7 Euclidean domains

A domain \mathcal{R} is called *Euclidean* if there is a *Euclidean norm* ν , that is, a function $\nu \colon R \to \mathbb{N}$, which satisfies

- 1. $\nu(0) = 0$
- 2. If $a \mid b, b \neq 0$, then $\nu(a) \leq \nu(b)$;
- 3. for all $a, b \in R$, $b \neq 0$, there exists $q, r \in R$ such that a = bq + r and $\nu(r) < \nu(b)$.
- **7.1.** Prove that for any square-free $s \in \mathbb{Z}$, the norm $\nu(a+b\sqrt{s}) = |a^2 sb^2|$ on the domain $\mathbb{Z}[\sqrt{s}]$ satisfies axioms (1) and (2).
- **7.2.** Using the relationship between the modulus in \mathbb{C} (in Czech: absolutní hodnota) and the norm $\nu(a+bi)=|a^2+b^2|=|a+bi|^2$ of the domain $\mathbb{Z}[i]$, prove for arbitrary $a,b\in\mathbb{Z}[i]$, $b\neq 0$ and $z:=\frac{a}{b}\in\mathbb{C}$
 - (a) that there exists $q \in \mathbb{Z}[i]$ such that |z q| < 1,
 - (b) that |r| < |b| and $\nu(r) < \nu(b)$ if r := a bq for q from (a),
 - (c) that ν is a Euclidean norm, hence the domain $\mathbb{Z}[i]$ is Euclidean.
- **7.3.** Divide with the remainder α by β in the domain $\mathbb{Z}[i]$ using the Euclidean norm $\nu(a+bi)=|a^2+b^2|$.
 - (a) $\alpha = 5 + 7i, \beta = 3 i,$
 - (b) $\alpha = 3 + 2i, \beta = 1 + i,$
- **7.4.** Perform the following computations:
 - (a) divide with the remainder 4 by $1 \sqrt{2}i$ in $\mathbb{Z}[\sqrt{2}i]$,
 - (b) divide with the remainder $1 + 4\sqrt{2}i$ by $3 + \sqrt{2}i$ in $\mathbb{Z}[\sqrt{2}i]$,
 - (c) $\gcd(6 3\sqrt{3}, 3 + \sqrt{3})$ in $\mathbb{Z}[\sqrt{3}]$
- **7.5.** Show that the polynomial $3x^3 + 2x^2 + (4-2i)x + (1+i)$ is irreducible in $\mathbb{Z}[i][x]$.
- **7.6.** Find infinitely many invertible elements in the domain $\mathbb{Z}[\sqrt{3}]$.