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Reminder from Marcin’s talk

To prove the LZ conjecture, it is enough to prove that
every (2, 3)-system compatible with an SD(∧) algebra has a solution.

I A: SD(∧) algebra, i.e. A has WNUs of all but finitely many arities

I Bi , i < n: subalgebras of A (Potatoes, draw them disjoint)
I Bij , i , j < n: subalgebras of Bi × Bj (Edges between potatoes)

I Bij = B−1
ji (Edges are undirected)

I Bii is the diagonal (for formal reasons)

I (1, 2)-system Every point extends to an edge
I i.e. for all i , j < n, b ∈ Bi there exists c ∈ Bj s.t. b − c (that is

(b, c) ∈ Bij)

I (2, 3)-system Every edge extends to a triangle
I i.e. for all i , j , k < n, b ∈ Bi , c ∈ Bj , b − c there exists d ∈ Bk s.t.

b − d , c − d

Solution = (1, 2)-subsystem with one-element potatoes = clique
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How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes

I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes

I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes
I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)

I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes
I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes
I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes
I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



How to prove LZ conjecture?

Start with a (2, 3)-system compatible with A.

If one of the potatoes is more than 1-element, find smaller
(2, 3)-subsystem compatible with A!

I Start with any proper subset and walk around potatoes
I We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
I If we start with a subalgebra, it will be compatible with A

I We want more than a (1, 2)-subsystem – we start with an absorbing
subalgebra

Definition

A nonempty subalgebra C of an algebra B is absorbing, if there is an
operation t of B such that
t(C ,C , . . . ,C ,B) ∪ t(C ,C , . . . ,C ,B,C ) ∪ · · · ∪ t(B,C ,C . . . , C ) ⊆ C

I We are still not able to get triangles inside...

L. Barto, M. Kozik (Prague) Bounded Width CSPs II CanaDAM 2009 3 / 9



Prague strategy

pattern = sequence of indices of potatoes, say w = 0, 5, 2, 5, 10

For a ∈ B0, b ∈ B10 write

a
w→ b, if a− c − d − e − b for some c ∈ B5, d ∈ B2, e ∈ B5.

Definition

A (1, 2)-system is called a Prague strategy, if

I for any pattern starting and ending at the same potato, say
w = 1, 2, 4, 2, 8, 1

I for any a, b ∈ B1

I if a, b are connected in B1 ∪ B2 ∪ B4 ∪ B8, then there exists a number

k such that a
wk

→ b
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How to really prove LZ conjecture

Observation

(2, 3)-system is a Prague strategy.

Start with a Prague strategy compatible with A

If one of the potatoes is more than 1-element, find a smaller Prague
substrategy compatible with A!

I If some potato has a proper absorbing subalgebra, we can do it!

I Proper absorbing subalgebras are not rare!!!

Theorem (Absorption Theorem)

Let C,D be SD(∧) algebras. If R is a connected subalgebra of C×D,
then either R = C × D, or C or D has a proper absorbing subalgebra.
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No absorbing sets ⇒ some structure

Now we can assume ”no proper absorbing set in any potato”

I Assume |B0| > 1

I Take a maximal congruence α of B0 (congruence = compatible
equivalence)
Let C1, . . . ,Cm be the α-blocks

I Two kinds of potatoes
I Good Bi : B0i “respects” α (the images of Cj ’s in Bi are disjoint)

I Bad Bi : B0i doesn’t respect α

The image of each Cj is Bi ! (from maximality of α and Absorption
Theorem)

I For J ⊆ {1, . . . ,m} we consider subsystem BJ

I In B0 we take the subset BJ
0 = ∪j∈JCj

I In other potatoes we take the image of BJ
0

I BJ is a (1, 2)-system (for any J)

I B{j} is compatible with A
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Smaller Prague substrategy in “no absorption” case

I Every operation of A yields an operation on {1, . . . ,m}

I Let J ⊆ {1, 2, . . . ,m}. If

I BJ is a Prague strategy
I w is a WNU of A
I k ∈ J and K = w(k, k, . . . , k, J) (= {w(k, k, . . . , k, j) : j ∈ J})

then BK is a Prague strategy! (cheating a bit...)

Theorem (Ugly)

Let M be an SD(∧) algebra. Let R be a family of subsets of M such that

I M ∈ R
I if J ∈ R, k ∈ J and K = w(k, k, . . . , k, J) for some WNU w of M,

then K ∈ R
Then R contains a singleton.
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Summary

Main ingredients of the proof:

I Absorption and Prague strategies

I Absorption Theorem

I Ugly Theorem
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Cheers

Thanks for your attention!
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