8 Computations modulo polynomials and Quotient rings

- **8.1.** Find all polynomials $f \in \mathbb{Z}_2[x]$ satisfying congruences:
 - (a) $(x^3 + x + 1)f \equiv 1 \pmod{x^4 + x + 1}$ in $\mathbb{Z}_2[x]$
 - (b) $(2x+1)f \equiv x^3 \pmod{x^2+1}$ in $\mathbb{Z}_3[x]$.
- **8.2.** Find a polynomial f of the smallest possible degree satisfying
 - (a) $f \in \mathbb{Z}_5[x], f \equiv x + 1 \pmod{x^2 + 1}, f \equiv x \pmod{x^3 + 1},$
 - (b) $f \in \mathbb{Q}[x], f \equiv 1 \pmod{x}, f \equiv 0 \pmod{x-1}, f \equiv 2 \pmod{x-2}.$
- **8.3.** For the ring $T = \mathbb{Z}_3[\alpha]/(\alpha^2 + 1)$
 - (a) prove that the polynomial $x^2 + 1$ over \mathbb{Z}_3 is irreducible and find its roots in T,
 - (b) explain why T is a field, and determine the number of elements of T,
 - (c) calculate in T:
 - (i) $(2\alpha + 1) + (2\alpha + 2)$, (ii) α^5 , (iii) α^{-1} ,
 - (iv) $(\alpha + 1)^{-1}$, (v) $2\alpha \cdot (2\alpha + 1)$, (vi) $\alpha^{-1} \cdot (\alpha + 2)$.
- **8.4.** Construct rupture fields (i.e. a field containing a root) of the polynomials in $\mathbb{Z}_2[x]$:
 - (a) $x^2 + x + 1$,
 - (b) $x^3 + x + 1$.

Note that both fields are even splitting fields and decompose the polynomials into linear factors.

8.5. Let p be a prime number. Applying the Chinese remainder theorem, prove that

$$x^p - x = \prod_{a \in \mathbb{Z}_p} (x - a)$$
 in $\mathbb{Z}_p[x]$.