Investigating potential dichotomies above Feder and Vardi's logic MMSNP

Alexey Barsukov

Caen, 1 February 2022

2 Matrix Partition

Introduction

Definition

A constraint satisfaction problem (CSP) is a triple $\langle V, D, C \rangle$ where:

- $V = \{v_1, \ldots, v_n\}$ is the set of variables.
- $D = \{d_1, \ldots, d_s\}$ is the set of the domain values.
- C is the set of constraints. Any constraint is of the form $\langle x_1, \ldots, x_k, R \rangle$ where $x_1, \ldots, x_k \in V$ and R is a k-ary relation defined on D.

Definition

A constraint satisfaction problem (CSP) is a triple $\langle V, D, C \rangle$ where:

- $V = \{v_1, \ldots, v_n\}$ is the set of variables.
- $D = \{d_1, \ldots, d_s\}$ is the set of the domain values.
- C is the set of constraints. Any constraint is of the form $\langle x_1, \ldots, x_k, R \rangle$ where $x_1, \ldots, x_k \in V$ and R is a k-ary relation defined on D.

Definition

A solution to a CSP is a map $s: V \to D$ such that, for any $\langle x_1, \ldots, x_n, R \rangle \in C$, $R(s(x_1), \ldots, s(x_n))$ is satisfied.

Example

- Variables: the regions of a map.
- Domain: green, violet, blue, grey.
- Constraints: any two contiguous departments cannot have the same colour.

Example

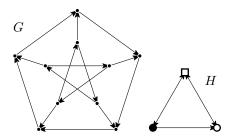
- Variables: the regions of a map.
- Domain: green, violet, blue, grey.
- Constraints: any two contiguous departments cannot have the same colour.

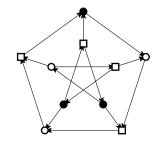
Example

- Variables: the vertices of G.
- Domain: the vertices of *H*.
- Constraints: the edges of G.

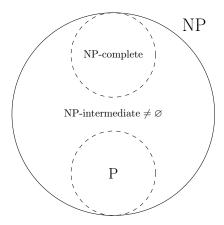
Remark

CSPs are usually thought of as digraph homomorphism problems. The target H is fixed, G is the input. Notation: CSP(H).





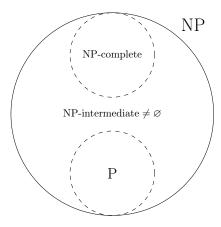
NP-intermediate Class and Dichotomy



Theorem (Ladner'75)

If $P \neq NP$ then there is a problem $L \in NP$ such that $L \notin P \sqcup NP$ -complete. The class of such problems is called NP-intermediate.

NP-intermediate Class and Dichotomy



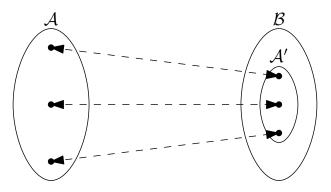
Theorem (Ladner'75)

If $P \neq NP$ then there is a problem $L \in NP$ such that $L \notin P \sqcup NP$ -complete. The class of such problems is called NP-intermediate.

Dichotomy Question

Take a complexity class $\mathcal{C} \subset NP$. Are there problems $L \in \mathcal{C}$ such that $L \in NP$ -intermediate? If there are no such L then we say that \mathcal{C} has a dichotomy.

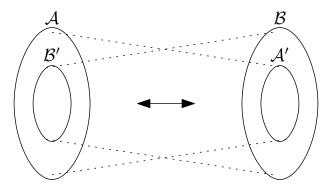
P-time Equivalence



Observation

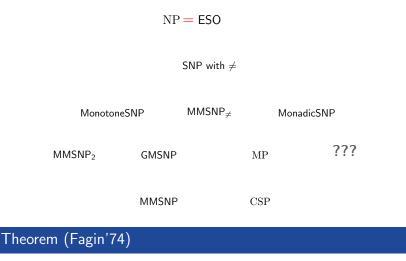
If for any problem $P_{\mathcal{A}}$ of a class \mathcal{A} there is a problem $P_{\mathcal{B}}$ of \mathcal{B} such that $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ are P-time equivalent, then the existence of a dichotomy for \mathcal{B} implies the existence for \mathcal{A} , denoted as $\mathcal{B} \to \mathcal{A}$.

P-time Equivalence

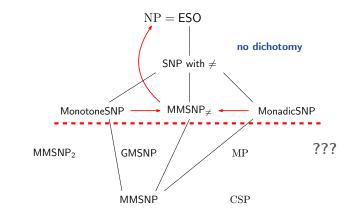


Definition

 \mathcal{A} is P-time equivalent to \mathcal{B} if for any problem $P_{\mathcal{A}}$ of \mathcal{A} there is a P-time equivalent problem $P_{\mathcal{B}}$ of \mathcal{B} and for any $P_{\mathcal{B}} \in \mathcal{B}$ there is a P-time equivalent problem $P_{\mathcal{A}} \in \mathcal{A}$. It is denoted as $\mathcal{A} \leftrightarrow \mathcal{B}$.

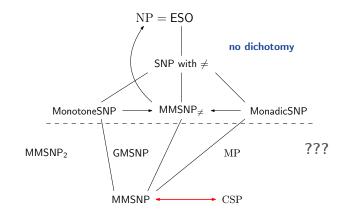


The set of properties expressible by the existential second-order logic (ESO) is exactly NP.



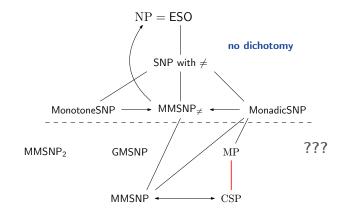
Theorem (Feder, Vardi'98)

MMSNP without one of its properties is P-time equivalent to NP.



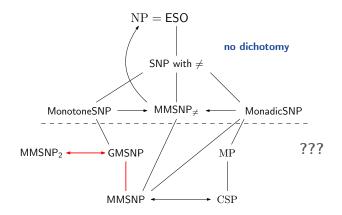
Theorem (Feder, Vardi'98)

 MMSNP is $\operatorname{P-time}$ equivalent to CSP under randomized $\operatorname{P-time}$ reductions.



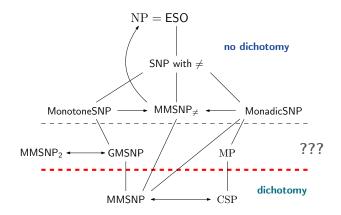
Fact

The class ${\rm MP}$ (Hell et al.) includes ${\rm CSP}$ and is included in MonadicSNP.



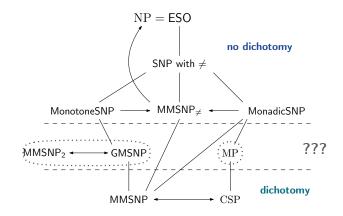
Theorem (Bienvenu, Ten Cate, Lutz, Wolter'14)

GMSNP strictly includes MMSNP and is P-time equivalent to MMSNP₂ introduced by Madelaine.



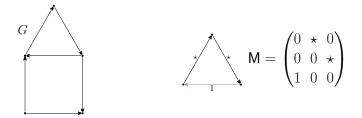
Algebraic Tractability Theorem (Bulatov, Zhuk'18)

Either a structure A satisfies a certain algebraic property and $CSP(A) \in P$ or it doesn't satisfy and CSP(A) is NP-complete.



- Does the class MMSNP₂ have dichotomy?
- Does the class of Matrix Partition problems have dichotomy?

Matrix Partition

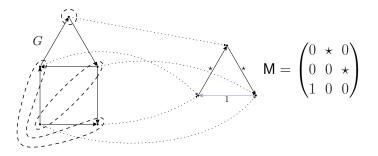


Definition

G admits M-partition if there is a partition $V(G) = P_1 \sqcup \ldots \sqcup P_n$ such that

- if M(i,j) = 0 then, $\forall v_i \in P_i, v_j \in P_j$, $v_i v_j$ isn't an edge;
- if M(i, j) = 1 then, $\forall v_i \in P_i, v_j \in P_j$, $v_i v_j$ is an edge.

The class of all such problems is called MP.



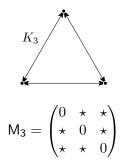
Definition

G admits M-partition if there is a partition $V(G) = P_1 \sqcup \ldots \sqcup P_n$ such that

- if M(i,j) = 0 then, $\forall v_i \in P_i, v_j \in P_j$, $v_i v_j$ isn't an edge;
- if M(i, j) = 1 then, $\forall v_i \in P_i, v_j \in P_j$, $v_i v_j$ is an edge.

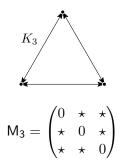
The class of all such problems is called MP.

Every digraph homomorphism problem (CSP) can be represented as an M-partition problem.



Example

Let K_3 and M_3 be as to the left. Then $CSP(K_3)$ and $MP(M_3)$ is the same problem. Every digraph homomorphism problem (CSP) can be represented as an M-partition problem.



Example

Let K_3 and M_3 be as to the left. Then $CSP(K_3)$ and $MP(M_3)$ is the same problem.

Conclusion

 CSP is a subclass of $\mathrm{MP}.$

Questions about MP apart from dichotomy

1 To show that any generalization of MP to an arbitrary relational signature is P-time equivalent to MP on digraphs.

Questions about MP apart from dichotomy

- **1** To show that any generalization of MP to an arbitrary relational signature is P-time equivalent to MP on digraphs.
- 2 To find a logic that is equivalent to MP. Similarly, as MMSNP \leftrightarrow CSP.

Questions about MP apart from dichotomy

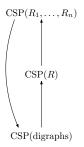
- To show that any generalization of MP to an arbitrary relational signature is P-time equivalent to MP on digraphs.
- 2 To find a logic that is equivalent to MP. Similarly, as MMSNP \leftrightarrow CSP.
- **3** To determine when a MP problem has finitely many minimal obstructions.

Definition

A directed graph G is called a minimal obstruction of a problem MP(M) if $G \notin MP(M)$ and, for any induced subgraph $G' \subsetneq G$, $G' \in MP(M)$.

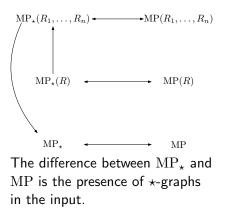
Theorem (Atserias'08)

 $\mathrm{CSP}(H)$ is definable in first-order logic iff it has finitely many minimal obstructions.



Theorem (Feder, Vardy'98) (Bulin et al.'15)

 CSP over an arbitrary finite signature is $\mathrm{P}\text{-time}$ equivalent to CSP on digraphs.



Theorem (B., Kanté '21)

For any finite signature σ , $MP(\sigma) \leftrightarrow MP_{\star}(\sigma)$.

Theorem (B., Kanté '21)

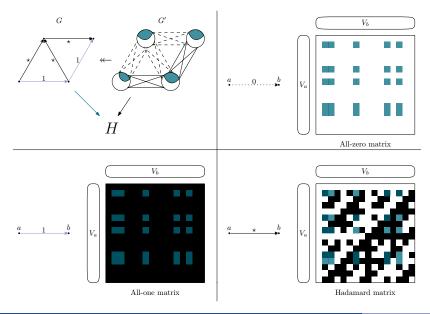
For any finite signature σ , there exists a signature $\tilde{\sigma} = \{R\}$ such that $MP(\tilde{\sigma}) \rightarrow MP(\sigma)$.

$\mathrm{MP}\leftrightarrow\mathrm{MP}_{\star}$



Matrix Partition

$\mathrm{MP}\leftrightarrow\mathrm{MP}_{\star}$



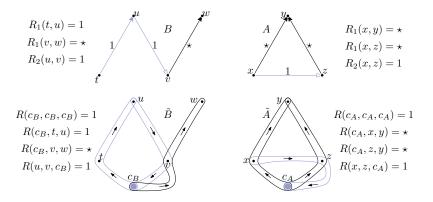
Matrix Partition

$\operatorname{MP}_{\star}(R) \to \operatorname{MP}_{\star}(R_1, \ldots, R_n)$

Lemma

 $MP_{\star}(A)$ reduces in P-time to $MP_{\star}(\tilde{A})$.

Proof



$\operatorname{MP}_{\star}(R) \to \operatorname{MP}_{\star}(R_1, \ldots, R_n)$

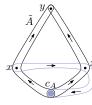
Lemma

$$MP_{\star}(\tilde{A})$$
 reduces in P-time to $MP_{\star}(A)$.

Proof

$$\begin{split} R(w,v,c_1) &= 1\\ R(c_3,w,v) &= \star\\ \forall i\colon R(c_i,u,t) &= 1\\ \forall i,j,k\colon R(c_i,c_j,c_k) &= 1 \end{split}$$

 $R_1(x, y) = \star$ $R_1(x, z) = \star$ $R_2(x, z) = 1$



$\operatorname{MP}_{\star}(R) \to \operatorname{MP}_{\star}(R_1, \ldots, R_n)$

Lemma

$$MP_{\star}(\tilde{A})$$
 reduces in P-time to $MP_{\star}(A)$.

Proof

