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What is a CSP?

Fix A = (A;R,S, . . .) a finite relational structure on the domain A.

Definition (CSP(A), Decision version)
Input: a pp-sentence φ, e.g. (∃x1∃x2 . . .)R(x1) ∧ S(x1, x1, x2) ∧ . . .
Answer Yes: φ is satisfied in A
Answer No: φ is not satisfied in A

Search Version: Find a satisfying assignment.
(Search version is as hard as Decision version)
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Examples of CSP

K3 = ({1, 2, 3};N) where N = {1, 2, 3}2 \ {(1, 1), (2, 2), (3, 3)}
CSP(K3) is the 3-coloring problem for graphs

NAE = ({0, 1};NAE) where NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
CSP(NAE): given a 3-uniform hypergraph,

find a 2-coloring such that no hyperedge is
monochromatic

1-IN-3 = ({0, 1}; 1-in-3) where 1-in-3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
CSP(1-IN-3): given a 3-uniform hypergraph,

find a 2-coloring in which exactly one vertex in each
hyperedge receives 1

These are all well known NP-hard problems
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Polymorphisms

Polymorphism of A: a map f : An −→ A
compatible with the relations of A

f compatible with R: f applied component-wise to tuples in R
is a tuple in R

f (a1,1 a1,2 . . . a1,n)
f (a2,1 a2,2 . . . a2,n)

...
...

...
f (am,1 am,2 . . . am,n)



∈ ∈ ∈

R R R

∈ R

Pol(A): the set of all polymorphisms of A (it is a "clone")
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What is a Promise CSP (PCSP)?

Fix two similar relational structures:
A = (A;RA, SA, . . .)

B = (B;RB, SB, . . .)

there is a homomorphism A −→ B

Definition (PCSP(A,B), Decision version)
Input: a pp-sentence φ
Answer Yes: φ is satisfied in A
Answer No: φ is not satisfied in B

Search Version: given an input which is satisfiable in A
find a satisfying assignment in B.
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Examples of PCSP

PCSP(K3,K4): given a 3-colorable graph,
find a 4-coloring such that no edge is
monochromatic (it is NP-hard [Brakensiek, Guruswami ’16])

PCSP(1-IN-3,NAE): given a 3-uniform hypergraph which admits
a 2-coloring in which exactly one vertex per
hyperedge is colored with the color 1,
find a 2-coloring such that no hyperedge is
monochromatic (it is in P [Brakensiek, Guruswami ’18])
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Polymorphisms

Polymorphism of (A,B): a map f : An −→ B
compatible with any relation pair (RA, RB)

f compatible with (RA, RB): f applied component-wise to tuples
in RA is a tuple in RB


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∈ ∈ ∈

RA RA RA
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Pol(A,B): the set of all polymorphisms of (A,B) (it is a "minion")
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Some theory

Pol(A) and Pol(A,B) determine the complexity of CSP(A) and
PCSP(A,B), respectively.

Theorem (For CSP - Jeavons’98)
If Pol(A) ⊆ Pol(B) then CSP(B) is not harder than CSP(A)

Theorem (For PCSP - Brakensiek, Guruswami ’16)
If Pol(A,B) ⊆ Pol(A′,B′) then PCSP(A′,B′) is not harder than
PCSP(A,B)
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Symmetric PCSP

What are we studying? The complexity of PCSP(1-IN-3,R) where
R = ({0, 1, 2};R) and R is a ternary relation
Fact: WLOG R is symmetric

Example: If R = NAE = {001, 110} (where

{001} = {(0, 0, 1), (0, 1, 0), (1, 0, 0)})
then we know that PCSP(1-IN-3,R) is in P

Fact: If R has an homomorphism to S, then PCSP(1-IN-3, S) is easier
than PCSP(1-IN-3,R). Then

we can draw the poset of all the possible R;
the higher the structure is, the simpler the PCSP is.
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Poset

Diego Battistelli On the complexity of symmetric Promise CSP SSAOS 2019 10 / 18



What is done, what to do

Done:
PCSP(1-IN-3,NAE) is in P [Brakensiek, Guruswami ’18]

PCSP(1-IN-3,D) is NP-hard [Kazda ’19 - Unpublished] D = {001, 112}

PCSP(1-IN-3,T2) is in P [Barto, B. ’19 - Unpublished] T2 = {001, 112, 220}

PCSP(1-IN-3,T1) is NP-hard [Barto, B. ’19 - Unpublished] T1 = {001, 002, 112}

PCSP(1-IN-3,T+) is NP-hard [Barto, B., Few days ago] T+ = {001, 002, 012}

Work in progress:

PCSP(1-IN-3,D+) D+ = {001, 112} ∪ {012}

PCSP(1-IN-3,T+
1 ) T+

1 = {001, 002, 112} ∪ {012}
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Poset
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Outline

PCSP(1-IN-3,T2) in P since T2 = {(x, y, z) : x+ y + z = 1
mod 3}, so we can use Gaussian elimination in Z3

To show that PCSP(1-IN-3,T1) is NP-hard we:
1 describe completely Pol(1-IN-3,T1)
2 use an NP-hardness criterion (described in Barto’s talk)

Next: is PCSP(1-IN-3,T+
1 ) NP-hard?

It is this problem: given a 3-uniform hypergraph which admits a
2-coloring in which exactly one vertex per
hyperedge is colored with the color 1,
find a 3-coloring such that if two colors in a
hyperedge agree, the third one must be higher
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PCSP(1-IN-3,T1) T1 = {001, 002, 112}

Our aim: to find what exactly is Pol(1-IN-3,T1)

Identifying 1 and 2, we obtain a homomorphism g : T1 −→ T∗1
where T ∗1 = {(x, y, z) : x+ y + z = 1 mod 2}

f ∈ Pol(1-IN-3,T1) induces f∗ = gf ∈ Pol(1-IN-3,T∗1)

Pol(1-IN-3,T∗1) contains only operations that are affine. Namely, if
f ∈ Pol(1-IN-3,T∗1)(n), there is If ⊆ [n] such that

f(x1, . . . , xn) =

{∑
i∈If xi mod 2, if |If | odd∑
i∈If xi + 1 mod 2, if |If | even

(In this talk we will discuss only the case |If | ≥ 6 and odd)
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PCSP(1-IN-3,T1) T1 = {001, 002, 112}

Notation: for A ⊆ [n] we write f(A) meaning f(x1, . . . , xn)
where xi = 1 iff i ∈ A.

From what we know about f∗, if |If | ≥ 6 and odd we can derive
that for every A ⊆ [n],

f(A) =

{
0, if |A ∩ If | is even
1 or 2, if |A ∩ If | is odd

We can show then that there exists k ∈ [n] (that we will call
important coordinate) such that if |A ∩ If | is odd,

f(A) =

{
2, if k ∈ A
1, if k /∈ A
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PCSP(1-IN-3,T1) T1 = {001, 002, 112}

Example
If |If | odd and k ∈ If s.t. f({k}) = 2, then k is the important coordinate
for f .
Fix A ⊆ If such that |A| is odd (there is j ∈ If \A) and B is arbitrary,
then

If︷ ︸︸ ︷
1 0 . . . 0
0 A
0 ¬A
↑
k

0 . . . 0 −→ 2
B −→ 1
¬B −→ 1
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PCSP(1-IN-3,T1) T1 = {001, 002, 112}

Example

If︷ ︸︸ ︷
0 1 0 . . . 0
0 0 A
1 0 ¬A
↑ ↑
k j

0 . . . 0 −→ 1
¬B −→ 1
B −→ 2

We proved that k is an important coordinate.

Similarly: there is one and only one important coordinate if |If | ≥ 6.
Using this and the criterion explained in Barto’s talk, we have that the
problem is NP-hard.
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Thank you for your attention!
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