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WNUs

Definition

w is a weak near-unanimity operation (WNU), if

I w is idempotent w(x , x , . . . , x) = x

I w(x , x , . . . , x , y) = w(x , x , . . . , x , y , x) = · · · = w(y , x , x , . . . , x).

Theorem (TCT (Hobby, McKenzie), Taylor)

For a locally finite variety V TFAE

I V omits type 1

I V satisfies some nontrivial idempotent Maltsev condition

I V has a Taylor term

Theorem (Maróti, McKenzie 06)

I V has a WNU term
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Cyclic operation

Definition

t is a cyclic operation, if

I t is idempotent t(x , x , . . . , x) = x

I t(x1, x2, . . . , xn) = t(x2, x3, . . . , xn, x1).

Every cyclic operation is a WNU

Motivation for cyclic and WNU operations: The complexity of
Constraint Satisfaction Problems
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The (hi)story of cyclic terms

Theorems

Let V = HSP(A), A finite. If

I |A| ≤ 3 and V has a majority term (07 Kozik, Marković, Stanovský &
Computer)

I V has a majority term (07 Barto, Kozik, Niven)

I V is congruence distributive (07 BKN)

I V is congruence modular (07 Maróti, McKenzie)

I V is congruence join semi-distributive (07 BKN)

I V is congruence join semi-distributive (08 BK)

I V omits 1 (09 BK)

Then A (thus V) has a p-ary cyclic term for all primes p > |A|.
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Remarks

I Finite generation is necessary: There exists a locally finite variety
omitting 1 with no cyclic terms.

I It easily follows that A has an n-ary cyclic term for every n which is a
product of primes > |A|.

I We can’t want more: There exists a finitely generated variety
omitting 1 with no cyclic term of any other arity.

I It follows that a localy finite variety has a p-ary WNU for every prime
greater than the size of the two-generated free algebra.
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SD(∨)

Definition

A lattice L is join semi-distributive, if

∀a, b, c ∈ L a ∨ b = a ∨ c ⇒ a ∨ b = a ∨ (b ∧ c)

A variety V is congruence join semi-distributive (SD(∨)), if all algebras in
V has join semi-distributive congruence lattices

Theorem (TCT + Kearnes 01)

For a locally finite variety V TFAE

I V is SD(∨)

I V omits 1, 2 and 5

I V satisfies certain Maltsev condition involving linear equations only
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Cyclic subpowers

Definition

Let A be a finite algebra. A subalgebra R ≤ An is called cyclic, if

∀a1, . . . , an ∈ A (a1, a2, . . . , an) ∈ R ⇒ (a2, . . . , an, a1) ∈ R

Lemma

If all nonempty cyclic subalgebras of Ap contain a constant tuple, then A
has a p-ary cyclic term.
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Why cyclic subpowers?

Lemma

If all nonempty cyclic subalgebras of Ap contain a constant tuple, then A
has a p-ary cyclic term.

Proof.

I For every tuple a = (a1, . . . , ap), consider
Ra = Sg((a1, . . . , ap), (a2, . . . , ap, a1), . . . ) ≤ Ap

I Ra contains a constant tuple ⇒ there exists a term ta such that

ta(a1, a2, . . . , ap) = ta(a2, . . . , ap, a1) = . . .

I By composing these terms (in certain way) we get a cyclic term
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Properties of a minimal counterexample

Fix a prime p. We consider a minimal counterexample to the assumption
of the last lemma (and we want to get a contradiction):

Let A be a minimal SD(∨) algebra (|A| < p) st. there exists a nonempty
cyclic R ≤ Ap with no constant tuple

I R is subdirect

I A is simple

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R),

i.e. a mapping f : A → A, f 6= id s.t.
I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R
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Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)

I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)

I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)

I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)
I |B| < |A|

I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by
t1, . . . , tm)

I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)
I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)

I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)
I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple

I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)
I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!

I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10



Q.E.D.

A: minimal SD(∨) algebra st. ∃ cyclic R ≤ Ap with no constant

I The core theorem (Marcin’s talk): There exists a nonidentical
retraction f : (A,R) → (A,R), i.e. a mapping f : A → A, f 6= id s.t.

I f 2 = f (i.e. f is identical on its image)
I if (a1, . . . , ap) ∈ R, then (f (a1), . . . , f (ap)) ∈ R

I Assume A = (A, t1, . . . , tm), where t1, . . . , tm are from the Maltsev
condition for SD(∨)

I Consider B = (f (A), ft1, . . . , ftm)
I |B| < |A|
I B is SD(∨) (as ft1, . . . , ftm satisfy all linear equations satisfied by

t1, . . . , tm)
I (R ∩ Bp) ≤ Bp is cyclic, without a constant tuple
I A contradiction!
I Thank you!!!

L. Barto, M. Kozik (Prague) Cyclic terms for SD(∨) AAA Bern 2009 10 / 10


