Constraint Satisfaction Problems of Bounded Width II

Libor Barto

joint work with Marcin Kozik

Department of Algebra Faculty of Mathematics and Physics **Charles University in Prague** Czech Republic

CanaDAM 2009

L. Barto, M. Kozik (Prague)

Bounded Width CSPs II

CanaDAM 2009 1 / 9

To prove the LZ conjecture, it is enough to prove that every (2,3)-system compatible with an $SD(\wedge)$ algebra has a solution.

To prove the LZ conjecture, it is enough to prove that every (2,3)-system compatible with an $SD(\wedge)$ algebra has a solution.

- ▶ A: $SD(\land)$ algebra, i.e. A has WNUs of all but finitely many arities
- **B**_{*i*}, *i* < *n*: subalgebras of **A** (Potatoes, draw them disjoint)
- ▶ $\mathbf{B}_{ij}, i, j < n$: subalgebras of $\mathbf{B}_i \times \mathbf{B}_j$ (Edges between potatoes)
 - $B_{ij} = B_{ji}^{-1}$ (Edges are undirected)
 - B_{ii} is the diagonal (for formal reasons)

To prove the LZ conjecture, it is enough to prove that every (2,3)-system compatible with an $SD(\wedge)$ algebra has a solution.

- ▶ A: $SD(\land)$ algebra, i.e. A has WNUs of all but finitely many arities
- **B**_{*i*}, *i* < *n*: subalgebras of **A** (Potatoes, draw them disjoint)
- ▶ $\mathbf{B}_{ij}, i, j < n$: subalgebras of $\mathbf{B}_i \times \mathbf{B}_j$ (Edges between potatoes)
 - $B_{ij} = B_{ji}^{-1}$ (Edges are undirected)
 - B_{ii} is the diagonal (for formal reasons)
- (1,2)-system Every point extends to an edge
 - i.e. for all i, j < n, $b \in B_i$ there exists $c \in B_j$ s.t. b c (that is $(b, c) \in B_{ij}$)

To prove the LZ conjecture, it is enough to prove that every (2,3)-system compatible with an $SD(\wedge)$ algebra has a solution.

- ▶ A: $SD(\land)$ algebra, i.e. A has WNUs of all but finitely many arities
- **B**_{*i*}, *i* < *n*: subalgebras of **A** (Potatoes, draw them disjoint)
- ▶ $\mathbf{B}_{ij}, i, j < n$: subalgebras of $\mathbf{B}_i \times \mathbf{B}_j$ (Edges between potatoes)
 - $B_{ij} = B_{ji}^{-1}$ (Edges are undirected)
 - B_{ii} is the diagonal (for formal reasons)

(1,2)-system Every point extends to an edge

- i.e. for all i, j < n, $b \in B_i$ there exists $c \in B_j$ s.t. b c (that is $(b, c) \in B_{ij}$)
- (2,3)-system Every edge extends to a triangle
 - i.e. for all i, j, k < n, $b \in B_i, c \in B_j$, b c there exists $d \in B_k$ s.t. b d, c d

To prove the LZ conjecture, it is enough to prove that every (2,3)-system compatible with an $SD(\wedge)$ algebra has a solution.

- ▶ A: $SD(\land)$ algebra, i.e. A has WNUs of all but finitely many arities
- **B**_{*i*}, *i* < *n*: subalgebras of **A** (Potatoes, draw them disjoint)
- ▶ $\mathbf{B}_{ij}, i, j < n$: subalgebras of $\mathbf{B}_i \times \mathbf{B}_j$ (Edges between potatoes)
 - $B_{ij} = B_{ji}^{-1}$ (Edges are undirected)
 - B_{ii} is the diagonal (for formal reasons)

▶ (1,2)-system Every point extends to an edge

• i.e. for all i, j < n, $b \in B_i$ there exists $c \in B_j$ s.t. b - c (that is $(b, c) \in B_{ij}$)

(2,3)-system Every edge extends to a triangle

▶ i.e. for all i, j, k < n, $b \in B_i, c \in B_j$, b - c there exists $d \in B_k$ s.t. b - d, c - d

Solution = (1, 2)-subsystem with one-element potatoes = clique

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

Start with any proper subset and walk around potatoes

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

Start with any proper subset and walk around potatoes

▶ We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

- Start with any proper subset and walk around potatoes
 - ▶ We get a proper (1,2)-subsystem (the (2,3)-property is needed)
 - If we start with a subalgebra, it will be compatible with A

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

- Start with any proper subset and walk around potatoes
 - ▶ We get a proper (1,2)-subsystem (the (2,3)-property is needed)
 - If we start with a subalgebra, it will be compatible with A
- ▶ We want more than a (1, 2)-subsystem we start with an absorbing subalgebra

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

Start with any proper subset and walk around potatoes

- ▶ We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
- If we start with a subalgebra, it will be compatible with A
- ▶ We want more than a (1, 2)-subsystem we start with an absorbing subalgebra

Definition

A nonempty subalgebra **C** of an algebra **B** is absorbing, if there is an operation t of **B** such that $t(C, C, ..., C, B) \cup t(C, C, ..., C, B, C) \cup \cdots \cup t(B, C, C, ..., C) \subseteq C$

Start with a (2,3)-system compatible with **A**.

If one of the potatoes is more than 1-element, find smaller (2,3)-subsystem compatible with **A**!

Start with any proper subset and walk around potatoes

- ▶ We get a proper (1, 2)-subsystem (the (2, 3)-property is needed)
- If we start with a subalgebra, it will be compatible with A
- ▶ We want more than a (1, 2)-subsystem we start with an absorbing subalgebra

Definition

A nonempty subalgebra **C** of an algebra **B** is absorbing, if there is an operation t of **B** such that $t(C, C, ..., C, B) \cup t(C, C, ..., C, B, C) \cup \cdots \cup t(B, C, C, ..., C) \subseteq C$

We are still not able to get triangles inside...

Bounded Width CSPs II

Prague strategy

pattern = sequence of indices of potatoes, say w = 0, 5, 2, 5, 10For $a \in B_0$, $b \in B_{10}$ write

 $a \xrightarrow{w} b$, if a - c - d - e - b for some $c \in B_5$, $d \in B_2$, $e \in B_5$.

Prague strategy

pattern = sequence of indices of potatoes, say w = 0, 5, 2, 5, 10

For $a \in B_0$, $b \in B_{10}$ write $a \xrightarrow{w} b$, if a - c - d - e - b for some $c \in B_5$, $d \in B_2$, $e \in B_5$.

Definition

A (1,2)-system is called a Prague strategy, if

- for any pattern starting and ending at the same potato, say w = 1,2,4,2,8,1
- ▶ for any $a, b \in B_1$
- ▶ if a, b are connected in $B_1 \cup B_2 \cup B_4 \cup B_8$, then there exists a number k such that $a \xrightarrow{w^k} b$

Observation

(2,3)-system is a Prague strategy.

Observation

(2,3)-system is a Prague strategy.

Start with a Prague strategy compatible with A

If one of the potatoes is more than 1-element, find a smaller Prague substrategy compatible with **A**!

Observation

(2,3)-system is a Prague strategy.

Start with a Prague strategy compatible with A

If one of the potatoes is more than 1-element, find a smaller Prague substrategy compatible with **A**!

▶ If some potato has a proper absorbing subalgebra, we can do it!

Observation

(2,3)-system is a Prague strategy.

Start with a Prague strategy compatible with A

If one of the potatoes is more than 1-element, find a smaller Prague substrategy compatible with **A**!

- ▶ If some potato has a proper absorbing subalgebra, we can do it!
- Proper absorbing subalgebras are not rare!!!

Observation

(2,3)-system is a Prague strategy.

Start with a Prague strategy compatible with A

If one of the potatoes is more than 1-element, find a smaller Prague substrategy compatible with **A**!

- ▶ If some potato has a proper absorbing subalgebra, we can do it!
- Proper absorbing subalgebras are not rare!!!

Theorem (Absorption Theorem)

Let \mathbf{C}, \mathbf{D} be $SD(\wedge)$ algebras. If \mathbf{R} is a connected subalgebra of $\mathbf{C} \times \mathbf{D}$, then either $R = C \times D$, or \mathbf{C} or \mathbf{D} has a proper absorbing subalgebra.

Now we can assume "no proper absorbing set in any potato"

Now we can assume "no proper absorbing set in any potato"

▶ Assume $|B_0| > 1$

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence
 a of B₀ (congruence = compatible equivalence)

Let C_1, \ldots, C_m be the α -blocks

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)
 - Bad B_i : B_{0i} doesn't respect α

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)
 - Bad B_i : B_{0i} doesn't respect α

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)
 - Bad B_i : B_{0i} doesn't respect α

- For $J \subseteq \{1, \ldots, m\}$ we consider subsystem \mathcal{B}^J
 - In B_0 we take the subset $B_0^J = \bigcup_{j \in J} C_j$
 - In other potatoes we take the image of B_0^J

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)
 - Bad B_i : B_{0i} doesn't respect α

- For $J \subseteq \{1, \ldots, m\}$ we consider subsystem \mathcal{B}^J
 - In B_0 we take the subset $B_0^J = \bigcup_{j \in J} C_j$
 - In other potatoes we take the image of B_0^J
- ▶ B^J is a (1,2)-system (for any J)

Now we can assume "no proper absorbing set in any potato"

- Assume $|B_0| > 1$
- Take a maximal congruence \(\alpha\) of B₀ (congruence = compatible equivalence)
 - Let C_1, \ldots, C_m be the α -blocks
- Two kinds of potatoes
 - Good B_i : B_{0i} "respects" α (the images of C_j 's in B_i are disjoint)
 - Bad B_i : B_{0i} doesn't respect α

- For $J \subseteq \{1, \ldots, m\}$ we consider subsystem \mathcal{B}^J
 - In B_0 we take the subset $B_0^J = \bigcup_{j \in J} C_j$
 - In other potatoes we take the image of B_0^J
- \mathcal{B}^J is a (1,2)-system (for any J)
- $\mathcal{B}^{\{j\}}$ is compatible with **A**

• Every operation of **A** yields an operation on $\{1, \ldots, m\}$

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, ..., m\}$. If

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, \ldots, m\}$. If
 - ▶ B^J is a Prague strategy

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, \ldots, m\}$. If
 - ▶ B^J is a Prague strategy
 - w is a WNU of A

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, \ldots, m\}$. If
 - B^J is a Prague strategy
 - w is a WNU of A
 - ▶ $k \in J$ and $K = w(k, k, \dots, k, J)$ (= { $w(k, k, \dots, k, j) : j \in J$ })

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, \ldots, m\}$. If
 - B^J is a Prague strategy
 - w is a WNU of A
 - ▶ $k \in J$ and K = w(k, k, ..., k, J) (= { $w(k, k, ..., k, j) : j \in J$ })

then $\mathcal{B}^{\mathcal{K}}$ is a Prague strategy! (cheating a bit...)

- Every operation of **A** yields an operation on $\{1, \ldots, m\}$
- Let $J \subseteq \{1, 2, ..., m\}$. If
 - B^J is a Prague strategy
 - w is a WNU of A
 - ▶ $k \in J$ and K = w(k, k, ..., k, J) (= { $w(k, k, ..., k, j) : j \in J$ })

then $\mathcal{B}^{\mathcal{K}}$ is a Prague strategy! (cheating a bit...)

Theorem (Ugly)

Let **M** be an $SD(\wedge)$ algebra. Let \mathcal{R} be a family of subsets of M such that

- ► $M \in \mathcal{R}$
- If J ∈ R, k ∈ J and K = w(k, k, ..., k, J) for some WNU w of M, then K ∈ R

Then \mathcal{R} contains a singleton.

Main ingredients of the proof:

- Absorption and Prague strategies
- Absorption Theorem
- Ugly Theorem

Thanks for your attention!