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The Prague Theorem

Theorem (Barto, Kozik 2009)

Let A be an idempotent algebra. TFAE

I A is an SD(∧) algebra
(= lies in a variety omitting 1 and 2)

I Every Prague strategy over A has a solution

Plan:

I k-intersection property

I SD(∧)

I CSP(A)

I (k , l)-minimal instance

I Prague strategy
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Warning

All algebras are finite and idempotent



k-intersection property

Definition (k-equal relations)

R1,R2 ⊆ An are k-equal, if ∀J ⊆ [n], |J| ≤ k, the projections of R1

and R2 to J are equal.

Definition (k-intersection property, Valeriote)

A finite algebra A satisfies the k-intersection property, if ∀n
every collection of pairwise k-equal non-empty subuniverses
R1, . . . ,Rm ≤ An has nonempty intersection.

Observation

B ∈ HSP(A). Then

A has the k-intersection property ⇒ B has the k-intersection prop.
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k-IP, modules are bad

Observation

If A is a reduct of a module and |A| > 1, then A fails the
k-intersection property for every k.

Proof.

For a ∈ A let

Ra = {(a1, . . . , ak+1) : a1 + a2 + · · ·+ ak+1 = a}

Clearly

I Ra is a subuniverse of Ak+1

I any projection to less than k + 1 coordinates is full

I if a 6= b then Ra ∩ Rb = ∅
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k-IP, a necessary condition and a conjecture

Observation

B ∈ HSP(A). Then

A has the k-intersection property ⇒ B has the k-intersection prop.

Observation

If A is a reduct of a module and |A| > 1, then A fails the
k-intersection property for every k.

Corollary

If A has the k-intersection property for some k , then HSP(A)
doesn’t contain a reduct of a module (with more than one
element).

Conjecture (Valeriote)

The other implication is also true.
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SD(∧)

Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

I HSP(A) doesn’t contain a reduct of a module (> 1 element)

I HSP(A) omits 1 and 2

I HSP(A) is congruence meet semi-distributive, i.e.

if B ∈ HSP(A), α, β1, β2 ∈ Con(B)
then α ∧ β1 = α ∧ β2 ⇒ α ∧ (β1 ∨ β2) = α ∧ β1

I A has Willard terms

I A has weak near-unanimity terms of almost all arities

Definition

A is SD(∧), if it satisfies the equivalent conditions above
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Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

I HSP(A) doesn’t contain a reduct of a module (> 1 element)

I HSP(A) omits 1 and 2

I HSP(A) is congruence meet semi-distributive, i.e.

if B ∈ HSP(A), α, β1, β2 ∈ Con(B)
then α ∧ β1 = α ∧ β2 ⇒ α ∧ (β1 ∨ β2) = α ∧ β1

I A has Willard terms

I A has weak near-unanimity terms of almost all arities

Definition

A is SD(∧), if it satisfies the equivalent conditions above



SD(∧)
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Examples of SD(∧) algebras

I If HSP(A) is congruence distributive, then A is SD(∧)

I Even more: If HSP(A) is congruence join semi-distributive,
then A is SD(∧) Hobby, McKenzie, Kearnes

I If A has a Jónsson chain of terms, then A is SD(∧)

I If A has a near-unanimity term, then A is SD(∧)

I If A has a semilattice term, then A is SD(∧)

Facts about intersection properties

I If A has a semilattice term, then A has the 1-intersection
property

I If A has a k-ary near-unanimity term, then A has the
(k − 1)-intersection property Baker, Pixley

I If A has a short (3-terms) chain of Jónsson terms, then A has
the 2-intersection property Kiss, Valeriote and 2 is the optimal
number
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CSP

Definition (CSP(A))

Let A be an algebra. An instance of CSP(A) is a pair (V , C),
where

I V is a finite set (elements are called variables)

I C is a finite set of constraints

Constraint is a subuniverse C of AD , where

D ⊆ V (called the scope of C )

Definition

A solution to (V , C) is a mapping f : V → A which satisfies all the
constraints C ≤ AD in C, i.e. f |D ∈ C .

The aim is to find a solution fast (in poly-time).
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(k , l)-minimal instance

Definition (± Bulatov, Jeavons)

Let k ≤ l be natural numbers.
An instance (V , C) of CSP(A) is called (k , l)-minimal if

I Every l-element subset of V is a subset of the scope of some
constraint in C

I For every J ⊆ V , |J| ≤ k and every pair C1,C2 ∈ S whose
scopes contain J, the projections of C1 and C2 onto J are the
same.

An instance (V , C) is called k-minimal, if it is (k , k)-minimal.

Observation

If k ′ ≤ k and l ′ ≤ l then (k , l)-minimal instance is (k ′, l ′)-minimal.
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Bounded relational width

Observation

Every instance of CSP(A) can be converted into an equivalent
(k , l)-minimal instance in poly-time.

(Two instances are equivalent if they have the same set of
solutions.)

Definition

A has relational width (k , l) if every (k , l)-minimal instance, whose
constraints are non-empty, has a solution.

A has bounded relational width if it has relational width (k , l) for
some k , l .
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The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If A has bounded relational width, then A is an SD(∧) algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

I If A has a semilattice term, then A has rel. width 1 Feder,
Vardi, Dalmau, Pearson

I If A has a 2-semilattice term, then A has rel. width 3 Bulatov

I If A has a k-ary near-unanimity term, then A has rel. width
k − 1 Feder, Vardi

I If A has a short chain of Jónsson terms (3 terms), then A has
bounded relational width Kiss, Valeriote

I If A has a short chain of Jónsson terms (4 terms), then A has
“bounded width” Carvalho, Dalmau, Marković, Maróti
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Corollaries of the Prague Theorem

Corollary

If A is an SD(∧) algebra, then A has relational width (2, 3).
(The parameters (2, 3) are optimal.)

Corollary

If A is an SD(∧) algebra, then A satisfies the 2-intersection
property. (Recall that 2 is optimal.)

Proof.

I Let R1, . . . ,Rm ≤ An be nonempty and 2-equal

I Let V = [n], C = {R1, . . . ,Rm}
I (V , C) is a (2, n)-minimal instance of CSP(A)
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No idea about the title

I am finally going to introduce Prague strategies.

Comparison with known notions:

(2, 3)-minimal instance of CSP(A)
⇓

Prague strategy over A
⇓

1-minimal instance of CSP(A)



Patterns

Let (V , C) be an instance of CSP(A)

For x , y ∈ V and C ∈ C and a, b ∈ A we write a
x ,y ,C−−−→ b, if

I x , y are in the scope of C

I The mapping x → a, y → b is in the projection of C to {x , y}

Definition

A pattern w is a tuple (x1,C1, . . . ):

x1
C1−→ x2

C2−→ . . .
Ci−→ xi+1,

where xj ∈ V and Cj ∈ C.

We write a
w−→ b, if there exist a = a1, a2, . . . , ai+1 = b such that

a = a1
x1,x2,C1−−−−−→ a2

x2,x3,C2−−−−−→ a3 → · · · → ai
xi ,xi+1,Ci−−−−−→ ai+1 = b

The scope of w is [[w ]] = {x1, . . . , xi+1}
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Prague strategy

If patterns w1,w2 start and end with the same variable x , we can
form their concatenation w1 ◦ w2.

wK = w ◦ w ◦ · · · ◦ w (K -times)

Definition (!!!!!!!)

A Prague strategy over A is an instance (V , C) of CSP(A) such
that

I (V , C) is 1-minimal

I For every x ∈ V ,
every pattern v starting and ending with x,
every a, b ∈ A such that a

v−→ b and
every pattern w starting and ending with x s.t. [[v ]] ⊆ [[w ]],

there exists a natural number K such that a
wK

−−→ b

Observation

Every (2, 3)-min. instance of CSP(A) is a Prague strategy over A.
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The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

I A is an SD(∧) algebra

I Every Prague strategy over A has a solution

Proof.

Implication ⇑ follows from Larose, Zádori, Bulatov

For ⇓ the strategy of the proof is to find smaller and smaller
substrategies until we find a solution

Two cases

I When we have a proper absorbing set of the projection to
some singleton

I When we don’t have . . .
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Lunch!

thAnk yoU FOr youR ATtentiON!

ThANK you fOR your atTENTion?

thank you foR yoU AtteNTion?


