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Result and outline 2/14

Theorem

Efficiently solving
a specific computational problem over a two-element domain
requires an algorithm over an infinite domain.

Outline

I What problem?

I What “require” means?

I How to prove the theorem?

I What next?
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Fix A = (A;R, S , . . . ) relational structure

X → A means that there exists a homomorphism from X to A

Definition (CSP(A))

Input: finite X of the same signature as A
Answer Yes: X → A
Answer No: X 6→ A

Search version: Find a homomorphism X → A
Search looks harder, but it’s not [Bulatov, Jeavons, Krokhin’05]

Fact: For finite A, CSP(A) is always in NP.
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I K3 = ({1, 2, 3};N), N = {1, 2, 3}2 \ {(1, 1), (2, 2), (3, 3)}
CSP(K3) is the 3-coloring problem for graphs

I for a suitable A, CSP(A) is the problem of solving systems of
linear equations over a fixed field

I for a suitable A, CSP(A) is 3-SAT

I 1IN3 = ({0, 1}, 1in3), 1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
CSP(1IN3) is the positive 1-in-3-SAT

I NAE = ({0, 1},NAE ), NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
CSP(NAE) is the positive NAE-3-SAT
= 2-coloring problem for 3-uniform hypergraphs
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CSP(A) is often NP-complete. What can we do?

1. Approximation: satisfy only some fraction of the constraints,
eg.

I for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses
(NP-complete [Håstad’01])

2. Promise CSP: satisfy a relaxed version of all constraints, eg.

I for a 3-colorable graph,
find a 37-coloring (conjecture: NP-c)

I for a yes input of CSP(1IN3),
find a valid NAE-3-SAT assignment (in P!)



Promise CSPs 6/14

Fix two relational structures A,B such that A → B

Definition (PCSP(A,B))

Input: finite X of the same signature as A (and B)
Answer Yes: X → A
Answer No: X 6→ B

Search version: Find some X → B
given X such that X → A.

(it may be a harder problem, we don’t know)

Example: PCSP(K3,K4) = 4-coloring a 3-colorable graph



CSP vs. PCSP 7/14

CSP – complexity

I over two-element structures [Schaefer’78]

I over undirected graphs [Hell, Nešeťril’90]

I over finite structures [Bulatov’17], [Zhuk’17]

PCSP – complexity

I wide open for two-element structures, undirected graphs
I harder hardness proofs, use PCP theory, topology; known eg.

I 137-coloring a 2-colorable 3-uniform hypergraph
[Dinur,Regev,Smyth’05]

I 4-coloring a 3-colorable graph [Brakensiek, Guruswami’16]

I 5-coloring a 3-colorable graph [Buĺın, Krokhin, Opřsal’19]

I PCSP(C137,K3) [Krokhin,Opřsal]

I algorithmically richer – uses eg.
systems of equations over Z, linear programming



1-in-3 vs. not-all-equal 8/14

Recall:

I 1IN3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

I NAE = ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)})

PCSP(1IN3,NAE)
Input: a 3-uniform hypergraph
Answer Yes: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Answer No: it is not 2-colorable

Fact: It is in P [Brakensiek,Guruswami’18]

Algorithm for finding a 2-coloring of a Yes input:

I for each hyperedge {x , y , z} write x + y + z = 1

I solve the system over Q \ {1
3} (it is solvable in {0, 1})

I assign x 7→ 1 iff x > 1/3



Result 9/14

Observation: If A → C → B,
then PCSP(A,B) reduces to CSP(C)

For PCSP(1IN3,NAE)

I take C = (Q \ {1/3};R), R = {(x , y , z) : x + y + z = 1}
I 1IN3 → C via x 7→ x

I C → NAE via x 7→ 1 iff x > 1/3

Remark: One can also use e.g. C = (Z; x + y + z = 1)

Theorem

If 1IN3 → C → NAE and C finite, then CSP(C) is NP-complete.
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Polymorphism of C = homomorphism Cn → C
f : Cn → C is cyclic if ∀xi f (x1, x2, . . . , xn) = f (x2, . . . , xn, x1)

Theorem ([Barto,Kozik’12])

Let C = (C ; . . . ) be finite. If, for some prime p > |C |, C has no
cyclic polymorphism of arity p, then CSP(C) is NP-complete.

Background in CSPs

I complexity is P or NP-c, and is tied to “closure properties”
[Feder,Vardi’93]

I complexity depends only on polymorphisms [Jeavons’98]

I borderline between P and NP-c conjectured
[Bulatov,Jeavons,Krokhin’05]

I borderline characterized in many ways (such as above)

I conjecture proved [Bulatov’17],[Zhuk’17]



Proof: some details 11/14

I Assume f : 1IN3 → C, g : C → NAE, C finite

I WLOG f is the inclusion

I Take p large enough, assume t : Cp → C cyclic

I Take s(x11, . . . , xpp) = t(t(x11, . . . , x1p), . . . , t(xp1, . . . , xpp)),
arity n = p2

I Composition g(s(f (x1), . . . , f (xn))) is a homo 1IN3 → NAE.

I This (+cyclicity of t) gives for “nice” x ∈ {0, 1}n that
g(s(x)) = 1 iff ham(x) > n/3

I Take a,b such that t(a) = t(b) and ham(a) 6= ham(b)
I Take suitable x = (a, . . . , a, c, . . . , c), y = (b, . . . ,b, c, . . . , c)

I ham(x) > n/3 and ham(x) < n/3
I both evaluations are nice for s, so s(x) 6= s(y)

I But s(x) = t(t(a, . . . , t(a), t(c), . . . , t(c))
= t(t(b, . . . , t(b), t(c), . . . , t(c)) = s(y), a contradiction



Question: better tool? 12/14

The main tool was an NP-hardness criterion for CSPs via cyclic
polymorphisms.

Improvements/alternatives can

I simplify the proof of the presented result

I simplify the proof of the dichotomy theorem

Question

Assume a finite C has a cyclic polymorphism. Does C necessarily
have a polymorphism s such that for any a, b ∈ C and x ∈ {a, b}n,
the value s(x) depends only on the number of occurrences of a in
x?



Question: the only source of tractability? 13/14

Question

Assume PCSP(A,B) is in P. Is there always an infinite C such that
A → C → B and CSP(C) is in P?

(Such a family suggested in [Brakensiek,Guruswami’19] for PCSPs over
two-element domains.)

If not, can PCSP(A,B) be reduced to a CSP(C) in P in a more
complicated way?

How to construct such a C?



Question: how infinite we need to be? 14/14

Question

Assume 1IN3 → C → NAE and CSP(C) is in P. Can C be

I reduct of a finitely bounded homogeneous structure?

I ω-categorical?

In this sense we can measure the “level of finiteness” for PCSPs.

Question

For some classes of PCSPs, the complexity is known.
[Brakensiek,Guruswami’18],[Ficak,Kozik,Oľsák,Stankiewicz’19]

Which PCSPs in P require infinite CSPs?

Thank you!
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