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Constraint Satisfaction Problems: definition

G H

Let H be a relational structure (e.g. graph, digraph, hypergraph)

Homomorphism from G to H is a mapping h : G → H which preserves
the relations: ∀t̄ ∈ RG h(t̄) ∈ RH, denoted h : G → H

For fixed H, the Constraint Satisfaction Problem CSP(H) is a decision
problem asking for a structure G if there is a homomorphism h : G → H
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Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph H has
≤ 1 directed cycle, then CSP(H) is tractable; otherwise it is NP-complete
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∀u, v
[
u ̸= v ⇔ (u → v ∨ v → u)

]
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Constraint Satisfaction Problems: complexity

Hell, Nešeťril (1990): If graphH is bipartite or contains a loop, then CSP(H)
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Barto, Kozik, Niven (2009): If digraph H without sources and sinks is a
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Constraint Satisfaction Problems: complexity
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Hell, Nešeťril (1990): If graphH is bipartite or contains a loop, then CSP(H)
is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph H without sources and sinks is a
union of directed cycles, then CSP(H) is tractable; otherwise it is NP-complete

“structural”

“algebraic”
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Beyond: matrix partitions

Let M be a symmetric (n × n)-matrix with values in {0, 1, ∗}

For fixed M, the M-partition problem asks for graph G = (V ,E ) if exists a
mapping p : V → [n] such that for all distinct u, v ∈ V :

• if uv ̸∈ E , then Mp(u)p(v) ∈ {0, ∗}

• if uv ∈ E , then Mp(u)p(v) ∈ {1, ∗}
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I – independent set and
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??? but clearly in NP

M =


0 ∗ 0 1
∗ 0 0 1
0 0 0 ∗
1 1 ∗ 1



Hell: are M-partitions also
in P ∪ NP-complete? If so,
what is the classification?

3/9



Beyond: sandwich problems

Let Π be some property on graphs

Sandwich problem over Π takes as input a pair of graphs (V ,E1), (V ,E2) such
that E1 ⊆ E2, and asks to find E1 ⊆ E ⊆ E2 such that (V ,E ) satisfies Π
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Observation:

Π ≤p Sandwich Π

(V ,E ) 7→ [(V ,E ), (V ,E )]

Motivation:

• a “real world” problem

• unclear complexity: there exist NP-
complete, coNP-complete & coNP-
intermediate sandwich problems

Bodirsky, Guzmán-Pro (2026): Sandwich Π is an infinite-domain CSP for
many well-known graph-theoretic properties Π
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Sandwich Matrix Partitions

Let M be a symmetric (n × n)-matrix with entries from {0, 1, ∗}
Input: A pair of graphs (V ,E1), (V ,E2) such that E1 ⊆ E2

Yes: there is E1 ⊆ E ⊆ E2 such that (V ,E ) satisfies M-partition
No: otherwise
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(V ,E 2,E1) HM(V ,E1) (V ,E2)

note that HM |= ∀x , y R0xy ∨ R1xy

Bulatov, Zhuk =⇒ Sandwich M-partition is in P or NP-complete

Are we happy?

HM – reflexive complete
2-edge-colored graph
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Metaquestion in Constraint Tractability

Metaquestion: Given finite structure H, is CSP(H) in P or NP-complete?
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Main contribution

For reflexive complete 2-edge-colored G,H, a homogeneous concatenation
G ◁H is obtained from G ⊔H by adding edges as follows:
∀h ∈ H (R0hh → ∀g ∈ G R0gh) ∧ (R1hh → ∀g ∈ G R1gh)
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edge-colored H, if H ⇄ A ◁ B1 ◁ · · · ◁ Bn, for A ∈ A and
Bi ∈ B, then CSP(H) is in P, otherwise NP-complete

A

B

Corollary: the metaquestion for such graphs and for sandwich
M-partitions is in P

Moreover: every such tractable CSP has bounded width (as
well as all other classes with “structural” classification)
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CSP(H) is tractable!
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Metametaquestion: given class C, is metaquestion of CSP(C) tractable, for
every C ∈ C?
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Thank You!
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