Prague Strategies

Libor Barto

joint work with Marcin Kozik

Department of Algebra Faculty of Mathematics and Physics Charles University in Prague Czech Republic

NSAC 2009

Theorem (Barto, Kozik 2009)

Let A be an idempotent algebra. TFAE

- ► A is an SD(∧) algebra (= lies in a variety omitting 1 and 2)
- Every Prague strategy over A has a solution

Theorem (Barto, Kozik 2009)

Let **A** be an idempotent algebra. TFAE

- A is an SD(\lambda) algebra
 (= lies in a variety omitting 1 and 2)
- Every Prague strategy over A has a solution

Plan:

- k-intersection property
- ► SD(∧)
- ► CSP(**A**)
- ▶ (k, l)-minimal instance
- Prague strategy

All algebras are finite and idempotent

Definition (*k*-equal relations)

 $R_1, R_2 \subseteq A^n$ are *k*-equal, if $\forall J \subseteq [n], |J| \leq k$, the projections of R_1 and R_2 to J are equal.

Definition (*k*-equal relations)

 $R_1, R_2 \subseteq A^n$ are k-equal, if $\forall J \subseteq [n], |J| \leq k$, the projections of R_1 and R_2 to J are equal.

Definition (k-intersection property, Valeriote)

A finite algebra **A** satisfies the *k*-intersection property, if $\forall n$ every collection of pairwise *k*-equal non-empty subuniverses $R_1, \ldots, R_m \leq \mathbf{A}^n$ has nonempty intersection.

Definition (*k*-equal relations)

 $R_1, R_2 \subseteq A^n$ are k-equal, if $\forall J \subseteq [n], |J| \leq k$, the projections of R_1 and R_2 to J are equal.

Definition (k-intersection property, Valeriote)

A finite algebra **A** satisfies the *k*-intersection property, if $\forall n$ every collection of pairwise *k*-equal non-empty subuniverses $R_1, \ldots, R_m \leq \mathbf{A}^n$ has nonempty intersection.

Observation

 $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$. Then

A has the *k*-intersection property \Rightarrow **B** has the *k*-intersection prop.

k-IP, modules are bad

Observation

If **A** is a reduct of a module and |A| > 1, then **A** fails the *k*-intersection property for every *k*.

k-IP, modules are bad

Observation

If **A** is a reduct of a module and |A| > 1, then **A** fails the *k*-intersection property for every *k*.

Proof.

For $a \in A$ let

$$R_a = \{(a_1, \ldots, a_{k+1}) : a_1 + a_2 + \cdots + a_{k+1} = a\}$$

Clearly

- R_a is a subuniverse of \mathbf{A}^{k+1}
- any projection to less than k + 1 coordinates is full
- if $a \neq b$ then $R_a \cap R_b = \emptyset$

k-IP, a necessary condition and a conjecture

Observation

 $\textbf{B} \in \mathsf{HSP}(\textbf{A}).$ Then

A has the *k*-intersection property \Rightarrow **B** has the *k*-intersection prop.

Observation

If **A** is a reduct of a module and |A| > 1, then **A** fails the *k*-intersection property for every *k*.

k-IP, a necessary condition and a conjecture

Observation

 $\textbf{B} \in \mathsf{HSP}(\textbf{A}).$ Then

A has the *k*-intersection property \Rightarrow **B** has the *k*-intersection prop.

Observation

If **A** is a reduct of a module and |A| > 1, then **A** fails the *k*-intersection property for every *k*.

Corollary

If **A** has the *k*-intersection property for some *k*, then $HSP(\mathbf{A})$ doesn't contain a reduct of a module (with more than one element).

k-IP, a necessary condition and a conjecture

Observation

 $\textbf{B} \in \mathsf{HSP}(\textbf{A}).$ Then

A has the *k*-intersection property \Rightarrow **B** has the *k*-intersection prop.

Observation

If **A** is a reduct of a module and |A| > 1, then **A** fails the *k*-intersection property for every *k*.

Corollary

If **A** has the *k*-intersection property for some *k*, then $HSP(\mathbf{A})$ doesn't contain a reduct of a module (with more than one element).

Conjecture (Valeriote)

Let A be an algebra. TFAE

▶ HSP(A) doesn't contain a reduct of a module (> 1 element)

$\mathrm{SD}(\wedge)$

Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- ▶ HSP(A) doesn't contain a reduct of a module (> 1 element)
- HSP(A) omits 1 and 2

Let A be an algebra. TFAE

- ▶ HSP(A) doesn't contain a reduct of a module (> 1 element)
- HSP(A) omits 1 and 2
- HSP(A) is congruence meet semi-distributive, i.e.

if $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$, $\alpha, \beta_1, \beta_2 \in \mathsf{Con}(\mathbf{B})$ *then* $\alpha \land \beta_1 = \alpha \land \beta_2 \implies \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

Let A be an algebra. TFAE

- ▶ HSP(A) doesn't contain a reduct of a module (> 1 element)
- HSP(A) omits 1 and 2
- HSP(A) is congruence meet semi-distributive, i.e.

if $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$, $\alpha, \beta_1, \beta_2 \in \mathsf{Con}(\mathbf{B})$ *then* $\alpha \land \beta_1 = \alpha \land \beta_2 \implies \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

A has Willard terms

Let A be an algebra. TFAE

- ▶ HSP(A) doesn't contain a reduct of a module (> 1 element)
- HSP(A) omits 1 and 2
- HSP(A) is congruence meet semi-distributive, i.e.

if $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$, $\alpha, \beta_1, \beta_2 \in \mathsf{Con}(\mathbf{B})$ *then* $\alpha \land \beta_1 = \alpha \land \beta_2 \implies \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

- A has Willard terms
- A has weak near-unanimity terms of almost all arities

Let A be an algebra. TFAE

- ▶ HSP(A) doesn't contain a reduct of a module (> 1 element)
- HSP(A) omits 1 and 2
- HSP(A) is congruence meet semi-distributive, i.e.

if $\mathbf{B} \in \mathsf{HSP}(\mathbf{A})$, $\alpha, \beta_1, \beta_2 \in \mathsf{Con}(\mathbf{B})$ *then* $\alpha \land \beta_1 = \alpha \land \beta_2 \implies \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

- A has Willard terms
- A has weak near-unanimity terms of almost all arities

Definition

A is $\mathrm{SD}(\wedge),$ if it satisfies the equivalent conditions above

• If HSP(A) is congruence distributive, then A is $SD(\wedge)$

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$
- If **A** has a semilattice term, then **A** is $SD(\wedge)$

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$
- If **A** has a semilattice term, then **A** is $SD(\wedge)$

Facts about intersection properties

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$
- If **A** has a semilattice term, then **A** is $SD(\wedge)$

Facts about intersection properties

If A has a semilattice term, then A has the 1-intersection property

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- ► Even more: If HSP(A) is congruence join semi-distributive, then A is SD(∧) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$
- If **A** has a semilattice term, then **A** is $SD(\wedge)$

Facts about intersection properties

- If A has a semilattice term, then A has the 1-intersection property
- ► If A has a k-ary near-unanimity term, then A has the (k - 1)-intersection property Baker, Pixley

- If HSP(A) is congruence distributive, then A is $SD(\wedge)$
- Even more: If HSP(A) is congruence join semi-distributive, then A is SD(A) Hobby, McKenzie, Kearnes
- ▶ If **A** has a Jónsson chain of terms, then **A** is $SD(\land)$
- If **A** has a near-unanimity term, then **A** is $SD(\wedge)$
- If A has a semilattice term, then A is SD(∧)

Facts about intersection properties

- If A has a semilattice term, then A has the 1-intersection property
- ► If A has a k-ary near-unanimity term, then A has the (k - 1)-intersection property Baker, Pixley
- If A has a short (3-terms) chain of Jónsson terms, then A has the 2-intersection property Kiss, Valeriote and 2 is the optimal number

Definition (CSP(A))

Let **A** be an algebra. An instance of CSP(A) is a pair (V, C), where

- V is a finite set (elements are called variables)
- C is a finite set of constraints

Constraint is a subuniverse C of \mathbf{A}^D , where $D \subseteq V$ (called the scope of C)

Definition (CSP(A))

Let **A** be an algebra. An instance of CSP(A) is a pair (V, C), where

- V is a finite set (elements are called variables)
- C is a finite set of constraints

Constraint is a subuniverse C of \mathbf{A}^D , where $D \subseteq V$ (called the scope of C)

Definition

A solution to (V, C) is a mapping $f : V \to A$ which satisfies all the constraints $C \leq \mathbf{A}^D$ in C, i.e. $f | D \in C$.

Definition (CSP(A))

Let **A** be an algebra. An instance of CSP(A) is a pair (V, C), where

- V is a finite set (elements are called variables)
- C is a finite set of constraints

Constraint is a subuniverse C of \mathbf{A}^D , where $D \subseteq V$ (called the scope of C)

Definition

A solution to (V, C) is a mapping $f : V \to A$ which satisfies all the constraints $C \leq \mathbf{A}^{D}$ in C, i.e. $f | D \in C$.

The aim is to find a solution fast (in poly-time).

Definition (\pm Bulatov, Jeavons)

Let $k \leq l$ be natural numbers. An instance (V, C) of $CSP(\mathbf{A})$ is called (k, l)-minimal if

- Every I-element subset of V is a subset of the scope of some constraint in C
- For every J ⊆ V, |J| ≤ k and every pair C₁, C₂ ∈ S whose scopes contain J, the projections of C₁ and C₂ onto J are the same.

An instance (V, C) is called *k*-minimal, if it is (k, k)-minimal.

Definition (\pm Bulatov, Jeavons)

Let $k \leq l$ be natural numbers. An instance (V, C) of $CSP(\mathbf{A})$ is called (k, l)-minimal if

- Every I-element subset of V is a subset of the scope of some constraint in C
- For every J ⊆ V, |J| ≤ k and every pair C₁, C₂ ∈ S whose scopes contain J, the projections of C₁ and C₂ onto J are the same.

An instance (V, C) is called *k*-minimal, if it is (k, k)-minimal.

Observation

If $k' \leq k$ and $l' \leq l$ then (k, l)-minimal instance is (k', l')-minimal.

Observation

Every instance of $CSP(\mathbf{A})$ can be converted into an equivalent (k, l)-minimal instance in poly-time.

(Two instances are equivalent if they have the same set of solutions.)

Observation

Every instance of $CSP(\mathbf{A})$ can be converted into an equivalent (k, l)-minimal instance in poly-time.

(Two instances are equivalent if they have the same set of solutions.)

Definition

A has relational width (k, l) if every (k, l)-minimal instance, whose constraints are non-empty, has a solution.

A has bounded relational width if it has relational width (k, l) for some k, l.

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

- ► If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- ▶ If A has a 2-semilattice term, then A has rel. width 3 Bulatov

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

- ► If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- ▶ If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- ► If A has a k-ary near-unanimity term, then A has rel. width k - 1 Feder, Vardi

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

- ► If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- ▶ If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- ► If A has a k-ary near-unanimity term, then A has rel. width k - 1 Feder, Vardi
- If A has a short chain of Jónsson terms (3 terms), then A has bounded relational width Kiss, Valeriote

Theorem (Larose, Zádori, Bulatov)

If **A** has bounded relational width, then **A** is an $SD(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

- If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- ▶ If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- ► If A has a k-ary near-unanimity term, then A has rel. width k - 1 Feder, Vardi
- If A has a short chain of Jónsson terms (3 terms), then A has bounded relational width Kiss, Valeriote
- If A has a short chain of Jónsson terms (4 terms), then A has "bounded width" Carvalho, Dalmau, Marković, Maróti

Corollary

If **A** is an $SD(\land)$ algebra, then **A** has relational width (2,3). (The parameters (2,3) are optimal.)

Corollary

If **A** is an $SD(\wedge)$ algebra, then **A** has relational width (2,3). (The parameters (2,3) are optimal.)

Corollary

If **A** is an $SD(\wedge)$ algebra, then **A** satisfies the 2-intersection property. (Recall that 2 is optimal.)

Corollary

If **A** is an $SD(\wedge)$ algebra, then **A** has relational width (2,3). (The parameters (2,3) are optimal.)

Corollary

If **A** is an $SD(\wedge)$ algebra, then **A** satisfies the 2-intersection property. (Recall that 2 is optimal.)

Proof.

• Let $R_1, \ldots, R_m \leq \mathbf{A}^n$ be nonempty and 2-equal

• Let
$$V = [n]$$
, $C = \{R_1, ..., R_m\}$

• (V, C) is a (2, n)-minimal instance of CSP(A)

I am finally going to introduce Prague strategies.

Comparison with known notions:

```
(2,3)-minimal instance of CSP(A)

↓

Prague strategy over A

↓

1-minimal instance of CSP(A)
```

Patterns

Let (V, \mathcal{C}) be an instance of $\mathrm{CSP}(\mathbf{A})$

Patterns

For $x, y \in V$ and $C \in C$ and $a, b \in A$ we write $a \xrightarrow{x,y,C} b$, if

- ► x, y are in the scope of C
- The mapping $x \to a, y \to b$ is in the projection of C to $\{x, y\}$

Patterns

For $x, y \in V$ and $C \in C$ and $a, b \in A$ we write $a \xrightarrow{x,y,C} b$, if

- x, y are in the scope of C
- The mapping $x \to a, y \to b$ is in the projection of C to $\{x, y\}$

Definition

A pattern w is a tuple (x_1, C_1, \dots) :

$$x_1 \xrightarrow{C_1} x_2 \xrightarrow{C_2} \ldots \xrightarrow{C_i} x_{i+1},$$

where $x_j \in V$ and $C_j \in C$.

We write $a \xrightarrow{w} b$, if there exist $a = a_1, a_2, \ldots, a_{i+1} = b$ such that

$$a = a_1 \xrightarrow{x_1, x_2, C_1} a_2 \xrightarrow{x_2, x_3, C_2} a_3 \rightarrow \cdots \rightarrow a_i \xrightarrow{x_i, x_{i+1}, C_i} a_{i+1} = b$$

The scope of w is $[[w]] = \{x_1, ..., x_{i+1}\}$

Prague strategy

If patterns w_1, w_2 start and end with the same variable x, we can form their concatenation $w_1 \circ w_2$.

 $w^{K} = w \circ w \circ \cdots \circ w$ (K-times)

Definition (!!!!!!)

A Prague strategy over $\boldsymbol{\mathsf{A}}$ is an instance (V,\mathcal{C}) of $\mathrm{CSP}(\boldsymbol{\mathsf{A}})$ such that

- (V, C) is 1-minimal
- For every $x \in V$,

every pattern v starting and ending with x, every a, $b \in A$ such that a $\xrightarrow{v} b$ and every pattern w starting and ending with x s.t. $[[v]] \subseteq [[w]]$, there exists a natural number K such that a $\xrightarrow{w^{K}} b$

Definition (!!!!!!)

A Prague strategy over $\boldsymbol{\mathsf{A}}$ is an instance (V,\mathcal{C}) of $\mathrm{CSP}(\boldsymbol{\mathsf{A}})$ such that

- \blacktriangleright (V,C) is 1-minimal
- For every $x \in V$,

every pattern v starting and ending with x, every a, $b \in A$ such that a $\xrightarrow{v} b$ and every pattern w starting and ending with x s.t. $[[v]] \subseteq [[w]]$, there exists a natural number K such that a $\xrightarrow{w^{K}} b$

Observation

Every (2,3)-min. instance of CSP(A) is a Prague strategy over A.

Theorem (BK)

Let A be an algebra. TFAE

- A is an $SD(\wedge)$ algebra
- Every Prague strategy over A has a solution

Theorem (BK)

Let A be an algebra. TFAE

- A is an $SD(\wedge)$ algebra
- Every Prague strategy over A has a solution

Proof.

Implication 1 follows from Larose, Zádori, Bulatov

Theorem (BK)

Let A be an algebra. TFAE

- A is an $\mathrm{SD}(\wedge)$ algebra
- Every Prague strategy over A has a solution

Proof.

Implication \Uparrow follows from Larose, Zádori, Bulatov

For \Downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution

Theorem (BK)

Let A be an algebra. TFAE

- ► A is an SD(∧) algebra
- Every Prague strategy over A has a solution

Proof.

Implication 1 follows from Larose, Zádori, Bulatov

For \Downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution

Two cases

When we have a proper absorbing set of the projection to some singleton

Theorem (BK)

Let A be an algebra. TFAE

- ► A is an SD(∧) algebra
- Every Prague strategy over A has a solution

Proof.

Implication 1 follows from Larose, Zádori, Bulatov

For \Downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution

Two cases

- When we have a proper absorbing set of the projection to some singleton
- When we don't have ...

thAnk yoU FOr youR ATtentiON! ThANK you fOR your atTENTion? thank you foR yoU AtteNTion?