6 Primitive polynomials, Gauss lemma

- **6.1.** Find irreducible decompositions in the domains $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}[x]$ of polynomials
 - (a) 6x 6,
 - (b) $2x^2 + 2$.
- **6.2.** Calculate gcd(f, g) for given polynomials f and g:
 - (a) $f = 6x^3 6$, $g = 8x^2 8$ in $\mathbb{Z}[x]$
 - (b) $f = 6x^2 + 3x 3$, $g = 6x^2 + 6x$ in $\mathbb{Q}[x]$
 - (c) $f = 6x^2y$, $g = 15xy^2 + x^3y$ in $\mathbb{Z}[x, y]$.
- **6.3.** Find all rational roots of the given polynomials in $\mathbb{Z}[x]$:
 - (a) $3x^5 2x^2 + x + 1$,
 - (b) $x^3 7x^2 + 11x + 3$,
 - (c) $2x^3 x^2 + 3$.
- **6.4.** Prove that the following polynomials are irreducible:
 - (a) $x^3 + x^2 + x + 3$ in $\mathbb{Z}[x]$,
 - (b) $4x^3 15x^2 + 60x + 180$ in $\mathbb{Z}[x]$,
 - (c) $\frac{10}{17}x^8 + 5x^6 + \frac{9}{2}x^5 12x^4 + \frac{4}{3}x 6$ in $\mathbb{Q}[x]$.
- **6.5.** Decompose the polynomial $2x^2 + 2x 1$ into a product of irreducible polynomials in $\mathbb{Z}[\sqrt{3}][x]$.