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What is the complexity of QCSP(N;x =y — y = z)?

» QCSP(N;x =y — y = z) is coNP-hard [Bodirsky, Chen,
2010].

Lemma [Zhuk, Martin, 2021]
QCSP(N; x =y — y = z) is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations Ry, ..., Rs are definable by some Boolean
combination of atoms of the form (x = y). Then

QCSP(N; Ry, ..., Rs) is either in P, NP-complete, or
PSpace-complete.

What is the complexity of QCSP(Q;x =y — y > z)?
Nobody knows!
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Given: a sentence

AyiVxg o 3y xe(Ri(c ) A ARs(..)),

where Ry,...,Rs €T.
Decide: whether it holds.

Examples:
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Question
What is the complexity of QCSP(T') for different I'? J
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Quantified Constraint Satisfaction Problem:

Given a sentence Jy1Vxy ... 3yeVxe(Ri(... ) A--- ARs(...)),
where Ry,...,Rs €T.

Decide whether it holds.
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» If [ contains all predicates then QCSP(T") is PSPACE-complete.

» If [ consists of linear equations in a finite field then QCSP(T) is in P.
Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]
Suppose [ is a constraint language on {0,1}. Then

» QCSP(I) isin P if T is preserved by an idempotent WNU operation,

» QCSP(I) is PSPACE-complete otherwise.
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Put A= AU {x}, " is T extended to A". Then QCSP(I") is
equivalent to CSP(I).

there exists [ on a 3-element domain such that QCSP(I') is
coNP-complete.

there exists [ on a 4-element domain such that QCSP(T) is
DP-complete, where DP = NP A coNP.

there exists I on a 10-element domain such that r’ DP ‘L
QCSP(I) is ©F- complete e :

PSPACE\

- it
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Theorem [Zhuk, Martin, 2019]

Suppose [ is a constraint language on {0,1,2} containing
{x=alaec{0,1,2}}. Then QCSP(T) is
» in P, or
> NP-complete, or
» coNP-complete, or
» PSPACE-complete.

coNP
PSPACE >
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> It is a game between Existential Player (EP) and Universal
Player (UP).

> A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

DP = NP A coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.

©F = (NP V coNP) A --- A (NP V coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.
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Lemma

There exists [ on a 6-element set such that QCSP(I') is
NS -complete.




N5 -example



N5 -example

A =1{0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.



N5 -example

A = {0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
VOV VxOVxd .. ¥xOVxt Ty1Tys ... Ty,

X1

X1

Xs

x OR
. s
Yo

1IN3(31;,‘45“9:,,) IV w .\11—N3( 3;,,_,;3,-,,_,,5«,1)




N5 -example

A = {0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
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N5 -complete problem on {0, 1}

VX1 ... VX 3Xmt1 - - - 3Xn ].IN?)(X,'1 ; X,'Z,X,'3) ARERIAY 11N3(X,'3,_2,X3/_1, X3/) J

A = {0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
1002
VOV .. YxOVxt Ty Tys ... Ty, 1IN3 = (8 10 5)
v
2
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x: !
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QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

DP = NP A coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.

©F = (NP V coNP) A --- A (NP V coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

I12P: First, UP plays, then EP plays.
PSpace: EP and UP play against each other. No restrictions.
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