A Hardness Criterion for Promise CSPs

Libor Barto joint work with J. Bulín, A. Krokhin, and J. Opršal

Department of Algebra, Charles University, Prague

SSAOS, Karolinka, 3 Sep 2019

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005)

Outline 2/1

CSPs over fixed finite templates

- class of computational problems
- tight link to universal algebra, namely "special" Maltsev conditions [Jeavons'98], [Bulatov, Jeavons, Krokhin'05], [Barto, Pinsker'18]
- ► simple criterion for hardness [Bulatov, Jeavons, Krokhin'05]
- ▶ good enough [Bulatov'17], [Zhuk'17]

PCSPs over fixed finite templates

- larger class of computational problems
- discovered tighter link to universal algebra *
- the same simple criterion for hardness...
- ...but it is not good enough, stronger exists *

^{*} this talk

Fix A: finite relational structure

Definition (CSP(A))

Input: $\mathbb X$ of the same signature as $\mathbb A$ **Yes:** there is a homomorphism $\mathbb X \to \mathbb A$

No: there is none

Example: $CSP(\mathbb{K}_3)$ = decide whether a given graph is 3-colorable

The computational complexity of CSP(A) depends only on

- $\mathcal{M} = Pol(\mathbb{A})$, the polymorphism clone [J'98]
- ► strong Maltsev conditions satisfied by M [BJK'05]
- ▶ minor conditions satisfied by M [BP'18] [BBKO]

Minor condition: A set of identities of the from $symbol(variables) \approx symbol(variables)$

Example: $f(x,x,y) \approx g(y,x), g(x,y) \approx h(x,y,y,x), g(x,y) \approx g(y,x), \dots$

Minor condition is satisfied by \mathcal{M}

(where \mathcal{M} is a set of operations on a fixed set) if there exist f, g, h in \mathcal{M} making the identities true (a solution in \mathcal{M})

It is trivial if it is satisfied by every clone (=by projections)

Corollary: If $Pol(\mathbb{A})$ satisfied only trivial minor conditions, then $CSP(\mathbb{A})$ is NP-complete

Theorem [B'17,Z'17]: Otherwise CSP(A) is in P

Definition (MinorCond(N, \mathcal{M}))

Input: minor condition with symbols of arity $\leq N$

Yes: it is trivial

No: it is not satisfied by \mathcal{M}

Theorem ([BBKO])

Let $\mathcal{M} = \text{Pol}(\mathbb{A})$. The following computational problems are equivalent for a large enough N.

- (i) CSP(A)
- (ii) MinorCond(N, \mathcal{M})

Consequence: The computational complexity of $\mathrm{CSP}(\mathbb{A})$ depends

only on minor conditions satisfied by ${\mathcal M}$

Proof: direct, simple, known

Fix \mathbb{A} , \mathbb{B} : finite relational structures with $\mathbb{A} \to \mathbb{B}$

Definition (PCSP(A, B))

Input: \mathbb{X} of the same signature as \mathbb{A} **Yes:** there is a homomorphism $\mathbb{X} \to \mathbb{A}$ **No:** there is no homomorphism $\mathbb{X} \to \mathbb{B}$

Example: $\mathrm{PCSP}(\mathbb{K}_3,\mathbb{K}_7) = \text{distinguishing between 3-colorable}$ and

not 7-colorable graphs.

Search version: find a 7-coloring of a given 3-colorable graph

 $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$ is the polymorphism minion functions that map tuples in $R^{\mathbb{A}}$ to tuples in $R^{\mathbb{B}}$

Theorem: PCSP(A, B) is equivalent to MinorCond(N, M) for a large enough N

Corollary

If $Pol(\mathbb{A}, \mathbb{B})$ satisfies only trivial minor conditions, then $PCSP(\mathbb{A}, \mathbb{B})$ is NP-complete.

Theorem (folklore)

TFAE for a minion \mathcal{M} .

- M satisfies only trivial minor conditions
- ▶ There is a mapping $\xi : \mathcal{M} \to \mathbb{N}$ such that
 - ▶ if f is of arity n, then $\xi(f) \in \{1, 2, ..., n\}$ (think: an important coordinate of f)
 - \blacktriangleright ξ behaves nicely with minors, eg. if

$$f(x_3, x_2, x_1, x_2, x_2, x_1) = g(x_1, x_2, x_3)$$

and
$$\xi(f) = 5$$
, then $\xi(g) = 2$.

Theorem (repeated)

If there is a mapping $\xi: \mathsf{Pol}(\mathbb{A},\mathbb{B}) \to \mathbb{N}$

- ▶ if f is of arity n, then $\xi(f) \in \{1, 2, ..., n\}$ (think: an important coordinate of f)
- ξ behaves nicely with minors then PCSP(\mathbb{A}, \mathbb{B}) is NP-complete.
 - for A = B, ie. Pol(A, B) is a clone, there are many equivalent characterizations (TCT type 1, no Taylor, no Siggers, no weak NU, no cyclic...)
 - for $\mathbb{A} = \mathbb{B}$ the criterion is good enough
 - ▶ good enough to prove PCSP(K₃, K₄) NP-complete [Brakensiek, Guruswami'16]
 - ▶ not good enough to prove $PCSP(\mathbb{C}_{137}, \mathbb{K}_3)$ NP-complete
 - ▶ not good enough to prove $PCSP(\mathbb{K}_3, \mathbb{K}_5)$ NP-complete

$\overline{\mathsf{Definition}\; \big(\mathrm{MinorCond}(\mathit{N},\varepsilon)\big)}$

Input: minor condition with symbols of arity $\leq N$

Yes: it is trivial

No: no ε -fraction of identities is trivial

Two famous theorems in computational complexity

- ► PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98]
- ▶ Parallel repetition theorem [Raz'98]

give the following theorem.

Theorem

For each $\varepsilon > 0$ there exists N such that MinorCond(N, ε) is NP-complete.

Corollary

If there exists $C \in \mathbb{N}$ and a mapping $\xi : \mathsf{Pol}(\mathbb{A},\mathbb{B}) \to P(\mathbb{N})$ such that

- ▶ if f is of arity n, then $\xi(f) \subseteq \{1, 2, ..., n\}$, $|\xi(f)| \leq C$ (think: a small set of important coordinates of f)
- \blacktriangleright ξ behaves nicely with minors, eg. if

$$f(x_3, x_2, x_1, x_2, x_2, x_1) = g(x_1, x_2, x_3)$$

and
$$\xi(f) = \{4, 5, 6\}$$
, then $\xi(g) \cap \{1, 2\} \neq \emptyset$

Then PCSP(A, B) is NP-complete.

- we have $\xi: \mathcal{M} \to P(\mathbb{N})$, want to show that
 - (a) MinorCond($N, 1/C^2$) reduces to
 - (b) $\operatorname{MinorCond}(N, \mathcal{M})$ (via trivial reduction)
- Recall:
 - ▶ **Input:** bipartite minor condition (symbols of arity $\leq N$)
 - Answer Yes: it is trivial
 - Answer No:
 - (a) no $1/C^2$ -fraction of identities is trivial
 - (b) not satisfied in \mathcal{M}
- "Yes input → Yes input": trivial
- ► "No input → No input": for contrapositive:
 - lacktriangle take a valid interpretation in ${\cal M}$
 - reinterpret f as the i-th projection, where $i \in \xi(f)$ random
 - each equation is satisfied with probability $\geq 1/C^2$
 - so expected fraction of satisfied equations is $\geq 1/C^2$
 - ▶ so some $1/C^2$ -fraction is trivial

Corollary (repeated)

If there exists $C \in \mathbb{N}$ and a mapping $\xi : \mathsf{Pol}(\mathbb{A}, \mathbb{B}) \to P(\mathbb{N})$ such that

- ▶ if f is of arity n, then $\xi(f) \subseteq \{1, 2, ..., n\}$, $|\xi(f)| \leq C$ (think: a small set of important coordinates of f)
- \blacktriangleright ξ behaves nicely with minors

Then PCSP(A, B) is NP-complete.

- good enough for all known NP-complete PCSPs over 2-element domains
- ▶ good enough to prove $PCSP(\mathbb{C}_{137}, \mathbb{K}_3)$ NP-complete [Krokhin, Opršal'19]
- ▶ not good enough to prove $PCSP(\mathbb{K}_3, \mathbb{K}_5)$ NP-complete

Theorem ([BBKO])

If $\operatorname{Pol}(\mathbb{A},\mathbb{B}) = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \cdots \cup \mathcal{M}_n$ and for each i there exists $C: \mathbb{N} \to \mathbb{N}$ and a mapping $\xi: \mathcal{M}_i \to P(\mathbb{N})$ such that

- ▶ if f is of arity n, then $\xi(f) \subseteq \{1, 2, ..., n\}$, $|\xi(f)| \leq C(n)$
- $C(n) = o(n^{\alpha})$ for each $\alpha > 0$ (eg. $C(n) \le 100 \log^5(n)$)
- \blacktriangleright ξ behaves nicely with minors, eg. if

$$f(x_3, x_2, x_1, x_2, x_2, x_1) = g(x_1, x_2, x_3)$$

where $f, g \in \mathcal{M}_i$ and $\xi(f) = \{4, 5, 6\}$, then $\xi(g) \cap \{1, 2\} \neq \emptyset$ Then $\mathrm{PCSP}(\mathbb{A}, \mathbb{B})$ is NP-complete.

Proof: Using NP-hardness of "Layered Gap Label Cover" [Dinur, Guruswami, Khot, Regev'05]

- pood enough to prove NP-completeness of $PCSP((\{0,1\};\{001\}),(\{0,1,2\};\{001,002,112\}) \text{ [Diego's talk]}$
- ▶ good enough to prove $PCSP(\mathbb{K}_3, \mathbb{K}_5)$ NP-complete [BKO]
- ▶ **Q:** Is it good enough to prove NP-completeness of every NP-complete PCSP???
- Q: Is there a nicer criterion?
- ▶ for $\mathbb{A} = \mathbb{B}$, ie. Pol(\mathbb{A}, \mathbb{B}) is a clone, the condition is equivalent to satisfying only trivial minor conditions.

this follows from

- \triangleright $P \neq NP$ and the CSP dichotomy theorem or
- ▶ a result about cyclic operations [Barto, Kozik'12]
- Q: ∃ more elementary proof?

- pood enough to prove NP-completeness of $PCSP((\{0,1\};\{001\}),(\{0,1,2\};\{001,002,112\}) \text{ [Diego's talk]}$
- ▶ good enough to prove $PCSP(\mathbb{K}_3, \mathbb{K}_5)$ NP-complete [BKO]
- ▶ **Q:** Is it good enough to prove NP-completeness of every NP-complete PCSP???
- Q: Is there a nicer criterion?
- ▶ for $\mathbb{A} = \mathbb{B}$, ie. Pol(\mathbb{A}, \mathbb{B}) is a clone, the condition is equivalent to satisfying only trivial minor conditions.

this follows from

- \triangleright $P \neq NP$ and the CSP dichotomy theorem or
- ▶ a result about cyclic operations [Barto, Kozik'12]
- Q: ∃ more elementary proof?

Thank you for your patience!