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Constraint Satisfaction Problems: definition

Let H be a relational structure (e.g. graph, digraph, hypergraph)

Homomorphism from G to H is a mapping h: G — H which preserves
the relations: Vt € R® h(t) € R¥, denoted h: G — H

For fixed H, the Constraint Satisfaction Problem CSP(H) is a decision
problem asking for a structure G if there is a homomorphism h: G — H
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Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph H has
< 1 directed cycle, then CSP(H) is tractable; otherwise it is NP-complete
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Constraint Satisfaction Problems: complexity

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph H has
< 1 directed cycle, then CSP(H) is tractable; otherwise it is NP-complete

Hell, Nesetfil (1990): If graph H is bipartite or contains a loop, then CSP(H)
is tractable; otherwise it is NP-complete
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Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph H has
< 1 directed cycle, then CSP(H) is tractable; otherwise it is NP-complete

Hell, Nesetfil (1990): If graph H is bipartite or contains a loop, then CSP(H)
is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph H without sources and sinks is a

union of directed cycles, then CSP(H) is tractable; otherwise it is NP-complete

Polymorphism (m-ary) of H is a mapping f: H™ — H preserving the relations

component-wise: Vi, ..., tn € R® h(t,...,t,) € R, denoted f: H™ — H

Bulatov (2017), Zhuk (2017): If digraph H has f: H™ — H such that
Vxt,.oosXm €H (X1, ..y xm) = F(X2y oy Xmy X1),

then CSP(H) is tractable; otherwise CSP(H) is NP-complete
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Constraint Satisfaction Problems: complexity

“structural”

Bang-Jensen, Hell, MacGillivray (1988): If semicomplete digraph H has
< 1 directed cycle, then CSP(H) is tractable; otherwise it is NP-complete

Hell, Nesetfil (1990): If graph H is bipartite or contains a loop, then CSP(H)
is tractable; otherwise it is NP-complete

Barto, Kozik, Niven (2009): If digraph H without sources and sinks is a
union of directed cycles, then CSP(H) is tractable; otherwise it is NP-complete

Polymorphism (m-ary) of H is a mapping f: H™ — H preserving the relations
component-wise: Vi, ..., tn € R® h(t,...,t,) € R, denoted f: H™ — H

Bulatov (2017), Zhuk (2017): If digraph H has f: H™ — H such that
Vxt,.oosXm €H (X1, ..y xm) = F(X2y oy Xmy X1),
then CSP(H) is tractable; otherwise CSP(H) is NP-complete “algebraic”
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Beyond: matrix partitions

Let M be a symmetric (n x n)-matrix with values in {0,1, %}

For fixed M, the M-partition problem asks for graph G = (V/, E) if exists a
mapping p: V — [n] such that for all distinct u,v € V:

o if uv & E, then Mp,)p(v) € {0, %}
o if uv € E, then Mp,)p(v) € {1, %}
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mapping p: V — [n] such that for all distinct u,v € V:
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Beyond: sandwich problems

Let 1 be some property on graphs

Sandwich problem over T1 takes as input a pair of graphs (V, E1), (V, E;) such
that E; C E;, and asks to find E; C E C E; such that (V/, E) satisfies M1
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Observation: Motivation:
M <, Sandwich I e a “real world” problem
(V,E)—[(V,E),(V,E)] e unclear complexity: there exist NP-

complete, coNP-complete & coNP-
intermediate sandwich problems

Bodirsky, Guzman-Pro (2026): Sandwich I is an infinite-domain CSP for
many well-known graph-theoretic properties I
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Sandwich Matrix Partitions

Let M be a symmetric (n x n)-matrix with entries from {0, 1, %}
Input: A pair of graphs (V, Ey), (V, E2) such that E; C E;
Yes: there is E; C E C E; such that (V, E) satisfies M-partition
No: otherwise
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Bulatov, Zhuk = Sandwich M-partition is in P or NP-complete

Are we happy?
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Metaquestion in Constraint Tractability

Metaquestion: Given finite structure H, is CSP(H) in P or NP-complete?
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Main contribution

For reflexive complete 2-edge-colored G,H, a homogeneous concatenation
G < H is obtained from G U H by adding edges as follows:
Vh € H (Rohh — Vg € G Rogh) A (Rihh — Vg € G Ry gh)
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Example

What is the complexity of CSP(H)?

Want to decompose H into a sequence of
homogeneous concatenations

CSP(H) is tractable!
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