4 Polynomial rings, Division of Polynomials, Roots

4.1. Calculate

- (a) $(x^4 2x^3 x^2 + x 2) \mod x^2 + 2$ in $\mathbb{Z}_5[x]$,
- (b) $(x^4 2x^3 x^2 + x 2) \operatorname{div} x^2 + 2 \text{ in } \mathbb{Z}_5[x],$
- (c) $(x^5 + 2x^3 3x 2) \mod x 2$ in $\mathbb{Z}_7[x]$.
- **4.2.** Find all roots of the polynomial
 - (a) $x^3 + 2x^2 + x \in \mathbb{Z}_3[x]$ in the field \mathbb{Z}_3 ,
 - (b) $x^2 + 1 \in \mathbb{Z}_3[x]$ in the field \mathbb{Z}_3 ,
 - (c) $x^2 + 1 \in \mathbb{Z}_5[x]$ in the field \mathbb{Z}_5 ,
 - (d) $x^6 1 \in \mathbb{Z}_7[x]$ in the field \mathbb{Z}_7 ,
 - (e) $x^6 1 \in \mathbb{C}[x]$ in the field \mathbb{C} .
- **4.3.** Show that $x^m 1 \mid x^n 1$ in $\mathbb{Z}[x]$ if and only if $m \mid n$.
- **4.4.** For a polynomial $f \in \mathbb{C}[x]$, we denote V(f) as the set of all roots of f. Let $f = -8 + 44x 102x^2 + 129x^3 96x^4 + 42x^5 10x^6 + x^7 \in \mathbb{C}[x]$. Determine V(f) and find $g \in \mathbb{C}[x]$ such that V(g) = V(f) and g has the smallest possible degree. Derive the general rule.
- **4.5.** Show that there are infinitely many polynomials in $\mathbb{Z}[x]$ such that they define the same polynomial mapping $m: \mathbb{Z}_2 \to \mathbb{Z}_2$.
- **4.6.** Find a linear polynomial in $\mathbb{Z}_4[x]$ such that it has no root in \mathbb{Z}_4 .
- **4.7.** Let \mathcal{R} be an integral domain. Determine the conditions under which the polynomial $a_1x + a_0$ has a root in \mathcal{R} .
- **4.8.** Find $m \in \mathbb{N}$ such that $x^2 1$ has 3 roots in \mathbb{Z}_m .
- **4.9.** Determine all invertible polynomials in $\mathcal{R}[x]$, assuming that:
 - \mathcal{R} is a field,
 - \mathcal{R} is a domain.
- **4.10.** Find a ring \mathcal{R} and a nonzero polynomial f such that f has infinitely many roots in \mathcal{R} .
- **4.11.** Show that for every finite field \mathbb{F} there exists a polynomial $f \in \mathbb{F}[x]$ such that it has no root in \mathbb{F} .

1