1. Dynamical Systems

Definition. By dynamical system (d.s.) we mean a couple (φ, Ω) , where $\Omega \subset \mathbb{R}^n$ is open and $\varphi = \varphi(t, x)$: $\mathbb{R} \times \Omega \to \Omega$ is a map, satisfying

- (i) $\varphi(0,x) = x$ for $\forall x \in \Omega$
- (ii) $\varphi(s,\varphi(t,x)) = \varphi(s+t,x)$ for $\forall s, t \in \mathbb{R}, x \in \Omega$
- (iii) $(t, x) \mapsto \varphi(t, x)$ is continuous.

While Ω can be any topological space, we will consider mostly open domains in \mathbb{R}^n and smooth $\varphi(t,x)$.

Example. If $\Omega \subset \mathbb{R}^n$ is open and $f = f(x) : \Omega \to \mathbb{R}^n$ of class C^1 , then $\varphi(t, x_0) := x(t)$, where x = x(t) is the (unique) maximal solution to

$$x' = f(x), x(0) = x_0 (1)$$

is a 'local' dynamical system with $\varphi \in C^1$. This is a canonical example in the sense that any smooth d.s. arises as a solution operator to the equation (1).

Definition. Let (φ, Ω) be a dynamical system. A set $M \subset \Omega$ is called

- positively invariant, if $\varphi(t,x) \in M$ for $\forall t \geq 0, x \in M$
- negatively invariant, if $\varphi(t,x) \in M$ for $\forall t \leq 0, x \in M$
- (fully) invariant, if $\varphi(t,x) \in M$ for $\forall t \in \mathbb{R}, x \in M$

Given a point $x_0 \in M$ we further define

- positive (semi-)orbit $\gamma^+(x_0) = \{\varphi(t, x_0); t \ge 0\}$
- negative (semi-)orbit $\gamma^-(x_0) = \{\varphi(t, x_0); t \leq 0\}$
- (full) orbit $\gamma(x_0) = \{ \varphi(t, x_0); t \in \mathbb{R} \}$

Observe that positive (resp. negative resp. full) orbit is positively (resp. negatively resp. fully) invariant. The set M is positively (resp. negatively resp. fully) invariant, iff for any $x_0 \in M$, the orbit $\gamma^+(x_0)$ (resp. $\gamma^-(x_0)$ resp. $\gamma(x_0)$) is a subset of M.

Definition. Let (φ, Ω) be a dynamical system. We define the ω -limit set of a point $x_0 \in \Omega$ as

$$\omega(x_0) = \{ y \in \Omega; \exists t_n \to +\infty \text{ s.t. } \varphi(t_n, x_0) \to y \}$$

Analogously, we define the α -limit set of x_0 as

$$\alpha(x_0) = \{ y \in \Omega; \ \exists t_n \to -\infty \text{ s.t. } \varphi(t_n, x_0) \to y \}$$

Lemma 1. Let (φ, Ω) be a dynamical system and $x_0 \in \Omega$. Then

$$\omega(x_0) = \bigcap_{\tau > 0} \overline{\gamma^+(\varphi(\tau, x_0))}.$$

Remark. Recall that the set M is called *connected*, provided there do not exist open, disjoint sets \mathcal{G} , \mathcal{H} such that $M \subset \mathcal{G} \cup \mathcal{H}$, while $M \cap \mathcal{G} \neq \emptyset$, $M \cap \mathcal{H} \neq \emptyset$.

Furthermore, any interval $I \subset \mathbb{R}$ is connected (in fact a subset of \mathbb{R} is connected iff it is an interval), and a continuous image of a connected set is again connected.

Theorem 2 (Properties of $\omega(x_0)$.). Let (φ, Ω) be a dynamical system. Then

1. $\omega(x_0)$ is closed, fully invariant

2. If $\gamma^+(x_0)$ relatively compact in Ω , then $\omega(x_0)$ is non-empty, compact, and connected.

Theorem 3. Let (φ, Ω) be a dynamical system, let $K \subset \Omega$ be compact. Then

$$\operatorname{dist}(\varphi(t, x_0), K) \to 0 \quad \text{for } t \to +\infty,$$
 (*)

if and only if $\emptyset \neq \omega(x_0) \subset K$.

In particular, $\omega(x_0) = \{z\}$ iff $\varphi(t, x_0) \to z$ for $t \to +\infty$.

Definition. Dynamical systems (φ, Ω) and (ψ, Θ) are called *topologically conjugate*, if there exists a homeomorphism $h: \Omega \to \Theta$ such that $h(\varphi(t, x)) = \psi(t, h(x))$ for all $t \in \mathbb{R}$, $x \in \Omega$.

Remark. Equivalently, for all t

$$\varphi(t,\cdot) = h_{-1} \circ \psi(t,\cdot) \circ h$$
 in Ω .

Remark. Topological conjugacy preserves the key properties of dynamical systems: stationary points and their stability, periodic orbits, ω -limit sets, . . .

Theorem 4 (Rectification lemma). Let f(x) be C^1 in a neighborhood of $x_0 \in \mathbb{R}^n$, let $f(x_0) \neq 0$. Then there exist

- a neighborhood V of x_0 ,
- a neighborhood W of $0 \in \mathbb{R}^n$ and
- a diffeomorphism $g: \mathcal{V} \to \mathcal{W}$

such that x(t) is a solution to (1) in \mathcal{V} iff y(t) = g(x(t)) is a solution to

$$y' = (1, 0, 0, \dots, 0)^T \tag{2}$$

in W.

Remark. In terms of the previous definition the Rectification lemma says: d.s. given by (1) and (2) are topologically conjugate (in fact C^1 -conjugate) on respective neighborhoods.

Remark. Rectification lemma says that close to non-stationary points there is no interesting dynamics. The following (and considerably more difficult) theorem implies that close to stationary hyperbolic points, there is no nonlinear dynamics.

Recall that a stationary point x_0 to equation (1) is called *hyperbolic*, if Re $\lambda \neq 0$ for any λ from the spectrum of $A = \nabla f(x_0)$.

Theorem 5 (Hartman-Grobman.). Let f(x) be C^1 on some neighborhood of x_0 , where x_0 is a hyperbolic stationary point to (1). Let $A = \nabla f(x_0)$. Then there exist a neighborhood \mathcal{V} of x_0 and a neighborhood \mathcal{W} of $0 \in \mathbb{R}^n$ such that the d.s. given by (1) and y' = Ay are topologically conjugate on respective neighborhoods.

La Salle's invariance principle

Recall that given a C^1 function $V:\Omega\to\mathbb{R}$ we define the *orbital derivative* – w.r.t. solutions of (1) – as

$$\dot{V}_f(x) = \nabla V(x) \cdot f(x) = \sum_{j=1}^n \frac{\partial V}{\partial x_j}(x) f_j(x)$$

By chain rule for any x = x(t) a solution of (1) in Ω one has

$$\frac{d}{dt}V(x(t)) = \dot{V}_f(x(t)).$$

Example. Consider the mathematical pendulum with friction $x'' + q(x') + \sin x = 0$. Here x = x(t) is the displacement angle, and q = q(y) friction, depending on the velocity y = x'. It is natural to assume q(0) = 0 and q(y)y > 0 for $y \neq 0$. In such a case the equilibrium (x, y) = (0, 0) is stable, using the Lyapunov function $V = y^2/2 + 1 - \cos x$.

But is it even asymptotically stable? If q'(0) > 0, this follows by the linearization argument. But the more delicate (in fact, non-hyperbolic) case when q'(0) = 0 requires a more subtle argument, which is contained in the following abstract theorem.

Theorem 6 (La Salle). Let (φ, Ω) be the d.s. given by (1). Let $V : \Omega \to \mathbb{R}$ be a C^1 function bounded from below, and let $\ell \in \mathbb{R}$ be such that the set $\Omega_{\ell} = \{x \in \Omega; \ V(x) < \ell\}$ is bounded. Assume finally that $\dot{V}_f(x) \leq 0$ in Ω_{ℓ} .

Denote

$$R = \{x \in \Omega_{\ell}; \ \dot{V}_f = 0\}$$

$$M = \{y \in R; \ \gamma(y) \subset R\}$$

Then for any $x_0 \in \Omega_\ell$ one has $\emptyset \neq \omega(x_0) \subset M$.

Remark. M is the largest fully invariant subset of R. In a typical application, M reduces to a single point which (in view of Theorem 13.2) is thus asymptotically stable (in fact it attracts all of Ω_{ℓ}).

Poincarè-Bendixson theory

- existence and non-existence of periodic solutions in \mathbb{R}^2 .
- it is essential that we are in two dimensions only.

Standing assumptions. Throughout this chapter,

- $\Omega \subset \mathbb{R}^2$ is a domain (i.e. open, connected set),
- $f(x): \Omega \to \mathbb{R}^2$ is C^1 and
- $\varphi = \varphi(t, x)$ is the d.s. given by (1).

Theorem 7 (Poincarè-Bendixson.). Let $p \in \Omega$ be such that $\gamma^+(p)$ is relatively compact in Ω , let furthermore $\omega(p)$ contains no stationary point. Then $\omega(p) = \Gamma$, where Γ is a (non-trivial) periodic orbit.

Reminder

We say that γ is a *curve*, if $\gamma = \psi([a,b])$, where ψ is injective, continuous. It is a *Jordan curve*, provided that ψ is continuous, injective on [a,b) and $\psi(a) = \psi(b)$. Finally, γ is a *(line) segment*, provided that ψ can be taken affine, i.e. $\psi(t) = at + b$ for some vectors $a \neq 0$ and b.

Remark. Orbit (periodic orbit) is a curve (Jordan curve).

Jordan theorem. If $\gamma \subset \mathbb{R}^2$ is a Jordan curve, then $\mathbb{R}^2 \setminus \gamma$ consists precisely of two domains, of which one is bounded and simply connected ("the interior") and the other is unbounded ("the exterior").

Definition. An open segment Σ is called *transversal*, provided that $f(p) \cdot n \neq 0$ for any $p \in \Sigma$, where n is the normal vector to Σ .

Geometrically: solutions of (1) traverse Σ with a non-zero speed (and in particular, in the same direction) at all points. Clearly every non-stationary point lies on some transversal.

Lemma 8. Let $\Sigma \subset \Omega$ be transversal, $y \in \Sigma$. Then there exist two neighborhoods $\mathcal{U} \supset \tilde{\mathcal{U}}$ of y and $\Delta > 0$ such that for any $x_0 \in \tilde{\mathcal{U}}$ we have

- (i) $\varphi(t, x_0) \in \mathcal{U}$ for all $|t| < \Delta$ and
- (ii) there is a unique $|t_0| < \Delta/2$ such that $\varphi(t_0, x_0) \in \Sigma \cap \tilde{\mathcal{U}}$

Lemma 9. Let $\Sigma \subset \Omega$ be a transversal, let $p \in \Omega$. Then the intersections of $\gamma^+(p)$ with Σ form a monotone sequence. More precisely: if $t_1 < t_2 < t_3$ are such that $\varphi(t_i, p) \in \Sigma$, i = 1, 2, 3, then either (i) $\varphi(t_1, p) = \varphi(t_2, p) = \varphi(t_3, p)$, or (ii) the point $\varphi(t_2, p)$ lies strictly between $\varphi(t_1, p)$ and $\varphi(t_3, p)$.

Lemma 10. Let $\Sigma \subset \Omega$ be a transversal, let $p \in \Omega$. Then $\omega(p) \cap \Sigma$ consists of at most one point.

Corollary. Let $\Sigma \subset \Omega$ be a transversal, let $\Gamma \subset \Omega$ be a periodic orbit. Then $\Gamma \cap \Sigma$ consists of at most one point.

Theorem 11 (Bendixson-Dulac). Let $\Omega \subset \mathbb{R}^2$ be simply connected and let there exist a C^1 function $B(x): \Omega \to \mathbb{R}$ such that $\operatorname{div}(Bf)(x) > 0$ a.e. in Ω . Then (1) has no (non-trivial) periodic orbit in Ω .

2. Carathéodory theory

In this chapter I, J denote arbitrary intervals.

Definition. Function $x: I \to \mathbb{R}^n$ is called *absolutely continuous*, denoted $x \in AC(I)$, provided that for any $\varepsilon > 0$ there is $\delta > 0$ such that for arbitrary *disjoint* intervals $(a_i, b_i) \subset I$ one has

$$\sum_{i} |a_i - b_i| < \delta \qquad \Longrightarrow \qquad \sum_{i} |x(a_i) - x(b_i)| < \varepsilon$$

Function x is called *locally absolutely continuous*, denoted $x \in AC_{loc}(I)$, provided that $x \in AC(J)$ for any compact $J \subset I$.

Proposition 12. Let $x \in AC(I)$. Then a finite derivative x' exists a.e. in I, $x' \in L^1(I)$ and $x(t_2) - x(t_1) = \int_{t_1}^{t_2} x'(s) ds$ for all $t_1, t_2 \in I$.

Proposition 13. Let $h \in L^1(I)$, and $t_0 \in I$ be fixed. Then the function $x(t) := \int_{t_0}^t h(s) ds$ belongs to AC(I); furthermore x' = h a.e. in I.

Notation.

- $\Omega \subset \mathbb{R}^{n+1}$ is an open set of points $(t, x) \in \mathbb{R} \times \mathbb{R}^n$,
- $U(x_0, \delta)$ is an open ball in \mathbb{R}^n .
- $Q(t_0, x_0; \delta, \Delta)$ is a cylinder $U(t_0, \delta) \times U(x_0, \Delta)$ in \mathbb{R}^{n+1} .
- for $x: I \to \mathbb{R}^n$ we denote graph $x = \{(t, x(t)); t \in I\}$.

Definition. We say that the function $f(t,x): \Omega \to \mathbb{R}^n$ satisfies Carathéodory conditions, writing $f \in Car(\Omega)$, if for all $(t_0,x_0) \in \Omega$ there exists a cylinder $Q(t_0,x_0;\delta,\Delta) \subset \Omega$ and a function $m \in L^1(U(t_0,\delta))$ such that

- (i) for any $x \in U(x_0, \Delta)$ the function $f(\cdot, x)$ is measurable in $U(t_0, \delta)$,
- (ii) for almost every $t \in U(t_0, \delta)$ the function $f(t, \cdot)$ is continuous in $U(x_0, \Delta)$, and
- (iii) $|f(t,x)| \leq m(t)$ for a.e. t for all x in $Q(t_0,x_0;\delta,\Delta)$.

The phrase "for almost every t for all ..." means: there is a zero measure set N such that for all $t \in N$ and all ...

Definition. Let $f \in Car(\Omega)$. Function $x: I \to \mathbb{R}^n$ is called a Carathéodory solution to

$$x' = f(t, x) \tag{1}$$

in Ω , provided that graph $x \subset \Omega$, $x \in AC_{loc}(I)$ and one has x'(t) = f(t, x(t)) for a.e. $t \in I$.

Lemma 14. Let $f \in Car(\Omega)$, $x : I \to \mathbb{R}^n$ be continuous and graph $x \subset \Omega$. Then the function $t \mapsto f(t, x(t))$ belongs to $L^1_{loc}(I)$.

Lemma 15. Let $f \in Car(\Omega)$, $x : I \to \mathbb{R}^n$ be a continuous function, and graph $x \subset \Omega$. Then x is a Carathéodory solution to (1) if and only if

$$x(t_2) - x(t_1) = \int_{t_1}^{t_2} f(s, x(s)) ds$$
 (2)

for all $t_1, t_2 \in I$.

Remark. Based on the above integral formulation, one can develope the theory of AC (Carathéodory) solutions, in an analogy to the C^1 (classical) theory: local existence and uniqueness, maximal solutions, continuous dependence on the initial condition ... We will only prove a certain variant of (a generalized) Picard's theorem, which will include even global existence of solutions together with a continuous dependence on the (initial) data.

Theorem 16 (Generalized Banach contraction theorem). Let Λ , X be metric spaces, with X being complete and non-empty. Let $\Phi: \Lambda \times X \to X$ be continuous w.r.t. $\lambda \in \Lambda$ for any fixed $x \in X$. Let (the key assumption of uniform contraction) there exist $\kappa \in (0,1)$ such that

$$\|\Phi(\lambda,x)-\Phi(\lambda,y)\|_X \leq \kappa \, \|x-y\|_X \quad \, \forall \,\, \lambda \in \Lambda, \,\, x, \,\, y \in X.$$

Then

- (i) for any $\lambda \in \Lambda$ there is a unique $x(\lambda) \in X$ such that $\Phi(\lambda, x(\lambda)) = x(\lambda)$,
- (ii) the map $\lambda \mapsto x(\lambda)$ is continuous, and
- (iii) $\|y x(\lambda)\|_X \le (1 \kappa)^{-1} \|y \Phi(\lambda, y)\|_X$ for $\forall \lambda \in \Lambda$, $y \in X$.

Theorem 17 (Generalized Picard theorem). Let I = [0, T] be an interval, Π a metric space and $f: I \times \mathbb{R}^n \times \Pi \to \mathbb{R}^n$ satisfy the following:

- 1. $f(\cdot, \cdot, p) \in Car(I \times \mathbb{R}^n)$ for all $p \in \Pi$ fixed
- 2. there exists $\ell \in L^1(I)$ such that $|f(t,x,p) f(t,y,p)| \le \ell(t)|x-y|$ for a.e. $t \in I$ for all $x, y \in \mathbb{R}^n$, $p \in \Pi$
- 3. the map $p \mapsto \int_0^t f(s, x(s), p) ds$ is continuous from Π to C(I), for arbitrary fixed $t \in I$ and $x \in C(I)$

Then

- (i) for any $x_0 \in \mathbb{R}^n$ and $p_0 \in \Pi$ there exists a unique Caratheodory solution $x \in AC(I)$ of $x' = f(t, x, p_0), x(0) = x_0$ and
- (ii) this solution depends continuously on x_0 and p_0

Remark. By continuous dependence we mean: If $x_{0n} \to x_0$ and $p_{0n} \to p_0$ then $x_n \rightrightarrows x$ in I, where x_n resp. x are the solutions corresponding to x_{0n} , p_{0n} and x_0 , p_0 , respectively.

Remark. Second assumption of the above theorem can be called a generalized Lipschitz continuity of f(t, x, p) w.r.t. x.

Example. Consider linear equation

$$x' = A(t)x + b(t) \tag{3}$$

where $A(t):[0,T]\to\mathbb{R}^{n\times n}$, $b(t):[0,T]\to\mathbb{R}^n$ are L^1 functions. Clearly the assumptions of Theorem 17 hold (take $\ell(t)=\|A(t)\|$). The right-hand side b(t) is considered as a parameter in $\Pi=L^1(0,T)$. We obtain existence of a global unique solution $x\in AC(I)$ which depends continuously on x_0 and $b(\cdot)$.

Bifurcation theory

Definition (Bifurcation). A point (x_0, μ_0) is called *regular point* of the equation

$$x' = f(x, \mu) \tag{4}$$

provided there exist $\delta > 0$ and \mathcal{U} a neighborhood of x_0 such that for all $|\mu - \mu_0| < \delta$ are the dynamical systems of (4) topologically conjugate in \mathcal{U} .

A point (x_0, μ_0) is called a *point of bifurcation* if it is not a regular point.

Remark. Here $\mu \in \mathbb{R}$ is called a bifurcation parameter. Typically "bifurcation theorem" describes the behavior near the bifurcation point in a more precise way (e.g. the curve(s) of stationary points and their stability).

Remark. • A non-stationary point of (4) is always regular (by Theorem 4).

• A hyperbolic stationary point is also regular (Hale and Kocak: Dynamics and Bifurcations, Thm 8.15, in 2D; Arnold: Ordinary differential equations, §22, general case).

Hence, a necessary condition for bifurcation is presence of a non-hyperbolic stationary point, i.e. $f(x_0) = 0$ and $\nabla f(x_0)$ has an eigenvalue with zero real part.

Bifurcations in 1D

Lemma 18 (Division lemma). Let $U \subset \mathbb{R}^2$ be a neighborhood of (0,0) and $h \in C^k(U)$, $k \geq 1$. Let $h(0,\mu) = 0$ for $(0,\mu) \in U$. Then there exists $V \subset \mathbb{R}^2$ a neighborhood of (0,0) and $H \in C^{k-1}(V)$ such that $h(x,\mu) = xH(x,\mu)$ on V. Moreover, one has

- $H(0,0) = \partial_x h(0,0)$,
- $\partial_x H(0,0) = \frac{1}{2} \partial_{xx}^2 h(0,0),$
- $\bullet \ \partial_{\mu}H(0,0) = \partial_{x\mu}^2 h(0,0),$
- $\partial_{xx}^2 H(0,0) = \frac{1}{3} \partial_{xxx}^3 h(0,0)$.

Theorem 19 (Saddle-node in 1d). Let f be C^2 in a neighborhood of $(0,0) \in \mathbb{R}^2$. Let

- f(0,0) = 0, $\partial_x f(0,0) = 0$,
- $\partial_{\mu} f(0,0) \neq 0$,
- $\partial_{xx}^2 f(0,0) \neq 0$.

Then (0,0) is a point of bifurcation of the equation (4). In particular, there are no equilibria for $\mu < 0$ and two equilibria, one asymptotically stable and one unstable, for $\mu > 0$ in a neighborhood of 0, or vice versa.

Theorem 20 (Transcritical in 1d). Let f be C^2 in a neighborhood of $(0,0) \in \mathbb{R}^2$. Let

- f(0,0) = 0, $\partial_x f(0,0) = 0$,
- $f(0,\mu) = 0$ (hence also $\partial_{\mu} f(0,0) = 0$) for μ close to 0,
- $\partial_{\mu x}^2 f(0,0) \neq 0$,
- $\partial_{rr}^2 f(0,0) \neq 0$.

Then (0,0) is a point of bifurcation. In particular, for every $\mu \in (-\delta, \delta) \setminus \{0\}$ there exist exactly two equilibria in $(-\varepsilon, \varepsilon)$: $x_0 = 0$ and $x_1 \neq 0$. Moreover, x_0 is stable for $\mu < 0$ and unstable for $\mu > 0$, or vice versa.

Theorem 21 (Pitchfork in 1d). Let f be C^2 in a neighborhood of $(0,0) \in \mathbb{R}^2$. Let

- f(0,0) = 0, $\partial_x f(0,0) = 0$,
- $f(0,\mu) = 0$ (hence also $\partial_{\mu} f(0,0) = 0$) for μ close to 0,
- $\partial_{\mu x}^2 f(0,0) \neq 0$,
- $\partial_{xx}^2 f(0,0) = 0$,
- $\partial_{rrr}^3 f(0,0) \neq 0$.

Then (0,0) is a point of bifurcation. In particular, for $\mu < 0$ there is a unique equilibrium $x_0 = 0$ in a neighborhood of zero and for $\mu > 0$ there are exactly three equilibria $x_1 < x_0 = 0 < x_2$ in a neighborhood of 0 or vice versa. Moreover, x_0 is stable for $\mu < 0$ and unstable for $\mu > 0$ or vice versa.

Hopf bifurcation in 2D

Consider the system in a neighborhood of (0,0,0)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A_{\mu} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f(x, y, \mu) \\ g(x, y, \mu) \end{pmatrix}, \tag{5}$$

where

- μ is a bifurcation parameter
- A_{μ} is a 2 × 2 matrix dependent μ and
- $f, g \in C^3$, f = g = 0, $\nabla_{xy} f = \nabla_{xy} g = 0$ in $(0, 0, \mu)$.

(f, g contain higher order terms)

Theorem 22 (Hopf). Let

$$\sigma(A_{\mu}) = \{\alpha(\mu) \pm i\omega(\mu)\},\$$

where $\alpha, \omega \in \mathbb{C}^2$ on a neighborhood of 0 be such that

- $\alpha(0) = 0$,
- $\alpha'(0) \neq 0$,
- $\omega(0) > 0$.

Then there exist δ , $\Delta > 0$ and a function $\phi \in C^1((0,\delta),(-\Delta,\Delta))$ such that for every $a \in (0,\delta)$ there exists a nontrivial periodic solution to (5) with $\mu = \phi(a)$ going through the point (x,y) = (a,0).

Theorem 23 (Hopf — normal form). Let the assumptions of Theorem 22 hold and moreover

$$A_0 = \begin{pmatrix} 0 & -\omega(0) \\ \omega(0) & 0 \end{pmatrix}.$$

Then the system is near (0,0,0) topologically conjugate to

$$r' = d\mu r + ar^3, \qquad \phi' = 1,$$

where $d = \alpha'(0)$ and 16a is equal to

$$f_{xxx} + f_{xyy} + g_{xxy} + g_{yyy} + \frac{1}{\omega(0)} [f_{xy}(f_{xx} + f_{yy}) - g_{xy}(g_{xx} + g_{yy}) - f_{xx}g_{xx} + f_{yy}g_{yy}]$$

evaluated in (0,0,0).

Invariant manifolds

For the linear equation

$$X' = AX$$

with a matrix $A \in \mathbb{R}^{n \times n}$ we have stable, unstable and center subspaces defined as

$$V_{s} := \{ x \in \mathbb{R}^{n} : \exists C, \beta > 0 \ \forall t \geq 0 \ \|e^{tA}x\| \leq Ce^{-\beta t} \},$$

$$V_{u} := \{ x \in \mathbb{R}^{n} : \exists C, \beta > 0 \ \forall t \leq 0 \ \|e^{tA}x\| \leq Ce^{\beta t} \},$$

$$V_{c} := \{ x \in \mathbb{R}^{n} : \exists C > 0, n \in \mathbb{N} \forall t \in \mathbb{R} \ \|e^{tA}x\| \leq C(1 + |x|)^{n} \}.$$

Moreover,

$$\mathbb{R}^n = V_s \oplus V_u \oplus V_c$$
.

Consider a nonlinear equation

$$X' = F(X) \tag{6}$$

with $F \in C^1(\mathbb{R}^N, \mathbb{R}^N)$ and F(0) = 0.

Definition (Stable, unstable manifold). Let ϕ be the solving function to (6). We define the *stable manifold* \tilde{V}_s and *unstable manifold* \tilde{V}_u in $0 \in \mathbb{R}^N$ by

$$V_s := \{ x \in \mathbb{R}^N : \exists C, \beta > 0 \ \forall t \ge 0 \ \|\phi(t, x)\| \le Ce^{-\beta t} \},$$
$$V_u := \{ x \in \mathbb{R}^N : \exists C, \beta > 0 \ \forall t \le 0 \ \|\phi(t, x)\| \le Ce^{\beta t} \}.$$

Definition (Center manifold). Let V_c be the center subspace of $X' = \nabla F(0)X$. A center manifold \tilde{V}_c for (6) in $0 \in \mathbb{R}^N$ is any invariant manifold, that is tangent to V_c in 0 and has the same dimension as V_c .

Remark. Stable and unstable manifolds do exist but it is not clear, whether they are manifolds.

The center manifold is a manifold by definition. But it is not clear whether it exists and is unique.

Existence of center manifold

General assumptions. Consider a system of equations

$$x' = Ax + f(x, y),$$

$$y' = By + g(x, y),$$
(S)

such that

- $A \in \mathbb{R}^{n \times n}, x^T A x \ge -\varepsilon |x|^2,$
- $B \in \mathbb{R}^{m \times m}$, $y^t B y < -\beta |y|^2$, $||e^{tB}|| < c_0 e^{-\beta t}$
- for some $\beta > \varepsilon > 0$, $c_0 > 0$ and all $t \ge 0$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.
- f(0,0) = g(0,0) = 0, $\nabla f(0,0) = \nabla g(0,0) = 0$,
- $|f|, |g| < \rho, |\nabla f|, |\nabla g| < \sigma \text{ on } \mathbb{R}^{n+m} \text{ for some } \sigma, \rho > 0.$

Define

$$\mathcal{X}_{b,L} := \{ \Phi \in \text{Lip}(\mathbb{R}^n, \mathbb{R}^m) : \|\Phi\| \le b, \ Lip_{\Phi} \le L, \ \Phi(0) = 0 \}.$$

Theorem 24. Let ε , β , c_0 , L, b > 0 are given, $\varepsilon < \beta$. If σ , ρ are small enough, then there exists a unique $\Phi \in \mathcal{X}_{b,L}$ satisfying

$$(x(t), y(t)) \ solves \ (S) \quad \& \quad y(0) = \Phi(x(0))$$

$$\downarrow \qquad \qquad (INV)$$

$$y(t) = \Phi(x(t)) \ \forall \, t \geq 0.$$

Moreover, this Φ satisfies $\nabla \Phi(0) = 0$.

Application 1.

If $\Re \sigma(A) > 0$, $\Re \sigma(B) < 0$, then graph Φ is the unstable manifold.

Application 2.

If $\Re \sigma(\tilde{A}) < 0$, $\Re \sigma(\tilde{B}) > 0$ and we apply Theorem 24 with $A = -\tilde{B}$ and $B = -\tilde{A}$, then graph Φ is the stable manifold for the system with \tilde{A} , \tilde{B} .

Application 3.

If $\Re \sigma(A) = 0$, $\Re \sigma(B) < 0$, then graph Φ is a center manifold. Let us consider so called reduced equation

$$p' = Ap + f(p, \Phi(p)). \tag{RE}$$

Lemma 25. Let $\Phi \in \mathcal{X}_{b,L}$. Then (INV) is equivalent to

$$p \ solves \ (RE) \Rightarrow (p, \Phi(p)) \ solves \ (S).$$
 (RED)

Lemma 26. Let $\gamma: (-\infty, 0] \to \mathbb{R}^n$ be bounded and continuous. Then there exists a unique solution to $y' = By + \gamma$, which is bounded on $(-\infty, 0]$. Moreover, this solution satisfies $y(0) = \int_{-\infty}^{0} e^{-sB} \gamma(s) ds$.

Lemma 27. Let $\Phi \in \mathcal{X}_{b,L}$. Then (INV) is equivalent to

$$p \ solves \ (\text{RE}) \ with \ p(0) = p_0$$

$$\Downarrow \tag{FPP}$$

$$\Phi(p_0) = \int\limits_{-\infty}^0 e^{-sB} g(p(s), \Phi(p(s))) ds.$$

Tracking property and reduction of stability

In this section, we assume that $\Phi \in \mathcal{X}_{b,L}$ satisfies (INV) and $\mu > L$ is fixed. We denote

$$K = \{(x, y) \in \mathbb{R}^{n+m} : |y| \le \mu |x| \},$$

$$V = \{(x, y) \in \mathbb{R}^{n+m} : |y| \ge \mu |x| \},$$

and for $X_0 \in \mathbb{R}^{n+m}$

$$K(X_0) = \{ X \in \mathbb{R}^{n+m} : X - X_0 \in K \},$$

$$V(X_0) = \{ X \in \mathbb{R}^{n+m} : X - X_0 \in V \}.$$

Lemma 28. Let σ be small enough and let X_1 , $X_2 : \mathbb{R} \to \mathbb{R}^{n+m}$, $X_1 = (x_1, y_1)$, $X_2 = (x_2, y_2)$ be two solutions of (S).

- If $X_1(0) \in K(X_2(0))$, then $X_1(t) \in K(X_2(t))$ for all $t \ge 0$.
- There exist $c, \gamma > 0$ such that: If $X_1(t) \in V(X_2(t))$ for all $t \in I$, then

$$|X_1(t) - X_2(t)| \le ce^{-\gamma(t-s)}|X_1(s) - X_2(s)|$$

for all $s, t \in I, s < t$.

Theorem 29 (Tracking property). Let σ be small enough. For every solution X of (S) there exists a solution p of (RE) such that $P = (p, \Phi(p))$ satisfies

$$|X(t) - P(t)| < Ce^{-\gamma t}|X(0) - P(0)|$$
 for all $t > 0$

with γ from Lemma 28. Moreover, P(0) can be taken small if X(0) is small.

Corollary 30 (Reduction of stability). $(0,0) \in \mathbb{R}^{n+m}$ is (assymptotically) stable for (S) if and only if $0 \in \mathbb{R}^n$ is (assymptotically) stable for (RE).

Approximation of center manifold

Let us denote for $\Psi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$

$$[M\Psi](x) = \nabla \Psi(x)[Ax + f(x, \Psi(x))] - B\Psi(x) - g(x, \Psi(x)).$$

Remark.

$$M\Psi \equiv 0 \qquad \Leftrightarrow \qquad \Psi \text{ satisfies (INV)}$$

Theorem 31 (Approximation of center manifold). Let the assumptions of Theorem 24 hold. Assume q > 1 and let $\Psi \in C^1(\mathbb{R}^n, \mathbb{R}^m)$ satisfies

- $\Psi(0) = 0$,
- $\nabla \Psi(0) = 0$ and
- $[M\Psi](x) = O(|x|^q) \text{ as } x \to 0.$

Then

$$|\Psi(x) - \Phi(x)| = O(|x|^q)$$
 as $x \to 0$

for every $\Phi \in \mathcal{X}_{b,L}$ satisfying (INV).

Optimal control

Given

- $\Omega \subset \mathbb{R}^n$ open,
- $U \subset \mathbb{R}^m$, usually m < n.
- $f \in C^1(\Omega \times U, \mathbb{R}^n)$ and $x_0 \in \Omega$
- $0 < T \le +\infty$ and $\mathcal{U} \subset \{u : [0, T] \to U : u \text{ measurable}\}$

A controlled ordinary differential equation is

$$x' = f(x, u), x(0) = x_0.$$
 (CDE)

- Set *U* is set of admissible controls,
- function $u \in \mathcal{U}$ is (admissible) control
- the solution $x:[0,T]\to\mathbb{R}^n$ of (CDE) with a given control u is response of the system.

Typical tasks to be addressed:

- 1. for which $x_0, t > 0$ is there $u(\cdot) \in \mathcal{U}$ such that x(t) = 0 (controllability)
- 2. analogous question, but with a minimal time t > 0 (time optimal control)
- 3. more generally: find $u(\cdot) \in \mathcal{U}$ such that the functional

$$P[u(\cdot)] = g(x(T)) + \int_{0}^{T} r(x(s), u(s)) ds$$

has a maximal value.

Controllability

A controlled linear equation is

$$x' = Ax + Bu, (CLE)$$

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$.

Notation: $x_0 \xrightarrow{t} 0$ means "control u brings x_0 to 0 in time t", i.e. if we insert u into (CDE), then the solution x of (CDE) satisfies x(t) = 0.

Definition. Let $t \in [0,T]$. The set

$$R(t) = \{x_0 \in \mathbb{R}^n : \exists u \in \mathcal{U}, \ x_0 \xrightarrow{t}_u 0\}$$

is called the reachable set for time t.

Definition. Kalman controllability matrix for (CLE) is

$$\mathbb{K}(A|B) = (B, AB, A^2B, \dots, A^{n-1}B) \in \mathbb{R}^{n \times mn}.$$

Theorem 32. Consider (CLE) with $\mathcal{U} = L^1_{loc}([0,T],\mathbb{R}^m)$. Then

$$R(t) = \operatorname{Range} \mathbb{K}(A|B)$$

for all t > 0.

Corollary 33. The following is equivalent for the system (CLE) with $\mathcal{U} = L^1_{loc}([0,T],\mathbb{R}^m)$.

- (i) (CLE) is globally controllable (i.e. $R(t) = \mathbb{R}^n$) for some/every t > 0,
- (ii) (CLE) is locally controllable (i.e. $0 \in \text{Int } R(t)$) for some/every t > 0,
- (iii) rank $\mathbb{K}(A|B) = n$.

Theorem 34. Let U be any neighborhood of 0 and $\mathcal{U} = L^1_{loc}([0,T],U)$. Let $0 \in \Omega$, f(0,0) = 0, $A = \nabla_x f(0,0)$, and $B = \nabla_u f(0,0)$. If rank $\mathbb{K}(A|B) = n$, then (CDE) is locally controllable for all t > 0.

Time-optimal control and Bang-bang principle

In this section we consider (CLE) with

$$U = [-1, 1]^m, \qquad \mathcal{U} = L^1_{loc}([0, T], U).$$

Proposition 35. The system (CLE) is locally controllable if and only if rank $\mathbb{K}(A|B) = n$.

Proposition 36. For every t > 0, R(t) is closed, convex and symmetric $(x \in R(t) \Rightarrow -x \in R(t))$. If $t_1 < t_2$ then $R(t_1) \subset R(t_2)$.

Theorem 37. Let rank $\mathbb{K}(A|B) = n$ and $\Re \lambda \leq 0$ for all $\lambda \in \sigma(A)$. Then (CLE) is globally controllable.

Definition. An admissible control u is called a bang-bang control if $u_i(t) = \pm 1$ for all $t \in [0, T]$ and all i = 1, 2, ..., m.

Theorem 38. For each $x_0 \in R(t)$ there exists a bang-bang control \tilde{u} such that $x_0 \stackrel{t}{\underset{\tilde{u}}{\longrightarrow}} 0$.

Theorem 39. For each $x_0 \in \bigcup_{t>0} R(t)$ there exists

$$\tilde{t} = \min\{t \ge 0 : x_0 \in R(t)\}$$

and a bang-bang control \tilde{u} such that $x_0 \stackrel{\tilde{t}}{\xrightarrow{\tilde{u}}} 0$.

Pontryagin maximum principle

In this section, we are looking for an admissible control u which maximizes the functional

$$P[u] = g(x(T)) + \int_{0}^{T} r(x(s), u(s))ds,$$

where x is the solution to (CDE) (with the control u). Functions $g \in C^1(\mathbb{R}^n)$, $f \in C^1(\mathbb{R}^n \times U)$ and $r \in C(\mathbb{R}^n \times U)$ are given.

Theorem 40. Let $u^* \in \mathcal{U}$ be a point of a local maximum of P and x^* is the corresponding system response. Then there exists a solution $P^* : [0,T] \to \mathbb{R}^n$ to the adjoint equation

$$P^{*'} = -\nabla_x H(x^*, P^*, u^*), \quad P^*(T) = (\nabla_x g)(x^*(T))$$
 (ADJ)

and the maximum principle

$$H(x^*(t), P^*(t), u^*(t)) = \max_{\eta \in U} H(x^*(t), P^*(t), \eta), \tag{MP}$$

holds, where $H(x, P, u) = P \cdot f(x, u) + r(x, u)$.