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Outline 2/14

CSPs over fixed finite templates

» class of computational problems

» tight link to universal algebra, namely “special” Maltsev
conditions [Jeavons'98], [Bulatov, Jeavons, Krokhin’05], [Barto, Pinsker'18]

» simple criterion for hardness [Bulatov, Jeavons, Krokhin'05]

» good enough [Bulatov'17], [Zhuk'17]
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CSP over a fixed finite template

Fix A: finite relational structure

Definition (CSP(A))

Input: X of the same signature as A
Yes: there is a homomorphism X — A
No: there is none

Example: CSP(K3) = decide whether a given graph is 3-colorable

The computational complexity of CSP(A) depends only on
» M = Pol(A), the polymorphism clone [J'98]
» strong Maltsev conditions satisfied by M [BJK'05]
» minor conditions satisfied by M [BP'18] [BBKO]



Minor conditions 4/14

Minor condition: A set of identities of the from
symbol(variables) ~ symbol(variables)

Example: f(x,x,y)~ g(y,x), g(x,y) = h(x,y,y,x),
glx,y) = gly,x), ...

Minor condition is satisfied by M
(where M is a set of operations on a fixed set)
if there exist f, g, h in M making the identities true
(a solution in M)

It is trivial if it is satisfied by every clone (=by projections)

Corollary: If Pol(A) satisfied only trivial minor conditions,
then CSP(A) is NP-complete

Theorem [B'17,2'17]: Otherwise CSP(A) is in P
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Definition (MinorCond(N, M))

Input: minor condition with symbols of arity < N
Yes: it is trivial
No: it is not satisfied by M

Theorem ( )

Let M = Pol(A). The following computational problems are
equivalent for a large enough N.

(i) CSP(A)
(it) MinorCond(N, M)

Consequence: The computational complexity of CSP(A) depends
only on minor conditions satisfied by M
Proof: direct, simple, known



Promise CSPs

Fix A, B: finite relational structures with A — B

Definition (PCSP(A, B))

Input: X of the same signature as A
Yes: there is a homomorphism X — A
No: there is no homomorphism X — B

Example: PCSP(K3,K7) = distinguishing between 3-colorable
and
not 7-colorable graphs.

Search version: find a 7-coloring of a given 3-colorable graph

M = Pol(A,B) is the polymorphism minion
functions that map tuples in R* to tuples in R®

Theorem: PCSP(A,B) is equivalent to MinorCond(N, M)
for a large enough N
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Corollary

If Pol(A,B) satisfies only trivial minor conditions,
then PCSP(A,B) is NP-complete.

Theorem (folklore)
TFAE for a minion M.

» M satisfies only trivial minor conditions

> There is a mapping & : M — N such that
» if f is of arity n, then &(f) € {1,2,...,n}
(think: an important coordinate of f)

» £ behaves nicely with minors, eg. if

f(x3, X2, X1, X0, X2, X1) = g(X1, X2, X3)

and §(f) =5, then {(g) = 2.



A criterion for hardness, cntd’

Theorem (repeated)

If there is a mapping & : Pol(A,B) — N
» if f is of arity n, then {(f) € {1,2,...,n}
(think: an important coordinate of f)
> & behaves nicely with minors
then PCSP(A, B) is NP-complete.

» for A =B, ie. Pol(A,B) is a clone,
there are many equivalent characterizations
(TCT type 1, no Taylor, no Siggers, no weak NU, no cyclic...)
» for A = B the criterion is good enough
» good enough to prove PCSP(K3,K4) NP-complete
[Brakensiek, Guruswami'16]
» not good enough to prove PCSP(Cj37,K3) NP-complete
» not good enough to prove PCSP(K3, K5) NP-complete
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Definition (MinorCond(N, ¢))

Input: minor condition with symbols of arity < N
Yes: it is trivial
No: no e—fraction of identities is trivial

Two famous theorems in computational complexity
» PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
» Parallel repetition theorem [Raz'98]

give the following theorem.

For each € > 0 there exists N such that
MinorCond(N, €) is NP-complete.




A stronger criterion for hardness

Corollary
If there exists C € N and a mapping £ : Pol(A,B) — P(N) such
that

» if f is of arity n, then {(f) C {1,2,...,n}, |£(F)| < C
(think: a small set of important coordinates of f)

» & behaves nicely with minors, eg. if
f(x3, X2, X1, X2, X2, X1) = g(X1, X2, X3)

and §(f) = {4,5,6}, then £(g) N{1,2} # 0
Then PCSP(A,B) is NP-complete.
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» we have { : M — P(N), want to show that

(a) MinorCond(N,1/C?) reduces to
(b) MinorCond(N, M) (via trivial reduction)

» Recall:
» Input: bipartite minor condition (symbols of arity < N)
» Answer Yes: it is trivial
» Answer No:
(a) no 1/C?fraction of identities is trivial
(b) not satisfied in M

> “Yes input — Yes input”: trivial

> “No input — No input”: for contrapositive:

take a valid interpretation in M

reinterpret f as the i-th projection, where i € {(f) random
each equation is satisfied with probability > 1/C?

so expected fraction of satisfied equations is > 1/C?

so some 1/C2-fraction is trivial

vV vy vy VvVYy



A stronger criterion, applications

Corollary (repeated)

If there exists C € N and a mapping £ : Pol(A,B) — P(N) such
that

> if f is of arity n, then £(f) C {1,2,...,n}, [(f)| < C
(think: a small set of important coordinates of f)

> & behaves nicely with minors
Then PCSP(A,B) is NP-complete.

» good enough for all known NP-complete PCSPs over
2-element domains

» good enough to prove PCSP(Cy37,K3) NP-complete
[Krokhin, Opr3al'19]

» not good enough to prove PCSP(K3, K5) NP-complete



A yet stronger criterion

Theorem ( )

If Pol(A,B) = My UMy U--- UM, and for each i
there exists C : N — N and a mapping & : M; — P(N) such that

» if f is of arity n, then {(f) C {1,2,...,n}, |£(F)] < C(n)
> C(n) = o(n®) for each a > 0 (eg. C(n) < 100log®(n))

> & behaves nicely with minors, eg. if
f(x3, X2, X1, X2, X2, X1) = g(X1, X2, X3)

where f,g € M; and §(f) = {4,5,6}, then £(g) N{1,2} # 0
Then PCSP(A,B) is NP-complete.

Proof: Using NP-hardness of “Layered Gap Label Cover”
[Dinur, Guruswami, Khot, Regev'05]



The criterion: applications, comments

» good enough to prove NP-completeness of
"] 2 B "] "
PCSP(({O, 1}, {001}), ({0, 1, 2}, {001, 002, 112}) [Diego’s talk]
» good enough to prove PCSP(K3, K5) NP-complete [BKO]

v

Q: Is it good enough to prove NP-completeness of every
NP-complete PCSP?7?

Q: Is there a nicer criterion?

v

v

for A =B, ie. Pol(A,B) is a clone, the condition is equivalent
to satisfying only trivial minor conditions.

this follows from
» P = NP and the CSP dichotomy theorem or
> a result about cyclic operations [Barto, Kozik'12]
» Q: 3 more elementary proof?
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Thank you for your patience!



