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(Part 1)
Interpretations



Interpretations between varieties

V,W: varieties of algebras

Interpretation V → W: mapping from terms of V to terms of W,
which sends variables to the same variables and preserves
identities.

Determined by values on basic operations

Example:

I V given by a single ternary operation symbol m and

I the identity m(x , y , y) ≈ m(y , y , x) ≈ x

I f : V → W is determined by m′ = f (m)

I m′ must satisfy m′(x , y , y) ≈ m(y , y , x) ≈ x
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Interpretation between varieties

Exmaple: Unique interpretation from V = Sets to any W

Example: V = Semigroups, W = Sets, f : x · y 7→ x is an
interpretation

Example: Assume V is idempotent. No interpretation V → Sets
equivalent to the existence of a Taylor term in V
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Interpretation between algebras

A, B: algebras

Interpretation A→ B: map from the term operations of A to term
operations of B which maps projections to projections and
preserves composition

I Interpretations A→ B essentially the same as interpretations
HSP(A)→ HSP(B)

I Depends only on the clone of A and the clone of B

Examples of interpretations between clones A→ B:

I Inclusion (A): when B contains A

I Diagonal map (P): when B = An

I Restriction to B (S): when B ≤ A

I Quotient modulo ∼ (H): when B = A/ ∼

Birkhoff theorem ⇒ ∀ interpretation is of the form A ◦ H ◦ S ◦ P.
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Interpretations are complicated

Theorem (B, 2006)

The category of varieties and interpretations is as complicated as it
can be.

For instance: every small category is a full subcategory of it



(Part 2)
Lattice of Interpretability

Neumann 74

Garcia, Taylor 84



The lattice L

V ≤ W: if ∃ interpretation V → W

This is a quasiorder

Define V ∼ W iff V ≤ W and W ≤ V.

≤ modulo ∼ is a poset, in fact a lattice:

The lattice L of intepretability types of varieties

I V ≤ W iff W satisfies the “strong Maltsev” condition
determined by V

I i.e. V ≤ W iff W gives a stronger condition than V
I A ≤ B iff Clo(B) ∈ AHSP Clo(A)
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Meet and joins in L

V ∨W:

Disjoint union of signatures of V and W and identities

A ∧ B (A and B are clones)

Base set = A× B

operations are f × g , where f (resp. g) is an operation of A (resp.
B)
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About L

I Has the bottom element 0 = Sets = Semigroups and the top
element (x ≈ y).

I Every poset embeds into L (follows from the theorem
mentioned; known before Barkhudaryan, Trnková)

I Open problem: which lattices embed into L?

I Many important classes of varieties are filters in L: congruence
permutable/n-permutable/distributive/modular. . . varieties;
clones with CSP in P/NL/L, . . .

I Many important theorems talk (indirectly) about (subposets
of) L

I Every nonzero locally finite idempotent variety is above a
single nonzero variety Siggers

I NU = EDGE ∩ CD (as filters) Berman, Idziak, Marković,
McKenzie, Valeriote, Willard

I no finite member of CD \ NU is finitely related B
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(Part 3)
Prime filters



The problem

Question

Which important filters F are prime? (V ∨W ∈ F ⇒ V ∈ F or
W ∈ F ).

Examples

I NU is not prime (NU = EDGE ∩ CD)

I CD is not prime (CD = CM ∩ SD(∧))

Question: congruence permutable/n-permutable (fix
n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the
category theory I was doing, I should start with it



The problem

Question

Which important filters F are prime? (V ∨W ∈ F ⇒ V ∈ F or
W ∈ F ).

Examples

I NU is not prime (NU = EDGE ∩ CD)

I CD is not prime (CD = CM ∩ SD(∧))

Question: congruence permutable/n-permutable (fix
n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the
category theory I was doing, I should start with it



The problem

Question

Which important filters F are prime? (V ∨W ∈ F ⇒ V ∈ F or
W ∈ F ).

Examples

I NU is not prime (NU = EDGE ∩ CD)

I CD is not prime (CD = CM ∩ SD(∧))

Question: congruence permutable/n-permutable (fix
n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the
category theory I was doing, I should start with it



The problem

Question

Which important filters F are prime? (V ∨W ∈ F ⇒ V ∈ F or
W ∈ F ).

Examples

I NU is not prime (NU = EDGE ∩ CD)

I CD is not prime (CD = CM ∩ SD(∧))

Question: congruence permutable/n-permutable (fix
n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the
category theory I was doing, I should start with it



(Part 4)
Syntactic approach



Congruence permutable varieties

V is congruence permutable

iff any pair of congruences of a member of V permutes

iff V has a Maltsev term m(x , y , y) ≈ m(y , y , x) ≈ x

Theorem (Tschantz, unpublished)

The filter of congruence permutable varieties is prime

Unfortunately

I The proof is complicated, long and technical

I Does not provide much insight

I Seems close to impossible to generalize
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Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X . We say that V is A-colorable,
if there exists c : FV(X )→ X such that c(x) = x for all x ∈ X and

∀ f , g ∈ FV(X ) ∀ α ∈ A f α g ⇒ c(f ) α c(g)

Example:

I X = {x , y , z}, A = {xy |z , x |yz}
I FV(X ) = ternary terms modulo identities of V,

I A-colorability means
If f (x , x , z) ≈ g(x , x , z) then (c(f ), c(g)) ∈ xy |z
If f (x , z , z) ≈ g(x , z , z) then (c(f ), c(g)) ∈ x |yz

I If V has a Maltsev term then it is not A-colorable

I The converse is also true
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Coloring continued

I V is congruence permutable iff V is A-colorable for A = ...

I V is congruence n-permutable iff V is A-colorable for A = ...

I V is congruence modular iff V is A-colorable for A = ...

Results coming from this notion Sequeira, Bentz, Opřsal, (B):

I The join of two varieties which are linear and not congruence
permutable/n-permutable/modular is not congruence
permutable/ . . .

I If the filter of . . . is not prime then the counterexample must
be complicated in some sense

Pros and cons

I + proofs are simple and natural

I - works (so far) only for linear identities

Open problem: For some natural class of filters, is it true that F
is prime iff members of F can be described by A-colorability for
some A?
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Open problem: For some natural class of filters, is it true that F
is prime iff members of F can be described by A-colorability for
some A?



(Part 5)
Relational approach



(pp)-interpretation between relational structures

Every clone A is equal to Pol(A) for some relational structure A,
namely A = Inv(A)

A ≤ B iff there is a pp-interpretation A→ B

pp-interpretation = first order interpretation from logic where only
∃,=,∧ are allowed

Examples of pp-interpretations

I pp-definitions

I induced substructures on a pp-definable subsets

I Cartesian powers of structures

I other powers
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Results

We have A,B outside F , we want C outside F such that A,B ≤ C

I Much easier!

I Proofs make sense.

Theorem

If V, W are not permutable/n-permutable for some n/modular and
(*) then neither is V ∨W

I (*) = locally finite idempotent

I for n-permutability (*) = locally finite, or (*) = idempotent
Valeriote, Willard

I for modularity, it follows form the work of McGarry, Valeriote
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