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1 Dynamical systems

1.1 Basic properties

Definition (Dynamical system). Dynamical system is a couple (Ω, ϕ), where Ω ⊂ Rn and
ϕ : R× Ω→ Ω is continuous and satisfies

(i) ϕ(0, x) = x for all x ∈ Ω

(ii) ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all t, s ∈ R, x ∈ Ω.

Definition (Orbit, positive and negative semiorbit). Let (Ω, ϕ) be a dynamical system.
The orbit of x is the set γ(x) := {ϕ(t, x) : t ∈ R}. The positive semiorbit, resp. negative
semiorbit of x is the set γ+(x) := {ϕ(t, x) : t ≥ 0}, resp. γ−(x) := {ϕ(t, x) : t ≤ 0}.

Definition (Invariant set, positively and negatively invariant set). Let (Ω, ϕ) be a dy-
namical system. A set A ⊂ Ω is invariant if for each x ∈ A we have γ(x) ⊂ A. A set
A ⊂ Ω is positively, resp. negatively invariant if for each x ∈ A we have γ+(x) ⊂ A, resp.
γ−(x) ⊂ A.

Definition (ω-limit set, α-limit set). Let (Ω, ϕ) be a dynamical system and x0 ∈ Ω. The
ω-limit set of x0 is

ω(x0) := {x ∈ Ω : ∃tn ↗ +∞ s.t. lim
n→∞

ϕ(tn, x0) = x}.

The α-limit set of x0 is

α(x0) := {x ∈ Ω : ∃tn ↘ −∞ s.t. lim
n→∞

ϕ(tn, x0) = x}.

Theorem 1.1. Let (Ω, ϕ) be a dynamical system and x0 ∈ Ω.

(i) Then ω(x0) is closed and invariant.

(ii) If γ+(x0) is relatively compact, then ω(x0) is nonempty, compact and connected.
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Lemma 1.2. Let (Ω, ϕ) be a dynamical system and x0 ∈ Ω. Then

ω(x0) =
⋂
τ≥0

γ+(ϕ(τ, x0)).

2nd Lecture

Definition (equilibrium). A point x0 is an equilibrium (stationary point) of the equation
x′ = f(x) if f(x0) = 0. A point x0 is an equilibrium (stationary point) of (Ω, ϕ) if
ϕ(t, x0) = x0 for all t ∈ R.

Definition (Topologically conjugate systems). Dynamical systems (Ω, ϕ), (Θ, ψ) are topo-
logically conjugate if there exists a homeomorphism h : Ω → Θ such that h(ϕ(t, x)) =
ψ(t, h(x)) for all x ∈ Ω and t ∈ R.

Theorem 1.3 (Rectification theorem). Let Ω ⊂ Rn be open, f ∈ Cr(Ω,Rn), r ≥ 1 and
f(x0) 6= 0. Then there exist a neighborhood V of x0, a neighborhood W of 0 in Rn and a
homeomorphism g : V → W satisfying: t 7→ x(t) is a solution to x′ = f(x) if and only if
t 7→ g(x(t)) is a solution to y′ = (1, 0, 0, . . . , 0)T .

Definition (hyperbolic equilibrium). An equilibrium x0 of x′ = f(x) is called hyperbolic if
σ(∇f(x0)) ∩ iR = ∅, i.e. ∇f(x0) has no eigenvalues on the imaginary axis (σ(A) denotes
the spectrum of a matrix A).

Theorem (Hartman–Grobman). Let x0 be a hyperbolic equilibrium of x′ = f(x) and denote
A = ∇f(x0). Then there exist a neighborhood V of x0, a neighborhood W of 0 in Rn and
a homeomorphism g : V → W satisfying: t 7→ x(t) is a solution to x′ = f(x) if and only if
t 7→ g(x(t)) is a solution to y′ = Ay.

1.2 LaSalle’s invariance principle

Definition (orbital derivative). Consider the equation x′ = f(x) with f : Ω ⊂ Rn → Rn

and let V ∈ C1(Ω). The orbital derivative of V in a point x is V̇ (x) := ∇V (x) · f(x).

3rd Lecture

Theorem 1.4. Let Ω ⊂ Rn be open, f : Ω → Rn be Lipschitz continuous and ϕ be the
solving function of x′ = f(x). Let V ∈ C1(Ω) be bounded from below and l ∈ R be such that
Ωl := {x ∈ Ω : V (x) ≤ l} is bounded and V̇ ≤ 0 on Ωl. Denote S := {x ∈ Ω : V̇ (x) = 0}
and M := {x ∈ S : γ(x) ⊂ S}. Then ω(x0) ⊂M for all x0 ∈ Ωl.
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1.3 Poincaré–Bendixson Theory

Let Ω be a connected subset of R2, f ∈ C1(Ω) and ϕ be the solving function of

x′ = f(x). (AE)

Assume that ϕ is defined at least on [0,+∞) for every x ∈ Ω.

Theorem 1.5 (Poincaré–Bendixson). Let p ∈ Ω and γ+(p) be relatively compact. If ω(p)
does not contain any stationary points, then ω(p) is an orbit of a nontrivial periodic solu-
tion.

Definition (Jordan curve). A curve in R2 is Jordan if there exists its continuous parametriza-
tion ψ : [0, 1]→ R2 which is injective on [0, 1) and satisfies ψ(0) = ψ(1).

Theorem (Jordan). Let γ ⊂ R2 be a Jordan curve. Then there exist unique Ω1, Ω2 ⊂ R2

such that Ω1 is bounded, Ω2 is not bounded, Ω1, Ω2 and γ are pairwise disjoint and R2 =
Ω1 ∪ γ ∪ Ω2. We denote Ω1 =: Int γ and Ω2 =: Ext γ.

Definition (Transversal). A transversal to ϕ is an open line segment Σ ⊂ Ω which is not
parallel to f in any point, i.e. Σ = {a + tb : t ∈ (0, 1)} for some fixed a, b ∈ R2 and for
every x ∈ Σ the vectors f(x) and b are linearly independent.

Definition (Flow-box). A set U ⊂ Ω is called a flow-box if the dynamical system (U,ϕ)
is topologically conjugate to (V, ψ), where V = {(x1, x2) ∈ Rn : |x1| < ε1, |x2| < ε2} for
some ε1, ε2 > 0 and ψ(t, (x1, x2)) = (x1 + t, x2).

Lemma 1.6. Let Σ be a transversal to ϕ and p ∈ Σ. Then there exists a flow-box U
containing p such that for every y ∈ U the set Σ ∩ γU(y) contains exactly one point. By
γU(y) we denote the orbit of y in the (local) dynamical system (U,ϕ).

Lemma 1.7. Let Σ be a transversal to ϕ, p ∈ Σ. Then intersections of γ+(p) and Σ form a
monotone sequence. In particular, if t1 < t2 < t3 be such that ϕ(tj, p) ∈ Σ, j = 1, 2, 3, then
either ϕ(t1, p) = ϕ(t2, p) = ϕ(t3, p) or ϕ(t2, p) lies strictly between ϕ(t1, p) and ϕ(t3, p).

4th Lecture

Lemma 1.8. Let Σ be a transversal to ϕ and p ∈ Σ. Then ω(p)∩Σ contains at most one
point.

Theorem 1.9 (Bendixson–Dulac criterion). Let Ω be open and simply connected.

(i) If div f > 0 a.e. in Ω, then (AE) has no nontrivial periodic solutions.

(ii) If there exists B ∈ C1(Ω) such that div(B · f) > 0 a.e. in Ω, then (AE) has no
nontrivial periodic solutions.
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2 Carathéodory Theory

Throughout this chapter, we assume that I is an interval, Ω ⊂ Rn+1 be an open set with
points (t, x), t ∈ R, x ∈ Rn. We denote U(x0,∆) the ball in Rn centered in x0 with radius
∆. By Q(t0, x0) or Q(t0, x0, δ,∆) we denote a cylinder U(t0, δ) × U(x0,∆) ⊂ Rn. The
graph of a function x : I → Rn is graph x := {(t, x(t)) : t ∈ I} ⊂ Rn+1. In this chapter,
we consider a diferential equation

x′ = f(t, x) (DE)

Definition (AC function). A function x : I → Rn is called absolutely continuous (x ∈
AC(I)) if for every ε > 0 there exists δ > 0 satisfying: for any finite sequence of pairwise
disjoint intervals (ai, bi), i = 1, . . . n it holds that

n∑
i=1

|bi − ai| < δ ⇒
n∑
i=1

|f(bi)− f(ai)| < ε.

We say that x is locally absolutely continuous on I (x ∈ ACloc(I)) if x ∈ AC(J) for every
compact interval J ⊂ I.

Proposition 2.1. Let x ∈ AC(I), then x′(t) exists for almost every t ∈ I, x′ ∈ L1
loc(I)

and x(t)− x(s) =
∫ t
s
x′(r)dr for every s, t ∈ I.

Proposition 2.2. Let h ∈ L1(I), c ∈ I and define x(t) :=
∫ t
c
h(r)dr. Then x ∈ AC(I)

and x′ = h almost everywhere on I.

Definition (Carathéodory conditions). We say that f : Ω → Rn satisfies Carathéodory
conditions (f ∈ CAR(Ω)) if for every (t0, x0) ∈ Ω there exist a cylinder Q(t0, x0, δ,∆) and
a function m ∈ U(t0, δ) such that

(i) f(·, x) is measurable on U(t0, δ) for every x ∈ U(x0,∆)

(ii) f(t, ·) is continuous on U(x0,∆) for a.e. t ∈ U(t0, δ)

(iii) |f(t, x)| ≤ m(t) for a.e. t ∈ U(t0, δ) for every x ∈ U(x0,∆).

Definition (AC solution). Let f ∈ CAR(Ω). We say that x : I → Rn is an absolutely
continuous solution to x′ = f(t, x) if x ∈ AC(I), graphx ⊂ Ω and x′(t) = f(t, x(t)) for
a.e. t ∈ I.

Lemma 2.3. Let f ∈ CAR(Ω), x : I → Rn continuous and graphx ⊂ Ω. Then f(·, x(·)) ∈
L1
loc(I).

Lemma 2.4. Let f ∈ CAR(Ω), x : I → Rn continuous and graphx ⊂ Ω. Then x is an
AC solution to (DE) if and only if for all s, t ∈ I it holds that

x(t)− x(s) =

∫ t

s

f(r, x(r))dr.
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5th Lecture

Theorem 2.5 (Generalized Banach Contraction Theorem). Let Λ, X be metric spaces, X
nonempty and complete. Let Φ : Λ×X → X is continuous w.r.t. λ for each fixed x ∈ X.
Let there exists κ ∈ (0, 1) such that

‖Φ(λ, x)− Φ(λ, y)‖X ≤ κ‖x− y‖X ∀ λ ∈ Λ, x, y ∈ X.

Then

(i) for every λ ∈ Λ there exists a unique x(λ) such that Φ(λ, x(λ)) = x(λ).

(ii) the mapping λ 7→ x(λ) is continuous.

(iii) ‖y − x(λ)‖ ≤ (1− κ)−1‖y − Φ(λ, y)‖ for all λ ∈ Λ, y ∈ X.

Theorem 2.6 (Generalized Picard Theorem). Let I = [0, T ] be a bounded interval and
f ∈ CAR(I × Rn). Let us assume that there exists l ∈ L1(I) such that

|f(t, x, p)− f(t, y, p)| ≤ l(t)|x− y| for a.e. t ∈ I for all x, y ∈ Rn.

Then for every x0 ∈ Rn there exists a unique AC solution x ∈ AC(I) of (DE) with
x(0) = x0 and the solution depends continuously on the initial value in the following sense.
If x0n → x0, then xn ⇒ x uniformly on I (where x, resp. xn are the solutions corresponding
to x0, resp. x0n).

6th Lecture

3 Bifurcations

3.1 Basic properties

In this chapter we study autonomous differential equations with a parameter µ ∈ R.

ẋ = f(x, µ) (ARµ)

We assume Ω ⊂ Rn to be an open set, f ∈ C1(Ω× R) or more smooth.

Definition (bifurcation). We say that (x0, µ) ∈ Ω × R is a point of bifurcation if in any
neighborhood of µ there exist µ1, µ2 such that the dynamical systems ẋ = f(x, µ1) and
ẋ = f(x, µ2) are not topologically conjugate on any neighborhoods of x0. We say that
µ ∈ R is a point of bifurcation if in any neighborhood of µ there exist µ1, µ2 such that the
dynamical systems ẋ = f(x, µ1) and ẋ = f(x, µ2) are not topologically conjugate.
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Proposition 3.1. If f(x0, µ0) 6= 0, then (x0, µ0) is not a point of bifurcation.

Theorem 3.2. If x0 is a hyperbolic equilibrium for ẋ = f(x, µ0), then (x0, µ0) is not a
point of bifurcation. In particular, for every µ close enough to µ0 the system ẋ = f(x, µ)
has a unique hyperbolic equilibrium xµ near x0 and the dimensions of stable and unstable
manifolds do not depend on µ.

Corollary 3.3. If (x0, µ0) is a point of bifurcation, then x0 is a nonhyperbolic equilibrium.

3.2 Bifurcations on R

Theorem 3.4. Let f ∈ C2(Ω × R), 0 ∈ Ω, f(0, 0) = 0, fx(0, 0) = 0, fµ(0, 0) 6= 0
and fxx(0, 0) 6= 0. Then (0, 0) is a point of bifurcation. In particular, it is a saddle-
node bifurcation, i.e., there are no equilibria for µ < 0 and two equilibria for µ > 0 in a
neighborhood of 0 or vice versa.

Lemma 3.5. Let h ∈ Ck, k ≥ 2 on a neighborhood of (0, 0) and h(0, λ) = 0 on a
neighborhood of 0. Then there exists H ∈ Ck−1 on a neighborhood of (0, 0) such that
h(x, λ) = xH(x, λ) and, moreover, it holds that H(0, λ) = hx(0, λ), Hx(0, 0) = 1

2
hxx(0, 0),

Hλ(0, 0) = hxλ(0, 0), and (if k ≥ 3) Hxx(0, 0) = 1
3
hxxx(0, 0).

Theorem 3.6. Let f ∈ C2(Ω × R), 0 ∈ Ω, f(0, µ) = 0 for all µ ∈ R, fx(0, 0) = 0,
fµ,x(0, 0) 6= 0 and fxx(0, 0) 6= 0. Then (0, 0) is a point of bifurcation. In particular, it is a
transcritical bifurcation, i.e., for every µ ∈ (−δ, δ) \ {0} there exist exactly two equilibria
in (−ε, ε): x0 = 0 and x1 6= 0. Moreover, x0 is stable for µ < 0 and unstable for µ > 0 or
vice versa.

Theorem 3.7. Let f ∈ C3(Ω × R), 0 ∈ Ω, f(0, µ) = 0 for all µ ∈ R, fx(0, 0) = 0,
fµ,x(0, 0) 6= 0 and fxx(0, 0) = 0, fxxx(0, 0) 6= 0. Then (0, 0) is a point of bifurcation. In
particular, it is a pitchfork bifurcation, i.e., for µ < 0 there is a unique equilibrium x0 = 0
in a neighborhood of zero and for µ > 0 there are exactly three equilibria x1 < x0 = 0 < x2

in a neighborhood of 0 or vice versa. Moreover, x0 is stable for µ < 0 and unstable for
µ > 0 or vice versa.

7th Lecture

3.3 Hopf bifurcation in R2

We consider the following system in a neighborhood of (0, 0, 0)(
x′

y′

)
= Aµ

(
x
y

)
+

(
f(x, y, µ)
g(x, y, µ)

)
, (1)

where Aµ is a 2 × 2 matrix dependent on a parameter µ and f , g contain higher order
terms, i.e., f = g = 0, ∇xyf = ∇xyg = 0 in (0, 0, µ).

6



Theorem 3.8 (Hopf). Let σ(Aµ) = {α(µ) ± iω(µ)}, where α, ω ∈ C2 on a neighborhood
of 0 and it holds that α(0) = 0, α′(0) 6= 0, ω(0) 6= 0. Then there exist δ, ∆ > 0 and
a function ϕ ∈ C1((0, δ), (−∆,∆)) such that for every a ∈ (0, δ) there exists a nontrivial
periodic solution to (1) with µ = ϕ(a) going through the point (x, y) = (a, 0).

Theorem 3.9 (Hopf 2). Let the assumptions of Theorem 3.8 hold and moreover

A0 =

(
0 −ω0

ω0 0

)
.

Then the system is near (0, 0, 0) topologically conjugate to

r′ = dµr + ar3, ϕ′ = 1,

where d = α′(0) and 16a is equal to(
fxxx + fxyy + gxxy + gyyy +

1

ω0

[fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy]

)
(0, 0, 0).

8th Lecture

4 Center manifold

For the linear equation
X ′ = AX

with a matrix A ∈ Rn×n we have stable, unstable and center subspaces defined as

Vs := {x ∈ Rn : ∃ C, β > 0 ∀t ≥ 0 ‖etAx‖ ≤ Ce−βt},
Vu := {x ∈ Rn : ∃ C, β > 0 ∀t ≤ 0 ‖etAx‖ ≤ Ceβt},
Vc := {x ∈ Rn : ∃ C > 0, n ∈ N∀t ∈ R ‖etAx‖ ≤ C(1 + |x|)n}.

It holds that Rn = Vs ⊕ Vu ⊕ Vc.
Consider a nonlinear equation

X ′ = F (X) (2)

with F ∈ C1(RN ,RN) and F (0) = 0.

Definition (Stable, unstable manifold). Let ϕ be the solving function to (2). We define
the stable manifold Ṽs and unstable manifold Ṽu in 0 ∈ RN by

Vs := {x ∈ RN : ∃ C, β > 0 ∀t ≥ 0 ‖ϕ(t, x)‖ ≤ Ce−βt},
Vu := {x ∈ RN : ∃ C, β > 0 ∀t ≤ 0 ‖ϕ(t, x)‖ ≤ Ceβt},

Definition (Center manifold). Let Vc be the center subspace of X ′ = ∇F (0)X. A center
manifold Ṽc for (2) in 0 ∈ RN is any invariant manifold, that is tangent to Vc in 0 and
has the same dimension as Vc.
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4.1 Existence of center manifold

General assumptions. We consider a system of equations

x′ = Ax+ f(x, y),

y′ = By + g(x, y),
(S)

such that A ∈ Rn×n, xTAx ≥ −ε|x|2, B ∈ Rm×m, ytBy ≤ −β|y|2, ‖etB‖ ≤ c0e
−βt for

some β > ε > 0, c0 > 0 and all t ≥ 0, x ∈ Rn, y ∈ Rm. Functions f , g are such that
f(0, 0) = g(0, 0) = 0, ∇f(0, 0) = ∇g(0, 0) = 0, and |f |, |g| < ρ, |∇f |, |∇g| < σ on Rn+m

for some σ, ρ > 0.

Define
Xb,L := {Φ ∈ Lip(Rn,Rm) : ‖Φ‖ ≤ b, LipΦ ≤ L, Φ(0) = 0}.

Theorem 4.1. Let ε, β, c0, L, b > 0 are given, ε < β. If σ, ρ are small enough, then
there exists a unique Φ ∈ Xb,L satisfying

(x(t), y(t)) solves (S) & y(0) = Φ(x(0)) ⇒ y(t) = Φ(x(t)) ∀ t ≥ 0. (INV)

Moreover, this Φ satisfies ∇Φ(0) = 0.

Application 1. If <σ(A) > 0, <σ(B) < 0, then graph Φ is the unstable manifold.

Application 2. If <σ(Ã) < 0, <σ(B̃) > 0 and we apply Theorem 4.1 with A = −B̃ and
B = −Ã, then graph Φ is the stable manifold for the system with Ã, B̃.

Application 3. If <σ(A) = 0, <σ(B) < 0, then graph Φ is a center manifold.

Let us consider so called reduced equation

p′ = Ap+ f(p,Φ(p)). (RE)

Lemma 4.2. Let Φ ∈ Xb,L. Then (INV) is equivalent to

p solves (RE) ⇒ (p,Φ(p)) solves (S). (RED)

9th Lecture

Lemma 4.3. Let γ : (−∞, 0]→ Rn be bounded and continuous. Then there exists a unique
solution to y′ = By + γ, which is bounded on (−∞, 0]. Moreover, this solution satisfies

y(0) =
∫ 0

−∞ e
−sBγ(s)ds.

Lemma 4.4. Let Φ ∈ Xb,L. Then (INV) is equivalent to

p solves (RE) with p(0) = p0 ⇒ Φ(p0) =

∫ 0

−∞
e−sBg(p(s),Φ(p(s)))ds. (FPP)
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10th Lecture

4.2 Tracking property and reduction of stability

In this section, we assume that Φ ∈ Xb,L satisfies (INV) and µ > L is fixed. We denote

K = {X = (x, y) ∈ Rn+m : |y| ≤ µ|x|}
V = {X = (x, y) ∈ Rn+m : |y| ≥ µ|x|}

and

K(X0) = {X = (x, y) ∈ Rn+m : X −X0 ∈ K}
V (X0) = {X = (x, y) ∈ Rn+m : X −X0 ∈ V }

Lemma 4.5. Let σ be small enough and let X1, X2 : R → Rn+m, X1 = (x1, y1), X2 =
(x2, y2) be two solutions of (S).

• If X1(0) ∈ K(X2(0)), then X1(t) ∈ K(X2(t)) for all t ≥ 0

• There exists γ > 0 such that: If X1(t) = V (X2(t)) for all t ∈ I, then

|X1(t)−X2(t)| ≤ e−γ(t−s)|X1(s)−X2(s)| for all s, t ∈ I, s < t.

Theorem 4.6 (Tracking property). Let σ be small enough. For every solution X of (S)
there exists a solution p of (RE) such that P = (p,Φ(p)) satisfies

|X(t)− P (t)| ≤ Ce−γt|X(0)− P (0)| for all t ≥ 0

with γ from Lemma 4.5. Moreover, P (0) can be taken small if X(0) is small.

Corollary 4.7 (Reduction of stability). (0, 0) ∈ Rn+m is (assymptotically) stable for (S)
if and only if 0 ∈ Rn is (assymptotically) stable for (RE).

11th Lecture

4.3 Approximation of center manifold

Let us denote for Ψ ∈ C1(Rn,Rm)

[MΨ](x) = ∇Ψ(x)[Ax+ f(x,Ψ(x))]−BΨ(x)− g(x,Ψ(x)).

We know that MΨ ≡ 0 if and only if Ψ satisfies (INV).

Theorem 4.8 (Approximation of center manifold). Let q > 1 and let Ψ ∈ C1(Rn,Rm)
satisfies Ψ(0) = 0, ∇Ψ(0) = 0 and [MΨ](x) = O(|x|q) as x → 0. Then |Ψ(x) − Φ(x)| =
O(|x|q) as x→ 0 for any Φ ∈ Xb,L satisfying (INV).
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5 Optimal control theory

5.1 Controllability

Let Ω ⊂ Rn be open, U ⊂ Rm, f ∈ C1(Ω × U,Rn) and x0 ∈ Ω. A controlled ordinary
differential equation is

x′ = f(x, u), x(0) = x0. (CDE)

Let 0 < T ≤ +∞. A set U ⊂ {u : [0, T ]→ U : u measureable} is called a set of admissible
controls, any function u ∈ U is called a control and the solution x : [0, T ]→ Rn of (CDE)
with a given control u is called response of the system.

A controled linear equation is
x′ = Ax+Bu, (CLE)

where A ∈ Rn×n and B ∈ Rn×m.

Notation: x0
t−→
u

0 means “control u brings x0 to 0 in time t”, i.e. if we insert u into (CDE),

then the solution x of (CDE) satisfies x(t) = 0.

Definition. Let t ∈ [0, T ]. The set R(t) = {x0 ∈ Rn : ∃u ∈ U , x0
t−→
u

0} is called the

reachable set for time t.

Definition. Kalman controllability matrix for (CLE) is K(A|B) = (B,AB,A2B, . . . , An−1B) ∈
Rn×mn.

Theorem 5.1. Consider (CLE) with U = L1
loc([0, T ],Rm). Then R(t) = ImK(A|B) for

all t > 0.

Corollary 5.2. The following is equivalent for the system (CLE) with U = L1
loc([0, T ],Rm).

(i) (CLE) is globally controllable (i.e. R(t) = Rn) for some/every t > 0,

(ii) (CLE) is locally controllable (i.e. 0 ∈ R(t)o, where R(t)o is the interior of R(t)) for
some/every t > 0,

(iii) rankK(A|B) = n.

12th Lecture

Theorem 5.3. Let U be any neighborhood of 0 and U = L1
loc([0, T ], U). Let 0 ∈ Ω,

f(0, 0) = 0, A = ∇xf(0, 0), and B = ∇uf(0, 0). If rankK(A|B) = n, then (CDE) is
locally controllable for all t > 0.
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5.2 Time-optimal control and Bang-bang principle

In this section we consider (CLE) with U = [−1, 1]m, U = L1
loc([0, T ], U).

Proposition 5.4. The system (CLE) is locally controllable if and only if rankK(A|B) = n.

Proposition 5.5. For every t > 0, R(t) is closed, convex and symmetric (x ∈ R(t) ⇒
−x ∈ R(t)). If t1 < t2 then R(t1) ⊂ R(t2).

Theorem 5.6. Let rankK(A|B) = n and <λ ≤ 0 for all λ ∈ σ(A). Then (CLE) is globally
controllable.

Definition. An admissible control u is called a bang-bang control if ui(t) = ±1 for all
t ∈ [0, T ] and all i = 1, 2, . . . ,m.

Theorem 5.7. For each x0 ∈ R(t) there exists a bang-bang control ũ such that x0
t−→̃
u

0.

Theorem 5.8. For each x0 ∈
⋃
t≥0R(t) there exists t̃ = min{t ≥ 0 : x0 ∈ R(t)} and a

bang-bang control ũ such that x0
t̃−→̃
u

0.

5.3 Pontryagin maximum principle

In this section, we are looking for an admissible control u which maximizes the functional

P [u] = g(x(T )) +

∫ T

0

r(x(s), u(s))ds,

where x is the solution to (CDE) (with the control u). Functions g ∈ C1(Rn), f ∈
C1(Rn × U) and r ∈ C(Rn × U) are given.

Theorem 5.9. Let u∗ ∈ U is a point of a local maximum of P and x∗ is the corresponding
system response. Then there exists a solution P ∗ : [0, T ]→ Rn to the adjoint equation

P ∗′ = −∇xH(x∗, P ∗, u∗), P ∗(T ) = (∇xg)(x∗(T )) (ADJ)

and the maximum principle

H(x∗(t), P ∗(t), u∗(t)) = max
η∈U

H(x∗(t), P ∗(t), η), (MP)

holds, where H(x, P, u) = P · f(x, u) + r(x, u).
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