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Outline 2/25

. . . there will also be three more focused topics,
providing examples of (. . . ) interactions between logic,
algebra, and complexity

I Part I: logic, algebra, and complexity in
Constraint Satisfaction Problems (CSPs)
over fixed finite templates

I Part II: analysis, probability, and topology in
(a variant of) CSP

In CSP: complexity captured by symmetry



Ideal world vs reality 3/25

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

CSPs over fixed finite templates

I tiny portion of problems on the left

I kernel ( polynomial time reducibility



CSP



Definition 5/25

Fix A = (A;R, S , . . . ) relational structure

Definition (CSP(A))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in A

Search version: Find a satisfying assignment.
Search looks harder, but it’s not [Bulatov, Jeavons, Krokhin’05]

Fact: Always in NP.



Example 1: 3-coloring 6/25

K3 = (A;R) where

I A = {lilac ,mauve, cyclamen}
I R = (binary) inequality relation on A

Input of CSP(K3) is, e.g.

(∃x1∃x2 . . . ∃x4)R(x1, x2)∧R(x1, x3)∧R(x1, x4)∧R(x2, x3)∧R(x2, x4)

Viewpoint

I variables = vertices

I clauses (constraints) = edges

CSP(K3) is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)



Examples 2: hypergraph coloring problems 7/25

I 3NAE2 = ({0, 1}; 3NAE2) where
3NAE2 = all but {(0, 0, 0), (1, 1, 1)}

CSP(3NAE2) = positive not-all-equal 3-SAT
= 2-coloring problem for 3-uniform hypergraphs

I 3NAE4 = ({0, 1, 2, 3}; 3NAE4), where 3NAE4 still ternary

CSP(3NAE4) = 4-coloring problem for 3-uniform hypergraphs

I 1IN3 = ({0, 1}; 1in3) where
1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

CSP(1IN3) = positive 1-in-3 SAT

Fact: All NP-hard



Example 3: systems of linear equations 8/25

3LIN5 = (Z5; L0000, L0001, . . . , L4444) where e.g.

L1234 = {(x , y , z) ∈ Z3
5 : 1x + 2y + 3z = 4}

(note: relations are affine subspaces of Z3
5)

CSP(3LIN5) = solving systems of linear equations in Z5

Fact: In P



Symmetry



Polymorphisms 10/25

polymorphism of A: mapping f : An → A
compatible with every relation

compatible with R: f applied component-wise to tuples in R
is a tuple in R

Example: f (x1, . . . , x4) = 2x1 + 3x2 + 3x3 + 3x4 f : Z4
5 → Z5

is compatible with each Labcd
because f (v1, . . . , v4) is an affine combination of these

vectors (as 2 + 3 + 3 + 3 = 1)
and Labcd is an affine subspace

Pol(A): the set of all polymorphisms (it is a “clone”)
= set of (multivariable) symmetries of A



Algebraic theory, 1st step 11/25

Jeavons’98: On the algebraic structure of combinatorial problems

Theorem

Complexity of CSP(A) is determined by Pol(A):

If Pol(A) ⊆ Pol(B) then CSP(B) reduces to CSP(A).

Proof.

If Pol(A) ⊆ Pol(B), then relations in B can be defined from
relations in A by a pp-formula.

[Geiger’69, Bondarčuk, Kalužnin, Kotov, Romov’69]

This gives a computational reduction of CSP(B) to CSP(A).

So: CSP(3LIN5) is in P because 3LIN5 has a lot of polymorphs
CSP(1IN3) is NP-complete because 1IN3 has few



Systems of functional equations 12/25

System of functional equations is, e.g.

f (g(x , y), z) = g(x , h(y , z))

m(y , x , x) = m(y , y , y)

m(x , x , y) = m(y , y , y)

Satisfied in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is satisfied in Pol(3LIN5):

I take f (x , y) = g(x , y) = h(x , y) = x
(note: projections are always polymoprhisms)

I take m(x , y , z) = x − y + z



Algebraic theory, 2nd step 13/25

Bulatov, Jeavons, Krokhin’05: Classifying the complexity of constraints using finite

algebras + Bodirsky’08: PhD thesis

Theorem

Complexity of CSP(A) is determined by
systems of functional equations satisfied in Pol(A):

If each system satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

Previous theorem, pp-definitions → pp-interpretations,
the HSP theorem [Birkhoff’35]

So: CSP(3LIN5) is in P because
Pol(3LIN5) satisfies strong systems of functional equations.



Algebraic theory, 3rd step 14/25

Barto, Opřsal, Pinsker’18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
e.g. m(y , x , x) = m(y , y , y), m(x , x , y) = m(y , y , y)

Theorem

Complexity of CSP(A) determined by
minor conditions satisfied in Pol(A):

If each minor condition satisfied in Pol(A) is satisfied in Pol(B),
then CSP(B) reduces to CSP(A).

Proof.

pp-interpretation → pp-construction,
version of the HSP theorem.



The Three Steps (movie) 15/25

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT
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3COL
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CSPs symmetries

equally
complex

(1) polymorphisms

(2) systems of functional equations satisfied by polymorphisms

(3) minor conditions satisfied by polymorphisms

Where are the borderlines between complexity classes?
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The classification result 16/25

Minor condition is trivial:
satisfied in every Pol(A)
= satisfied in P, the set of projections on {0, 1}

Corollary

If Pol(A) satisfies only trivial minor conditions,
then CSP(A) is NP-hard.

Theorem ([Bulatov’17], [Zhuk’17])

If Pol(A) satisfies some non-trivial minor condition,
then CSP(A) is in P.



Dichotomy 17/25

harder
fewer
symmetries

3SAT

3COL

3LIN
2SAT

3SAT

3COL

3LIN
2SAT

CSPs symmetries

equally
complex

NP-c

P

I only trivial minor conditions ⇒ NP-complete

I some nontrivial minor condition ⇒ P

Further steps?



Algebraic theory, 4th step 18/25

(Barto,) Buĺın, Krokhin, Opřsal: Algebraic approach to promise constraint satisfaction

Definition (MinorCond(N ,M))

Input: minor condition X with symbols of arity N
Answer Yes: X is trivial (=satisfied in P)
Answer No: X not satisfied in M

Theorem

Let M = Pol(A). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)

(ii) MinorCond(N,M)

Consequence: 3rd step
Proof: direct, simple, known



Proof 1: Reduction from CSP 19/25

Given input of CSP(3NAE2), eg.

(∃a, b, c , d) R(c , a, b) ∧ R(a, d , c)

transform it to a minor condition, eg.

f1(x1, x0, x0, x0, x1, x1) = gc(x0, x1)

f1(x0, x1, x0, x1, x0, x1) = ga(x0, x1)

f1(x0, x0, x1, x1, x1, x0) = gb(x0, x1)

f2(x1, x0, x0, x0, x1, x1) = ga(x0, x1)

f2(x0, x1, x0, x1, x0, x1) = gd(x0, x1)

f2(x0, x0, x1, x1, x1, x0) = gc(x0, x1)

“Yes input → Yes input”: easy
“No input → No input”: for contrapositive use y 7→ gy (0, 1).



Proof 2: Reduction to CSP 20/25

Given a minor condition, e.g.

f (x1, x2, x1, x3) = g(x1, x2, x3)

h(x3, x1) = g(x1, x2, x3)

I introduce variables fa1,a2,a3,a4 one for each (a1, . . . , a4) ∈ A4,
ha1,a2 , and ga1,a2,a3 .

I so evaluation of f ’s ↔ function f : A4 → A

I express that f , g , h are polymorphisms (by constraints)

I merge variables to enforce the equations



Bipartite minor conditions 21/25

The proof only uses bipartite minor conditions:

I Two disjoint set of symbols LHS , RHS .

I Each equation of the form

f (variables) = g(x1, x2, . . . , xN)

where f ∈ LHS and g ∈ RHS



Remarks



Proving hardness 23/25

How to show that M = Pol(A) satisfies only trivial minor
conditions?

Theorem

The following are equivalent

I M satisfies only trivial minor conditions
I There is a mapping ξ :M→ N

I if f is of arity n, then ξ(f ) ∈ {1, 2, . . . , n}
( think: an important coordinate of f )

I ξ behaves nicely with minors, eg. if

f (x3, x2, x1, x2, x2, x1) = g(x1, x2, x3)

and ξ(f ) = 5, then ξ(g) = 2.



Proving tractability (and hardness) 24/25

How to devise algorithms if M = Pol(A) satisfies some
nontrivial minor condition?

Theorem

The following are equivalent.

I M satisfies some nontrivial minor condition

I M satisfies, for some n ≥ 2, the minor condition

c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

[Barto, Kozik’12]

I . . .

I . . . zillion other characterizations . . .

I . . .



Two classes of computational problems 25/25

General problem: Given a structure A and 1st order sentence φ
(the same language), decide whether A satisfies φ.

CSP

I fix a finite relational structure

I restrict to primitive positive (pp-) sentences

Another problem: Given a structure A and 1st order sentence φ
(different language), decide whether symbols in φ can be
interpreted in A so that A satisfies φ.

Our case: solving functional equations over an algebra

I fix a finite algebraic structure

I restrict to universally quantified conjunction of (special)
equations

I take a promise version
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