On the complexity of symmetric Promise CSP

Diego Battistelli joint work with Libor Barto

Department of Algebra, Charles University, Prague

SSAOS, Karolinka, 2 Sep 2019

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

< <p>A < </p>

Diego Battistelli

On the complexity of symmetric Promise CSP

SSAOS 2019 1 / 18

Fix $\mathbb{A} = (A; R, S, ...)$ a finite relational structure on the domain A.

Definition ($CSP(\mathbb{A})$, Decision version)

Input: a pp-sentence ϕ , e.g. $(\exists x_1 \exists x_2 \dots) R(x_1) \land S(x_1, x_1, x_2) \land \dots$ **Answer Yes:** ϕ is satisfied in \mathbb{A} **Answer No:** ϕ is not satisfied in \mathbb{A}

Search Version: Find a satisfying assignment. (Search version is as hard as Decision version)

→ ∃ →

Examples of CSP

- $\mathbb{K}_3 = (\{1, 2, 3\}; N)$ where $N = \{1, 2, 3\}^2 \setminus \{(1, 1), (2, 2), (3, 3)\}$ CSP(\mathbb{K}_3) is the 3-coloring problem for graphs
- $\mathbb{NAE} = (\{0,1\}; NAE)$ where $NAE = \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}$ $\mathrm{CSP}(\mathbb{NAE})$: given a 3-uniform hypergraph, find a 2-coloring such that no hyperedge is monochromatic

 1-IN-3 = ({0,1}; 1-in-3) where 1-in-3 = {(0,0,1), (0,1,0), (1,0,0)} CSP(1-IN-3): given a 3-uniform hypergraph, find a 2-coloring in which exactly one vertex in each hyperedge receives 1

These are all well known NP-hard problems

Polymorphism of A: a map $f : A^n \longrightarrow A$ compatible with the relations of A

f compatible with R: f applied component-wise to tuples in R is a tuple in R

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R$$

$$\stackrel{\cap}{=} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

 $Pol(\mathbb{A})$: the set of all polymorphisms of \mathbb{A} (it is a "clone")

• • • • • • • • • • • •

Polymorphism of A: a map $f : A^n \longrightarrow A$ compatible with the relations of A

f compatible with R: f applied component-wise to tuples in R is a tuple in R

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R$$

$$\stackrel{\cap}{=} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

 $Pol(\mathbb{A})$: the set of all polymorphisms of \mathbb{A} (it is a "clone")

Polymorphism of A: a map $f : A^n \longrightarrow A$ compatible with the relations of A

f compatible with R: f applied component-wise to tuples in R is a tuple in R

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R$$

$$\stackrel{\cap}{=} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

 $Pol(\mathbb{A})$: the set of all polymorphisms of \mathbb{A} (it is a "clone")

What is a Promise CSP (PCSP)?

Fix two similar relational structures:

- $\mathbb{A} = (A; R^{\mathbb{A}}, S^{\mathbb{A}}, \ldots)$
- $\mathbb{B} = (B; R^{\mathbb{B}}, S^{\mathbb{B}}, \ldots)$
- there is a homomorphism $\mathbb{A} \longrightarrow \mathbb{B}$

Definition ($PCSP(\mathbb{A}, \mathbb{B})$, Decision version)

Input: a pp-sentence ϕ **Answer Yes:** ϕ is satisfied in \mathbb{A} **Answer No:** ϕ is not satisfied in \mathbb{B}

Search Version: given an input which is satisfiable in \mathbb{A} find a satisfying assignment in \mathbb{B} .

PCSP(K₃, K₄): given a 3-colorable graph, find a 4-coloring such that no edge is monochromatic (it is NP-hard [Brakensiek, Guruswami '16])

 PCSP(1-IN-3, NAE): given a 3-uniform hypergraph which admits a 2-coloring in which exactly one vertex per hyperedge is colored with the color 1, find a 2-coloring such that no hyperedge is monochromatic (it is in P [Brakensiek, Guruswami '18])

Polymorphism of (\mathbb{A}, \mathbb{B}) : a map $f : A^n \longrightarrow B$ compatible with any relation pair $(R^{\mathbb{A}}, R^{\mathbb{B}})$

f compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied component-wise to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R^{\mathbb{B}}$$
$$\stackrel{\bigcap}{\longrightarrow} \qquad \bigcap \qquad \bigcap \qquad \bigcap \qquad B^{\mathbb{A}} \qquad B^{\mathbb{A}} \qquad B^{\mathbb{A}}$$

 $Pol(\mathbb{A}, \mathbb{B})$: the set of all polymorphisms of (\mathbb{A}, \mathbb{B}) (it is a "minion")

Polymorphism of (\mathbb{A}, \mathbb{B}) : a map $f : A^n \longrightarrow B$ compatible with any relation pair $(R^{\mathbb{A}}, R^{\mathbb{B}})$

f compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied component-wise to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R^{\mathbb{B}}$$

$$\stackrel{\cap}{\longrightarrow} \qquad \stackrel{\cap}{\longrightarrow} \qquad \stackrel{\cap}{\longrightarrow} \qquad R^{\mathbb{A}} \qquad R^{\mathbb{A}}$$

 $Pol(\mathbb{A},\mathbb{B})$: the set of all polymorphisms of (\mathbb{A},\mathbb{B}) (it is a "minion")

Polymorphism of (\mathbb{A}, \mathbb{B}) : a map $f : A^n \longrightarrow B$ compatible with any relation pair $(R^{\mathbb{A}}, R^{\mathbb{B}})$

f compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied component-wise to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

$$\begin{pmatrix} f & (a_{1,1} & a_{1,2} & \dots & a_{1,n}) \\ f & (a_{2,1} & a_{2,2} & \dots & a_{2,n}) \\ \vdots & \vdots & & \vdots \\ f & (a_{m,1} & a_{m,2} & \dots & a_{m,n}) \end{pmatrix} \in R^{\mathbb{B}}$$
$$\stackrel{\cap}{\underset{R^{\mathbb{A}}}{\longrightarrow}} R^{\mathbb{A}} = R^{\mathbb{A}}$$

 $Pol(\mathbb{A}, \mathbb{B})$: the set of all polymorphisms of (\mathbb{A}, \mathbb{B}) (it is a "minion")

 $\operatorname{Pol}(\mathbb{A})$ and $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ determine the complexity of $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$, respectively.

Theorem (For CSP - Jeavons'98)

If $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ then $\operatorname{CSP}(\mathbb{B})$ is not harder than $\operatorname{CSP}(\mathbb{A})$

Theorem (For PCSP - Brakensiek, Guruswami '16)

If $Pol(\mathbb{A}, \mathbb{B}) \subseteq Pol(\mathbb{A}', \mathbb{B}')$ then $PCSP(\mathbb{A}', \mathbb{B}')$ is not harder than $PCSP(\mathbb{A}, \mathbb{B})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\operatorname{Pol}(\mathbb{A})$ and $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ determine the complexity of $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$, respectively.

Theorem (For CSP - Jeavons'98)

If $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ then $\operatorname{CSP}(\mathbb{B})$ is not harder than $\operatorname{CSP}(\mathbb{A})$

Theorem (For PCSP - Brakensiek, Guruswami '16)

If $Pol(\mathbb{A}, \mathbb{B}) \subseteq Pol(\mathbb{A}', \mathbb{B}')$ then $PCSP(\mathbb{A}', \mathbb{B}')$ is not harder than $PCSP(\mathbb{A}, \mathbb{B})$

 $\operatorname{Pol}(\mathbb{A})$ and $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ determine the complexity of $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$, respectively.

Theorem (For CSP - Jeavons'98)

If $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ then $\operatorname{CSP}(\mathbb{B})$ is not harder than $\operatorname{CSP}(\mathbb{A})$

Theorem (For PCSP - Brakensiek, Guruswami '16)

If $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \subseteq \operatorname{Pol}(\mathbb{A}', \mathbb{B}')$ then $\operatorname{PCSP}(\mathbb{A}', \mathbb{B}')$ is not harder than $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$

What are we studying? The complexity of $PCSP(1-\mathbb{IN}-3, \mathbb{R})$ where $\mathbb{R} = (\{0, 1, 2\}; R)$ and R is a ternary relation **Fact:** WLOG R is symmetric

Example: If $R = NAE = \{ \overrightarrow{001}, \overrightarrow{110} \}$ (where $\{ \overrightarrow{001} \} = \{ (0, 0, 1), (0, 1, 0), (1, 0, 0) \}$) then we know that $PCSP(1-\mathbb{IN}-3, \mathbb{R})$ is in P

Fact: If \mathbb{R} has an homomorphism to \mathbb{S} , then $PCSP(1-IN-3, \mathbb{S})$ is easier than $PCSP(1-IN-3, \mathbb{R})$. Then

- we can draw the poset of all the possible \mathbb{R} ;
- the higher the structure is, the simpler the PCSP is.

A (10) > A (10) > A (10)

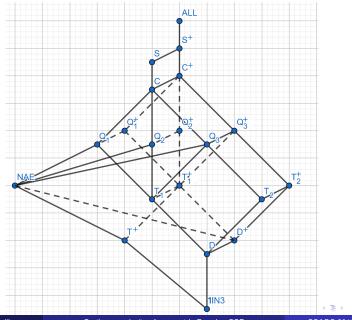
What are we studying? The complexity of $PCSP(1-\mathbb{IN}-3, \mathbb{R})$ where $\mathbb{R} = (\{0, 1, 2\}; R)$ and R is a ternary relation **Fact:** WLOG R is symmetric

Example: If $R = NAE = \{ 001, 110 \}$ (where $\{ 001 \} = \{ (0, 0, 1), (0, 1, 0), (1, 0, 0) \}$) then we know that PCSP(1-IN-3, \mathbb{R}) is in P

- Fact: If \mathbb{R} has an homomorphism to \mathbb{S} , then $PCSP(1-\mathbb{IN}-3,\mathbb{S})$ is easier than $PCSP(1-\mathbb{IN}-3,\mathbb{R})$. Then
 - we can draw the poset of all the possible \mathbb{R} ;
 - the higher the structure is, the simpler the PCSP is.

.

Poset



Diego Battistelli

On the complexity of symmetric Promise CSP

▲ ■ ▶ ■ のQC SSAOS 2019 10 / 18

Done:

- PCSP(1-IN-3, NAE) is in P [Brakensiek, Guruswami '18]
- $\mathrm{PCSP}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{D})$ is NP-hard [Kazda '19 Unpublished]
- $PCSP(1-IN-3, T_2)$ is in P [Barto, B. '19 Unpublished]
- $PCSP(1-IN-3, T_1)$ is NP-hard [Barto, B. '19 Unpublished] $T_1 = \{001, 002, 112\}$
- $\mathrm{PCSP}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}^+)$ is NP-hard [Barto, B., Few days ago] $T^+ = \{ \begin{array}{l} \overleftarrow{001}, \begin{array}{l} \overleftarrow{002}, \begin{array}{l} \overleftarrow{012} \\ 0 \end{array} \} \}$

Work in progress:

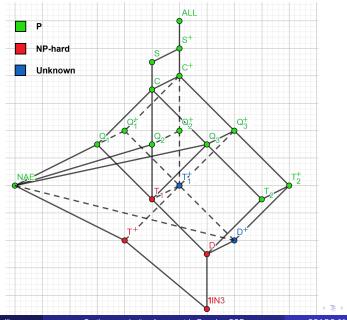
- $PCSP(1-\mathbb{IN}-3, \mathbb{D}^+)$
- $PCSP(1-\mathbb{IN}-3, \mathbb{T}_1^+)$

 $D^{+} = \{ \begin{array}{c} \overleftarrow{\mathbf{0}} \mathbf{1}, \overleftarrow{\mathbf{1}} \mathbf{2} \} \cup \{ \begin{array}{c} \overleftarrow{\mathbf{0}} \mathbf{1} \\ \mathbf{0} \mathbf{1} \end{bmatrix} \}$ $T_{1}^{+} = \{ \begin{array}{c} \overleftarrow{\mathbf{0}} \mathbf{1}, \overleftarrow{\mathbf{0}} \mathbf{2}, \overleftarrow{\mathbf{1}} \mathbf{2} \} \cup \{ \begin{array}{c} \overleftarrow{\mathbf{0}} \mathbf{1} \\ \mathbf{0} \mathbf{1} \end{bmatrix} \} \cup \{ \begin{array}{c} \mathbf{0} \mathbf{1} \end{bmatrix} \} \}$

 $D = \{001, 112\}$

 $T_2 = \{001, 112, 220\}$

Poset



On the complexity of symmetric Promise CSP

Outline

• PCSP(1-IN-3, \mathbb{T}_2) in P since $T_2 = \{(x, y, z) : x + y + z = 1 \mod 3\}$, so we can use Gaussian elimination in \mathbb{Z}_3

- To show that $PCSP(1-IN-3, T_1)$ is NP-hard we:
 - **)** describe completely Pol(1-IN-3, $T_1)$
 - use an NP-hardness criterion (described in Barto's talk)

 Next: is PCSP(1-IN-3, T₁⁺) NP-hard? It is this problem: given a 3-uniform hypergraph which admits a 2-coloring in which exactly one vertex per hyperedge is colored with the color 1, find a 3-coloring such that if two colors in a hyperedge agree, the third one must be higher

- PCSP(1-IN-3, \mathbb{T}_2) in P since $T_2 = \{(x, y, z) : x + y + z = 1 \mod 3\}$, so we can use Gaussian elimination in \mathbb{Z}_3
- To show that $PCSP(1-\mathbb{IN}-3, \mathbb{T}_1)$ is NP-hard we:
 - **)** describe completely $Pol(1-\mathbb{IN}-3, \mathbb{T}_1)$
 - use an NP-hardness criterion (described in Barto's talk)
- Next: is PCSP(1-IN-3, T₁⁺) NP-hard? It is this problem: given a 3-uniform hypergraph which admits a 2-coloring in which exactly one vertex per hyperedge is colored with the color 1, find a 3-coloring such that if two colors in a hyperedge agree, the third one must be higher

A (10) A (10) A (10)

- PCSP(1-IN-3, \mathbb{T}_2) in P since $T_2 = \{(x, y, z) : x + y + z = 1 \mod 3\}$, so we can use Gaussian elimination in \mathbb{Z}_3
- To show that $PCSP(1-\mathbb{IN}-3, \mathbb{T}_1)$ is NP-hard we:
 - **)** describe completely $Pol(1-\mathbb{IN}-3, \mathbb{T}_1)$
 - use an NP-hardness criterion (described in Barto's talk)
- Next: is PCSP(1-IN-3, T₁⁺) NP-hard? It is this problem: given a 3-uniform hypergraph which admits a 2-coloring in which exactly one vertex per hyperedge is colored with the color 1, find a 3-coloring such that if two colors in a hyperedge agree, the third one must be higher

.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Our aim: to find what exactly is $Pol(1-\mathbb{IN}-3,\mathbb{T}_1)$

• Identifying 1 and 2, we obtain a homomorphism $g : \mathbb{T}_1 \longrightarrow \mathbb{T}_1^*$ where $T_1^* = \{(x, y, z) : x + y + z = 1 \mod 2\}$

• $f \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1)$ induces $f^* = gf \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1^*)$

• $\operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)$ contains only operations that are affine. Namely, if $f \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)^{(n)}$, there is $I_f \subseteq [n]$ such that

$$f(x_1, \dots, x_n) = \begin{cases} \sum_{i \in I_f} x_i & \text{mod } 2, \text{ if } |I_f| \text{ odd} \\ \sum_{i \in I_f} x_i + 1 & \text{mod } 2, \text{ if } |I_f| \text{ even} \end{cases}$$

(In this talk we will discuss only the case $|I_f| \ge 6$ and odd)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Our aim: to find what exactly is $Pol(1-\mathbb{IN}-3,\mathbb{T}_1)$

- Identifying 1 and 2, we obtain a homomorphism $g : \mathbb{T}_1 \longrightarrow \mathbb{T}_1^*$ where $T_1^* = \{(x, y, z) : x + y + z = 1 \mod 2\}$
- $f \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1)$ induces $f^* = gf \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1^*)$
- $\operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)$ contains only operations that are affine. Namely, if $f \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)^{(n)}$, there is $I_f \subseteq [n]$ such that

$$f(x_1, \dots, x_n) = \begin{cases} \sum_{i \in I_f} x_i & \text{mod } 2, \text{ if } |I_f| \text{ odd} \\ \sum_{i \in I_f} x_i + 1 & \text{mod } 2, \text{ if } |I_f| \text{ even} \end{cases}$$

(In this talk we will discuss only the case $|I_f| \ge 6$ and odd)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Our aim: to find what exactly is $Pol(1-\mathbb{IN}-3,\mathbb{T}_1)$

- Identifying 1 and 2, we obtain a homomorphism $g : \mathbb{T}_1 \longrightarrow \mathbb{T}_1^*$ where $T_1^* = \{(x, y, z) : x + y + z = 1 \mod 2\}$
- $f \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1)$ induces $f^* = gf \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1^*)$
- $\operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)$ contains only operations that are affine. Namely, if $f \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)^{(n)}$, there is $I_f \subseteq [n]$ such that

$$f(x_1, \dots, x_n) = \begin{cases} \sum_{i \in I_f} x_i & \text{mod } 2, \text{ if } |I_f| \text{ odd} \\ \sum_{i \in I_f} x_i + 1 & \text{mod } 2, \text{ if } |I_f| \text{ even} \end{cases}$$

(In this talk we will discuss only the case $|I_f| \ge 6$ and odd)

Our aim: to find what exactly is $Pol(1-\mathbb{IN}-3,\mathbb{T}_1)$

- Identifying 1 and 2, we obtain a homomorphism $g : \mathbb{T}_1 \longrightarrow \mathbb{T}_1^*$ where $T_1^* = \{(x, y, z) : x + y + z = 1 \mod 2\}$
- $f \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1)$ induces $f^* = gf \in \text{Pol}(1\text{-}\mathbb{IN}\text{-}3,\mathbb{T}_1^*)$
- $\operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)$ contains only operations that are affine. Namely, if $f \in \operatorname{Pol}(1\text{-}\mathbb{IN}\text{-}3, \mathbb{T}_1^*)^{(n)}$, there is $I_f \subseteq [n]$ such that

$$f(x_1, \dots, x_n) = \begin{cases} \sum_{i \in I_f} x_i & \text{mod } 2, \text{ if } |I_f| \text{ odd} \\ \sum_{i \in I_f} x_i + 1 & \text{mod } 2, \text{ if } |I_f| \text{ even} \end{cases}$$

(In this talk we will discuss only the case $|I_f| \ge 6$ and odd)

A (10) A (10) A (10)

Notation: for $A \subseteq [n]$ we write f(A) meaning $f(x_1, \ldots, x_n)$ where $x_i = 1$ iff $i \in A$.

From what we know about *f**, if |*I_f*| ≥ 6 and odd we can derive that for every *A* ⊆ [*n*],

$$f(A) = \begin{cases} 0, & \text{if } |A \cap I_f| \text{ is even} \\ 1 \text{ or } 2, & \text{if } |A \cap I_f| \text{ is odd} \end{cases}$$

We can show then that there exists k ∈ [n] (that we will call important coordinate) such that if |A ∩ I_f| is odd,

$$f(A) = \begin{cases} 2, & \text{if } k \in A \\ 1, & \text{if } k \notin A \end{cases}$$

イロト イ団ト イヨト イヨト

Notation: for $A \subseteq [n]$ we write f(A) meaning $f(x_1, \ldots, x_n)$ where $x_i = 1$ iff $i \in A$.

• From what we know about f^* , if $|I_f| \ge 6$ and odd we can derive that for every $A \subseteq [n]$,

$$f(A) = \begin{cases} 0, & \text{if } |A \cap I_f| \text{ is even} \\ 1 \text{ or } 2, & \text{if } |A \cap I_f| \text{ is odd} \end{cases}$$

We can show then that there exists k ∈ [n] (that we will call important coordinate) such that if |A ∩ I_f| is odd,

$$f(A) = \begin{cases} 2, & \text{if } k \in A \\ 1, & \text{if } k \notin A \end{cases}$$

Notation: for $A \subseteq [n]$ we write f(A) meaning $f(x_1, \ldots, x_n)$ where $x_i = 1$ iff $i \in A$.

• From what we know about f^* , if $|I_f| \ge 6$ and odd we can derive that for every $A \subseteq [n]$,

$$f(A) = \begin{cases} 0, & \text{if } |A \cap I_f| \text{ is even} \\ 1 \text{ or } 2, & \text{if } |A \cap I_f| \text{ is odd} \end{cases}$$

• We can show then that there exists $k \in [n]$ (that we will call *important coordinate*) such that if $|A \cap I_f|$ is odd,

$$f(A) = \begin{cases} 2, & \text{if } k \in A \\ 1, & \text{if } k \notin A \end{cases}$$

$T_1 = \{ 001, 002, 112 \}$

Example

If $|I_f|$ odd and $k \in I_f$ s.t. $f(\{k\}) = 2$, then k is the *important coordinate* for f.

Fix $A \subseteq I_f$ such that |A| is odd (there is $j \in I_f \setminus A$) and B is arbitrary, then

A D M A A A M M

$T_1 = \{ 001, 002, 112 \}$

A D M A A A M M

- E 🕨

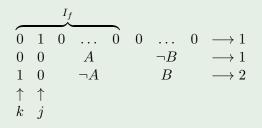
Example

If $|I_f|$ odd and $k \in I_f$ s.t. $f(\{k\}) = 2$, then k is the *important coordinate* for f.

Fix $A \subseteq I_f$ such that |A| is odd (there is $j \in I_f \setminus A$) and B is arbitrary, then

$T_1 = \{ 001, 002, 112 \}$

Example



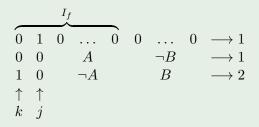
We proved that k is an *important coordinate*.

Similarly: there is one and only one *important coordinate* if $|I_f| \ge 6$. Using this and the criterion explained in Barto's talk, we have that the problem is NP-hard.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$T_1 = \{ 001, 002, 112 \}$

Example



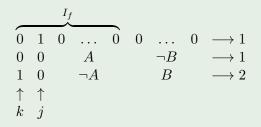
We proved that k is an *important coordinate*.

Similarly: there is one and only one *important coordinate* if $|I_f| \ge 6$. Using this and the criterion explained in Barto's talk, we have that the problem is NP-hard.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$T_1 = \{ 001, 002, 112 \}$

Example



We proved that k is an *important coordinate*.

Similarly: there is one and only one *important coordinate* if $|I_f| \ge 6$. Using this and the criterion explained in Barto's talk, we have that the problem is NP-hard.

< ロ > < 同 > < 回 > < 回 >

Thank you for your attention!

On the complexity of symmetric Promise CSP

SSAOS 2019 18 / 18

-