Ordinary differential equations 2

December 18, 2015

1 Dynamical systems

1.1 Basic properties

Definition (Dynamical system). Dynamical system is a couple (Ω, φ) , where $\Omega \subset \mathbb{R}^n$ and $\varphi : \mathbb{R} \times \Omega \to \Omega$ is continuous and satisfies

- (i) $\varphi(0, x) = x$ for all $x \in \Omega$
- (*ii*) $\varphi(t,\varphi(s,x)) = \varphi(t+s,x)$ for all $t, s \in \mathbb{R}, x \in \Omega$.

Definition (Orbit, positive and negative semiorbit). Let (Ω, φ) be a dynamical system. The orbit of x is the set $\gamma(x) := \{\varphi(t, x) : t \in \mathbb{R}\}$. The positive semiorbit, resp. negative semiorbit of x is the set $\gamma_+(x) := \{\varphi(t, x) : t \ge 0\}$, resp. $\gamma_-(x) := \{\varphi(t, x) : t \le 0\}$.

Definition (Invariant set, positively and negatively invariant set). Let (Ω, φ) be a dynamical system. A set $A \subset \Omega$ is invariant if for each $x \in A$ we have $\gamma(x) \subset A$. A set $A \subset \Omega$ is positively, resp. negatively invariant if for each $x \in A$ we have $\gamma_+(x) \subset A$, resp. $\gamma_-(x) \subset A$.

Definition (ω -limit set, α -limit set). Let (Ω, φ) be a dynamical system and $x_0 \in \Omega$. The ω -limit set of x_0 is

$$\omega(x_0) := \{ x \in \Omega : \exists t_n \nearrow +\infty \ s.t. \ \lim_{n \to \infty} \varphi(t_n, x_0) = x \}.$$

The α -limit set of x_0 is

$$\alpha(x_0) := \{ x \in \Omega : \exists t_n \searrow -\infty \ s.t. \ \lim_{n \to \infty} \varphi(t_n, x_0) = x \}.$$

Theorem 1.1. Let (Ω, φ) be a dynamical system and $x_0 \in \Omega$.

- (i) Then $\omega(x_0)$ is closed and invariant.
- (ii) If $\gamma_{+}(x_{0})$ is relatively compact, then $\omega(x_{0})$ is nonempty, compact and connected.

Lemma 1.2. Let (Ω, φ) be a dynamical system and $x_0 \in \Omega$. Then

$$\omega(x_0) = \bigcap_{\tau \ge 0} \overline{\gamma_+(\varphi(\tau, x_0))}.$$

2nd Lecture

Definition (equilibrium). A point x_0 is an equilibrium (stationary point) of the equation x' = f(x) if $f(x_0) = 0$. A point x_0 is an equilibrium (stationary point) of (Ω, φ) if $\varphi(t, x_0) = x_0$ for all $t \in \mathbb{R}$.

Definition (Topologically conjugate systems). Dynamical systems (Ω, φ) , (Θ, ψ) are topologically conjugate if there exists a homeomorphism $h : \Omega \to \Theta$ such that $h(\varphi(t, x)) = \psi(t, h(x))$ for all $x \in \Omega$ and $t \in \mathbb{R}$.

Theorem 1.3 (Rectification theorem). Let $\Omega \subset \mathbb{R}^n$ be open, $f \in C^r(\Omega, \mathbb{R}^n)$, $r \ge 1$ and $f(x_0) \ne 0$. Then there exist a neighborhood V of x_0 , a neighborhood W of 0 in \mathbb{R}^n and a homeomorphism $g: V \to W$ satisfying: $t \mapsto x(t)$ is a solution to x' = f(x) if and only if $t \mapsto g(x(t))$ is a solution to $y' = (1, 0, 0, \dots, 0)^T$.

Definition (hyperbolic equilibrium). An equilibrium x_0 of x' = f(x) is called hyperbolic if $\sigma(\nabla f(x_0)) \cap i\mathbb{R} = \emptyset$, i.e. $\nabla f(x_0)$ has no eigenvalues on the imaginary axis ($\sigma(A)$ denotes the spectrum of a matrix A).

Theorem (Hartman–Grobman). Let x_0 be a hyperbolic equilibrium of x' = f(x) and denote $A = \nabla f(x_0)$. Then there exist a neighborhood V of x_0 , a neighborhood W of 0 in \mathbb{R}^n and a homeomorphism $g: V \to W$ satisfying: $t \mapsto x(t)$ is a solution to x' = f(x) if and only if $t \mapsto g(x(t))$ is a solution to y' = Ay.

1.2 LaSalle's invariance principle

Definition (orbital derivative). Consider the equation x' = f(x) with $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ and let $V \in C^1(\Omega)$. The orbital derivative of V in a point x is $\dot{V}(x) := \nabla V(x) \cdot f(x)$.

3rd Lecture

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$ be open, $f : \Omega \to \mathbb{R}^n$ be Lipschitz continuous and φ be the solving function of x' = f(x). Let $V \in C^1(\Omega)$ be bounded from below and $l \in \mathbb{R}$ be such that $\Omega_l := \{x \in \Omega : V(x) \leq l\}$ is bounded and $\dot{V} \leq 0$ on Ω_l . Denote $S := \{x \in \Omega : \dot{V}(x) = 0\}$ and $M := \{x \in S : \gamma(x) \subset S\}$. Then $\omega(x_0) \subset M$ for all $x_0 \in \Omega_l$.

1.3 Poincaré–Bendixson Theory

Let Ω be a connected subset of \mathbb{R}^2 , $f \in C^1(\Omega)$ and φ be the solving function of

$$r' = f(x). \tag{AE}$$

Assume that φ is defined at least on $[0, +\infty)$ for every $x \in \Omega$.

Theorem 1.5 (Poincaré–Bendixson). Let $p \in \Omega$ and $\gamma_+(p)$ be relatively compact. If $\omega(p)$ does not contain any stationary points, then $\omega(p)$ is an orbit of a nontrivial periodic solution.

Definition (Jordan curve). A curve in \mathbb{R}^2 is Jordan if there exists its continuous parametrization $\psi : [0,1] \to \mathbb{R}^2$ which is injective on [0,1) and satisfies $\psi(0) = \psi(1)$.

Theorem (Jordan). Let $\gamma \subset \mathbb{R}^2$ be a Jordan curve. Then there exist unique $\Omega_1, \Omega_2 \subset \mathbb{R}^2$ such that Ω_1 is bounded, Ω_2 is not bounded, Ω_1, Ω_2 and γ are pairwise disjoint and $\mathbb{R}^2 = \Omega_1 \cup \gamma \cup \Omega_2$. We denote $\Omega_1 =: \operatorname{Int} \gamma$ and $\Omega_2 =: \operatorname{Ext} \gamma$.

Definition (Transversal). A transversal to φ is an open line segment $\Sigma \subset \Omega$ which is not parallel to f in any point, i.e. $\Sigma = \{a + tb : t \in (0,1)\}$ for some fixed $a, b \in \mathbb{R}^2$ and for every $x \in \Sigma$ the vectors f(x) and b are linearly independent.

Definition (Flow-box). A set $U \subset \Omega$ is called a flow-box if the dynamical system (U, φ) is topologically conjugate to (V, ψ) , where $V = \{(x_1, x_2) \in \mathbb{R}^n : |x_1| < \varepsilon_1, |x_2| < \varepsilon_2\}$ for some $\varepsilon_1, \varepsilon_2 > 0$ and $\psi(t, (x_1, x_2)) = (x_1 + t, x_2)$.

Lemma 1.6. Let Σ be a transversal to φ and $p \in \Sigma$. Then there exists a flow-box U containing p such that for every $y \in U$ the set $\Sigma \cap \gamma_U(y)$ contains exactly one point. By $\gamma_U(y)$ we denote the orbit of y in the (local) dynamical system (U, φ) .

Lemma 1.7. Let Σ be a transversal to φ , $p \in \Sigma$. Then intersections of $\gamma_+(p)$ and Σ form a monotone sequence. In particular, if $t_1 < t_2 < t_3$ be such that $\varphi(t_j, p) \in \Sigma$, j = 1, 2, 3, then either $\varphi(t_1, p) = \varphi(t_2, p) = \varphi(t_3, p)$ or $\varphi(t_2, p)$ lies strictly between $\varphi(t_1, p)$ and $\varphi(t_3, p)$.

4th Lecture

Lemma 1.8. Let Σ be a transversal to φ and $p \in \Sigma$. Then $\omega(p) \cap \Sigma$ contains at most one point.

Theorem 1.9 (Bendixson–Dulac criterion). Let Ω be open and simply connected.

- (i) If div f > 0 a.e. in Ω , then (AE) has no nontrivial periodic solutions.
- (ii) If there exists $B \in C^1(\Omega)$ such that $\operatorname{div}(B \cdot f) > 0$ a.e. in Ω , then (AE) has no nontrivial periodic solutions.

2 Carathéodory Theory

Throughout this chapter, we assume that I is an interval, $\Omega \subset \mathbb{R}^{n+1}$ be an open set with points $(t, x), t \in \mathbb{R}, x \in \mathbb{R}^n$. We denote $U(x_0, \Delta)$ the ball in \mathbb{R}^n centered in x_0 with radius Δ . By $Q(t_0, x_0)$ or $Q(t_0, x_0, \delta, \Delta)$ we denote a cylinder $U(t_0, \delta) \times U(x_0, \Delta) \subset \mathbb{R}^n$. The graph of a function $x : I \to \mathbb{R}^n$ is graph $x := \{(t, x(t)) : t \in I\} \subset \mathbb{R}^{n+1}$. In this chapter, we consider a differential equation

$$x' = f(t, x) \tag{DE}$$

Definition (AC function). A function $x : I \to \mathbb{R}^n$ is called absolutely continuous $(x \in AC(I))$ if for every $\varepsilon > 0$ there exists $\delta > 0$ satisfying: for any finite sequence of pairwise disjoint intervals $(a_i, b_i), i = 1, ..., n$ it holds that

$$\sum_{i=1}^{n} |b_i - a_i| < \delta \quad \Rightarrow \quad \sum_{i=1}^{n} |f(b_i) - f(a_i)| < \varepsilon.$$

We say that x is locally absolutely continuous on I ($x \in AC_{loc}(I)$) if $x \in AC(J)$ for every compact interval $J \subset I$.

Proposition 2.1. Let $x \in AC(I)$, then x'(t) exists for almost every $t \in I$, $x' \in L^1_{loc}(I)$ and $x(t) - x(s) = \int_s^t x'(r) dr$ for every $s, t \in I$.

Proposition 2.2. Let $h \in L^1(I)$, $c \in I$ and define $x(t) := \int_c^t h(r) dr$. Then $x \in AC(I)$ and x' = h almost everywhere on I.

Definition (Carathéodory conditions). We say that $f : \Omega \to \mathbb{R}^n$ satisfies Carathéodory conditions $(f \in CAR(\Omega))$ if for every $(t_0, x_0) \in \Omega$ there exist a cylinder $Q(t_0, x_0, \delta, \Delta)$ and a function $m \in U(t_0, \delta)$ such that

(i) $f(\cdot, x)$ is measurable on $U(t_0, \delta)$ for every $x \in U(x_0, \Delta)$

- (ii) $f(t, \cdot)$ is continuous on $U(x_0, \Delta)$ for a.e. $t \in U(t_0, \delta)$
- (iii) $|f(t,x)| \le m(t)$ for a.e. $t \in U(t_0,\delta)$ for every $x \in U(x_0,\Delta)$.

Definition (AC solution). Let $f \in CAR(\Omega)$. We say that $x : I \to \mathbb{R}^n$ is an absolutely continuous solution to x' = f(t, x) if $x \in AC(I)$, graph $x \subset \Omega$ and x'(t) = f(t, x(t)) for a.e. $t \in I$.

Lemma 2.3. Let $f \in CAR(\Omega)$, $x : I \to \mathbb{R}^n$ continuous and graph $x \subset \Omega$. Then $f(\cdot, x(\cdot)) \in L^1_{loc}(I)$.

Lemma 2.4. Let $f \in CAR(\Omega)$, $x : I \to \mathbb{R}^n$ continuous and graph $x \subset \Omega$. Then x is an AC solution to (DE) if and only if for all s, $t \in I$ it holds that

$$x(t) - x(s) = \int_s^t f(r, x(r)) dr.$$

Theorem 2.5 (Generalized Banach Contraction Theorem). Let Λ , X be metric spaces, X nonempty and complete. Let $\Phi : \Lambda \times X \to X$ is continuous w.r.t. λ for each fixed $x \in X$. Let there exists $\kappa \in (0, 1)$ such that

$$\|\Phi(\lambda, x) - \Phi(\lambda, y)\|_X \le \kappa \|x - y\|_X \qquad \forall \ \lambda \in \Lambda, \ x, y \in X.$$

Then

- (i) for every $\lambda \in \Lambda$ there exists a unique $x(\lambda)$ such that $\Phi(\lambda, x(\lambda)) = x(\lambda)$.
- (ii) the mapping $\lambda \mapsto x(\lambda)$ is continuous.

(iii)
$$||y - x(\lambda)|| \le (1 - \kappa)^{-1} ||y - \Phi(\lambda, y)||$$
 for all $\lambda \in \Lambda$, $y \in X$.

Theorem 2.6 (Generalized Picard Theorem). Let I = [0,T] be a bounded interval and $f \in CAR(I \times \mathbb{R}^n)$. Let us assume that there exists $l \in L^1(I)$ such that

$$|f(t,x,p) - f(t,y,p)| \le l(t)|x-y| \quad \text{for a.e. } t \in I \text{ for all } x, y \in \mathbb{R}^n.$$

Then for every $x_0 \in \mathbb{R}^n$ there exists a unique AC solution $x \in AC(I)$ of (DE) with $x(0) = x_0$ and the solution depends continuously on the initial value in the following sense. If $x_{0n} \to x_0$, then $x_n \rightrightarrows x$ uniformly on I (where x, resp. x_n are the solutions corresponding to x_0 , resp. x_{0n}).

6th Lecture

3 Bifurcations

3.1 Basic properties

In this chapter we study autonomous differential equations with a parameter $\mu \in \mathbb{R}$.

$$\dot{x} = f(x, \mu) \tag{AR}_{\mu}$$

We assume $\Omega \subset \mathbb{R}^n$ to be an open set, $f \in C^1(\Omega \times \mathbb{R})$ or more smooth.

Definition (bifurcation). We say that $(x_0, \mu) \in \Omega \times \mathbb{R}$ is a point of bifurcation if in any neighborhood of μ there exist μ_1 , μ_2 such that the dynamical systems $\dot{x} = f(x, \mu_1)$ and $\dot{x} = f(x, \mu_2)$ are not topologically conjugate on any neighborhoods of x_0 . We say that $\mu \in \mathbb{R}$ is a point of bifurcation if in any neighborhood of μ there exist μ_1, μ_2 such that the dynamical systems $\dot{x} = f(x, \mu_1)$ and $\dot{x} = f(x, \mu_2)$ are not topologically conjugate.

Proposition 3.1. If $f(x_0, \mu_0) \neq 0$, then (x_0, μ_0) is not a point of bifurcation.

Theorem 3.2. If x_0 is a hyperbolic equilibrium for $\dot{x} = f(x, \mu_0)$, then (x_0, μ_0) is not a point of bifurcation. In particular, for every μ close enough to μ_0 the system $\dot{x} = f(x, \mu)$ has a unique hyperbolic equilibrium x_{μ} near x_0 and the dimensions of stable and unstable manifolds do not depend on μ .

Corollary 3.3. If (x_0, μ_0) is a point of bifurcation, then x_0 is a nonhyperbolic equilibrium.

3.2 Bifurcations on \mathbb{R}

Theorem 3.4. Let $f \in C^2(\Omega \times \mathbb{R})$, $0 \in \Omega$, f(0,0) = 0, $f_x(0,0) = 0$, $f_\mu(0,0) \neq 0$ and $f_{xx}(0,0) \neq 0$. Then (0,0) is a point of bifurcation. In particular, it is a saddlenode bifurcation, i.e., there are no equilibria for $\mu < 0$ and two equilibria for $\mu > 0$ in a neighborhood of 0 or vice versa.

Lemma 3.5. Let $h \in C^k$, $k \geq 2$ on a neighborhood of (0,0) and $h(0,\lambda) = 0$ on a neighborhood of 0. Then there exists $H \in C^{k-1}$ on a neighborhood of (0,0) such that $h(x,\lambda) = xH(x,\lambda)$ and, moreover, it holds that $H(0,\lambda) = h_x(0,\lambda)$, $H_x(0,0) = \frac{1}{2}h_{xx}(0,0)$, $H_\lambda(0,0) = h_{x\lambda}(0,0)$, and (if $k \geq 3$) $H_{xx}(0,0) = \frac{1}{3}h_{xxx}(0,0)$.

Theorem 3.6. Let $f \in C^2(\Omega \times \mathbb{R})$, $0 \in \Omega$, $f(0,\mu) = 0$ for all $\mu \in \mathbb{R}$, $f_x(0,0) = 0$, $f_{\mu,x}(0,0) \neq 0$ and $f_{xx}(0,0) \neq 0$. Then (0,0) is a point of bifurcation. In particular, it is a transcritical bifurcation, i.e., for every $\mu \in (-\delta, \delta) \setminus \{0\}$ there exist exactly two equilibria in $(-\varepsilon, \varepsilon)$: $x_0 = 0$ and $x_1 \neq 0$. Moreover, x_0 is stable for $\mu < 0$ and unstable for $\mu > 0$ or vice versa.

Theorem 3.7. Let $f \in C^3(\Omega \times \mathbb{R})$, $0 \in \Omega$, $f(0,\mu) = 0$ for all $\mu \in \mathbb{R}$, $f_x(0,0) = 0$, $f_{\mu,x}(0,0) \neq 0$ and $f_{xx}(0,0) = 0$, $f_{xxx}(0,0) \neq 0$. Then (0,0) is a point of bifurcation. In particular, it is a pitchfork bifurcation, i.e., for $\mu < 0$ there is a unique equilibrium $x_0 = 0$ in a neighborhood of zero and for $\mu > 0$ there are exactly three equilibria $x_1 < x_0 = 0 < x_2$ in a neighborhood of 0 or vice versa. Moreover, x_0 is stable for $\mu < 0$ and unstable for $\mu > 0$ or vice versa.

7th Lecture

3.3 Hopf bifurcation in \mathbb{R}^2

We consider the following system in a neighborhood of (0, 0, 0)

$$\begin{pmatrix} x'\\y' \end{pmatrix} = A_{\mu} \begin{pmatrix} x\\y \end{pmatrix} + \begin{pmatrix} f(x,y,\mu)\\g(x,y,\mu) \end{pmatrix},$$
(1)

where A_{μ} is a 2 × 2 matrix dependent on a parameter μ and f, g contain higher order terms, i.e., f = g = 0, $\nabla_{xy} f = \nabla_{xy} g = 0$ in $(0, 0, \mu)$.

Theorem 3.8 (Hopf). Let $\sigma(A_{\mu}) = \{\alpha(\mu) \pm i\omega(\mu)\}$, where $\alpha, \omega \in C^2$ on a neighborhood of 0 and it holds that $\alpha(0) = 0$, $\alpha'(0) \neq 0$, $\omega(0) \neq 0$. Then there exist $\delta, \Delta > 0$ and a function $\varphi \in C^1((0, \delta), (-\Delta, \Delta))$ such that for every $a \in (0, \delta)$ there exists a nontrivial periodic solution to (1) with $\mu = \varphi(a)$ going through the point (x, y) = (a, 0).

Theorem 3.9 (Hopf 2). Let the assumptions of Theorem 3.8 hold and moreover

$$A_0 = \begin{pmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{pmatrix}.$$

Then the system is near (0,0,0) topologically conjugate to

$$r' = d\mu r + ar^3, \qquad \varphi' = 1,$$

where $d = \alpha'(0)$ and 16a is equal to

$$\left(f_{xxx} + f_{xyy} + g_{xxy} + g_{yyy} + \frac{1}{\omega_0} [f_{xy}(f_{xx} + f_{yy}) - g_{xy}(g_{xx} + g_{yy}) - f_{xx}g_{xx} + f_{yy}g_{yy}]\right)(0, 0, 0).$$

8th Lecture

4 Center manifold

For the linear equation

$$X' = AX$$

with a matrix $A \in \mathbb{R}^{n \times n}$ we have stable, unstable and center subspaces defined as

$$V_s := \{ x \in \mathbb{R}^n : \exists C, \beta > 0 \ \forall t \ge 0 \ \| e^{tA} x \| \le C e^{-\beta t} \},$$

$$V_u := \{ x \in \mathbb{R}^n : \exists C, \beta > 0 \ \forall t \le 0 \ \| e^{tA} x \| \le C e^{\beta t} \},$$

$$V_c := \{ x \in \mathbb{R}^n : \exists C > 0, n \in \mathbb{N} \forall t \in \mathbb{R} \ \| e^{tA} x \| \le C (1 + |x|)^n \}.$$

It holds that $\mathbb{R}^n = V_s \oplus V_u \oplus V_c$.

Consider a nonlinear equation

$$X' = F(X) \tag{2}$$

with $F \in C^1(\mathbb{R}^N, \mathbb{R}^N)$ and F(0) = 0.

Definition (Stable, unstable manifold). Let φ be the solving function to (2). We define the stable manifold \tilde{V}_s and unstable manifold \tilde{V}_u in $0 \in \mathbb{R}^N$ by

$$V_s := \{ x \in \mathbb{R}^N : \exists C, \beta > 0 \ \forall t \ge 0 \ \|\varphi(t, x)\| \le Ce^{-\beta t} \},$$
$$V_u := \{ x \in \mathbb{R}^N : \exists C, \beta > 0 \ \forall t \le 0 \ \|\varphi(t, x)\| \le Ce^{\beta t} \},$$

Definition (Center manifold). Let V_c be the center subspace of $X' = \nabla F(0)X$. A center manifold \tilde{V}_c for (2) in $0 \in \mathbb{R}^N$ is any invariant manifold, that is tangent to V_c in 0 and has the same dimension as V_c .

4.1 Existence of center manifold

General assumptions. We consider a system of equations

$$\begin{aligned} x' &= Ax + f(x, y), \\ y' &= By + g(x, y), \end{aligned} \tag{S}$$

such that $A \in \mathbb{R}^{n \times n}$, $x^T A x \geq -\varepsilon |x|^2$, $B \in \mathbb{R}^{m \times m}$, $y^t B y \leq -\beta |y|^2$, $||e^{tB}|| \leq c_0 e^{-\beta t}$ for some $\beta > \varepsilon > 0$, $c_0 > 0$ and all $t \geq 0$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Functions f, g are such that f(0,0) = g(0,0) = 0, $\nabla f(0,0) = \nabla g(0,0) = 0$, and |f|, $|g| < \rho$, $|\nabla f|$, $|\nabla g| < \sigma$ on \mathbb{R}^{n+m} for some σ , $\rho > 0$.

Define

$$\mathcal{X}_{b,L} := \{ \Phi \in \operatorname{Lip}(\mathbb{R}^n, \mathbb{R}^m) : \|\Phi\| \le b, \ Lip_{\Phi} \le L, \ \Phi(0) = 0 \}.$$

Theorem 4.1. Let ε , β , c_0 , L, b > 0 are given, $\varepsilon < \beta$. If σ , ρ are small enough, then there exists a unique $\Phi \in \mathcal{X}_{b,L}$ satisfying

$$(x(t), y(t)) \text{ solves (S) } \& y(0) = \Phi(x(0)) \quad \Rightarrow \quad y(t) = \Phi(x(t)) \ \forall t \ge 0.$$
(INV)

Moreover, this Φ satisfies $\nabla \Phi(0) = 0$.

Application 1. If $\Re \sigma(A) > 0$, $\Re \sigma(B) < 0$, then graph Φ is the unstable manifold. **Application 2.** If $\Re \sigma(\tilde{A}) < 0$, $\Re \sigma(\tilde{B}) > 0$ and we apply Theorem 4.1 with $A = -\tilde{B}$ and $B = -\tilde{A}$, then graph Φ is the stable manifold for the system with \tilde{A} , \tilde{B} .

Application 3. If $\Re \sigma(A) = 0$, $\Re \sigma(B) < 0$, then graph Φ is a center manifold.

Let us consider so called reduced equation

$$p' = Ap + f(p, \Phi(p)).$$
(RE)

Lemma 4.2. Let $\Phi \in \mathcal{X}_{b,L}$. Then (INV) is equivalent to

$$p \text{ solves (RE)} \Rightarrow (p, \Phi(p)) \text{ solves (S)}.$$
 (RED)

9th Lecture

Lemma 4.3. Let $\gamma : (-\infty, 0] \to \mathbb{R}^n$ be bounded and continuous. Then there exists a unique solution to $y' = By + \gamma$, which is bounded on $(-\infty, 0]$. Moreover, this solution satisfies $y(0) = \int_{-\infty}^{0} e^{-sB}\gamma(s)ds$.

Lemma 4.4. Let $\Phi \in \mathcal{X}_{b,L}$. Then (INV) is equivalent to

$$p \text{ solves (RE) with } p(0) = p_0 \quad \Rightarrow \quad \Phi(p_0) = \int_{-\infty}^0 e^{-sB} g(p(s), \Phi(p(s))) ds.$$
 (FPP)

4.2 Tracking property and reduction of stability

In this section, we assume that $\Phi \in \mathcal{X}_{b,L}$ satisfies (INV) and $\mu > L$ is fixed. We denote

$$K = \{X = (x, y) \in \mathbb{R}^{n+m} : |y| \le \mu |x|\}$$
$$V = \{X = (x, y) \in \mathbb{R}^{n+m} : |y| \ge \mu |x|\}$$

and

$$K(X_0) = \{ X = (x, y) \in \mathbb{R}^{n+m} : X - X_0 \in K \}$$
$$V(X_0) = \{ X = (x, y) \in \mathbb{R}^{n+m} : X - X_0 \in V \}$$

Lemma 4.5. Let σ be small enough and let X_1 , $X_2 : \mathbb{R} \to \mathbb{R}^{n+m}$, $X_1 = (x_1, y_1)$, $X_2 = (x_2, y_2)$ be two solutions of (S).

- If $X_1(0) \in K(X_2(0))$, then $X_1(t) \in K(X_2(t))$ for all $t \ge 0$
- There exists $\gamma > 0$ such that: If $X_1(t) = V(X_2(t))$ for all $t \in I$, then

$$|X_1(t) - X_2(t)| \le e^{-\gamma(t-s)} |X_1(s) - X_2(s)|$$
 for all $s, t \in I, s < t$.

Theorem 4.6 (Tracking property). Let σ be small enough. For every solution X of (S) there exists a solution p of (RE) such that $P = (p, \Phi(p))$ satisfies

$$|X(t) - P(t)| \le Ce^{-\gamma t} |X(0) - P(0)|$$
 for all $t \ge 0$

with γ from Lemma 4.5. Moreover, P(0) can be taken small if X(0) is small.

Corollary 4.7 (Reduction of stability). $(0,0) \in \mathbb{R}^{n+m}$ is (assymptotically) stable for (S) if and only if $0 \in \mathbb{R}^n$ is (assymptotically) stable for (RE).

11th Lecture

4.3 Approximation of center manifold

Let us denote for $\Psi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$

$$[M\Psi](x) = \nabla\Psi(x)[Ax + f(x,\Psi(x))] - B\Psi(x) - g(x,\Psi(x)).$$

We know that $M\Psi \equiv 0$ if and only if Ψ satisfies (INV).

Theorem 4.8 (Approximation of center manifold). Let q > 1 and let $\Psi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ satisfies $\Psi(0) = 0$, $\nabla \Psi(0) = 0$ and $[M\Psi](x) = O(|x|^q)$ as $x \to 0$. Then $|\Psi(x) - \Phi(x)| = O(|x|^q)$ as $x \to 0$ for any $\Phi \in \mathcal{X}_{b,L}$ satisfying (INV).

5 Optimal control theory

5.1 Controllability

Let $\Omega \subset \mathbb{R}^n$ be open, $U \subset \mathbb{R}^m$, $f \in C^1(\Omega \times U, \mathbb{R}^n)$ and $x_0 \in \Omega$. A controlled ordinary differential equation is

$$x' = f(x, u), \qquad x(0) = x_0.$$
 (CDE)

Let $0 < T \leq +\infty$. A set $\mathcal{U} \subset \{u : [0, T] \to U : u \text{ measureable}\}$ is called *a set of admissible* controls, any function $u \in \mathcal{U}$ is called *a control* and the solution $x : [0, T] \to \mathbb{R}^n$ of (CDE) with a given control u is called *response of the system*.

A controled linear equation is

$$x' = Ax + Bu, \tag{CLE}$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$.

Notation: $x_0 \stackrel{t}{\xrightarrow{u}} 0$ means "control *u* brings x_0 to 0 in time *t*", i.e. if we insert *u* into (CDE), then the solution *x* of (CDE) satisfies x(t) = 0.

Definition. Let $t \in [0,T]$. The set $R(t) = \{x_0 \in \mathbb{R}^n : \exists u \in \mathcal{U}, x_0 \xrightarrow{t}{u} 0\}$ is called the reachable set for time t.

Definition. Kalman controllability matrix for (CLE) is $\mathcal{K}(A|B) = (B, AB, A^2B, \dots, A^{n-1}B) \in \mathbb{R}^{n \times mn}$.

Theorem 5.1. Consider (CLE) with $\mathcal{U} = L^1_{loc}([0,T], \mathbb{R}^m)$. Then $R(t) = \operatorname{Im} \mathcal{K}(A|B)$ for all t > 0.

Corollary 5.2. The following is equivalent for the system (CLE) with $\mathcal{U} = L^1_{loc}([0,T], \mathbb{R}^m)$.

- (i) (CLE) is globally controllable (i.e. $R(t) = \mathbb{R}^n$) for some/every t > 0,
- (ii) (CLE) is locally controllable (i.e. $0 \in R(t)^{\circ}$, where $R(t)^{\circ}$ is the interior of R(t)) for some/every t > 0,

(*iii*) rank $\mathcal{K}(A|B) = n$.

12th Lecture

Theorem 5.3. Let U be any neighborhood of 0 and $\mathcal{U} = L^1_{loc}([0,T],U)$. Let $0 \in \Omega$, f(0,0) = 0, $A = \nabla_x f(0,0)$, and $B = \nabla_u f(0,0)$. If rank $\mathcal{K}(A|B) = n$, then (CDE) is locally controllable for all t > 0.

5.2 Time-optimal control and Bang-bang principle

In this section we consider (CLE) with $U = [-1, 1]^m$, $\mathcal{U} = L^1_{loc}([0, T], U)$.

Proposition 5.4. The system (CLE) is locally controllable if and only if rank $\mathcal{K}(A|B) = n$.

Proposition 5.5. For every t > 0, R(t) is closed, convex and symmetric $(x \in R(t)) \Rightarrow -x \in R(t))$. If $t_1 < t_2$ then $R(t_1) \subset R(t_2)$.

Theorem 5.6. Let rank $\mathcal{K}(A|B) = n$ and $\Re \lambda \leq 0$ for all $\lambda \in \sigma(A)$. Then (CLE) is globally controllable.

Definition. An admissible control u is called a bang-bang control if $u_i(t) = \pm 1$ for all $t \in [0,T]$ and all i = 1, 2, ..., m.

Theorem 5.7. For each $x_0 \in R(t)$ there exists a bang-bang control \tilde{u} such that $x_0 \stackrel{t}{\xrightarrow{\sim}} 0$.

Theorem 5.8. For each $x_0 \in \bigcup_{t\geq 0} R(t)$ there exists $\tilde{t} = \min\{t\geq 0 : x_0 \in R(t)\}$ and a bang-bang control \tilde{u} such that $x_0 \stackrel{\tilde{t}}{\xrightarrow{\tilde{u}}} 0$.

5.3 Pontryagin maximum principle

In this section, we are looking for an admissible control u which maximizes the functional

$$P[u] = g(x(T)) + \int_0^T r(x(s), u(s)) ds$$

where x is the solution to (CDE) (with the control u). Functions $g \in C^1(\mathbb{R}^n)$, $f \in C^1(\mathbb{R}^n \times U)$ and $r \in C(\mathbb{R}^n \times U)$ are given.

Theorem 5.9. Let $u^* \in \mathcal{U}$ is a point of a local maximum of P and x^* is the corresponding system response. Then there exists a solution $P^* : [0,T] \to \mathbb{R}^n$ to the adjoint equation

$$P^{*'} = -\nabla_x H(x^*, P^*, u^*), \qquad P^*(T) = (\nabla_x g)(x^*(T))$$
 (ADJ)

and the maximum principle

$$H(x^{*}(t), P^{*}(t), u^{*}(t)) = \max_{\eta \in U} H(x^{*}(t), P^{*}(t), \eta),$$
(MP)

holds, where $H(x, P, u) = P \cdot f(x, u) + r(x, u)$.