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This column gives a brief survey of current research on the complexity of the constraint satisfaction problem
(CSP) over fixed constraint languages.

1. INTRODUCTION
The Constraint Satisfaction Problem (CSP) provides a common framework for express-
ing a wide range of both theoretical and real-life combinatorial problems [Rossi et al.
2006]. One solves an instance of CSP by assigning values to the variables so that the
constraints are satisfied.

In this column I describe some dramatic recent progress in our understanding of the
computational complexity of CSP over a fixed constraint language. This restricted
framework is still broad enough to include many NP-complete problems, yet it is nar-
row enough to potentially allow a complete classification of all such CSP problems.

One particularly important achievement is the understanding of what makes a prob-
lem in this class computationally easy or hard. It is not surprising that hardness comes
from lack of symmetry. However, usual objects capturing symmetry, automorphisms (or
endomorphisms) and their groups (or semigroups), are not sufficient in this context. It
turned out that the complexity of CSP is determined by more general symmetries:
polymorphisms and their clones.

My aim in this column is to introduce the basics of this exciting area and high-
light selected deeper results, in a way that is understandable to readers with a basic
knowledge of computational complexity (see [Papadimitriou 1994; Arora and Barak
2009]). The presentation of the material is based on my talk “Universal algebra and
the constraint satisfaction problem” delivered at the Association of Symbolic Logic
North American Annual Meeting held in Boulder, Colorado, in 2014. A more detailed
version of this column is being prepared for the Bulletin of Symbolic Logic.

2. CSP OVER A FIXED CONSTRAINT LANGUAGE
A constraint – such as R(x3, x1, x4) – restricts the allowed values for a tuple of variables
– in this case (x3, x1, x4) – to be an element of a particular relation on the domain –
in this case R ✓ D

3.1 By an n-ary relation R on a domain D we mean a subset of the
n-th cartesian power D

n. It is sometimes convenient to work with the corresponding
predicate which is a mapping from D

n to {true, false} specifying which tuples are in R.
We will use both formalism, so e.g. (a, b, c) 2 R and R(a, b, c) both mean that the triple
(a, b, c) 2 D

3 is from the relation R.
An instance of CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common domain D and x, y, z, w

are variables. A mapping f assigning values from the domain to variables is a solution

1There are also different types of constraints considered in the literature, see e.g. Chapter 7 in [Rossi et al.
2006].
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if it satisfies all the constraints, that is, in our example,
R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

Three basic computational problems associated with an instance are the following:
— Satisfiability. Does the given instance have a solution? (A related problem, the

search problem, is to find some solution if at least one solution exists.)
— Optimization. Even if the instance has no solution, find an optimal assignment,

i.e., one that satisfies the maximum possible number of constraints. (Approximation
algorithms are extensively studied, where the aim is, for example, to find an assign-
ment that satisfies at least 80% of the number of constraints satisfied by an optimal
assignment.)

— Counting. How many solutions does the given instance have? (This problem also
has an approximation version: approximate counting.)

2.1. Satisfiability over a fixed constraint language
Even the easiest of the problems, satisfiability, is computationally hard: It contains
many NP-complete problems including, e.g., 3-SAT (see Example 2.2). However, certain
natural restrictions to CSP satisfiability ensure tractability. The main types of restric-
tions that have been studied are structural restrictions, which limit how constraints
interact, and language restrictions, which limit the choice of constraint relations.

In this column, I focus just on satisfiability problems with language restrictions.
Please see [Živný 2012] for optimization problems and a generalization to valued CSPs,
[Håstad 2007] for approximation, [Cai and Chen 2012] for counting, and [Bodirsky
2008] for a generalization to infinite domains.

Definition 2.1. A constraint language, D, is a set of relations on a common finite
domain, D. We use CSP(D) to denote the set of CSP satisfiability problems whose
relations are drawn from D.

2.2. Examples
Example 2.2. An instance of the standard NP-complete problem, 3-SAT, is a

Boolean formula in conjunctive normal form with exactly three literals per clause.
For example, the formula,

' = (x1 _ ¬x2 _ x3) ^ (¬x4 _ x5 _ ¬x1) ^ (¬x1 _ ¬x4 _ ¬x3)

is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false, satisfies
'.) 3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k 2 {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .

For example, the above formula ' corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem where each
clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each k � 3. On
the other hand, 2-SAT is solvable in polynomial time, and is in fact complete for the
complexity class NL (non-deterministic logarithmic space).

Example 2.3. HORN-3-SAT is a restricted version of 3-SAT, where each clause
may have at most one positive literal. This problem is equivalent to CSP(DHornSAT)
for DHornSAT = {S011, S101, S110, S111} (or just DHornSAT = {S011, S111}). HORN-3-SAT is
solvable in polynomial time, in fact, it is a P-complete problem.
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Example 2.4. For a fixed natural number k, the k-COLORING problem is to de-
cide whether it is possible to assign colors {1, 2, . . . , k} to vertices of an input graph in
such a way that adjacent vertices receive different colors. This problem is equivalent
to CSP(DkCOLOR), where Dk = {1, 2, . . . , k} and DkCOLOR = {6=k} consists of a single
relation – the binary inequality relation 6=k= {(a, b) 2 D

2
k : a 6= b}.

Indeed, given an instance of CSP(D), we can form a graph whose vertices are the
variables and edges correspond to the binary constraints (that is, x has an edge to y iff
the instance contains the constraint x 6=k y). It is easily seen that the original instance
has a solution if and only if the obtained graph is k-colorable. The translation in the
other direction is similar.

The k-COLORING problem is NP-complete for k � 3. 2-COLORING is equivalent
to deciding whether an input graph is bipartite. It is solvable in polynomial time, in
fact, it is an L-complete problem (where L stands for logarithmic space) by a celebrated
result of [Reingold 2008].

Example 2.5. Let p be a prime number. An input of 3-LIN(p) is a system of linear
equations over the p-element field GF(p), where each equation contains 3 variables,
and the question is whether the system has a solution. This problem is equivalent to
CSP(D), where D3LINp = GF(p) and D3LINp consists of all affine subspaces of GF(p)

3 of
dimension 2 or 3:

D3LINp = {Rabcd : a, b, c, d 2 GF(p)}, , where Rabcd = {(x, y, z) 2 GF(p)
3
: ax+by+cz = d} .

This problem is solvable in polynomial time, e.g. by Gaussian elimination. It is com-
plete for a somewhat less familiar class ModpL.

Example 2.6. An instance of the s, t-connectivity problem, STCON, is a directed
graph and two vertices s, t. The question is whether there exists a directed path from
s to t.

A closely related (but not identical) problem is CSP(DSTCON), where DSTCON = {0, 1}
and DSTCON = {C0, C1,}, C0 = {0}, C1 = {1}, = {(0, 0), (0, 1), (1, 1)}. Indeed, given
an instance of CSP(DSTCON) we form a directed graph much as we did in Example 2.4
and label some vertices 0 or 1 according to the unary constraints. Then the original
instance has a solution if and only if there is no directed path from a vertex labeled 1
to a vertex labeled 0. Thus CSP(DSTCON) can be solved by invoking the complement of
STCON, the s, t-non-connectivity problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By the
Immerman-Szelepcsényi theorem [Immerman 1988; Szelepcsényi 1988] both problems
are NL-complete.

In the same way, the s, t-connectivity problem for undirected graphs is closely related
to CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=}. These problems
are L-complete by [Reingold 2008].

2.3. The dichotomy conjecture
The most fundamental problem in the area was formulated in the landmark pa-
per [Feder and Vardi 1998].

CONJECTURE 2.7 (THE DICHOTOMY CONJECTURE). For every finite2 constraint
language D, the problem CSP(D) is in P or is NP-complete.

2It is conjectured in [Bulatov et al. 2005] that the dichotomy remains true without the finiteness assumption.
Namely, the local-global conjecture states that CSP(D) is in P (NP-complete) whenever CSP(D0) is in P (NP-
complete) for every (some) finite D0 ✓ D.
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Recall that if P 6= NP, then there are problems of intermediate complexity [Ladner
1975]. Feder and Vardi argued that CSPs over a fixed constraint language is a good
candidate for a largest natural class of problems with P versus NP-complete dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy theo-
rem for all languages over the two-element domain [Schaefer 1978] and the dichotomy
theorem for languages consisting of a single binary symmetric relation [Hell and
Nešetřil 1990].

Feder and Vardi have identified two sources of polynomial-time solvability and made
several important contributions toward understanding these sources. In particular,
they observed that the known polynomial cases were tied to algebraic closure proper-
ties and asked whether polynomial solvability for CSP can always be explained in such
a way. Subsequent papers have shown that this is indeed the case and this connection
to algebra brought the area to another level.

The algebraic approach is outlined in section 3 and some fruits of the theory dis-
cussed in section 4.

2.4. Alternative views
Note that a constraint language D with domain D, D = (D;R1, R2, . . . ), is exactly a
relational structure, or equivalently relational database, with universe D.

Recall that a conjunctive query over the database D is an existential sentence whose
quantifier-free part is a conjunction of atoms. CSP(D) is exactly the problem of deciding
whether D satisfies a given conjunctive query. For example, the instance

R(x), S(y, y, z), T (y, w)

has a solution if and only if the sentence
(9x, y, z, w 2 D) R(x) ^ S(y, y, z) ^ T (y, w)

is true in D.
From this perspective, it is natural to ask what happens if we allow some other com-

bination of logical connectives {9, 8,^,_,¬,=, 6=}. It turns out that out of the 27 cases
only 3 are interesting (the other cases either reduce to these, or are almost always easy
or hard by known results): {9,^} which is CSP, {9, 8,^} which is so called quantified
CSP, and {9, 8,^,_}. The complexity of quantified CSP is also an active research area
[Chen 2012] with possible trichotomy P, NP-complete or Pspace-complete. Recently, a
tetrachotomy was obtained for the last choice [Madelaine and Martin 2011] – for every
D, the corresponding problem is either in P, NP-complete, co-NP-complete, or Pspace-
complete.

The CSP over a fixed language can also be formulated as the homomorphism prob-
lem between relational structures with a fixed target structure [Feder and Vardi 1998].
The idea of the translation is shown in Examples 2.4, 2.6.

3. UNIVERSAL ALGEBRA IN CSP
If a computational problem A can simulate (in some sense) another problem B, then A
is at least as hard as B. This simple idea is widely used in computational complexity;
for instance, NP-completeness is often shown by a gadget reduction of a known NP-
complete problem to the given one. A crucial fact for the algebraic theory of CSP is that
so called primitive positive (pp-, for short) interpretation between constraint languages
gives such a reduction between corresponding CSPs (more precisely, if D pp-interprets
E , then CSP(E) is reducible to CSP(D)). Pp-interpretations have been, indirectly, the
main subject of universal algebra for the last 80 years!

The algebraic theory of CSPs was developed in a number of papers including [Jeav-
ons et al. 1997; Jeavons 1998; Bulatov et al. 2005; Larose and Tesson 2009]. The view-
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point taken here is close to [Bodirsky 2008]. All results in this section come from these
sources unless stated otherwise.

To simplify formulations, all constraint languages are assumed to contain finitely
many relations, all of them nonempty. By a reduction we mean a logarithmic space
reduction (although first-order reductions are often possible under additional weak
assumptions).

3.1. Primitive positive interpretations
An important special case of pp-interpretability is pp-definability.

Definition 3.1. Let D, E be constraint languages on the same domain D = E. We say
that D pp-defines E (or E is pp-definable from D) if each relation in E can be defined by
a first order formula which only uses relations in D, the equality relation, conjunction
and existential quantification.

THEOREM 3.2. If D pp-defines E , then CSP(E) is reducible to CSP(D).

Example 3.3. Let R be an arbitrary ternary relation on a domain D. Consider the
relations on D defined by

S(x, y) iff (9z)R(x, y, z) ^R(y, y, x), T (x, y) iff R(x, x, x) ^ (x = y) ,

where the existential quantification is understood over D. The relations S and T are
defined by pp-formulae, therefore the constraint language D = {R} pp-defines the
constraint language E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable for
each quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these variables.
This way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original instance
does.

This simple theorem provides a quite powerful tool for comparing CSPs over dif-
ferent languages on the same domain. A more powerful tool, which can also be used
to compare languages with different domains, is pp-interpretability. Informally, a con-
straint language D pp-interprets E , if the domain of E is a pp-definable relation (from
D) modulo a pp-definable equivalence, and the relations of E (viewed, in a natural way,
as relations on D) are also pp-definable from D.3 Formally:

Definition 3.4. Let D, E be constraint languages. We say that D pp-interprets E if
there exists a natural number n, F ✓ D

n, and an onto mapping f : F ! E such that D
pp-defines

— the relation F ,
— the f -preimage of the equality relation on E, and
— the f -preimage of every relation in E ,

3This is the classical notion of interpretation from model theory restricted to pp-formulas.
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where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation f

�1(S)
on D defined by
f

�1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk) iff S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk))

THEOREM 3.5. If D pp-interprets E , then CSP(E) is reducible to CSP(D).
Pp-interpretability is a reflexive and transitive relation on the class of constraint

languages. By identifying equivalent languages, i.e. languages which mutually pp-
interpret each other, we get a partially ordered set, the pp-interpretability poset. The-
orem 3.5 then says that the “higher” we are in the poset the “easier” CSP we deal
with. 3-SAT is terribly hard – its constraint language is the least element of this poset.
Surprisingly, this is “almost” the case for all known NP-complete CSPs! For a precise
formulation we need a reduction described in the following subsection.

3.2. Cores and singleton expansions
Let D be a constraint language on a finite set D. A mapping f : D ! D is called an
endomorphism if it preserves every relation D, that is, f(R) := {f(a) : a 2 R} ✓ R for
every R 2 D.

THEOREM 3.6. Let D be a constraint language and f an endomorphism of D. Then
CSP(D) is reducible to CSP(f(D)) and vice versa, where f(D) is a constraint language
with domain f(D) defined by f(D) = {f(R) : R 2 D}.

A language D is a core if every endomorphism of D is a bijection. It is not hard to
show that if f is an endomorphism of a constraint language D with minimal range,
then f(D) is a core. Moreover, this core is unique up to isomorphism, therefore we
speak about the core of D.

An important fact is that we can add all singleton unary relations to a core constraint
language without increasing the complexity of its CSP:

THEOREM 3.7. Let D be a core constraint language and E = D[
S

a2D Ca, where Ca

denotes the unary relation Ca = {a}. Then CSP(E) is reducible to CSP(D).
We will call constraint languages containing all singletons idempotent. Note that an

idempotent constraint language is automatically a core as the only endomorphism is
the identity. By Theorems 3.6, 3.7, CSP over D is reducible to CSP over the singleton
expansion of the core of D and vice versa. It is therefore enough to study CSPs over
idempotent constraint languages.

An interesting consequence of these reductions is that the search problem for
CSP(D) is solvable in polynomial time whenever CSP(D) is. The idea is to gradually
guess values for variables using the unary singleton constraints.

3.3. Tractability conjecture
Now we return to the pp-interpretability poset. Recall that “higher” in the poset means
“easier” CSP and that 3-SAT corresponds to the least (the hardest) element. When we
restrict to idempotent constraint languages (which we can do by the previous discus-
sion), all known NP-complete CSPs are at the bottom of the poset. Bulatov, Jeavons
and Krokhin conjectured that this is not a coincidence.4

CONJECTURE 3.8 (TRACTABILITY CONJECTURE). If an idempotent constraint lan-
guage D does not pp-interpret (the language of) 3-SAT, then CSP(D) is solvable in poly-
nomial time.

4Similar hardness results and conjectures are formulated for other computational/descriptive complexity
classes.
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This conjecture is also known as the algebraic dichotomy conjecture because many
equivalent formulations, including the original one, are algebraic.

3.4. Algebraic side
The link between relations and operations is provided by a natural notion of compat-
ibility. An n-ary operation f on a finite set D (that is, a mapping f : D

n ! D) is
compatible with a k-ary relation R ✓ D

k if f applied component-wise to any n-tuple of
elements of R gives an element of R. In more detail, whenever (aij) is an n⇥ k matrix
such that every row is in R, then f applied to the columns gives a k-tuple which is in
R as well.

We say that an operation f on D is a polymorphism of a constraint language D if f
is compatible with every relation in D. Note that unary polymorphism is the same as
endomorphism. Endomorphisms can be thought of as symmetries, polymorphisms are
then symmetries of higher arity.

The set of all polymorphisms of D will be denoted by D. This algebraic object is
always a concrete clone meaning that it contains all projection operations (that is, op-
erations of the form ⇡

n
i (x1, . . . , xn) = xi, also known as dictators) and is closed under

composition. Therefore we refer to D as the clone of polymorphims of D.
The clone of polymorphisms controls pp-definability in the sense of the following old

result [Geiger 1968; Bodnarčuk et al. 1969].
THEOREM 3.9. Let D, E be constraint languages with D = E. Then D pp-defines E

if and only if D ✓ E.5

In view of this result, Theorem 3.2 says that the complexity of CSP(D) only depends
on the clone D. More precisely, if D ✓ E, then CSP(E) is reducible to CSP(D). Moreover,
the proof of Theorem 3.9 gives a generic pp-definition of E from D, which gives us a
generic reduction of CSP(E) to CSP(D).

Example 3.10. It is a nice exercise to show that the language D3SAT of 3-SAT has
no polymorphisms but projections. This means that D3SAT pp-defines every constraint
language with domain {0, 1}.

Finally, we very briefly discuss the algebraic counterpart to pp-interpretability. The
construction in Definition 3.4 corresponds to a similar construction on clones. An al-
ternative viewpoint, which is missing on the relational side, follows from the foun-
dation stone of universal algebra, the Birkhoff HSP theorem [Birkhoff 1935]: pp-
interpretability depends on the identities (i.e. universally quantified equations) satis-
fied by polymorphisms. To illustrate this vague claim, we state one of many (e.g., [Tay-
lor 1977; Hobby and McKenzie 1988; Maróti and McKenzie 2008; Kun and Szegedy
2009; Siggers 2010]) characterizations of the conjectured borderline between P and
NP-complete CSPs [Barto and Kozik 2012a].

THEOREM 3.11. Let D be an idempotent constraint language and p > |D| a prime.
Then the following are equivalent.

— D does not interpret the language of 3-SAT.
— D contains an operation t (equivalently, D has a polymorphism t) of arity p such that

(8x1, . . . , xp 2 D) t(x1, . . . , xp) = t(x2, . . . , xp, x1) .

Even if the tractability conjecture or the dichotomy conjecture (or finer classification
conjectures) turns out to be incorrect, we know that classes of CSPs in P, L, NL, . . . can
be characterized by identities concerning polymorphisms.

5Moreover, every concrete clone is the clone of polymorphisms of some (possibly infinite) constraint language.
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4. RESULTS
Universal algebra serves the investigation in two ways: as a toolbox containing heavy
hammers (such as [Hobby and McKenzie 1988]) and as a guideline for identifying in-
teresting intermediate cases, which are hard to spot from the purely relational per-
spective. Major results include the following.

— The dichotomy theorem of Schaefer for CSPs over a two-element domain was gener-
alized to a three-element domain [Bulatov 2011]. A simplification of this result and
a generalization to four-element domains was announced by Marković et al.

— The dichotomy theorem of Hell and Nešetřil for CSPs over undirected graphs was
generalized to digraphs with no sources or sinks [Barto et al. 0809].

— The dichotomy conjecture was proved for all constraint languages containing all
unary relations [Bulatov 2011] (a simpler proof is in [Barto 2011]).

Notably, all known tractable cases are solvable by a combination of two basic algo-
rithms, or rather algorithmic principles – local consistency, and the “few subpowers”
algorithm. It is another significant success of the algebraic approach that the applica-
bility of these principles is now understood.

4.1. Local consistency
The CSP over some constraint languages can be decided in polynomial time by con-
straint propagation algorithms, or, in other words, by enforcing local consistency. Such
CSPs are said to have bounded width.

This notion comes in various versions and equivalent forms. We refer to [Feder and
Vardi 1998] for formalizations using Datalog programs and games, to [Bulatov et al.
2008] for description using dualities, and to [Bulatov 2011; Barto 2014] for a notion
suitable for infinite languages.

We informally sketch one possible definition. Let k  l be positive integers. The (k, l)-
algorithm derives the strongest possible constraints on k variables by considering l

variables at a time. If a contradiction is found, the algorithm answers “no (solution)”,
otherwise it answers “yes”. These algorithms work in polynomial time (for fixed k, l)
and “no” answers are always correct. A constraint language D (or CSP(D)) has width
(k, l), if “yes” answers are correct for every instance of CSP(D). If D has width (k, l) for
some k, l, we say that D has bounded width.

As an example, we consider the constraint language D2COLOR and the instance

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

The (2, 3)-algorithm can certify that this instance has no solution as follows:

— We consider the variables x1, x2, x3. Using x1 6= x2, x2 6= x3 we derive x1 = x3.
— We consider x1, x3, x4. Using x3 6= x4 and the already derived constraint x1 = x3 we

derive x1 6= x4.
— We consider x1, x4, x5 and using x1 6= x4, x4 6= x5 and x5 6= x1 we derive a contradic-

tion.

In fact, 2-COLORING has width (2, 3), that is, such reasoning finds a contradiction
for every unsatisfiable instance. Other examples of bounded width problems include
HORN-3-SAT and 2-SAT.

In [Feder and Vardi 1998], the authors proved that problems 3-LIN(p) (and more gen-
erally, similar problems 3-LIN(M) over finite modules) do not have bounded width and
conjectured that linear equations are essentially the only obstacle for having bounded
width. An algebraic formulation was given by [Larose and Zádori 2007]. They proved
that analogues of results in section 3 hold for bounded width, therefore no problem
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which pp-interprets the language of 3-LIN(M) has bounded width, and conjectured
that the converse is also true. After a sequence of partial results [Kiss and Valeriote
2007; Carvalho et al. 2009; Barto and Kozik 2009; Bulatov 2006], the conjecture was
eventually confirmed in [Barto and Kozik 2014]6 and independently in [Bulatov 2009].

THEOREM 4.1. An idempotent constraint language D has bounded width if and only
if D does not interpret the language of 3-LIN(M) for a finite module M.7

4.2. Few subpowers
Gaussian elimination not only solves 3-LIN(p), it also describes all the solutions in the
sense that the algorithm can output a small (polynomially large) set of points in GF(p)n

so that the affine hull of these points is equal to the solution set of the original instance.
A sequence of papers [Feder and Vardi 1998; Bulatov 2002; Bulatov and Dalmau 2006;
Dalmau 2006] culminating in [Idziak et al. 2007; Berman et al. 2009] pushed this idea,
in a way, to its limit.

We need some terminology to state the result. Let D be a constraint language and D
its clone of polymorphism. A relation on D is a subpower of D if it is pp-definable from
D. Note that the set of solutions of any instance of CSP(D) can be viewed as a subpower
of D. Now D has few subpowers if each subpower can be obtained as a closure under
polymorphisms of a small set (polynomially large with respect to the arity).8

THEOREM 4.2. Let D be an idempotent constraint language. If D has few subpowers,
then CSP(D) can be solved in polynomial time.

5. CONCLUSION
We have seen that the complexity of the satisfiability problem for CSP over a fixed
constraint language depends on “higher arity symmetries” – polymorphisms of the
language. (We have only discussed languages with finite domains. The algebraic theory
extends to interesting subclasses of infinite domain CSP [Bodirsky 2008]). Significant
progress has been achieved using this insight, but the main problem, the dichotomy
conjecture, is still open.

A similar approach can be applied to other variants of CSP over a fixed constraint
language. In two of them, the main goal has been reached: the dichotomy for the
counting problem was proved in [Bulatov 2013] (substantially simplified in [Dyer and
Richerby 2013]) and for the robust satisfiability problem in [Barto and Kozik 2012b]. A
generalization of the theory for the optimization problem and valued CSPs was given
in [Cohen et al. 2013], and some links to universal algebra are emerging from research
in the area of approximation algorithms (such as [Raghavendra 2008]).

Is this approach only applicable to CSPs over fixed languages? Or are we merely
seeing a piece of a bigger theory?
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Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H-coloring. J. Combin. Theory Ser. B 48, 1
(1990), 92–110.

David Hobby and Ralph McKenzie. 1988. The structure of finite algebras. Contemporary Mathematics,
Vol. 76. American Mathematical Society, Providence, RI. xii+203 pages.
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