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1 Dynamical systems

1.1 Basic properties

Definition (Dynamical system). Dynamical system is a couple (2, @), where Q C R™ and
w: R x Q — Q is continuous and satisfies

(i) p(0,2) =z for all x € 2
(ii) o(t,o(s,x)) = @(t+ s,x) forallt, s € R, x € Q.

Definition (Orbit, positive and negative semiorbit). Let (2,¢) be a dynamical system.
The orbit of x is the set v(x) := {p(t,z) : t € R}. The positive semiorbit, resp. negative
semiorbit of x is the set vy (x) := {p(t,x) : t > 0}, resp. v_(z) = {p(t,z) : t <0}.

Definition (Invariant set, positively and negatively invariant set). Let (€2, ) be a dy-
namical system. A set A C € is invariant if for each x € A we have y(x) C A. A set
A C Q is positively, resp. negatively invariant if for each x € A we have vy, (x) C A, resp.
v-(z) C A.

Definition (w-limit set, a-limit set). Let (2, ) be a dynamical system and zo € 2. The
w-limit set of xg 1s

w(zg) :=={x € Q: 3, S +oo s.t. lim @(t,,x0) = z}.
n—oo
The a-limit set of xq is

a(zg) ={rz € Q: I, \(—o0 s.t. lm p(t,, z9) = x}.

n—oo
Theorem 1.1. Let (2, p) be a dynamical system and xy € €.
(i) Then w(xq) is closed and invariant.

(1) If vo(xg) is relatively compact, then w(xg) is nonempty, compact and connected.
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Lemma 1.2. Let (2, ) be a dynamical system and xo € Q. Then

w(zo) = [ 14 ((7, 0))-

720
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Definition (equilibrium). A point xq is an equilibrium (stationary point) of the equation
/

¥ = f(z) if f(xzg) = 0. A point xo is an equilibrium (stationary point) of (2, ¢) if
o(t,xg) = xo for all t € R.

Definition (Topologically conjugate systems). Dynamical systems (€2, ), (©,1) are topo-
logically conjugate if there exists a homeomorphism h : Q — © such that h(p(t,z)) =
W(t,h(z)) for allz € Q and t € R.

Theorem 1.3 (Rectification theorem). Let @ C R™ be open, f € C"(Q,R™), r > 1 and
f(xg) # 0. Then there exist a neighborhood V' of xqy, a neighborhood W of 0 in R™ and a
homeomorphism g : V. — W satisfying: t — x(t) is a solution to x’ = f(x) if and only if
t — g(x(t)) is a solution to y = (1,0,0,...,0)T.

Definition (hyperbolic equilibrium). An equilibrium x¢ of ' = f(x) is called hyperbolic if
o(Vf(xg)) NiR =0, i.e. Vf(xg) has no eigenvalues on the imaginary azis (0(A) denotes
the spectrum of a matriz A).

Theorem (Hartman—Grobman). Let x¢ be a hyperbolic equilibrium of ©’ = f(x) and denote
A =V f(xg). Then there exist a neighborhood V' of xq, a neighborhood W of 0 in R™ and
a homeomorphism g : V- — W satisfying: t — x(t) is a solution to ' = f(x) if and only if
t— g(x(t)) is a solution to y' = Ay.

1.2 LaSalle’s invariance principle

Definition (orbital derivative). Consider the equation x' = f(x) with f : Q C R" — R”
and let V € CY(Q). The orbital derivative of V in a point x is V(z) := VV (z) - f(z).
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Theorem 1.4. Let 2 C R™ be open, f : 0 — R™ be Lipschitz continuous and o be the
solving function of ¥’ = f(z). Let V € CY(Q) be bounded from below and | € R be such that
Q :={xeQ: V(z) <} is bounded and V <0 on Q. Denote S :={z e Q: V(z)=0}
and M :={x €S : ~v(x) CS}. Then w(xy) C M for all o € .



1.3 Poincaré—Bendixson Theory
Let 2 be a connected subset of R?, f € C'(Q2) and ¢ be the solving function of

v = f(x) (AE)
Assume that ¢ is defined at least on [0, +00) for every x € Q.

Theorem 1.5 (Poincaré—Bendixson). Let p € Q and v, (p) be relatively compact. If w(p)
does not contain any stationary points, then w(p) is an orbit of a nontrivial periodic solu-
tion.

Definition (Jordan curve). A curve in R? is Jordan if there exists its continuous parametriza-
tion 1 : [0, 1] — R? which is injective on [0,1) and satisfies 1(0) = 1(1).

Theorem (Jordan). Let v C R? be a Jordan curve. Then there exist unique 1, Qy C R?
such that € is bounded, Qy is not bounded, 0y, Qo and v are pairwise disjoint and R? =
Q1 U~y UQy. We denote 2 =: Inty and Qy =: Ext .

Definition (Transversal). A transversal to ¢ is an open line segment ¥ C S which is not
parallel to f in any point, i.e. ¥ = {a+tb: t € (0,1)} for some fized a, b € R* and for
every x € X the vectors f(z) and b are linearly independent.

Definition (Flow-box). A set U C 2 is called a flow-box if the dynamical system (U, p)
is topologically congugate to (V, ), where V.= {(x1,22) € R" : |21] < &1, |xo| < &9} for
some €1, €9 > 0 and Y(t, (x1,22)) = (x1 + t, 22).

Lemma 1.6. Let ¥ be a transversal to ¢ and p € X. Then there exists a flow-box U
containing p such that for every y € U the set ¥ N~y (y) contains exactly one point. By
vu(y) we denote the orbit of y in the (local) dynamical system (U, ).

Lemma 1.7. Let ¥ be a transversal to ¢, p € ¥. Then intersections of v4(p) and ¥ form a
monotone sequence. In particular, if t1 <ty < t3 be such that o(t;,p) € 3, j =1,2,3, then

cither (t1,p) = ¢(t2,p) = @(ts,p) or @(ta,p) lies strictly between (t1,p) and p(ts,p).
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Lemma 1.8. Let ¥ be a transversal to ¢ and p € . Then w(p) N3 contains at most one
point.

Theorem 1.9 (Bendixson—Dulac criterion). Let Q be open and simply connected.

(1) If div f > 0 a.e. in 2, then (AE) has no nontrivial periodic solutions.

(ii) If there exists B € CY(Q) such that div(B - f) > 0 a.e. in Q, then (AE) has no

nontrivial periodic solutions.



2 Carathéodory Theory

Throughout this chapter, we assume that I is an interval,  C R™*! be an open set with
points (¢,z), t € R, z € R". We denote U(xy, A) the ball in R" centered in zy with radius
A. By Q(to,zo) or Q(tg,xg,0,A) we denote a cylinder U(to,d) x U(zg,A) C R™. The
graph of a function z : I — R™ is graphx := {(¢t,z(t)) : t € I} C R™"'. In this chapter,
we consider a diferential equation

o' = f(t,z) (DE)

Definition (AC function). A function x : I — R™ is called absolutely continuous (z €
AC(I)) if for every e > 0 there exists 6 > 0 satisfying: for any finite sequence of pairwise
disjoint intervals (a;,b;), i = 1,...n it holds that

Z|b—az|<5 = Z|f fla;)| < e.

We say that x is locally absolutely continuous on I (z € AC,.(I)) if x € AC(J) for every
compact interval J C I.

Proposition 2.1. Let x € AC(I), then z'(t) exists for almost every t € I, ' € L} ()
and x(t) — z(s) = fst ' (r)dr for every s, t € I.

Proposition 2.2. Let h € L'(I), ¢ € I and define x(t) := [*h(r)dr. Then x € AC(I)
and x' = h almost everywhere on I.

Definition (Carathéodory conditions). We say that f : Q@ — R™ satisfies Carathéodory
conditions (f € CAR(Y)) if for every (to, zo) € 2 there exist a cylinder Q(to, o, 0, A) and
a function m € U(to,d) such that

(i) f(-,x) is measurable on Ul(ty,0) for every x € U(xg, A)
(ii) f(t,-) is continuous on U(xg, A) for a.e. t € Ul(ty,0)
(iii) |f(t,x)| < m(t) for a.e. t € Ul(ty,d) for every x € U(xg, A).

Definition (AC solution). Let f € CAR(Q2). We say that x : I — R™ is an absolutely
continuous solution to z' = f(t,z) if v € AC(I), graphz C Q and 2'(t) = f(t,z(t)) for
ae. tel.

Lemma 2.3. Let f € CAR(QY), z : I — R™ continuous and graphx C Q. Then f(-,z()) €
L}OC(I>

Lemma 2.4. Let f € CAR(Q), x : I — R" continuous and graphx C Q. Then x is an
AC solution to (DE) if and only if for all s, t € I it holds that

= /:f(r,:c(r))dfr
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Theorem 2.5 (Generalized Banach Contraction Theorem). Let A, X be metric spaces, X
nonempty and complete. Let ® : A x X — X is continuous w.r.t. X for each fired x € X.
Let there exists k € (0,1) such that

|P(A, x) — PN\, y)||x < kllz—y|x VAeEA, z,ye X.
Then

(i) for every A € A there exists a unique x(\) such that ®(\, z(N)) = x(N).
(ii) the mapping X\ — x(\) is continuous.
(iii) |y — (M) < (L= k)" y = @Ayl for all A€ A, y € X.

Theorem 2.6 (Generalized Picard Theorem). Let I = [0,T] be a bounded interval and
f € CAR(I x R™). Let us assume that there exists | € L'(I) such that

[f(t,2,p) = [ty p)l <U@B)lw =yl forae tel forallw,yeR"

Then for every xo € R"™ there exists a unique AC solution x € AC(I) of (DE) with
x(0) = xo and the solution depends continuously on the initial value in the following sense.
If xo, — x0, then x, = x uniformly on I (where x, resp. x, are the solutions corresponding
to xg, T€SP. Ton).
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3 Bifurcations

3.1 Basic properties

In this chapter we study autonomous differential equations with a parameter y € R.

&= f(z,p) (ARy)
We assume 2 C R" to be an open set, f € C'(Q x R) or more smooth.

Definition (bifurcation). We say that (xo, 1) € Q x R is a point of bifurcation if in any
neighborhood of u there exist py, po such that the dynamical systems & = f(x,pq) and
& = f(x,u2) are not topologically conjugate on any neighborhoods of xo. We say that
1 € R is a point of bifurcation if in any neighborhood of p there exist py, ps such that the
dynamical systems & = f(x, 1) and & = f(x, uz) are not topologically conjugate.



Proposition 3.1. If f(xo, po) # 0, then (o, po) is not a point of bifurcation.

Theorem 3.2. If zy is a hyperbolic equilibrium for & = f(x, po), then (xo, fo) is not a
point of bifurcation. In particular, for every p close enough to po the system & = f(x, )
has a unique hyperbolic equilibrium x, near xo and the dimensions of stable and unstable
manifolds do not depend on p.

Corollary 3.3. If (o, ito) is a point of bifurcation, then xo is a nonhyperbolic equilibrium.

3.2 Bifurcations on R

Theorem 3.4. Let f € C*(2 x R), 0 € Q, f(0,0) = 0, £,(0,0) = 0, £.,(0,0) # 0
and fz+(0,0) # 0. Then (0,0) is a point of bifurcation. In particular, it is a saddle-
node bifurcation, i.e., there are no equilibria for p < 0 and two equilibria for p > 0 in a
neighborhood of 0 or vice versa.

Lemma 3.5. Let h € C*, k > 2 on a neighborhood of (0,0) and h(0,\) = 0 on a
neighborhood of 0. Then there exists H € C*' on a neighborhood of (0,0) such that
h(z,\) = zH(z,\) and, moreover, it holds that H(0,\) = h,(0,)), H,(0,0) = £h,,(0,0),
HA(0,0) = hyy(0,0), and (if k > 3) Hyp(0,0) = Ly (0,0).

Theorem 3.6. Let f € C?*(Q xR), 0 € Q, f(0,u) = 0 for all p € R, £,(0,0) = 0,
fu2(0,0) # 0 and f,,(0,0) # 0. Then (0,0) is a point of bifurcation. In particular, it is a
transcritical bifurcation, i.e., for every p € (—0,0) \ {0} there exist exactly two equilibria
in (—e,e): xg =0 and x1 # 0. Moreover, xq is stable for p < 0 and unstable for ;> 0 or
vice versa.

Theorem 3.7. Let f € C?(Q x R), 0 € Q, f(0,u) = 0 for all p € R, f,(0,0) = 0,
f1,2(0,0) # 0 and f;(0,0) = 0, frz2(0,0) # 0. Then (0,0) is a point of bifurcation. In
particular, it is a pitchfork bifurcation, i.e., for u < 0 there is a unique equilibrium xro =0
in a neighborhood of zero and for > 0 there are exactly three equilibria v < xg =0 < x4
i a neighborhood of 0 or vice versa. Moreover, xy is stable for p < 0 and unstable for
w > 0 or vice versa.
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3.3 Hopf bifurcation in R?

We consider the following system in a neighborhood of (0,0, 0)

@’ v\, (flzy u))
— A + » Y , 1
(y’) . <y> <g(x,y,u) o
where A, is a 2 x 2 matrix dependent on a parameter p and f, g contain higher order
terms, ie., f =9 =0, Vy f = Vg =01in (0,0, p).
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Theorem 3.8 (Hopf). Let 0(A,) = {a(p) £ iw(p)}, where o, w € C? on a neighborhood
of 0 and it holds that «(0) = 0, &/(0) # 0, w(0) # 0. Then there exist §, A > 0 and
a function @ € C1((0,0), (=A,A)) such that for every a € (0,8) there exists a nontrivial
periodic solution to (1) with = p(a) going through the point (x,y) = (a,0).

Theorem 3.9 (Hopf 2). Let the assumptions of Theorem 3.8 hold and moreover
- 0 —Wo
e (S ).
Then the system is near (0,0,0) topologically conjugate to
v = dur + ar®, o =1,

where d = &/(0) and 16a is equal to

1
(fza::v + f:vyy + Graxy + Gyyy + w_o[fzy<f$ac + fyy) - gzy(.gz:v + gyy) - f:mgmx + fyygyy]> (07 07 O)
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4 Center manifold

For the linear equation
X' = AX
with a matrix A € R™*" we have stable, unstable and center subspaces defined as
Vi={z €R": 3C,8>0Vt>0|ez] < Ce P},
Vii={z eR": 3C,5>0Vt<0 ||ez] < CeY,
Voo={zeR": 3C>0,necNVteR |ez] <C1+ |z))"}.
It holds that R" =V, &V, & V..

Consider a nonlinear equation

X' =F(X) (2)
with F € CY(RY,RY) and F(0) = 0.

Definition (Stable, unstable manifold). Let o be the solving function to (2). We define
the stable manifold V, and unstable manifold V,, in 0 € RN by

Vo={zeRY: 3C,B>0Vt>0 ot z)| <Ce?},
Vo={zeRY: 3C,8>0Vt<0 |t )| <Ce,

Definition (Center manifold). Let V. be the center subspace of X' = VF(0)X. A center
manifold V, for (2) in 0 € RY is any invariant manifold, that is tangent to V, in 0 and
has the same dimension as V..



4.1 Existence of center manifold
General assumptions. We consider a system of equations

o' = Av + f(z,y),

y' = By + g(z,y), (5)

such that A € R™" 2TAx > —¢|z|?, B € R™™, y'By < —Blyl*, ||e!P|| < coe™? for
some  >¢e>0,cg>0and allt > 0, z € R", y € R™. Functions f, g are such that
£(0,0) = 9(0,0) = 0, V£(0,0) = Vg(0,0) = 0, and ||, |g] < p, [V /], [Vg] < o on R+
for some o, p > 0.

Define
X,p = {® € Lip(R",R™) : ||®| <b, Lips < L, ®(0) = 0}.

Theorem 4.1. Let ¢, B, ¢y, L, b > 0 are given, ¢ < B. If o, p are small enough, then
there exists a unique ® € &, 1, satisfying

(x(t),y(t)) solves (S) & y(0) = ®(x(0)) = y(t)=P(x(t)) Vt>0. (INV)
Moreover, this ® satisfies V®(0) = 0.

Application 1. If Ro(A) > 0, Ro(B) < 0, then graph ® is the unstable manifold.

Application 2. If Ro(A) < 0, Ro(B) > 0 and we apply Theorem 4.1 with A = —B and
B = —A, then graph ® is the stable manifold for the system with A, B.

Application 3. If Ro(A) =0, Ro(B) < 0, then graph ® is a center manifold.

Let us consider so called reduced equation
P =Ap+ f(p, 2(p)) (RE)
Lemma 4.2. Let ® € &}, .. Then (INV) is equivalent to

p solves (RE) = (p,®(p)) solves (S). (RED)
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Lemma 4.3. Lety : (—o0,0] — R" be bounded and continuous. Then there exists a unique
solution to y' = By + v, which is bounded on (—00,0]. Moreover, this solution satisfies

y(0) = 7 e By (s)ds.
Lemma 4.4. Let ® € &}, ;.. Then (INV) is equivalent to
0

p solves (RE) with p(0) =py = P(po) :/ e *Bg(p(s), ®(p(s)))ds. (FPP)

—00
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4.2 'Tracking property and reduction of stability

In this section, we assume that ® € A, 1, satisfies (INV) and p > L is fixed. We denote

K={X=(z,y) e R"™: |y| < plz|}
V=A{X=(z,y) e R"™: |y| > plz|}

and

K(Xo) = {X = (z,y) eR™™: X — X, € K}
V(X)) ={X =(z,y) eR"™: X — X, €V}

Lemma 4.5. Let 0 be small enough and let X1, Xy : R — R"™™™ X| = (21,11), Xo =
(x2,y2) be two solutions of (S).

o [f X1(0) € K(X2(0)), then X1(t) € K(X3(t)) for allt >0
e There exists v > 0 such that: If X1(t) = V(Xa(t)) for allt € I, then
1X1(t) — Xo(t)] < e 79X (s) — Xo(s)| foralls, tel, s<t.

Theorem 4.6 (Tracking property). Let o be small enough. For every solution X of (S)
there exists a solution p of (RE) such that P = (p, ®(p)) satisfies

|X(t) — P(t)] < Ce X (0) — P(0)] forallt>0
with v from Lemma 4.5. Moreover, P(0) can be taken small if X (0) is small.

Corollary 4.7 (Reduction of stability). (0,0) € R*™™™ is (assymptotically) stable for (S)
if and only if 0 € R™ is (assymptotically) stable for (RE).

11th Lecture

4.3 Approximation of center manifold

Let us denote for ¥ € C'(R™, R™)
[MU](z) = VU(z)[Ax + f(z, ¥(2))] - BY(2) — g(z, V().
We know that MW = 0 if and only if ¥ satisfies (INV).

Theorem 4.8 (Approximation of center manifold). Let ¢ > 1 and let ¥ € C*(R",R™)
satisfies U(0) = 0, V¥ (0) = 0 and [MVY](z) = O(|z|?) as x — 0. Then |V(z) — ®(x)| =
O(|z|?) as  — 0 for any ® € Xy 1 satisfying (INV).



5 Optimal control theory

5.1 Controllability

Let Q C R" be open, U C R™, f € CY(Q x U,R") and zy € Q. A controlled ordinary
differential equation is

' = f(z,u), z(0) = . (CDE)

Let 0 < T < 4o00. AsetU C{u:[0,7] - U : u measureable} is called a set of admissible
controls, any function v € U is called a control and the solution z : [0, 7] — R™ of (CDE)
with a given control u is called response of the system.

A controled linear equation is
1’ = Ax + Bu, (CLE)

where A € R"*" and B € R™*™,
Notation: z L5 0 means “control u brings o to 0 in time t”, i.e. if we insert u into (CDE),
u

then the solution x of (CDE) satisfies x(t) = 0.

Definition. Let t € [0,T]. The set R(t) = {zo € R : Ju € U, zo — 0} is called the

reachable set for time ¢.

Definition. Kalman controllability matriz for (CLE) is K(A|B) = (B, AB, A*B, ..., A" 'B) €

Rnan

Theorem 5.1. Consider (CLE) withU = L;

Le([0, T, R™). Then R(t) = ImK(A|B) for
allt > 0.

Corollary 5.2. The following is equivalent for the system (CLE) withU = L}, ([0, T],R™).

loc
(i) (CLE) is globally controllable (i.e. R(t) =R™) for some/every t > 0,

(i7) (CLE) is locally controllable (i.e. 0 € R(t)°, where R(t)° is the interior of R(t)) for
some/every t > 0,

(i1i) rank K(A|B) = n.
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Theorem 5.3. Let U be any neighborhood of 0 and U = L} ([0,T],U). Let 0 € Q,

f(0,0) =0, A = V.,f(0,0), and B = V,f(0,0). If rankC(A|B) = n, then (CDE) is
locally controllable for all t > 0.
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5.2 Time-optimal control and Bang-bang principle
In this section we consider (CLE) with U = [—1,1]™, U = L;,.([0,T],U).

Proposition 5.4. The system (CLE) is locally controllable if and only if rank K(A|B) = n.

Proposition 5.5. For every t > 0, R(t) is closed, convex and symmetric (x € R(t) =

Theorem 5.6. Let rank K(A|B) =n and R\ < 0 for all A € 0(A). Then (CLE) is globally

controllable.

Definition. An admissible control u is called a bang-bang control if w;(t) = +1 for all
te[0,T) and alli=1,2,...,m.

Theorem 5.7. For each xy € R(t) there exists a bang-bang control i such that x i> 0.

Theorem 5.8. For each xy € |J,5q R(t) there exists t = min{t > 0 : g € R(t)} and a

bang-bang control u such that x %) 0.

5.3 Pontryagin maximum principle

In this section, we are looking for an admissible control « which maximizes the functional

where x is the solution to (CDE) (with the control u). Functions g € CY(R"), f €
CYR" x U) and r € C(R" x U) are given.

Theorem 5.9. Let u* € U is a point of a local maximum of P and x* is the corresponding
system response. Then there exists a solution P* :[0,T] — R™ to the adjoint equation

P* = -V H(z*, P*,u*), P*(T) = (V.9)(x*(T)) (ADJ)
and the maximum principle

H(z"(t), P*(t),w"(t)) = max H (2*(t), P*(t),n), (MP)

nelU

holds, where H(x, P,u) = P - f(x,u) 4+ r(x,u).
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