Fixed-Template Promise Model Checking Problems

Kristina Asimi¹ joint work with L. Barto¹ and S. Butti²

CP, Haifa, 2 August 2022

¹Department of Algebra, Faculty of Mathematics and Physics, Charles University, Czechia ²Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain

Outline

- 1 Model Checking Problem (MC)
- 2 Promise Model Checking Problem (PMC)
- 3 Preliminaries
- $\{\exists, \land, \lor\}$ -PMC
- $\{\exists, \forall, \land, \lor\}$ -PMC
- 6 Open problems

Model Checking Problem

Model checking problem:

We define the model checking problem over a logic $\ensuremath{\mathcal{L}}$ to have

- Input : a structure \mathbb{A} (model), a sentence ϕ of \mathcal{L}
- Question : does $\mathbb{A} \models \phi$

First-order model checking problem parameterized by the model : For any $\mathcal{L} \subseteq \{\exists, \forall, \land, \lor, =, \neq, \neg\}$ we define the problem $\mathcal{L}\text{-}\mathrm{MC}(\mathbb{A})$ to have

- Input : a sentence ϕ of \mathcal{L} -FO
- Output : yes if $\mathbb{A} \models \phi$, no otherwise

$\mathcal{L} ext{-MC}(\mathbb{A})$	Complexity	
$\{\exists, \land\}\text{-MC}(\mathbb{A}) \text{ (CSP)}$	P or NP-complete	
$\{\exists, \forall, \land\}\text{-MC}(\mathbb{A}) \text{ (QCSP)}$	≥ 6 classes	
$\{\exists, \land, \lor\}\text{-MC}(\mathbb{A})$	L or NP-complete	
$\{\exists, \forall, \land, \lor\}\text{-MC}(\mathbb{A})$	L, NP-complete, coNP-complete, PSPACE-complete	

Figure – Known complexity results for $\mathcal{L}\text{-}\mathrm{MC}(\mathbb{A})$.

Promise Model Checking Problem

$$\begin{array}{l} \mathbb{A} = (A; R_1^{\mathbb{A}}, R_2^{\mathbb{A}}, \dots, R_n^{\mathbb{A}}) \\ \mathbb{B} = (B; R_1^{\mathbb{B}}, R_2^{\mathbb{B}}, \dots, R_n^{\mathbb{B}}) \end{array} \} \text{ similar relational structures}$$

Definition

A pair of similar structures (\mathbb{A},\mathbb{B}) is called an \mathcal{L} -PMC template if $\mathbb{A} \vDash \phi$ implies $\mathbb{B} \vDash \phi$ for every \mathcal{L} -sentence ϕ in the signature of \mathbb{A} and \mathbb{B} . Given an \mathcal{L} -PMC template (\mathbb{A},\mathbb{B}) , the \mathcal{L} -Promise Model Checking Problem over (\mathbb{A},\mathbb{B}) , denoted \mathcal{L} -PMC (\mathbb{A},\mathbb{B}) , is the following problem. Input: an \mathcal{L} -sentence ϕ in the signature of \mathbb{A} and \mathbb{B} ; Output: yes if $\mathbb{A} \vDash \phi$; no if $\mathbb{B} \nvDash \phi$.

$\mathcal{L} ext{-}\mathrm{PMC}(\mathbb{A},\mathbb{B})$	Condition	Complexity
$\{\exists, \forall, \land\}\text{-PMC}(\mathbb{A}, \mathbb{B})$		L/NP-complete
$\{\exists, \forall, \land, \lor\}\text{-PMC}(\mathbb{A}, \mathbb{B})$	AE-smuhom	L
	A-smuhom and E-smuhom	$NP \cap coNP$
	A-smuhom, no E-smuhom	NP-complete
	E-smuhom, no A-smuhom	coNP-complete
	no A-smuhom, no E-smuhom	NP-hard and coNP-hard

Figure – Complexity results for \mathcal{L} -PMC(\mathbb{A}, \mathbb{B}).

Preliminaries

Let \mathbb{A} and \mathbb{B} be two similar relational structures.

- A function $f: A \to B$ is called a homomorphism from \mathbb{A} to \mathbb{B} if $f(\mathbf{a}) \in R^{\mathbb{B}}$ for any $\mathbf{a} \in R^{\mathbb{A}}$, where $f(\mathbf{a})$ is computed component-wise.
- A multi-valued function f from A to B is a mapping from A to $\mathcal{P}_{\neq\emptyset}B$.
- It is called surjective if for every $b \in B$, there exists $a \in A$ such that $b \in f(a)$.
- A multi-valued function f from A to B is called a multi-homomorphism from A to B if for any B in the signature and any $\mathbf{a} \in B^A$, we have $f(\mathbf{a}) \subseteq B^B$.
- $\hspace{0.5cm} \begin{array}{l} \hspace{0.5cm} \mathbb{M}u\mathrm{Hom}(\mathbb{A},\mathbb{B}) \text{ the set of all multi-homomorphisms from } \mathbb{A} \text{ to } \mathbb{B} \\ \hspace{0.5cm} \mathrm{SMuHom}(\mathbb{A},\mathbb{B}) \text{ the set of all surjective multi-homomorphisms from } \mathbb{A} \text{ to } \mathbb{B} \\ \end{array}$

We say that a relation $S \subseteq A^n$ is \mathcal{L} -definable from \mathbb{A} if there exists an \mathcal{L} -formula $\psi(v_1,\ldots,v_n)$ such that, for all $(a_1,\ldots,a_n)\in A^n$, we have $(a_1,\ldots,a_n)\in S$ if and only if $\mathbb{A} \models \psi(a_1,\ldots,a_n)$.

Definition

Assume $\neg \not\in \mathcal{L}$ and let (\mathbb{A}, \mathbb{B}) be a pair of similar structures. We say that a pair of relations (S, T), where $S \subseteq A^n$ and $T \subseteq B^n$, is **promise-** \mathcal{L} **-definable** (or **p-** \mathcal{L} **-definable**) from (\mathbb{A}, \mathbb{B}) if there exist relations S' and T' and an \mathcal{L} -formula $\psi(v_1, \ldots, v_n)$ such that $S \subseteq S'$, $T' \subseteq T$, $\psi(v_1, \ldots, v_n)$ defines S' in \mathbb{A} , and $\psi(v_1, \ldots, v_n)$ defines T' in \mathbb{B} .

We say that an $\mathcal{L}\text{-PMC}$ template (\mathbb{C},\mathbb{D}) is $p\text{-}\mathcal{L}\text{-definable}$ from (\mathbb{A},\mathbb{B}) (the signatures can differ) if $(Q^{\mathbb{C}},Q^{\mathbb{D}})$ is $p\text{-}\mathcal{L}\text{-definable}$ from (\mathbb{A},\mathbb{B}) for each relation symbol Q in the signature of \mathbb{C} and \mathbb{D} .

Theorem

Assume $\neg \not\in \mathcal{L}$. If (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) are \mathcal{L} -PMC templates such that (\mathbb{C}, \mathbb{D}) is p- \mathcal{L} -definable from (\mathbb{A}, \mathbb{B}) , then \mathcal{L} -PMC $(\mathbb{C}, \mathbb{D}) \leq \mathcal{L}$ -PMC (\mathbb{A}, \mathbb{B}) .

$\{\exists, \land, \lor\}\text{-PMC}$

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \land, \lor\}$ -PMC template if and only if there exists a homomorphism from \mathbb{A} to \mathbb{B} .

Theorem

Let (\mathbb{A},\mathbb{B}) and (\mathbb{C},\mathbb{D}) be $\{\exists,\wedge,\vee\}$ -PMC templates such that A=C and B=D. Then (\mathbb{C},\mathbb{D}) is p- $\{\exists,\wedge,\vee\}$ -definable from (\mathbb{A},\mathbb{B}) if and only if $\mathrm{MuHom}(\mathbb{A},\mathbb{B})\subseteq\mathrm{MuHom}(\mathbb{C},\mathbb{D})$. Moreover, in such a case, $\{\exists,\wedge,\vee\}$ -PMC $(\mathbb{C},\mathbb{D})\subseteq\{\exists,\wedge,\vee\}$ -PMC (\mathbb{A},\mathbb{B}) .

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \land, \lor\}$ -PMC template. If there is a constant homomorphism from \mathbb{A} to \mathbb{B} , then $\{\exists, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in L, otherwise $\{\exists, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is NP-complete.

$\{\exists, \forall, \land, \lor\}$ -PMC

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \forall, \land, \lor\}$ -PMC template if and only if there exists a surjective multi-homomorphism from \mathbb{A} to \mathbb{B} .

Theorem

Let (\mathbb{A},\mathbb{B}) and (\mathbb{C},\mathbb{D}) be $\{\exists,\forall,\wedge,\vee\}$ -PMC templates such that A=C and B=D. Then (\mathbb{C},\mathbb{D}) is p- $\{\exists,\forall,\wedge,\vee\}$ -definable from (\mathbb{A},\mathbb{B}) if and only if $\mathrm{SMuHom}(\mathbb{A},\mathbb{B})\subseteq\mathrm{SMuHom}(\mathbb{C},\mathbb{D})$. Moreover, in such a case, $\{\exists,\forall,\wedge,\vee\}$ -PMC $(\mathbb{C},\mathbb{D})\subseteq\{\exists,\forall,\wedge,\vee\}$ -PMC (\mathbb{A},\mathbb{B}) .

Let f be a surjective multi-homomorphism from \mathbb{A} to \mathbb{B} . We say that :

- f is an A-smuhom if there exists $a^* \in A$ such that $f(a^*) = B$.
- f is an E-smuhom if $f^{-1}(b^*) = A$ for some $b^* \in B$.
- \blacksquare *f* is an AE-smuhom if it is simultaneously an A-smuhom and an E-smuhom.

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \land, \lor\}$ -PMC template. Then the following holds.

- If (\mathbb{A}, \mathbb{B}) admits an \mathbb{A} -smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in NP.
- **2** If (\mathbb{A}, \mathbb{B}) admits an \mathbb{E} -smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in coNP.
- If (\mathbb{A}, \mathbb{B}) admits an AE-smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in L.

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \land, \lor\}$ -PMC template.

- If there is no E-smuhom from A to B, then $\{\exists, \forall, \land, \lor\}$ -PMC(A, B) is NP-hard.
- **2** If there is no A-smuhom from A to B, then $\{\exists, \forall, \land, \lor\}$ -PMC(A, B) is coNP-hard.

Open problems

Examples of templates that admit both an A-smuhom and an E-smuhom, but no AE-smuhom :

$$\begin{split} \mathbb{A} &= ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} &= ([3]; \ \{1,2,3\} \times \{2\} \times \{3\} \ \cup \ \{1,2\} \times \{2\} \times \{2,3\}) \\ \mathbb{A} &= ([3]; \ \{12\}, \ \{13\}), \quad \mathbb{B} &= ([3]; \ \{12,22,32\}, \ \{12,13,22,23,33\}) \\ \text{Is} \ \{\exists,\forall,\land,\lor\}\text{-}\mathrm{PMC}(\mathbb{A},\mathbb{B}) \text{ in L ?} \end{split}$$

Examples of templates that admit neither an A-smuhom nor an E-smuhom :

$$\begin{split} &\mathbb{A} = ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} = ([3]; \ \{2,3\} \times \{1,3\} \times \{1,2\}) \\ &\mathbb{A} = ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} = ([3]; \{1,2\} \times \{1,2\} \times \{3\} \ \cup \ \{1,3\} \times \{2\} \times \{2\}) \\ &\mathbb{A} = ([4]; \ \{12,34\}), \quad \mathbb{B} = ([4]; \ \{12,13,14,23,24,34,32\}) \end{split}$$

Is $\{\exists, \forall, \land, \lor\}$ -PMC(\mathbb{A}, \mathbb{B}) PSPACE-complete?

Thank you for your attention!