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Ladner’s theorem & dichotomy
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Feder and Vardi’s logic

Feder, Vardi (1998):
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Guarded Monotone SNP without ̸=
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Algebraic Dichotomy for CSP
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Matrix Partition
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Matrix Partition
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Definition ([Feder, Hell, Xie, 2007])

Let M be a square matrix of size m with elements from {0, 1, ⋆}.
Given an input digraph, split its vertices into disjoint classes
P1, . . . , Pm such that, for any i, j and any x ∈ Pi, y ∈ Pj :

if M(i, j) = 0, then there is no arc between x and y;

if M(i, j) = 1, then there is an arc between x and y;

if M(i, j) = ⋆, then there is no restriction.
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Monotone Monadic SNP without inequalities (MMSNP)
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Monotone Monadic SNP without inequalities (MMSNP)

No Monochromatic Triangle

Given a graph, colour its vertices
with 2 colours so that the result
omits the two following subgraphs.

G
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MMSNP2
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MMSNP2

No Monochromatic Edge Triangle

Given a graph, colour its edges with
2 colours so that the result omits
the two following subgraphs.

G
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MMSNP with guarded inequalities
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MMSNP with guarded inequalities

Example

Given a structure, colour its vertices
with 2 colours so that the result
omits the following substructures.

accept

reject
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Main result

Theorem (B., Kanté, Madelaine)

For any GMMSNP ̸= sentence Φ there exists an MMSNP sentence
Ψ such that the problems SAT(Φ) and SAT(Ψ) are P-time
equivalent.
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Construction

1. Substitute Φ with an equivalent GMMSNP ̸= sentence Φ′, where
any two distinct variables within the same atom must be unequal.
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Construction

2. The input signature of Ψ corresponds to all possible equivalence
relations on a k-element set, where k is the arity of the
GMMSNP ̸= relation.

R3R1 R2 R5R4
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Construction

3. Restrict R1, . . . ,R5 to appear only on pairwise distinct vertices.
Replace every atom of Φ′ with a corresponding atom of the new
signature.

R1 R1 R1 R1

R1 R1
R1

R2 R3 R4

R2 R2 R2 R2

R4 R4 R4 R4

R3 R3

R5R5
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Conclusion for GMMSNP̸=

Theorem (B., Kanté, Madelaine)

GMMSNP ̸= is strictly more expressive than MMSNP.

Proof (sketch)

Pick any problem of GMMSNP ̸= that is not closed under inverse
homomorphisms.

Conclusion

We have found a logic that strictly contains MMSNP and that also
has a dichotomy.
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Definition of MMSNP2

Definition ([Madelaine, 2009])

Given a graph, colour its vertices
and edges with a fixed number of
colours so that no coloured graph
of some fixed finite family can
map to it.

G
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Reduction to MMSNP

Replace every edge with a triple,
where the new third vertex
represents the edge colour.

G̃
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How to go back?

Question

If an MMSNP input instance has two tuples with a common
edge-colour vertex, then what should it correspond to in the
MMSNP2 world?

=
colour

MMSNP MMSNP2
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Infinite MMSNP

Answer

Say that x ∼ y if these vertices are on the same position
within a pair of duplicated tuples.

It suffices to forbid every (infinitely many) coloured structure
A such that A/ ∼ contains an original forbidden structure.

A A/ ∼A with ∼
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Infinite MMSNP

Question

Every ∼-equivalence class is based on a connected graph, where
edges are provided by . These graphs may be very complex and
large. Is there a simpler family that is also sufficient?
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Infinite MMSNP

Answer

Yes. It is sufficient to forbid those and only those structures, where
each such graph is a tree with every its leaf being incident to a pair
of tuples that connects two graphs.
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Regularity

Definition ([Hubička, Nešeťril, 2015])

(B, r) is called a piece of A if B is a connected induced
substructure and r is the set of elements of B that are incident to
tuples not from B.

Definition ([Hubička, Nešeťril, 2015])

A class of structures A is called regular if there is a constant c ∈ N
such that, for any A ∈ A and any piece (B, r) of A there is a piece
(C, r′) of another structure of A such that |C| < c and that
replacing (B, r) with (C, r′) gives another structure from A.

(C1, r
′
1)

(C2, r
′
2)(B, r)

Result
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Regular MMSNP

Theorem (B., Kanté, Madelaine)

Any MMSNP2 problem is P-time equivalent to a infinite MMSNP
problem, where the infinite class of forbidden structures is regular.
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Regular MMSNP

Proof (sketch)

Every piece is as the red part on the left. It can be replaced by a
rooted structure of bounded size as on the right, and the result is
another structure from the class, where the paths are shorter.
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Conclusion for MMSNP2

Theorem ([Bodirsky, Madelaine, Mottet, 2018])

The class of ω-categorical CSP that are described by MMSNP
sentences has a dichotomy.

Conclusion

If one manages to extend this result onto ω-categorical CSP
that are described by regular MMSNP sentences, then it will
immediately imply a dichotomy for MMSNP2.

In any case, now we understand better how MMSNP2 and
MMSNP are related.

MMSNP2 41/43



References

▶ Tomás Feder and Pavol Hell and Wing Xie
Matrix Partitions with Finitely Many Obstructions
Electron. J. Comb., 2007, 10.37236/976

▶ Florent R. Madelaine
Universal Structures and the logic of Forbidden Patterns
Log. Methods Comput. Sci., 2009, 10.2168/LMCS-5(2:13)2009
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Reduction of MMSNP to CSP

Reduction

Replace every triangle of the
input graph with a relational
triple.

Check if the resulting
structure S maps to T ,
where T is as follows.

T

S
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The other direction

Naive approach

Replace every relational
triple of S with a triangle.

Check if the resulting graph
satisfies the MMSNP
sentence.

Obstacle

What to do when S contains
implicit triangles?

S
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Solution

Lemma (Erdős)

For given structures S, T , and
ℓ > 0 there exists S′ such that

S → T iff S′ → T ;

S′ does not contain cycles of
length less than ℓ, i.e., the
girth of S′ is at least ℓ.

S ′
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Solution

Proof

By construction, S′ → S.

The number of cycles of
length < ℓ is small, so we
need to remove a few tuples
to get rid of them.

If S′ → T , then each “bag”
of size N contains at least
N
|T | vertices that are mapped
to the same vertex in T .

S ′
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Solution

Proof

By construction, S′ → S.

The number of cycles of
length < ℓ is small, so we
need to remove a few tuples
to get rid of them.

If S′ → T , then each “bag”
of size N contains at least
N
|T | vertices that are mapped
to the same vertex in T .

Tuples are distributed
uniformly, so every triple of
“bags” has at least one
tuple induced on them.

S ′
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Reduction of MMSNP2 to CSP

Reduction

Replace every triangle of the
input graph G with a
relational 6-tuple.

Check if the resulting
structure maps to T , where
T is as follows.

T

S
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.

Joining 6-tuples only by vertices that represent original
vertices is not sufficient.

S T
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Obstacles for the other direction

Within S′, it is not allowed to join two 6-tuples only by a
vertex representing an original edge.

Joining 6-tuples only by vertices that represent original
vertices is not sufficient.

S ′ T
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How can we help ourselves?

We can provide that, if two tuples in S share an edge-vertex,
then they share the whole implicit edge.
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How can we help ourselves?

We can provide that, if two tuples in S share an edge-vertex,
then they share the whole implicit edge.

Within S′, we are allowed to join two tuples by an implicit
edge, and it will not reduce the girth down to 2.
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How to construct S ′ right?

We can apply the same Erdős’ method as for MMSNP. But then
we need to identify vertices within S′ in order to replace it later
with a graph. This procedure reduces the girth of S′.
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How to construct S ′ right?

Change the measure function for vertices of S′ from the
Lemma of Erdős, e.g., consider the degrees of vertices.

Consider the layer configuration of T and its cycles and to
construct S′ depending on them.

To solve a weaker problem: bounded-degree input, S′ having
exponential size with respect to S, etc.
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Questions about MP apart from dichotomy

1 To show that any generalization of MP to an arbitrary
relational signature is P-time equivalent to MP on digraphs.

2 To find a logic that is equivalent to MP. Similarly, as
MMSNP ↔ CSP.

3 To determine when a MP problem has finitely many minimal
obstructions.

Definition

A directed graph G is called a minimal obstruction of a problem
MP(M) if G ̸∈ MP(M) and, for any induced subgraph G′ ⊊ G,
G′ ∈ MP(M).

Theorem (Atserias’08)

CSP(H) is definable in first-order logic iff it has finitely many
minimal obstructions.
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CSP Inclusion into Digraphs

CSP(R1, . . . ,Rn)

CSP(R)

CSP(digraphs)

Theorem (Feder, Vardi’98) (Bulin et al.’15)

CSP over an arbitrary finite signature is P-time
equivalent to CSP on digraphs.
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Results for the MP case

MP⋆ MP

MP⋆(R) MP(R)

MP⋆(R1, . . . ,Rn) MP(R1, . . . ,Rn)

The difference between MP⋆ and
MP is the presence of ⋆-graphs in
the input.

Theorem (B., Kanté ’21)

For any finite signature σ,
MP(σ) ↔ MP⋆(σ).

Theorem (B., Kanté ’21)

For any finite signature σ, there
exists a signature σ̃ = {R} such
that MP(σ̃) → MP(σ).
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MP ↔ MP⋆
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MP⋆(R) → MP⋆(R1, . . . ,Rn)

Lemma

MP⋆(A) reduces in P-time to MP⋆(Ã).

Proof

1

⋆ ⋆

x z

y

x z

y

cA

R1(x, y) = ⋆

R2(x, z) = 1

R(cA, x, y) = ⋆
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R(cA, cA, cA) = 1

A
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t

u

v

w

t

u

v

w

cB

1 ⋆1
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R2(u, v) = 1
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R(cB , t, u) = 1

R(cB , v, w) = ⋆
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R(cB , cB , cB) = 1

B

B̃

62/43



MP⋆(R) → MP⋆(R1, . . . ,Rn)

Lemma

MP⋆(Ã) reduces in P-time to MP⋆(A).

Proof
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MP⋆(R) → MP⋆(R1, . . . ,Rn)
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