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Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple (V, D, C)
where:

m V ={v1,...,v,} is the set of variables.
m D ={d,...,ds} is the set of the domain values.

m C is the set of constraints. Any constraint is of the form
(x1,...,x, R) where z1,...,2, € V and R is a k-ary
relation defined on D.
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Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple (V, D, C)
where:

m V ={v1,...,v,} is the set of variables.
m D ={d,...,ds} is the set of the domain values.

m C is the set of constraints. Any constraint is of the form
(x1,...,x, R) where z1,...,2, € V and R is a k-ary
relation defined on D.

Definition
A solution to a CSP is a map s: V' — D such that, for any
(x1,...,xn, R) € C, R(s(x1),...,s(xy)) is satisfied.
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Constraint Satisfaction Problems

m Variables: the regions of a map.

m Domain: green, violet, blue, grey.

m Constraints: any two contiguous departments cannot have the
same colour.
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Constraint Satisfaction Problems

CSPs are usually thought of as
D T . fH digraph homomorphism problems.
= Domain: the vertices of 4. The target H is fixed, G is the

m Constraints: the edges of G. input. Notation: CSP(H).

o
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m Variables: the vertices of G.




NP-intermediate Class and Dichotomy

Theorem (Ladner'75)

If P # NP then there is a
problem L € NP such that

L ¢ P LI NP-complete. The class
of such problems is called
NP-intermediate.
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NP-intermediate Class and Dichotomy

Theorem (Ladner'75)

If P # NP then there is a
problem L € NP such that

L ¢ P LI NP-complete. The class
of such problems is called
NP-intermediate.

Dichotomy Question

Take a complexity class C C NP.
Are there problems L € C such
that L € NP-intermediate? If
there are no such L then we say
that C has a dichotomy.
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P-time Equivalence

If for any problem P4 of a class A there is a problem Pg of B such
that P4 and Py are P-time equivalent, then the existence of a
dichotomy for B implies the existence for A, denoted as 5 — A.
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P-time Equivalence

A B

Definition

A is P-time equivalent to B if for any problem P4 of A there is a
P-time equivalent problem Py of B and for any Pg € B there is a
P-time equivalent problem P4 € A. It is denoted as A < B.
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State of the Art

NP = ESO
SNP with #
MonotoneSNP MMSNP_. MonadicSNP
MMSNP, GMSNP MP 77
MMSNP CSP

Theorem (Fagin'74)

The set of properties expressible by the existential second-order
logic (ESO) is exactly NP.
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State of the Art

NP = ESO

no dichotomy

N\

MonotoneSNP ——— MMSNP.. «<—— MonadicSNP

SNP with

MMSNP,

MMSNP

Theorem (Feder, Vardi'98)

MMSNP without one of its properties is P-time equivalent to NP.
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State of the Art

NP = ESO

no dichotomy

MonotoneSNP ——— MMSNP_

SNP with

MonadicSNP

MMSNP,

MMSNP

Theorem (Feder, Vardi'98)

MMSNP is P-time equivalent to CSP under randomized P-time
reductions.
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State of the Art

NP = ESO

no dichotomy
SNP with #

MonotoneSNP ——— MMSNP_

MonadicSNP

MMSNP,

Fact

The class MP (Hell et al.) includes CSP and is included in
MonadicSNP.
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State of the Art

NP = ESO

no dichotomy

SNP with

MonotoneSNP ——— MMSNP_

MonadicSNP

MMSNP,

GMSNP

Theorem (Bienvenu, Ten Cate, Lutz, Wolter'14)

GMSNP strictly includes MMSNP and is P-time equivalent to
MMSNP; introduced by Madelaine.
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State of the Art

NP = ESO

no dichotomy
SNP with #

MonotoneSNP ——— MMSNP_

MonadicSNP

dichotomy

Algebraic Tractability Theorem (Bulatov, Zhuk'18)

Either a structure A satisfies a certain algebraic property and
CSP(A) € P or it doesn't satisfy and CSP(A) is NP-complete.
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Open Questions

NP = ESO

no dichotomy

SNP with

MonotoneSNP ——— MMSNP_

MonadicSNP

77

m Does the class MMSNP, have dichotomy?

m Does the class of Matrix Partition problems have dichotomy?
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Matrix Partition
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Matrix Partition

S O *
O X O

~

>
.
-

Definition
G admits M-partition if there is a partition V(G) = P U...U P,
such that
m if M(7,7) = 0 then, Yv; € P;,vj € P, v;v; isn't an edge;
m if M(7,5) =1 then, Yv; € P;,vj € P, v;v; is an edge.
The class of all such problems is called MP.
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Matrix Partition
G admits M-partition if there is a partition V(G) = P U...U P,

such that
m if M(7,7) = 0 then, Yv; € P;,vj € P, v;v; isn't an edge;

m if M(7,5) =1 then, Yv; € P;,vj € P, v;v; is an edge.
The class of all such problems is called MP.
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Matrix Partition and CSP

Every digraph homomorphism problem (CSP) can be represented
as an M-partition problem.

Example

K
’ Let K3 and M3 be as to the left.
Then CSP(K3) and MP(M3) is
S the same problem.
0 x %
M3 =% 0 %
* x 0
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Matrix Partition and CSP

Every digraph homomorphism problem (CSP) can be represented
as an M-partition problem.

K3

Let K3 and M3 be as to the left.
Then CSP(K3) and MP(M3) is
the same problem.

Conclusion

CSP is a subclass of MP.

g Fe

M3

I
* o+ O
* O F
o o+ *
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Questions about MP apart from dichotomy

To show that any generalization of MP to an arbitrary
relational signature is P-time equivalent to MP on digraphs.
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To find a logic that is equivalent to MP. Similarly, as
MMSNP < CSP.
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Questions about MP apart from dichotomy

To show that any generalization of MP to an arbitrary
relational signature is P-time equivalent to MP on digraphs.

To find a logic that is equivalent to MP. Similarly, as
MMSNP < CSP.

To determine when a MP problem has finitely many minimal
obstructions.

Definition

A directed graph G is called a minimal obstruction of a problem
MP (M) if G ¢ MP(M) and, for any induced subgraph G’ C G,
G’ € MP(M).

Theorem (Atserias'08)

CSP(H) is definable in first-order logic iff it has finitely many
minimal obstructions.
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CSP Inclusion into Digraphs

CSP(Ri, ..., Ry)
Theorem (Feder, Vardy'98) (Bulin et al.’15)
CSP(R) CSP over an arbitrary finite signature is
P-time equivalent to CSP on digraphs.
CSP(digraphs)
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Results for the MP case

MP,(Ry,...,Ry) ———MP(Ry,...,R,)

Theorem (B., Kanté '21)

For any finite signature o,

MP, (R «—— MP(R
. . MP(o) < MP,(o).

Theorem (B., Kanté '21)

MP, +~———~ MP o
For any finite signature o, there

The difference between MP, and .2 signature & = { R} such

MP is the presence of x-graphs that MP(5) — MP(o)
in the input.
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MP « MP,

All-zero matrix

.

All-one matrix Hadamard matrix
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MP « MP,

] HE
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| [ N ]
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Yo
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All-zero matrix

Vi
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All-one matrix Hadamard matrix
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MP,(R) — MP,(Ry, ..., Ry)

Lemma

MP, (A) reduces in P-time to MP,(A4).

R(ca,ca,ca)=1
R(CA,.Z',:_U) =%

R(cp,cp,ep) =1 ‘
R(cp,t,u) =1 va N
R(cg,v,w) =% /

(cB,v,w) /

R(u,v,cp) =1 NN %

R(CA»Z7y) =%
'\ R(z,z,c4) =1
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MP,(R) — MP,(Ry, ..., Ry)

Lemma
MP, (A) reduces in P-time to MP,(A).

Proof
Yo
R(w,v,c1) =1 A Ry(z,y) =*
R(c3,w,v) =% * ¥ Ry(z,2) =%
Vi: R(ci,u,t) =1 . 1 . Ry(z,z) =1

Vi,j, k: ]{(Ci7 Cj,Ck) =1

G t@;\}u R(ca,ca,ca)=1
/N
/N R(ca,z,y) = *
/AR
/) \pcs R Cszvy) =%

(
A\ R(z,z,c4) =1
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MP, (R) — MP,(R

Lemma
MP, (A) reduces in P-time to MP,(A).

Proof
Yo
R(w,v,c1) =1 B t,(li.u A Ry(z,y) =*
R(c3,w,v) =% * * x Ry(z,2) =%
Vi: R(cj,u,t) =1 0w Ry(z,2) =1
. iy Uy * T 1 Py 2Ly

Vi,j, k: ]{(Ci7 Cj,Ck) =1

G t@;\}u B ° R(ca,ca,ca) =1
Rca,z,y) = *
Rlea,z,y) =x
'\ R(z,z,c4) =1
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