Z}[i]$.
- **3.7.** (a)* Show that the empty set cannot be a ring.
 - (b)* Discuss the one-element ring. Is it a domain? Is it a field?