

Metametaquestions in Constraint Tractability

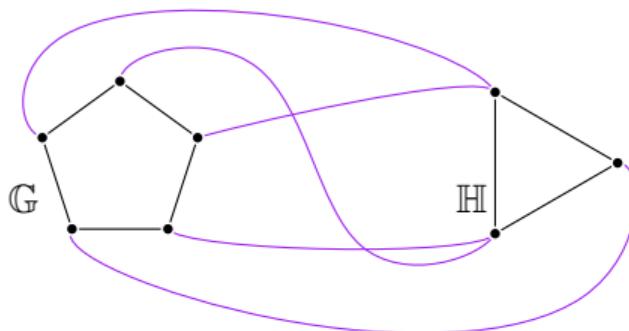
Alexey Barsukov

Charles University

Santiago Guzmán-Pro

TU Dresden

Constraint Satisfaction Problems: definition



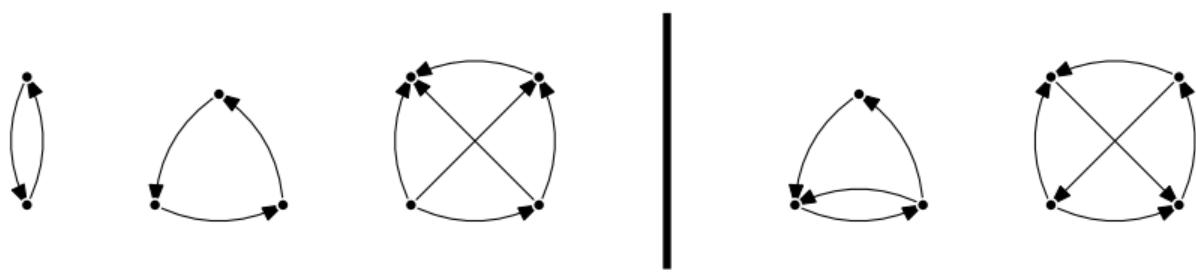
Let \mathbb{H} be a relational structure (e.g. graph, digraph, hypergraph)

Homomorphism from \mathbb{G} to \mathbb{H} is a mapping $h: \mathbb{G} \rightarrow \mathbb{H}$ which preserves the relations: $\forall \bar{t} \in R^{\mathbb{G}} h(\bar{t}) \in R^{\mathbb{H}}$, denoted $h: \mathbb{G} \rightarrow \mathbb{H}$

For fixed \mathbb{H} , the *Constraint Satisfaction Problem* $CSP(\mathbb{H})$ is a decision problem asking for a structure \mathbb{G} if there is a homomorphism $h: \mathbb{G} \rightarrow \mathbb{H}$

Constraint Satisfaction Problems: complexity

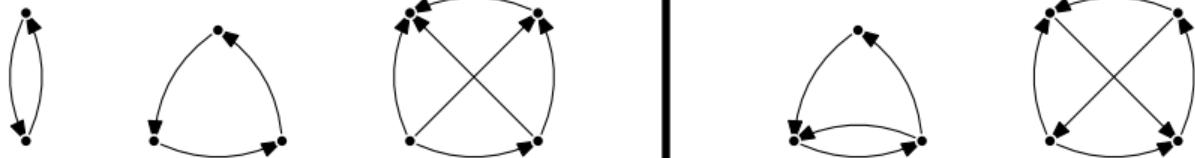
Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete



Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

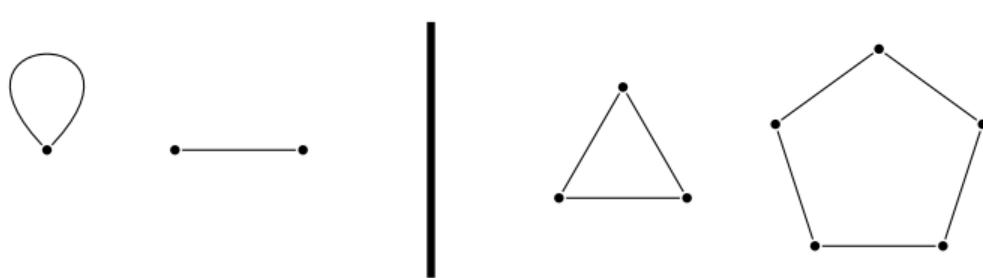
$$\forall u, v \left[u \neq v \Leftrightarrow (u \rightarrow v \vee v \rightarrow u) \right]$$



Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Hell, Nešetřil (1990): If graph \mathbb{H} is bipartite or contains a loop, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

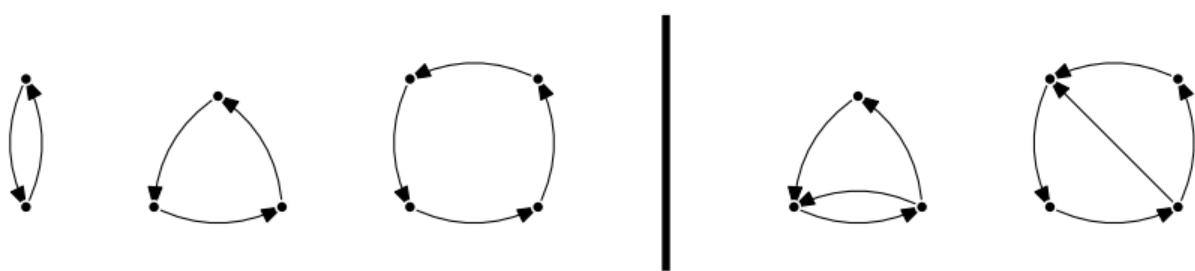


Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Hell, Nešetřil (1990): If graph \mathbb{H} is bipartite or contains a loop, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph \mathbb{H} without sources and sinks is a union of directed cycles, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete



Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Hell, Nešetřil (1990): If graph \mathbb{H} is bipartite or contains a loop, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph \mathbb{H} without sources and sinks is a union of directed cycles, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Polymorphism (m -ary) of \mathbb{H} is a mapping $f: H^m \rightarrow H$ preserving the relations component-wise: $\forall \bar{t}_1, \dots, \bar{t}_m \in R^{\mathbb{H}} \quad h(\bar{t}_1, \dots, \bar{t}_m) \in R^{\mathbb{H}}$, denoted $f: \mathbb{H}^m \rightarrow \mathbb{H}$

Bulatov (2017), Zhuk (2017): If digraph \mathbb{H} has $f: \mathbb{H}^m \rightarrow \mathbb{H}$ such that

$$\forall x_1, \dots, x_m \in H \quad f(x_1, \dots, x_m) = f(x_2, \dots, x_m, x_1),$$

then $\text{CSP}(\mathbb{H})$ is tractable; otherwise $\text{CSP}(\mathbb{H})$ is NP-complete

Constraint Satisfaction Problems: complexity

"structural"

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph \mathbb{H} has ≤ 1 directed cycle, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Hell, Nešetřil (1990): If graph \mathbb{H} is bipartite or contains a loop, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph \mathbb{H} without sources and sinks is a union of directed cycles, then $\text{CSP}(\mathbb{H})$ is tractable; otherwise it is NP-complete

Polymorphism (m -ary) of \mathbb{H} is a mapping $f: H^m \rightarrow H$ preserving the relations component-wise: $\forall \bar{t}_1, \dots, \bar{t}_m \in R^{\mathbb{H}} \quad h(\bar{t}_1, \dots, \bar{t}_m) \in R^{\mathbb{H}}$, denoted $f: \mathbb{H}^m \rightarrow \mathbb{H}$

Bulatov (2017), Zhuk (2017): If digraph \mathbb{H} has $f: \mathbb{H}^m \rightarrow \mathbb{H}$ such that

$$\forall x_1, \dots, x_m \in H \quad f(x_1, \dots, x_m) = f(x_2, \dots, x_m, x_1),$$

then $\text{CSP}(\mathbb{H})$ is tractable; otherwise $\text{CSP}(\mathbb{H})$ is NP-complete "algebraic"

Beyond: matrix partitions

Let M be a symmetric $(n \times n)$ -matrix with values in $\{0, 1, *\}$

For fixed M , the *M-partition problem* asks for graph $\mathbb{G} = (V, E)$ if exists a mapping $p: V \rightarrow [n]$ such that for all distinct $u, v \in V$:

- if $uv \notin E$, then $M_{p(u)p(v)} \in \{0, *\}$
- if $uv \in E$, then $M_{p(u)p(v)} \in \{1, *\}$

Beyond: matrix partitions

Let M be a symmetric $(n \times n)$ -matrix with values in $\{0, 1, *\}$

For fixed M , the M -partition problem asks for graph $\mathbb{G} = (V, E)$ if exists a mapping $p: V \rightarrow [n]$ such that for all distinct $u, v \in V$:

- if $uv \notin E$, then $M_{p(u)p(v)} \in \{0, *\}$
- if $uv \in E$, then $M_{p(u)p(v)} \in \{1, *\}$

$$M = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

same as CSP()

Beyond: matrix partitions

Let M be a symmetric $(n \times n)$ -matrix with values in $\{0, 1, *\}$

For fixed M , the M -partition problem asks for graph $\mathbb{G} = (V, E)$ if exists a mapping $p: V \rightarrow [n]$ such that for all distinct $u, v \in V$:

- if $uv \notin E$, then $M_{p(u)p(v)} \in \{0, *\}$
- if $uv \in E$, then $M_{p(u)p(v)} \in \{1, *\}$

$$M = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix} \quad M = \begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix}$$

same as CSP

find $V = I \sqcup C$ s.t.
 I – independent set and
 C – clique

Beyond: matrix partitions

Let M be a symmetric $(n \times n)$ -matrix with values in $\{0, 1, *\}$

For fixed M , the M -partition problem asks for graph $\mathbb{G} = (V, E)$ if exists a mapping $p: V \rightarrow [n]$ such that for all distinct $u, v \in V$:

- if $uv \notin E$, then $M_{p(u)p(v)} \in \{0, *\}$
- if $uv \in E$, then $M_{p(u)p(v)} \in \{1, *\}$

$$M = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

same as CSP

$$M = \begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix}$$

find $V = I \sqcup C$ s.t.

I – independent set and

C – clique

$$M = \begin{pmatrix} 0 & * & 0 & 1 \\ * & 0 & 0 & 1 \\ 0 & 0 & 0 & * \\ 1 & 1 & * & 1 \end{pmatrix}$$

??? but clearly in NP

Beyond: matrix partitions

Let M be a symmetric $(n \times n)$ -matrix with values in $\{0, 1, *\}$

For fixed M , the M -partition problem asks for graph $\mathbb{G} = (V, E)$ if exists a mapping $p: V \rightarrow [n]$ such that for all distinct $u, v \in V$:

- if $uv \notin E$, then $M_{p(u)p(v)} \in \{0, *\}$
- if $uv \in E$, then $M_{p(u)p(v)} \in \{1, *\}$

Hell: are M -partitions also in $P \cup$ NP-complete? If so, what is the classification?

$$M = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

same as CSP()

$$M = \begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix}$$

find $V = I \sqcup C$ s.t.

I – independent set and

C – clique

$$M = \begin{pmatrix} 0 & * & 0 & 1 \\ * & 0 & 0 & 1 \\ 0 & 0 & 0 & * \\ 1 & 1 & * & 1 \end{pmatrix}$$

??? but clearly in NP

Beyond: sandwich problems

Let Π be some property on graphs

Sandwich problem over Π takes as input a pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$, and asks to find $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies Π

Beyond: sandwich problems

Let Π be some property on graphs

Sandwich problem over Π takes as input a pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$, and asks to find $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies Π

Observation:

$$\Pi \leq_p \text{Sandwich } \Pi$$

$$(V, E) \mapsto [(V, E), (V, E)]$$

Beyond: sandwich problems

Let Π be some property on graphs

Sandwich problem over Π takes as input a pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$, and asks to find $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies Π

Observation:

$$\begin{aligned}\Pi \leq_p \text{Sandwich } \Pi \\ (V, E) \mapsto [(V, E), (V, E)]\end{aligned}$$

Motivation:

- a “real world” problem
- unclear complexity: there exist NP-complete, coNP-complete & coNP-intermediate sandwich problems

Beyond: sandwich problems

Let Π be some property on graphs

Sandwich problem over Π takes as input a pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$, and asks to find $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies Π

Observation:

$$\begin{aligned}\Pi \leq_p \text{Sandwich } \Pi \\ (V, E) \mapsto [(V, E), (V, E)]\end{aligned}$$

Motivation:

- a “real world” problem
- unclear complexity: there exist NP-complete, coNP-complete & coNP-intermediate sandwich problems

Bodirsky, Guzmán-Pro (2026): Sandwich Π is an infinite-domain CSP for many well-known graph-theoretic properties Π

Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

Input: A pair of graphs (V, E_1) , (V, E_2) such that $E_1 \subseteq E_2$

Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

Input: A pair of graphs (V, E_1) , (V, E_2) such that $E_1 \subseteq E_2$

Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

Observation: Sandwich M -partition $=_p \text{CSP}(\mathbb{H}_M)$, where

$\mathbb{H}_M = ([n], \textcolor{blue}{R_0}, \textcolor{red}{R_1})$ such that $ij \in R_c \Leftrightarrow M_{ij} \in \{c, *\}$, for $i, j \in [n], c \in \{0, 1\}$

Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

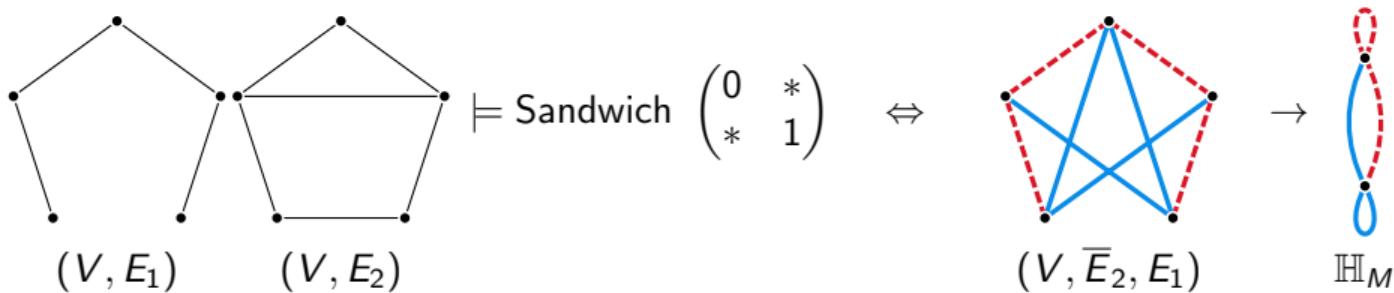
Input: A pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$

Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

Observation: Sandwich M -partition $=_p \text{CSP}(\mathbb{H}_M)$, where

$\mathbb{H}_M = ([n], \mathcal{R}_0, \mathcal{R}_1)$ such that $ij \in R_c \Leftrightarrow M_{ij} \in \{c, *\}$, for $i, j \in [n], c \in \{0, 1\}$



Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

Input: A pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$

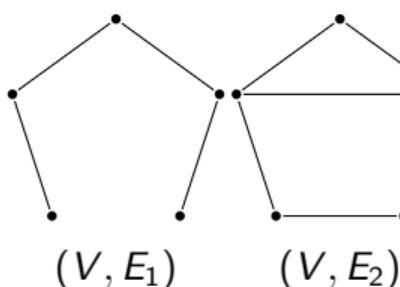
Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

note that $\mathbb{H}_M \models \forall x, y R_0 xy \vee R_1 xy$

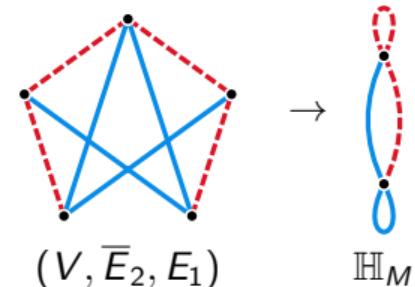
Observation: Sandwich M -partition $=_p \text{CSP}(\mathbb{H}_M)$, where

$\mathbb{H}_M = ([n], R_0, R_1)$ such that $ij \in R_c \Leftrightarrow M_{ij} \in \{c, *\}$, for $i, j \in [n], c \in \{0, 1\}$



$$\models \text{Sandwich } \begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix} \Leftrightarrow$$

\mathbb{H}_M – reflexive complete
2-edge-colored graph



Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

Input: A pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$

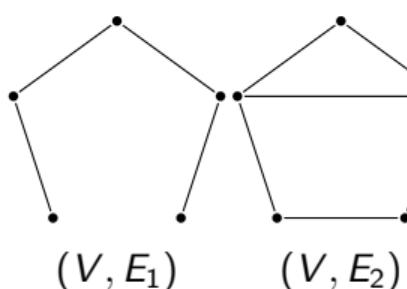
Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

note that $\mathbb{H}_M \models \forall x, y R_0 xy \vee R_1 xy$

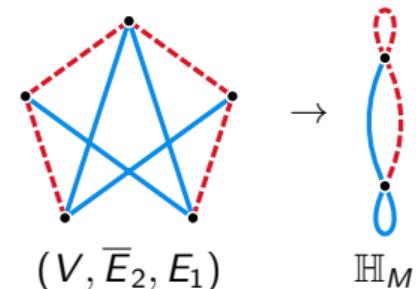
Observation: Sandwich M -partition $=_p \text{CSP}(\mathbb{H}_M)$, where

$\mathbb{H}_M = ([n], R_0, R_1)$ such that $ij \in R_c \Leftrightarrow M_{ij} \in \{c, *\}$, for $i, j \in [n], c \in \{0, 1\}$



\models Sandwich $\begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix} \Leftrightarrow$

\mathbb{H}_M – reflexive complete
2-edge-colored graph



Bulatov, Zhuk \implies Sandwich M -partition is in P or NP-complete

Sandwich Matrix Partitions

Let M be a symmetric $(n \times n)$ -matrix with entries from $\{0, 1, *\}$

Input: A pair of graphs $(V, E_1), (V, E_2)$ such that $E_1 \subseteq E_2$

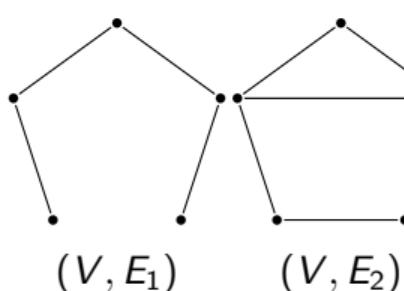
Yes: there is $E_1 \subseteq E \subseteq E_2$ such that (V, E) satisfies M -partition

No: otherwise

note that $\mathbb{H}_M \models \forall x, y R_0 xy \vee R_1 xy$

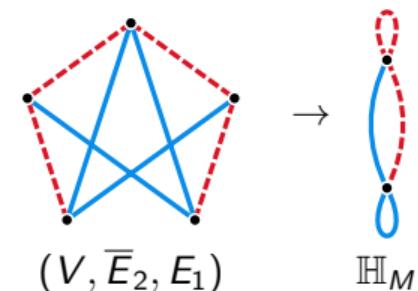
Observation: Sandwich M -partition $=_p \text{CSP}(\mathbb{H}_M)$, where

$\mathbb{H}_M = ([n], R_0, R_1)$ such that $ij \in R_c \Leftrightarrow M_{ij} \in \{c, *\}$, for $i, j \in [n], c \in \{0, 1\}$



\models Sandwich $\begin{pmatrix} 0 & * \\ * & 1 \end{pmatrix} \Leftrightarrow$

\mathbb{H}_M – reflexive complete
2-edge-colored graph



Bulatov, Zhuk \implies Sandwich M -partition is in P or NP-complete

Are we happy?

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where

$\mathbb{H} = (H, E)$ – digraph

$\mathbb{H} = (H, R_0, R_1)$ –
2-edge-colored graph

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
metaquestion is NP-complete even for $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ – 2-edge-colored graph but...

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for \rightarrow 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y \text{ } E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for $\mathbb{H} = (H, R_0, R_1)$ – 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y \text{ } E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for $\mathbb{H} = (H, R_0, R_1)$ – 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y \ E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z \ E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for
2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y \ E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z \ E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	P

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	P
graph	$\forall x, y E_{xy} \rightarrow E_{yx}$ $\forall x, y R_0{}_{xy}$	has loop or is bipartite	

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	P
graph	$\forall x, y E_{xy} \rightarrow E_{yx}$ $\forall x, y R_0{}_{xy}$	has loop or is bipartite	P

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where
 $\mathbb{H} = (H, E)$ – digraph
 $\mathbb{H} = (H, R_0, R_1)$ –
metaquestion is NP-complete even for 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	P
graph	$\forall x, y E_{xy} \rightarrow E_{yx}$ $\forall x, y R_0{}_{xy}$	has loop or is bipartite	P
reflexive complete 2-edge-colored graph	$\forall x, y R_0{}_{xy} \vee R_1{}_{xy}$	has cyclic polymorphism	

Metaquestion in Constraint Tractability

Metaquestion: Given finite structure \mathbb{H} , is $\text{CSP}(\mathbb{H})$ in P or NP-complete?

Chen, Larose (2017): The metaquestion is NP-complete

Every CSP is poly-time equivalent to $\text{CSP}(\mathbb{H})$ where $\mathbb{H} = (H, E) - \text{digraph}$
 $\mathbb{H} = (H, R_0, R_1) -$
metaquestion is NP-complete even for $\mathbb{H} = (H, R_0, R_1) -$ 2-edge-colored graph but...

Name	Definition	When tractable?	MetaQ
semicomplete digraph	$\forall x \neq y E_{xy} \vee E_{yx}$	contains ≤ 1 directed cycle	P
smooth digraph	$\forall x \exists y, z E_{yx} \wedge E_{xz}$	\Leftrightarrow union of directed cycles	P
graph	$\forall x, y E_{xy} \rightarrow E_{yx}$ $\forall x, y R_0{}_{xy}$	has loop or is bipartite	P
reflexive complete 2-edge-colored graph	$\forall x, y R_0{}_{xy} \vee R_1{}_{xy}$	has cyclic polymorphism	???

Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

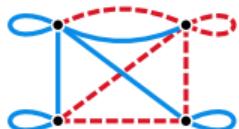
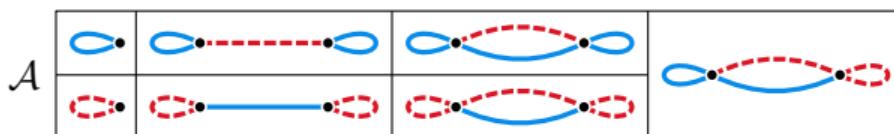
$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

$$\begin{array}{c} \text{Diagram of } \mathbb{G} \sqcup \mathbb{H} \\ \text{Diagram of } \mathbb{G} \triangleleft \mathbb{H} \end{array} \triangleleft =$$

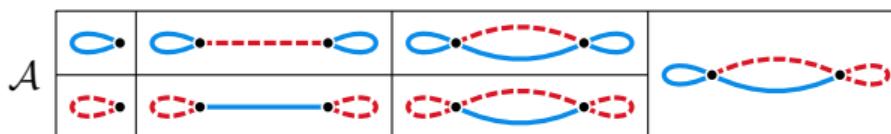
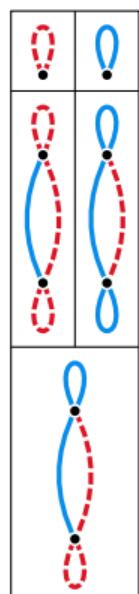


Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

$$\begin{array}{c} \text{Diagram of } \mathbb{G} \sqcup \mathbb{H} \\ \text{Diagram of } \mathbb{G} \triangleleft \mathbb{H} \end{array} \triangleleft =$$

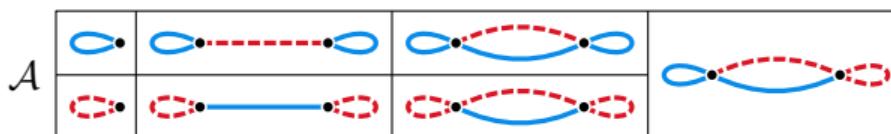
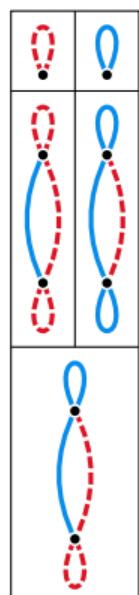


Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

$$\begin{array}{c} \text{Diagram of } \mathbb{G} \text{ and } \mathbb{H} \\ \text{with } R_0 \text{ and } R_1 \text{ edges} \end{array} \triangleleft \begin{array}{c} \text{Diagram of } \mathbb{G} \text{ and } \mathbb{H} \\ \text{with } R_0 \text{ and } R_1 \text{ edges} \end{array} = \begin{array}{c} \text{Diagram of } \mathbb{G} \triangleleft \mathbb{H} \\ \text{with } R_0 \text{ and } R_1 \text{ edges} \end{array}$$



β

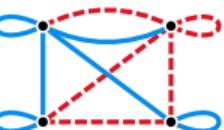
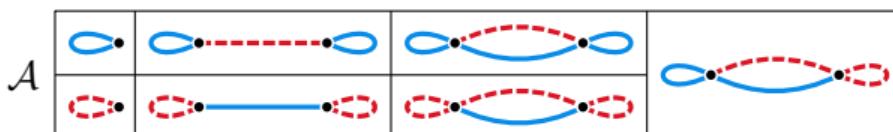
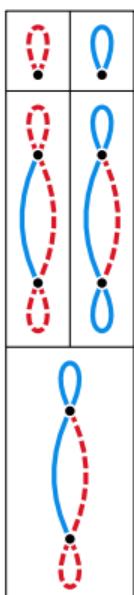
Barsukov, Guzmán-Pro (2026): For reflexive complete 2-edge-colored \mathbb{H} , if $\mathbb{H} \rightleftarrows \mathbb{A} \triangleleft \mathbb{B}_1 \triangleleft \dots \triangleleft \mathbb{B}_n$, for $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B}_i \in \mathcal{B}$, then $\text{CSP}(\mathbb{H})$ is in P, otherwise NP-complete

Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

$$\begin{array}{c} \text{Diagram showing } \mathbb{G} \triangleleft \mathbb{H} \text{ as a sequence of edges:} \\ \text{Diagram showing } \mathbb{G} \sqcup \mathbb{H} \text{ as a sequence of edges:} \end{array} =$$



Barsukov, Guzmán-Pro (2026): For reflexive complete 2-edge-colored \mathbb{H} , if $\mathbb{H} \rightleftarrows \mathbb{A} \triangleleft \mathbb{B}_1 \triangleleft \dots \triangleleft \mathbb{B}_n$, for $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B}_i \in \mathcal{B}$, then $\text{CSP}(\mathbb{H})$ is in P, otherwise NP-complete

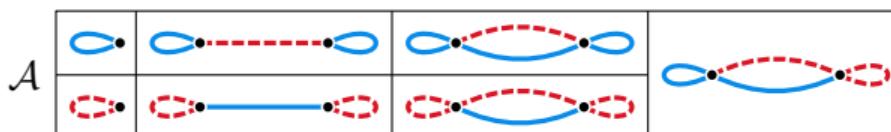
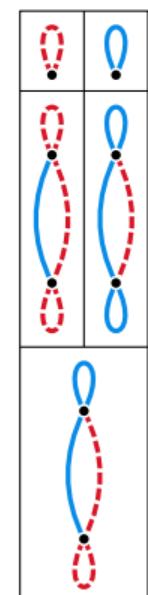
Corollary: the metaquestion for such graphs and for sandwich M -partitions is in P

Main contribution

For reflexive complete 2-edge-colored \mathbb{G}, \mathbb{H} , a *homogeneous concatenation* $\mathbb{G} \triangleleft \mathbb{H}$ is obtained from $\mathbb{G} \sqcup \mathbb{H}$ by adding edges as follows:

$$\forall h \in H (R_0 hh \rightarrow \forall g \in G R_0 gh) \wedge (R_1 hh \rightarrow \forall g \in G R_1 gh)$$

$$\begin{array}{c} \text{Diagram showing } \mathbb{G} \triangleleft \mathbb{H} \text{ where } \mathbb{G} \text{ is a path } (a-b-c-d) \text{ and } \mathbb{H} \text{ is a path } (e-f-g) \text{ with } R_0 \text{ edges in blue and } R_1 \text{ edges in red.} \\ \mathbb{G} \triangleleft \mathbb{H} = \text{Diagram with edges } (a-e), (a-f), (b-e), (b-f), (c-e), (c-f), (d-e), (d-f). \end{array}$$



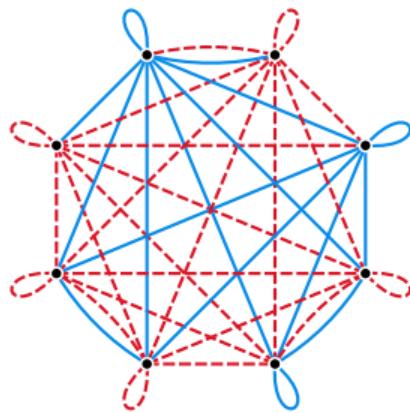
Barsukov, Guzmán-Pro (2026): For reflexive complete 2-edge-colored \mathbb{H} , if $\mathbb{H} \rightleftarrows \mathbb{A} \triangleleft \mathbb{B}_1 \triangleleft \dots \triangleleft \mathbb{B}_n$, for $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B}_i \in \mathcal{B}$, then $\text{CSP}(\mathbb{H})$ is in P, otherwise NP-complete

Corollary: the metaquestion for such graphs and for sandwich M -partitions is in P

Moreover: every such tractable CSP has bounded width (as well as all other classes with “structural” classification)

Example

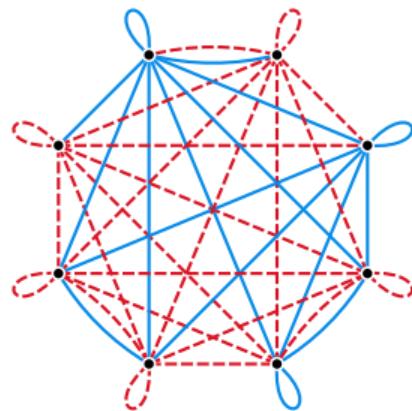
What is the complexity of $\text{CSP}(\mathbb{H})$?



Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

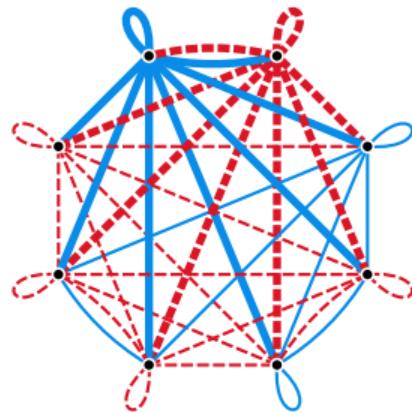
Want to decompose \mathbb{H} into a sequence of homogeneous concatenations



Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

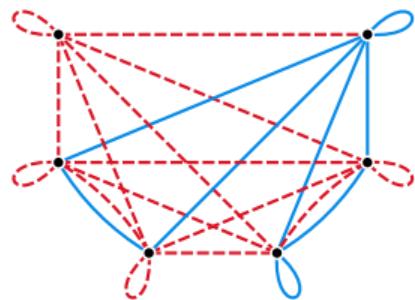
Want to decompose \mathbb{H} into a sequence of homogeneous concatenations



Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

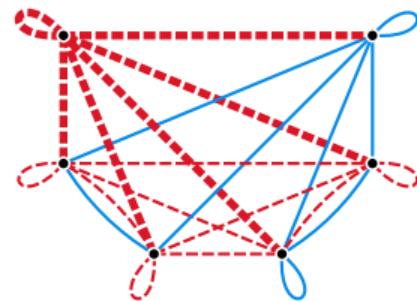


$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

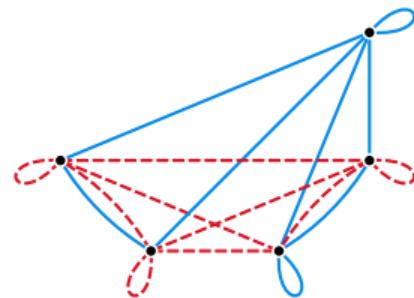


$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

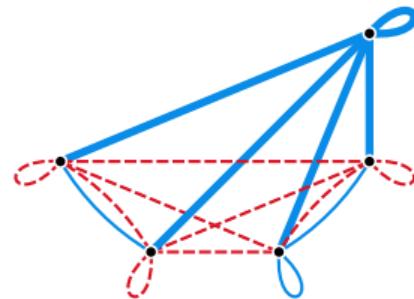


$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

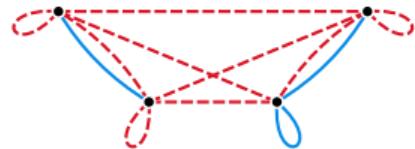


$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

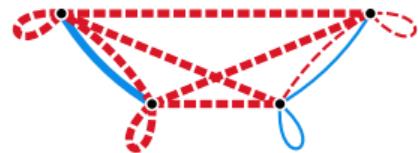


$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations



$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

$\mathbb{H} =$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

$$\mathbb{H} = \text{ } \triangleleft \text{ } \triangleleft \text{ } \triangleleft \text{ } \triangleleft \text{ } \triangleleft$$

Example

What is the complexity of $\text{CSP}(\mathbb{H})$?

Want to decompose \mathbb{H} into a sequence of homogeneous concatenations

$\text{CSP}(\mathbb{H})$ is tractable!

$$\mathbb{H} = \text{graph}_1 \triangleleft \text{graph}_2 \triangleleft \text{graph}_3 \triangleleft \text{graph}_4 \triangleleft \text{graph}_5$$

Metametaquestion in Constraint Tractability

Metametaquestion in Constraint Tractability

What makes me happy: We have obtained a cool structural complexity classification which extends Hell-Nešetřil

Metametaquestion in Constraint Tractability

What makes me happy: We have obtained a cool structural complexity classification which extends Hell-Nešetřil

What makes me unhappy: there can be many more “nice” families of digraphs or 2-edge-colored graphs that have cool “structural” complexity classifications

Metametaquestion in Constraint Tractability

What makes me happy: We have obtained a cool structural complexity classification which extends Hell-Nešetřil

What makes me unhappy: there can be many more “nice” families of digraphs or 2-edge-colored graphs that have cool “structural” complexity classifications

What I want: to know if there is some deep reason what makes the metaquestion tractable, for a family of digraphs or 2-edge-colored graphs

Metametaquestion in Constraint Tractability

What makes me happy: We have obtained a cool structural complexity classification which extends Hell-Nešetřil

What makes me unhappy: there can be many more “nice” families of digraphs or 2-edge-colored graphs that have cool “structural” complexity classifications

What I want: to know if there is some deep reason what makes the metaquestion tractable, for a family of digraphs or 2-edge-colored graphs

Metametaquestion: given class \mathcal{C} , is metaquestion of $\text{CSP}(\mathbb{C})$ tractable, for every $\mathbb{C} \in \mathcal{C}$?

Metametaquestion in Constraint Tractability

What makes me happy: We have obtained a cool structural complexity classification which extends Hell-Nešetřil

What makes me unhappy: there can be many more “nice” families of digraphs or 2-edge-colored graphs that have cool “structural” complexity classifications

What I want: to know if there is some deep reason what makes the metaquestion tractable, for a family of digraphs or 2-edge-colored graphs

Metametaquestion: given class \mathcal{C} , is metaquestion of $\text{CSP}(\mathbb{C})$ tractable, for every $\mathbb{C} \in \mathcal{C}$?

Thank You!