Initial remarks

- Regularity of semigroup corresponds to regularity of solutions to DE
 - Initial value \(x_0 \in D(A) \), then solution is differentiable for all \(t \geq 0 \)
 - Initial value \(x_0 \not\in D(A) \), then solution is not differentiable for \(t = 0 \).
 It may and may no be differentiable for some \(t > 0 \).
- From PDE’s: for every \(x_0 \in X \) the solution to heat equation is smooth for all \(t > 0 \) … high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value … low regularity of the shift semigroup.
- If a solution is differentiable for \(t = t_0 \), then it is differentiable for all \(t > t_0 \) (since \(T(t_0)x_0 \in D(A) \) implies \(T(t)x_0 \in D(A) \) for all \(t > 0 \))
- If \(x_0 \in D(A^n) \), then the solution is \(n \)-times differentiable for all \(t \geq 0 \).
Initial remarks

- regularity of semigroup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \geq 0$
- initial value $x_0 \not\in D(A)$, then solution is not differentiable for $t = 0$. It may and may not be differentiable for some $t > 0$.
- From PDE’s: for every $x_0 \in X$ the solution to heat equation is smooth for all $t > 0$. . . high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value . . . low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all $t > 0$)
- If $x_0 \in D(A^n)$, then the solution is n-times differentiable for all $t \geq 0$.
Initial remarks

- Regularity of semigroup corresponds to regularity of solutions to DE.
- Initial value \(x_0 \in D(A) \), then solution is differentiable for all \(t \geq 0 \).
- Initial value \(x_0 \notin D(A) \), then solution is not differentiable for \(t = 0 \). It may and may no be differentiable for some \(t > 0 \).
- From PDE’s: for every \(x_0 \in X \) the solution to heat equation is smooth for all \(t > 0 \) ... high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for \(t = t_0 \), then it is differentiable for all \(t > t_0 \) (since \(T(t_0)x_0 \in D(A) \) implies \(T(t)x_0 \in D(A) \) for all \(t > 0 \)).
- If \(x_0 \in D(A^n) \), then the solution is \(n \)-times differentiable for all \(t \geq 0 \).
Initial remarks

- Regularity of semigroup corresponds to regularity of solutions to DE.
- Initial value $x_0 \in D(A)$, then solution is differentiable for all $t \geq 0$.
- Initial value $x_0 \not\in D(A)$, then solution is not differentiable for $t = 0$. It may and may not be differentiable for some $t > 0$.
- From PDE’s: for every $x_0 \in X$ the solution to heat equation is smooth for all $t > 0$... high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all $t > 0$).
- If $x_0 \in D(A^n)$, then the solution is n-times differentiable for all $t \geq 0$.
Initial remarks

- Regularity of semigroup corresponds to regularity of solutions to DE
- Initial value $x_0 \in D(A)$, then solution is differentiable for all $t \geq 0$
- Initial value $x_0 \not\in D(A)$, then solution is not differentiable for $t = 0$. It may and may no be differentiable for some $t > 0$.
- From PDE’s: for every $x_0 \in X$ the solution to heat equation is smooth for all $t > 0$. . . high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value . . . low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all $t > 0$)
- If $x_0 \in D(A^n)$, then the solution is n-times differentiable for all $t \geq 0$.
Initial remarks

- Regularity of semigroup corresponds to regularity of solutions to DE
- Initial value \(x_0 \in D(A) \), then solution is differentiable for all \(t \geq 0 \)
- Initial value \(x_0 \notin D(A) \), then solution is not differentiable for \(t = 0 \).
 It may and may no be differentiable for some \(t > 0 \).
- From PDE’s: for every \(x_0 \in X \) the solution to heat equation is smooth for all \(t > 0 \) . . . high regularity of the heat semigroup.
- From PDE’s: solution to transport equation preserves regularity of the initial value . . . low regularity of the shift semigroup.
- If a solution is differentiable for \(t = t_0 \), then it is differentiable for all \(t > t_0 \) (since \(T(t_0)x_0 \in D(A) \) implies \(T(t)x_0 \in D(A) \) for all \(t > 0 \))
- If \(x_0 \in D(A^n) \), then the solution is \(n \)-times differentiable for all \(t \geq 0 \).
Initial remarks

- regularity of semigroup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \geq 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for $t = 0$. It may and may no be differentiable for some $t > 0$.

From PDE’s: for every $x_0 \in X$ the solution to heat equation is smooth for all $t > 0$. . . high regularity of the heat semigroup.

From PDE’s: solution to transport equation preserves regularity of the initial value . . . low regularity of the shift semigroup.

If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all $t > 0$)

If $x_0 \in D(A^n)$, then the solution is n-times differentiable for all $t \geq 0$.
Types of regularity

We distinguish several types of regularity, the following implications hold

\[
\text{NORM CONTINUOUS} \iff \text{DIFFERENTIABLE} \iff \text{ANALYTIC}
\]

\textit{Norm continuous} means that the mapping \(t \mapsto S(t) \) is continuous in the operator topology for all \(t > 0 \) (strictly!).

\textit{Differentiable} means that the mapping \(t \mapsto S(t)x \) is differentiable for all \(x \in X \) and all \(t > 0 \) (strictly!).

Let us concentrate on \text{ANALYTIC SEMIGROUPS}.
We distinguish several types of regularity, the following implications hold

\[
\text{NORM CONTINUOUS} \iff \text{DIFFERENTIABLE} \iff \text{ANALYTIC}
\]

Norm continuous means that the mapping \(t \mapsto S(t) \) is continuous in the operator topology for all \(t > 0 \) (strictly!).

Differentiable means that the mapping \(t \mapsto S(t)x \) is differentiable for all \(x \in X \) and all \(t > 0 \) (strictly!).

Let us concentrate on ANALYTIC SEMIGROUPS.
Types of regularity

We distinguish several types of regularity, the following implications hold

\[
\text{NORM CONTINUOUS } \iff \text{DIFFERENTIABLE } \iff \text{ANALYTIC}
\]

Norm continuous means that the mapping \(t \mapsto S(t) \) is continuous in the operator topology for all \(t > 0 \) (strictly!).

Differentiable means that the mapping \(t \mapsto S(t)x \) is differentiable for all \(x \in X \) and all \(t > 0 \) (strictly!).

Let us concentrate on **ANALYTIC SEMIGROUPS**.
Types of regularity

We distinguish several types of regularity, the following implications hold

\[
\text{NORM CONTINUOUS} \iff \text{DIFFERENTIABLE} \iff \text{ANALYTIC}
\]

Norm continuous means that the mapping \(t \mapsto S(t) \) is continuous in the operator topology for all \(t > 0 \) (strictly!).

Differentiable means that the mapping \(t \mapsto S(t)x \) is differentiable for all \(x \in X \) and all \(t > 0 \) (strictly!).

Let us concentrate on **ANALYTIC SEMIGROUPS**.
Denote

\[\Sigma_\theta = \{ z \in \mathbb{C} : z = 0 \text{ or } |\arg z| < \theta \} . \]
Denote

\[\Sigma_\theta = \{ z \in \mathbb{C} : z = 0 \text{ or } |\arg z| < \theta \}. \]
Analytic semigroups

Definition

A C_0-semigroup T is called analytic, if there exists $\theta > 0$ s.t. T has an analytic extension $\tilde{T} : \Sigma_\theta \to \mathcal{L}(X)$ satisfying

1. $\tilde{T}(z + w) = \tilde{T}(z)\tilde{T}(w)$ for all $z, w \in \Sigma_\theta$
2. $z \mapsto T(z)$ is analytic in $\Sigma_\theta \setminus \{0\}$
3. $\lim_{\Sigma_{\theta'} \ni z \to 0} T(z)x = x$ for all $x \in X$, $\theta' \in (0, \theta)$.

An analytic semigroup is called bounded analytic semigroup if it is bounded on each $\Sigma_{\theta'}$, $\theta' \in (0, \theta)$.
Sectorial operators

Definition

An operator \((A, D(A))\) is called sectorial if there exists \(\delta \in (0, \frac{\pi}{2}]\) such that

1. \(\Sigma_{\frac{\pi}{2}+\delta} \setminus \{0\} \subset \rho(A)\)
2. **for every** \(\varepsilon \in (0, \delta)\) there exists \(M_{\varepsilon}\), \(\|R(\lambda, A)\| \leq \frac{M_{\varepsilon}}{|\lambda|}\) **for all** \(\lambda \in \Sigma_{\frac{\pi}{2}+\delta-\varepsilon} \setminus \{0\}\)
Sectorial operators

Definition

An operator \((A, D(A))\) is called sectorial if there exists \(\delta \in (0, \frac{\pi}{2}]\) such that

- \(\Sigma_{\frac{\pi}{2} + \delta} \setminus \{0\} \subset \rho(A)\)
- for every \(\varepsilon \in (0, \delta)\) there exists \(M_\varepsilon, \| R(\lambda, A) \| \leq \frac{M_\varepsilon}{|\lambda|}\) for all \(\lambda \in \Sigma_{\frac{\pi}{2} + \delta - \varepsilon} \setminus \{0\}\)

Remark 1

The resolvent estimate holds with \(|\lambda|\) instead of \(\Re \lambda\).
Generator of an analytic semigroup

Theorem 1

Let \((A, D(A))\) be a \(\theta\)-sectorial operator. Then it generates a bounded analytic semigroup on \(\Sigma_\theta\) given by

\[
T(z) = \frac{1}{2\pi i} \int_{\gamma} e^{\mu z} R(\mu, A) d\mu
\]

where \(\gamma\) is as follows with \(\theta > \theta' > |\text{arg } z|\).
Characterization of analytic semigroups

Theorem 2

Let \((A, D(A))\) is the generator of a \(C_0\)-semigroup \(T\). Then the following assertions are equivalent:

- \(A\) is \(\theta\)-sectorial
- \(T\) is a bounded analytic semigroup on \(\Sigma_\theta\).
- \(T(t)X \subset D(A)\) and \(\{\|tAT(t)\| : t \in (0, 1]\}\) is bounded.
- \(e^{\pm i\theta'} A\) generate bounded \(C_0\)-semigroups \(T(e^{\pm i\theta'} t)\) for all \(\theta' \in (0, \theta)\).

parts of the proof in HW4
Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ-sectorial if and only if the essential range of m is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2}}^{\pi/2} + \theta \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\Sigma_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for $t > 0$...?
Multiplicative sectorial operators

Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ-sectorial if and only if the essential range of m is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2} + \theta} \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\Sigma_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for $t > 0$...?
Multiplicative sectorial operators

Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ-sectorial if and only if the essential range of m is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2} + \theta} \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\Sigma_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for $t > 0$...?