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Interpretations between varieties

V, W: varieties of algebras

Interpretation ¥V — WW: mapping from terms of V to terms of W,
which sends variables to the same variables and preserves
identities.

Determined by values on basic operations

Example:
» V) given by a single ternary operation symbol m and
» the identity m(x,y,y) =~ m(y,y, x) = x
» f:V — W is determined by m’ = f(m)

» m' must satisfy m'(x,y,y) = m(y,y,x) = x
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Interpretation between varieties

Exmaple: Unique interpretation from V = Sets to any W

Example: V = Semigroups, W = Sets, f : x -y — x is an
interpretation

Example: Assume V is idempotent. No interpretation V — Sets
equivalent to the existence of a Taylor term in V
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Interpretation between algebras

A, B: algebras

Interpretation A — B: map from the term operations of A to term
operations of B which maps projections to projections and
preserves composition

> Interpretations A — B essentially the same as interpretations
HSP(A) — HSP(B)

» Depends only on the clone of A and the clone of B
Examples of interpretations between clones A — B:

» Inclusion (A): when B contains A

» Diagonal map (P): when B = A"

» Restriction to B (S): when B < A

» Quotient modulo ~ (H): when B=A/ ~
Birkhoff theorem =V interpretation is of the form Ao Ho So P.



Interpretations are complicated

Theorem (B, 2006)

The category of varieties and interpretations is as complicated as it
can be.

For instance: every small category is a full subcategory of it



(Part 2)
Lattice of Interpretability

Neumann 74

Garcia, Taylor 84
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The lattice L

Y < W: if 3 interpretation V — W
This is a quasiorder

Define V ~ W iff ¥V < W and W < V.
< modulo ~ is a poset, in fact a lattice:

The lattice L of intepretability types of varieties

> V < W iff W satisfies the “strong Maltsev” condition
determined by V

> ie. YV < W iff W gives a stronger condition than V
» A < B iff Clo(B) € AHSP Clo(A)
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Meet and joins in L

VvV W:
Disjoint union of signatures of ¥ and W and identities
A A B (A and B are clones)

Base set = Ax B

operations are f X g, where f (resp. g) is an operation of A (resp.
B)
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» Has the bottom element 0 = Sets = Semigroups and the top
element (x =~ y).

» Every poset embeds into L (follows from the theorem
mentioned; known before Barkhudaryan, Trnkova)

» Open problem: which lattices embed into L?

» Many important classes of varieties are filters in L: congruence
permutable/n-permutable/distributive/modular. . . varieties;
clones with CSP in P/NL/L, ...

» Many important theorems talk (indirectly) about (subposets
of) L
» Every nonzero locally finite idempotent variety is above a
single nonzero variety Siggers
» NU = EDGE N CD (as filters) Berman, Idziak, Markovi¢,
McKenzie, Valeriote, Willard
» no finite member of CD \ NU is finitely related B
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The problem

Question

Which important filters F are prime? WV W e F =V € F or
W e F).
Examples

» NU is not prime (NU = EDGE N CD)

» CD is not prime (CD = CM N SD(A))

Question: congruence permutable/n-permutable (fix
n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the
category theory | was doing, | should start with it
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Congruence permutable varieties

V is congruence permutable
iff any pair of congruences of a member of V permutes

iff V has a Maltsev term m(x,y,y) = m(y,y, x) =~ x

Theorem (Tschantz, unpublished)

The filter of congruence permutable varieties is prime

Unfortunately
» The proof is complicated, long and technical
» Does not provide much insight

» Seems close to impossible to generalize
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Coloring terms by variables

Definition ( )

Let A be a set of equivalences on X. We say that V is A-colorable,
if there exists ¢ : Fy(X) — X such that ¢(x) = x for all x € X and

Vi,ge h(X)VacA fag= c(f)ac(g)

Example:
> X ={xy,z}, A={xylz,x|yz}
» Fy(X) = ternary terms modulo identities of V,
» A-colorability means
If f(x,x,z) =~ g(x,x,z) then (c(f), c(g)) € xy|z
If f(x,z,z) ~ g(x,z,z) then (c(f),c(g)) € x|yz
> If V has a Maltsev term then it is not A-colorable

» The converse is also true
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Coloring continued

» V) is congruence permutable iff V is A-colorable for A= ...
» V is congruence n-permutable iff }V is A-colorable for A = ...

> V is congruence modular iff V is A-colorable for A = ...

Results coming from this notion Sequeira, Bentz, Opr¥al, (B):

» The join of two varieties which are linear and not congruence
permutable/n-permutable/modular is not congruence
permutable/ . ..

> If the filter of ...is not prime then the counterexample must
be complicated in some sense

Pros and cons
» -+ proofs are simple and natural
» - works (so far) only for linear identities

Open problem: For some natural class of filters, is it true that F
is prime iff members of F can be described by A-colorability for
some A?
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(pp)-interpretation between relational structures

Every clone A is equal to Pol(A) for some relational structure A,
namely A = Inv(A)

A < B iff there is a pp-interpretation A — B

pp-interpretation = first order interpretation from logic where only
d,=, A are allowed

Examples of pp-interpretations

> pp-definitions

v

induced substructures on a pp-definable subsets

v

Cartesian powers of structures

v

other powers
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Results

We have A, B outside F, we want C outside F such that A, B < C

» Much easier!

» Proofs make sense.

IfV, W are not permutable/n-permutable for some n/modular and
(*) then neither is V v W

» (*) = locally finite idempotent

» for n-permutability (*) = locally finite, or (*) = idempotent
Valeriote, Willard

» for modularity, it follows form the work of McGarry, Valeriote



