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Abstract

We provide a full characterization of applicability of The Local Consistency Checking algo-
rithm to solving the non-uniform Constraint Satisfaction Problems. This settles the conjecture
of Larose and Zádori.

1 Introduction

The Constraint Satisfaction Problem (CSP) is one of few problems central to the development
of theoretical computer science. The computational complexity and approximability problems for
CSP attracted attention of researchers for a long time. One of the most significant motivations
for studying CSP is it’s applicability – it provides a common framework for many combinatorial
problems in artificial intelligence and applied computer science.

An instance of CSP consists of variables and constraints and the aim is to determine whether
variables can be evaluated in such a way that all the constraints are satisfied. One of the most
studied forms of CSP are non-uniform CSPs, where constraints are taken from a fixed finite set
called the template. Examples of such problems include k-Sat, Graph H-Coloring, System of
equations and many others. The most famous open question in this field is the Dichotomy Con-
jecture of Feder and Vardi [13], postulating that every non-uniform CSP is solvable in polynomial
time or NP-complete.

The Dichotomy Conjecture has proved to be a challenging question and advances using stan-
dard methods were slow. A breakthrough in the development occurred when Jeavons, Cohen and
Gyssens [14] announced an algebraic approach to the problem. Their work, refined later by Bu-
latov, Jeavons and Krokhin [10, 6], showed that the complexity of a non-uniform CSP is fully
determined by a set of operations – the polymorphisms of the template. The algebraic approach
allowed to conjecture the precise boundary between NP-complete and tractable problems [10] and
led to results unreachable before, e.g. [7], [9], [2, 3].

All known non-uniform tractable CSPs are solvable by a combination of two algorithms, or
rather algorithmic principles. One of them is based on the “few subpowers property” [5, 4] and its
applicability to solve CSPs is already fully understood [4]. The other one, the Local Consistency
Checking, is definitely the widest known and the most natural algorithm for solving CSP. However,
it was an open problem to determine for which templates the corresponding CSP can be solved by
this algorithm (which templates have bounded width). This problem was considered to be crucial
before attacking the Dichotomy Conjecture. A plausible conjecture characterizing such problems
was proposed by Larose and Zádori in [16]. They proved that if a template has bounded width,
then the algebra associated with it (where operations of the algebra are polymorphisms of the
template) lies in a congruence meet semi-distributive variety, and conjectured the converse. This
paper confirms the characterization they postulated.
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Our proof of this fact is a mixture of the following ingredients: a characterization of congruence
meet semi-distributivity by Maróti and McKenzie [17]; techniques developed in [1] for proving a
special case of the Bounded Width Conjecture, which are here substantialized in the notion of
Prague strategy and Theorem 4.12; and new algebraic results, which are stated as Theorem 4.10
and Theorem 4.11.

2 Preliminaries

It is well known (see e.g. [13]) that the Constraint Satisfaction Problem can be formulated as
a homomorphism problem for relational structures. To prove the claimed result we work with
relational structures enriched by their algebraic counterparts. In this section we introduce basic
notions concerning relational structures, algebras and polymorphisms.

2.1 Relational structures

An n-ary relation on a set A is a subset of An. A relational structure is a tuple A = (A,R0, R1, . . . ),
where A is a set (the universe of A) and R0, R1 . . . , are relations on A. All relational structures in
this paper are assumed to be finite and with a finite number of relations.

Relational structures A = (A,R0, R1, . . . ), B = (B,S0, S1 . . . ) have the same type, if they
have the same number of relations and the relation Ri has the same arity (denoted by ari) as
Si for every i. In such a situation, a mapping f : A → B is called a homomorphism from A
to B if it preserves all the relations, that is for every i and every (a1, . . . , aari) ∈ Ri, we have
(f(a1), . . . , f(aari)) ∈ Si. If there exists a homomorphism from A to B we say that A is homomorphic
to B. If every homomorphism A→ A is bijective we call A a core.

2.2 Algebras

An n-ary operation on the set A is a mapping An → A. Such an operation t is called idempotent,
if t(a, a, . . . , a) = a for all a ∈ A.

An algebra is a tuple A = (A, t0, t1, . . . ), where A is a nonempty set (called a universe) and
t0, t1, . . . are operations on A. Similarly as with relational structures, algebras A,B are of the
same type if they have the same number of operations and corresponding operations have equal
arities. By abuse of notation we sometimes denote operations of two algebras of the same type by
the same symbols. When there is a danger of confusion, we emphasize the appropriate algebra in
superscript, e.g. A = (A, tA0 , . . . ).

A term operation of an algebra is any operation that can be obtained as a composition using
the operations of the algebra together with all the projections. The set of all term operation of A
is denoted by Clo A.

A mapping f : A → B is a homomorphism of algebras, if it preserves all the operations, that
is f(ti(a1, . . . , aari)) = ti(f(a1), f(a2), . . . , f(aari)) for any i and any a1, a2, · · · ∈ A. A bijective
homomorphism is an isomorphism.

A set B ⊆ A is a subuniverse of A if, for every i, the operation ti restricted to Bari has all the
results in B. For a nonempty subuniverse B of an algebra A the algebra B = (B, t′0, . . . ) (where
t′i is a restriction of ti to Bari) is a subalgebra of A. A set C ⊆ A generates a subuniverse B in an
algebra A if B is the smallest subuniverse containing C – such a subuniverse always exists and can
be obtained by applying all the term operations of the algebra A to all the choices of arguments
coming from C.
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Given algebras A,B of the same type, a product A × B of A and B is the algebra with the
same type as A and B with universe A×B and operations computed coordinatewise. An algebra
C is a subdirect product of A and B if it is a subalgebra of A ×B such that the projections of C
to A and B are full. For a set H, an H-power AH of an algebra A has a universe AH (the set of
all the mappings from H to A) and the operations are again computed coordinatewise (the algebra
AH is naturally isomorphic to A× · · · ×A, where the product is taken |H|-times.)

An equivalence relation θ on A is called a congruence of an algebra A if θ is a subalgebra of
A × A. Given a congruence θ on A, we can form the factor algebra A/θ of the same type as
A, whose elements are the equivalence classes of A and the operations are defined so that the
natural projection mapping is a homomorphism A → A/θ. If A is idempotent, then θ-classes are
subuniverses of A. An algebra A is simple, if it has the trivial congruences only (i.e. the diagonal
and the full congruence). If θ is a maximal congruence of A, then A/θ is simple.

The set of all congruences of an algebra A with the inclusion relation forms a lattice, that is
a partially ordered set such that all two-element subsets {x, y} have supremum x ∨ y and infimum
x ∧ y.

A variety is a class of algebras of the same type closed under forming isomorphic algebras,
subalgebras, products, and factor algebras.

2.3 Polymorphisms

An operation t : Am → A is compatible with a relation R ⊆ An if

(t(a11, . . . , a1m), . . . , t(an1, . . . , anm)) ∈ R

whenever (a11, . . . , an1), . . . , (a1m, . . . , anm) ∈ R. An operation t : Am → A is a polymorphism of
a relational structure A if it is compatible with all the relations of A.

To every core relational structure A we associate an algebra A which operations are all the
idempotent polymorphisms of A (in an arbitrarily chosen order). It is easy to see that every
projection is a polymorphism of any relational structure and that the set of all polymorphisms of a
relational structure is closed under forming compositions. Therefore every term operation of such
constructed A is an operation of A.

3 CSP and the conjecture of Larose and Zádori

Let A be a relational structure (with a finite universe and a finite number of relations, each of
a finite arity). The Constraint Satisfaction Problem with template A, CSP(A), is the following
decision problem:

INPUT: A relational structure X of the same type as A.
QUESTION: Does there exist a homomorphism X→ A?

The Dichotomy Conjecture of Feder and Vardi [13] states that each problem CSP(A) is tractable
or NP-complete (we note that the conjecture trivializes unless P6=NP).

It is easy to see that, for every A, CSP(A) is the same as a CSP(A′) for a certain core A′ (called
the core of A) – this allows us to restrict the reasoning to relational structures which are cores.

The algebra A associated with A (in a sense of subsection 2.3) plays a key role in the algebraic
approach to CSP: it is known [14, 10, 6] that A determines the complexity of CSP(A). Thus a task
of classifying the computational complexities of various constraint satisfaction problems reduces
to a classification of algebras that arise as their counterparts. Here operations of the algebra of a
particular shape play a crucial role.
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Definition 3.1. An n-ary (n ≥ 2) operation t on A is called weak near-unanimity (WNU), if it
is idempotent and, for all a, b ∈ A,

t(a, a, . . . , a, b) = t(a, a, . . . , a, b, a) = · · · = t(b, a, a, . . . , a).

By a combination of results from [10, 6, 17] it follows that if A has no weak near-unanimity
operation, then CSP(A) is NP-complete. The Algebraic Dichotomy Conjecture states that the
converse also holds:

Conjecture 3.2 (The Algebraic Dichotomy Conjecture). Let A be a core relational structure. The
CSP(A) is tractable, if A has a WNU operation and it is NP-complete otherwise.

Thus the algebraic dichotomy conjecture is a strengthening of the conjecture of Feder and Vardi.

3.1 Problems of bounded width

The definition of a CSP of bounded width can be introduced in a number of equivalent ways (using
duality, infinitary logic, pebble games, Datalog programs, strategies), see [16, 11]. We will use the
approach via strategies.

Definition 3.3. Let X, A be relational structures of the same type and k ≤ l be natural numbers.
A set F of partial homomorphisms from X to A is called a (k, l)-strategy for (X,A), if it satisfies
the following:

(S1) |dom(f)| ≤ l, for any f ∈ F .
(S2) For any f ∈ F and any K ⊆ dom(f) the function f|K belongs to F .
(S3) For any K ⊆ L ⊆ A with |K| ≤ k, |L| ≤ l, and f ∈ F with dom(f) = K, there exists g ∈ F

such that dom(g) = L and g|K = f .

For K ⊆ X with |K| ≤ l the set of all partial homomorphisms from F with domain K will be
denoted by FK , that is FK = F ∩XK .

A standard procedure [13] called (k, l)-Consistency Checking, finds the greatest (with respect
to inclusion) (k, l)-strategy F for (X,A). The algorithm starts by throwing initially in F all partial
homomorphisms (from X to A) with domain of size less or equal to l. Then we repeatedly remove
from F all the mappings falsifying condition (S2) or (S3) until all the conditions are satisfied. It
is not difficult to see that this algorithm runs in polynomial time with respect to |X|.

Moreover note that for any choice of K, any f1, . . . , fm ∈ FK and any m-ary polymorphism t
of A the function t(f1, . . . , fm) is a partial homomorphism from X to A. Using this fact it is easy
to prove that every (k, l)-strategy for (X,A) can be enlarged to a new (k, l)-strategy for (X,A)
where each the FK is a subalgebra of AK . Since the (k, l) strategy produced for (X,A) by the
local consistency checking was the greatest possible it has to satisfy the same condition. Thus
polymorphisms of a relational structure appear naturally in the strategies for which the structure
is taken as a target.

Observe that, for any homomorphism f : X → A and any K ⊆ X with |K| ≤ l, the partial
homomorphism f|K belongs to the strategy returned by the (k, l)-consistency algorithm. Therefore
if the algorithm returns F = ∅ then there is certainly no homomorphism from X to A. The structure
A is of width (k, l) if the converse is also true:

Definition 3.4. A relational structure A has width (k, l) if for every relational structure X, if
there exists a nonempty (k, l)-strategy for (X,A) then X is homomorphic to A. Moreover A is said
to be of width k, if it has width (k, l) for some l, and to be of bounded width if it has width k for
some k.
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In other words, a relational structure A has bounded width, if there exist k and l such that we
can use the (k, l)-Consistency Checking algorithm to solve CSP(A). As noted above, this algorithm
works in polynomial time, thus if A has bounded width then CSP(A) is tractable.

3.2 Congruence meet semi-distributive algebras

A particular lattice identity has a close connection with problems of bounded width:

Definition 3.5. A lattice L is meet semi-distributive, if a ∧ b = a ∧ c implies a ∧ (b ∨ c) = a ∧ b
for all a, b, c ∈ L.

A variety V is called congruence meet semi-distributive if all the algebras in V have meet semi-
distributive congruence lattices. Maróti and McKenzie [17] proved that a finite algebra A lies in
a congruence meet semi-distributive variety, if and only if A has WNU term operations of all but
finitely many arities. We will call such algebras SD(∧) algebras.

3.3 The conjecture of Larose and Zádori

Larose and Zádori [16] proved that if a core A has bounded width, then A is an SD(∧) algebra,
and conjectured the converse:

Conjecture 3.6 (The Bounded Width Conjecture). A core relational structure A has bounded
width if and only if A is an SD(∧) algebra, i.e. A has WNU operations of all but finitely many
arities.

This conjecture was verified in several special cases [13], [8], [15], [12], [1] and the main result of
this paper confirms it in full generality:

Theorem 3.7. Let A be a relational structure such that A is an SD(∧) algebra. Then A has width
(2dp

2e, 3dp
2e), where p is the maximal arity of a relation in A.

4 A proof of Theorem 3.7

The proof of Theorem 3.7 is split into a number of subsections with some of the proofs moved to
the appendix. In subsection 4.1 we introduce a notion of a Prague strategy and show a reduction of
Theorem 3.7 to Theorem 4.5. In subsection 4.2 we present algebraic facts (proved in the appendix)
required in the reminder of the proof. Finally, in subsections 4.3 and 4.4, we present a proof of
Theorem 4.5 split into two, mutually exclusive, cases.

4.1 Reduction to Prague strategies

In order to prove Theorem 3.7 we work with a relational structure A and number p as in the
statement. Moreover we fix an arbitrary relational structure X such that there exists a non-empty
(2dp

2e, 3dp
2e) strategy for the pair (X,A). Note that if we found a function f from X to A such that

f|K is in the strategy for all K ⊆ X with at most p elements then f would be a homomorphism
from X to A. Existence of such an f is provided by Theorem 4.5.

In the following few definitions we introduce a notion of a Prague strategy and show a reduction
of Theorem 3.7 to Theorem 4.5.

Definition 4.1. A (1, 2)-system B (of size n) is a collection of finite nonempty sets B = {Bi, Bi,j :
0 ≤ i, j < n} such that for any i, j < n
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(B1) Bi,j ⊆ Bi ×Bj, Bi,i = {(a, a) : a ∈ Bi}, Bi,j = {(a, b) : (b, a) ∈ Bj,i}, and
(B2) Bi,j is subdirect, i.e. the projections of Bi,j to both coordinates are full.

A solution of a (1, 2)-system B is a tuple (b0, . . . , bn−1) such that (bi, bj) ∈ Bi,j for any i, j < n.

A (1, 2)-system (of size n) can be viewed as a n-sorted graph with Bi’s as sorts of vertices and
Bi,j ’s as sorts of edges. A multisorted version of a connectivity requires the following definition.

Definition 4.2. Let B be a (1, 2)-system. A pattern in B is a finite sequence of natural numbers
smaller than n. For patterns w, v we write wv for concatenation of patterns w and v and wk for
a k-ary concatenation of w with itself. We write w−1 for a pattern w with reversed order and set
w−k = (w−1)k for any k.

While working with patterns we use [[w]] to denote a set of all numbers that appear in w.
Moreover we say that a pattern w is based at i if the first and the last number of w are equal to i.
Using patterns we can define connectivity in (1, 2)-systems.

Definition 4.3. Let B be a (1, 2)-system, then

• A sequence a0, . . . al is called a realization of a pattern w = (w0, . . . , wl) in B, if ai ∈ Bwi for
all i ≤ l and (ai, ai+1) ∈ Bwi,wi+1 for all i < l.

• We say that two elements a ∈ Bi, b ∈ Bj are connected via a pattern w = (i, . . . , j) (in B),
and write a

w−→ b, if there exists a realization a = a0, a1, . . . , al = b of the pattern w.

Moreover we say that two elements a ∈ Bi and b ∈ Bj can be connected in a set of natural numbers
K if they are connected via a pattern w = (i, . . . , j) such that [[w]] ⊆ K.

Definition 4.4. A (1, 2)-system B is a Prague strategy, if

(B4) for every number i < n and every pattern w based at i in B if a, b ∈ Bi are connected in [[w]],

then there exists k > 0 such that a
wk

−−→ b.

Moreover we say that a Prague strategy B is compatible with A if each Bi is a subuniverse of A
and each Bi,j is a subuniverse of A×A.

The following theorem is the main focus of the paper. A reduction of Theorem 3.7 to Theo-
rem 4.5 is presented below with a gap, which we fill up in the appendix.

Theorem 4.5. Every Prague strategy compatible with an SD(∧) algebra has a solution.

Sketch of a proof for Theorem 3.7. Let q = dp
2e and let F be a maximal (wrt. inclusion) (2q, 3q)-

strategy for (X,A). We define a (1, 2)-system indexed by q-element subsets of X (instead of natural
numbers) by putting BI = FI and BI,J = {(f, g) ∈ BI × BJ : ∃h ∈ FI∪J h|I = f, h|J = g}. Then
B = {BI , BI,J : I, J ⊆ X, |I| = |J | = q} is, by remarks after Definition 3.3, compatible with the
SD(∧) algebra Aq (although formally BI is not a subuniverse of Aq and rather a subuniverse of
AI the problem is a technicality) In the appendix we show that B is a Prague strategy. A solution
of B provided by Theorem 4.5 gives us a homomorphism X→ A.

The key part of the proof of Theorem 4.5 deals with finding subsystems of given (1, 2)-system.
If B is a (1, 2)-system (consisting of Bi’s and Bi,j ’s) and C is a (1, 2)-system consisting of Ci’s and
Ci,j ’s such that Ci ⊆ Bi and Ci,j = Bi,j ∩ (Ci × Cj) for every i, j < n then we call C a subsystem of
B. If at least one of the inclusions is strict we call it a proper subsystem. We need two definitions
of substrategies.
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Definition 4.6. Let B be a Prague strategy and let C be a subsystem of B (treated as a (1, 2)-
system). If C is a Prague strategy then it is a substrategy of B. Moreover if

(B4S) for every number i < n and every pattern w based at i in B if a, b ∈ Ci and a, b are connected

in [[w]] in the strategy B, then there exists k > 0 such that a
wk

−−→ b in C

then C is a strong substrategy of B.

We write Bw (K) to denote the set of all the elements reachable (in a (1, 2)-system B) from K ⊆
Bi via a pattern w (beginning with i). Moreover we sometimes write Bi,j (K) for B(i,j) (K) (where
w is taken to be (i, j)). Finally we introduce two new conditions equivalent (for a (1, 2)-system) to
condition (B4):

Lemma 4.7. Let B be (1, 2)-system. TFAE:

(B4) B is a Prague strategy;
(B5) for every number i < n and every pattern w based at i in B if a, b ∈ Bi are connected in [[w]],

then there exists a natural number m such that, for all k > m, a
wk

−−→ b;
(B6) for every number i < n and every pattern w based at i in B if K0 ⊆ Bi and Bw (K0) = K0

then for any initial segment w′ of w ending with j Bw′ (K0) = Bi,j (K0).

4.2 Algebraic results

For a given algebra A we distinguish some of its subuniverses. We say that a non-empty subuniverse
K absorbs an algebra A wrt. term t, if the term operation t of A satisfies

t(K, K, . . . ,K,A) ∪ t(K, K, . . . ,K,A,K) ∪ · · · ∪ t(A,K,K, . . . , K) ⊆ K. (∗)

Moreover we say that K absorbs A (or K is an absorbing subuniverse of A), if there exists an
operation t such that K absorbs A wrt. t.

Definition 4.8. Let R ⊆ C × D. We say that c, c′ ∈ C are linked in R, if there exist a natural
number i, c = c0, c1, . . . , ci = c′ ∈ C and d1, . . . , di ∈ D such that for all 0 ≤ j < i we have
(cj , dj+1) ∈ R and (cj+1, dj+1) ∈ R.

We say that R is fully linked, if every two elements of C are linked in R and we say that R is
left separated, if (c, d), (c′, d) ∈ R implies c = c′ for all c, c′ ∈ C and d ∈ D.

These definitions allow us to introduce a simple lemma and two more involved theorems with
proofs in the appendix.

Lemma 4.9. Let R be a subdirect product of C and D. If C is simple and R is not left separated,
then R is fully linked.

Theorem 4.10. Let A be a finite SD(∧) algebra. Let R be a family of subsets of A satisfying the
following conditions

• A ∈ R
• If t ∈ Clo A is a WNU operation, X ∈ R and x ∈ X, then {t(x, x, . . . , x, y) : y ∈ X} ∈ R

Then R contains a one-element set.

Theorem 4.11. Let A be a finite SD(∧) algebra. Let C,D ≤ A and R ≤ C ×D be fully linked
and subdirect. Then either R = C ×D or there exist a proper absorbing set in C or D.
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4.3 The absorbing case

The following theorem was essentially discovered already in [1].

Theorem 4.12. Let B be a Prague strategy of size n compatible with an algebra A. If, for some
i0 < n and K0 a proper subuniverse of Bi0, K0 absorbs Bi0 then there exists a proper strong
substrategy of B compatible with A.

Proof. Let t ∈ Clo A be such that K0 absorbs Bi0 wrt. tBi0 and let K = {(D, i) : i < n, D  Bi}.
We define a preorder ≤ on K putting

(D, i) ≤ (E, j) iff there exists a pattern w = (i, . . . , j) such that Bw (D) = E.

Claim. (1) If (D, i) ≤ (E, j) and D absorbs Bi wrt. tBi, then E absorbs Bj wrt. tBj .

Proof. Let w be a pattern such that Bw (D) = E. Let q be the arity of t and let e0, . . . , eq−2 ∈ E

and b ∈ Bj be arbitrary. From (B2) it follows that there exists a ∈ Bi such that a
w−→ b. Since

Bw (D) = E, there exist d0, . . . , dq−2 such that dk
w−→ ek for all k = 0, . . . , q − 2. It is not hard to

see that w−→ is a subuniverse of Bi × Bj , and therefore tBi(d0, . . . , dq−2, a) w−→ tBj (e0, . . . , eq−2, b).
Since D absorbs Bi we get t(d0, . . . , dq−2, a) ∈ D and conclude that t(e0, . . . , eq−2, b) ∈ E. The
same argument can be applied with permuted variables which proves equation (∗). To see that E
is a subuniverse of Bj it suffices to repeat the same reasoning for every operation of the algebra A
taken in place of t (with all ei’s and b in E).

Let L ⊆ K be a maximal component of the preorder ≤ which is bigger than (K0, i0). If
(D, i), (D′, i) ∈ L, then (D, i) ≤ (D′, i) ≤ (D, i) and the property (B6) implies that D = D′ which
allows us to define

Ci =

{
D if there exists (unique) D such that (D, i) ∈ L
Bi otherwise.

and put C = {Ci, Ci,j = Bi,j ∩ (Ci ×Cj) : i, j < n}. Property (B6) for B together with maximality
of L implies (B2) for C and therefore C is a (1, 2)-system and a proper subsystem of B. Moreover,
by Claim (1), each Ci absorbs Bi, thus, in particular, C is compatible with A.

To finish the proof we have to show that C satisfies (B4S). Let a, b ∈ Ci, w be a pattern based
at i and let us assume that a and b are connected in [[w]] in the strategy B. Since C is a (1, 2)-system
we can find, for any k, a realization of wk inside C starting at a. As Ci is finite, there exists a′ ∈ Ci

and natural numbers k, l such that a
wk

−−→ a′ and a′
wl

−→ a′ in C. Similarly (going backwards from

b) we can find b′ such that b′
wk′

−−→ b and b′
wl′

−−→ b′ also in C. We assume that l = l′ since we can,
wlog, replace both numbers by ll′. All the realizations up to now lie inside C. Using the property

(B5) of the strategy B we know that a′
wl′′

−−→ b′ for all big enough l′′ (this realization needn’t be in
C) and we assume, wlog, l = l′′ (we can again replace l, l′ and l′′ by ll′′).

Now take any m smaller than the arity of t and form the following matrix (with ar(t) rows):
To the first m rows write a realization of wl joining a′ to a′ inside C, to the (m + 1)-st row write
a realization of wl joining a′ to b′, to the remaining rows write a realization of wl joining b′ to
b′. By applying t to columns, we obtain a realization of wl joining t(a′, . . . , a′, a′, b′, . . . , b′) (the
letter a′ appears (m + 1)-many times) to t(a′, . . . , a′, b′, b′, . . . , b′). From the absorbing property of

t it follows that this realization lies in C. Now a
wk

−−→ a′ = t(a′, . . . , a′) wl

−→ t(a′, . . . , a′, b′) . . .
wl

−→

t(b′, . . . , b′) = b′
wk′

−−→ b and this realization of a power of w lies in C which finishes the proof.
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4.4 The remaining case

In this section we prove that a Prague strategy compatible with an SD(∧) algebra has a solution, by
showing that every such strategy, which is not a solution itself, contains a strong, proper substrategy
compatible with the same algebra.

Let B be an arbitrary Prague strategy (of size n) compatible with an SD(∧) algebra A. If B is
a solution there is nothing to prove. If, on the other hand, one of Bi’s contains a proper absorbing
subuniverse then Theorem 4.12 provides a strong, proper substrategy compatible with A.

The remaining case is when no Bi has a proper absorbing set and, wlog, |B0| > 1. Let θ be
a maximal congruence of B0, let B′

0 denote the simple factor algebra B0/θ and let C0
0 , . . . , Cm−1

0

enumerate the partition of B0 into the equivalence classes of θ.
We split the indexing set of B into two disjoint parts:

Z = {i < n : B0,i

(
C0

0

)
= Bi}, and Y = {0, 1, . . . , n− 1} \ Z,

and let
Cj

i = B0,i

(
Cj

0

)
, j < m, i ∈ Y.

We define an algebra M to be an isomorphic copy of B′
0 with the universe {0, 1, . . . ,m−1} and

with elements Ci
0 renamed to i. Thus for every l-ary term operation t of A and any k0, . . . , kl−1 < m

we have
tB

′
0(Ck0

0 , . . . , C
kl−1

0 ) ⊆ C
tM(k0,...,kl−1)
0 .

From the fact that B0,i is a subalgebra of B0 ×Bi it follows that for all i < n

tBi(Ck0
i , . . . , C

kl−1

i ) ⊆ C
tM(k0,...,kl−1)
i .

The following three claims uncover a structure of the strategy B.

Claim (1). For all i ∈ Y, Bi is a disjoint union of C0
i . . . Cm−1

i .

Proof. Let
B′

0,i = {([a]θ, b) : (a, b) ∈ B0,i}.
Then B′

0,i is a subdirect subuniverse of B′
0 ×Bi.

If B′
0,i is left separated, then the claim follows. Otherwise, by Lemma 4.9, B′

0,i is fully linked. As
i ∈ Y, B0,i

(
C0

0

)
 Bi and therefore B′

0,i is a proper subuniverse of B′
0×Bi. Thus, by Theorem 4.11,

either B′
0 has a proper absorbing set (and then its union is a proper absorbing set of B0) or Bi has

a proper absorbing set, which, in both cases, is a contradiction.

Claim (2). For all i, j ∈ Y and all k < m, Bi,j

(
Ck

i

)
= Ck

j .

Proof. From Claim (1) it follows that B(i,0,j,0,i)

(
Ck

i

)
= Ck

i . The property (B6) of B gives us
Bi,j

(
Ck

i

)
= B(i,0,j)

(
Ck

i

)
, and the right side is, by Claim (1) again, equal to Ck

j .

Claim (3). For all i ∈ Y, j ∈ Z and k < m, Bi,j

(
Ck

i

)
= Bj.

Proof. Let w = (0, i, j) and let R ⊆ B′
0 ×Bj be the following subset

R = {([a]θ, b) : a
w−→ b}

Clearly R is a subdirect subuniverse of B′
0 × Bj and if R = B′

0 × Bj , we get Bj = Bw

(
Ck

0

)
=

Bi,j

(
Ck

i

)
. It remains to exclude other options. If R 6= B′

0 ×Bj is not left separated, we can derive
a contradiction using Lemma 4.9 and Theorem 4.11 as in the proof of Claim (1). If R 6= B′

0 × Bj

is left separated, then B(0,i,j,i,0)

(
Ck

0

)
= Ck

0 , in particular B(0,i,j)

(
Ck

0

)
is a proper subset of Bj . But

B(0,i,j)

(
Ck

0

)
= B0,j

(
Ck

0

)
= Bj by the property (B6), a contradiction.
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For a subset X ⊆ {0, 1, . . . ,m− 1} which is not necessarily a subuniverse of M, let

BX
i =

{⋃
j∈X Cj

i if i ∈ Y
Bi if i ∈ Z,

BX
i,j = Bi,j ∩

(
BX

i ×BX
j

)
and finally let BX denote the system of sets BX = {BX

i , BX
i,j : i, j < n}.

By Claims (2) and (3), if X 6= ∅, then BX is a (1, 2)-system. Let

R = {X ⊆ {0, 1, . . . ,m− 1} : BX is a strong substrategy of B }

and note that we do not require compatibility of BX with A even for X ∈ R. Obviously
{0, 1, . . . ,m − 1} ∈ R. If R contains a one-element set {x} we are done – since B

{x}
i is either

Bi or a congruence class of an idempotent algebra, then the strategy B{x} is compatible with A,
which means that B{x} is a proper strong substrategy of B compatible with A.

By comparing these remarks and Theorem 4.10, we see that the only missing piece is the
following claim.

Claim. (4) If x ∈ X ∈ R, then for any WNU term operation t of A we have {tM(x, x, . . . , x, y) :
y ∈ X} ∈ R.

Proof. Let x,X and t be as in the statement of the claim, let ◦t denote the binary operation
a ◦t b = t(a, a, . . . , a, b) and Y = x ◦t X. We have to check that BY satisfies the property (B4S).
Let i < n, w be any pattern based at i and let a, b ∈ BY

i be elements connected in [[w]] in B. If
[[w]] ⊆ Y, then necessarily a, b ∈ B

{y}
i for some y ∈ Y and any realization of wj connecting a to

b (in B) lies also in B{y} (see Claim (2)) and thus in BY .
Now assume [[w]] 6⊆ Y. From Claims (2) and (3) it follows that there exist a′, b′ ∈ B

{x}
i such that

a
w−→ a′ and b′

w−→ b in BY . Similarly as in the proof of Theorem 4.12 we can find a′′, b′′ ∈ B{x} such

that a′
wj

−→ a′′, b′′
wj′

−−→ b′ in B{x} and a′′
wl

−→ a′′ and b′′
wl

−→ b′′. Because BX is a strong substrategy

of B, there exists a realization a′′
wl′′

−−→ b′′ in BX for all sufficiently big l′′ and, as before, we can
assume l = l′′.

As in the proof of Theorem 4.12 for every j (smaller than the arity of t) we form the fol-

lowing matrix: To the first j rows write a realization of a′′
wl

−→ a′′ in B{x}, to the (j + 1)-st

row write a realization of a′′
wl

−→ b′′ in BX and to the remaining rows write a realization of

b′′
wl

−→ b′′ in B{x}. When we apply the term t to the columns of this matrix, we get a realiza-

tion of t(a′′, . . . , a′′, a′′, b′′, . . . , b′′) wl

−→ t(a′′, . . . , a′′, b′′, b′′, . . . , b′′) in Bx◦tX = BY . Composition of
our realizations gives us a realization of a power of the pattern w connecting a to b in BY which
finishes the proof.
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5 Proofs for Section “Reduction to Prague strategies”

First we introduce an auxiliary notion of a (2, 3)-system:

Definition 5.1. A (1, 2)-system B = {Bi, Bi,j : 0 ≤ i, j < n} is called a (2, 3)-system, if for all
i, j, k < n,

(B3) if (a, b) ∈ Bi,j then there exists c ∈ Bk such that (a, c) ∈ Bi,k and (b, c) ∈ Bj,k.

Lemma 5.3 below proves that every (2, 3)-system is a Prague strategy. This will fill the gap in the
proof of Theorem 3.7, since from the properties (S1)–(S3) of F it easily follows that B (constructed
in the proof of Theorem 3.7 on page 6) is a (2, 3)-system. For a more detailed description of the
reduction we refer to [1].

Lemma 5.2. Let B be a (2, 3)-system of size n, let i, j < n and let w = (w0, . . . , wl) be a pattern.
Then a

w−→ b for any a ∈ Bw0, b ∈ Bwl
such that (a, b) ∈ Bw0,wl

.

Proof. Using (B3) from the definition of (2, 3)-system to (a, b) and the coordinates i, j, w1 we obtain
c0 ∈ Bw1 such that (a, c0) ∈ Bw0,w1 and (c0, b) ∈ Bw1,wl

. The element c0 is the second (after a)
element of a realization of the pattern w. Continuing the reasoning we use (B3) to (c0, b) ∈ Bw1,j

and the coordinates w1, j, w2 to obtain c2 – the third element of a realization of w. Repeated
applications of this reasoning produce a realization of the pattern w connecting a to b.

Lemma 5.3. Every (2, 3)-system is a Prague strategy.

Proof. Let i < n, let w be a pattern and let a, b ∈ Bi be connected in [[w]], i.e. there exists a pattern
v = (v0, . . . , vl) such that a

v−→ b and [[v]] ⊆ [[w]]. Let a = a0, . . . al = b be a realization of v. Since
v1 appears in w there exists an initial part of w, say w′, starting with i and ending with v1. Since
(a, a1) ∈ Bi,v1 we use Lemma 5.2 to connect a to a1 via w′. Since v2 appears in w there exists w′′

such that w′w′′ is an initial part of w2 and such that w′′ ends in v2. Since (a1, a2) ∈ Bv1,v2 we use
Lemma 5.2 again to connect a1 to a2 via a pattern v1w

′′. Now a0 and a2 are connected via pattern
w′w′′. By continuing this reasoning we obtain the pattern wk (for some k) connecting a to b.

This concludes the reduction of Theorem 3.7 to Theorem 4.5. Finally we present a proof of the last
lemma of the subsection.

Lemma (4.7). Let B be (1, 2)-system. TFAE:

(B4) B is a Prague strategy;
(B5) for every number i < n and every pattern w based at i in B if a, b ∈ Bi are connected in [[w]],

then there exists a natural number m such that, for all k > m, a
wk

−−→ b;
(B6) for every number i < n and every pattern w based at i in B if K0 ⊆ Bi and Bw (K0) = K0

then for any initial segment w′ of w ending with j Bw′ (K0) = Bi,j (K0).

Proof. For (B4) =⇒ (B5) it is clearly enough to prove the claim for a = b (as a is connected
to itself in any non-empty set). To do so, we obtain (using (B4)) a natural number p such that

a
wp

−−→ a. Let c be an element of Bw0 such that a
w−→ c

wp−1

−−−→ a. We use the property (B4) for a, c

and the pattern wp to find a natural number q such that a
wpq

−−→ c. From a
wp

−−→ a and a
wpq+p−1

−−−−−→ a

(as a
wpq

−−→ c
wp−1

−−−→ a) we get a
wxp+y(pq+p−1)

−−−−−−−−−→ a for arbitrary x, y. Since p and pq +p−1 are coprime,
the claim follows.
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For (B5) =⇒ (B6) let i, j and w,w′ be as in the statement and let w′′ be such that w = w′w′′.
We put K1 = Bw′ (K0) and since Bw (K0) = K0 we get K1 = Bw′′w′ (K1). Then (B5) implies that
K1 consists of all the elements of Bj connected to K1 in [[w]]. Therefore Bi,j (K0) ⊆ K1. Similarly
Bj,i (K1) ⊆ K0 and since B is a (1, 2)-system we obtain Bi,j (K0) = K1 as required.

For (B6) =⇒ (B4) we set a, b and i, w as in the statement and consider the sequence
Bw ({a}) ,Bw2 ({a}) , . . . . As Bi is finite the sequence will start repeating and we obtain num-
bers p, q > 0 such that K0 = Bwp ({a}) = Bwq (Bwp ({a})). An application of (B6) immediately
implies that Bw (K0) = K0 and repeated applications of (B6) for various cyclic shifts (as in the
previous case) of w show that every element of Bi connected in [[w]] to some element of K0 is in
K0. Thus b ∈ K0 and the implication is proved.

6 Proofs of the algebraic results

We start with Lemma 4.9.

Lemma (4.9). Let R be a subdirect product of C and D. If C is simple and R is not left separated,
then R is fully linked.

Proof. The relation “to be linked to” is readily seen to be a congruence of C. Since C is simple,
“to be linked to” is either the diagonal or the full equivalence. In the first case R is left separated,
in the latter one R is fully linked.

Our next aim is to prove Theorem 4.10. We introduce further notation.

Definition 6.1. Let t be an n-ary operation and σ be a permutation on the set {0, 1, . . . , n − 1}.
Then tσ is an n-ary operation defined by

tσ(a0, . . . , an−1) = t(aσ(0), aσ(1), . . . , aσ(n−1)).

Definition 6.2. Let t be a WNU on a set A. Then ◦t is a binary, idempotent operation defined by

a ◦t b = t(a, a, . . . , a, b).

A WNU operation t is called special, if for all a, b ∈ A

a ◦t (a ◦t b) = a ◦t b.

Definition 6.3. Let s be an operation on A of arity m, t be an operation on A of arity n. By s / t
we mean the mn-ary operation

s / t(a0, . . . , amn−1) = s(t(a0, . . . , an−1), t(an, an+1, . . . ), . . . , t(. . . , amn−1)).

For a natural number k > 0 and an operation t, we put

t/k = t / t / · · · / t︸ ︷︷ ︸
k×

.

The next lemma was proved in [17].

Lemma 6.4. For any WNU operation t on a set A, the operation t/|A|! is a special WNU.
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Proof. For a ∈ A we define a mapping A → A by fa(b) = a ◦t b. It is easily seen that t/i is a WNU
and that a ◦t/i b = f i

a(b) for any i. Observe that (f |A|!)2 = f |A|! for any mapping f : A → A. This
fact used for f = fa gives the desired conclusion.

One more lemma is necessary for proving the first theorem.

Lemma 6.5. Let A be a finite SD(∧) algebra. Let

K = {◦ : ∃k ∀l ≥ k there exists a WNU t ∈ Clo A of arity l such that ◦t = ◦}.

Then

(K1) K 6= ∅.

(K2) If ◦, ? ∈ K then • ∈ K, where a • b = a ◦ (a ? b).

(K3) If ◦, ? ∈ K then • ∈ K, where a • b = (a ? b) ◦ a.

Proof. (K1) Let k = |A|! and let Z be an infinite set of natural numbers such that for all z1, z2 ∈ Z,
z1 6= z2, the numbers zk

1−1 and zk
2−1 are coprime. (Such a set can be constructed inductively:

when we have a finite Z satisfying the condition, then we can add one more element, namely∏
z∈Z(zk − 1).)

Since A has WNU term operations of all but finitely many arities, there exist distinct z1, z2 ∈
Z and WNU term operations t1, t2 of arities z1, z2 (respectively) such that ◦t1 = ◦t2 .

Observe that given two special WNU operations r, s of arities i, j with ◦r = ◦s, we can form
a WNU operation v of arity i + j − 1 such that ◦v = ◦r by putting

v(x0, . . . , xi+j−2) = r(s(x0, . . . , xj−1), xj , . . . , xi+j−2).

By iterative application of this corollary it follows that from the special WNU term operations
v1 = t

/|A|!
1 and v2 = t

/|A|!
2 we can form, for arbitrary natural numbers i, j, a WNU term

operation v of arity i(zk
1 − 1) + j(zk

2 − 1) + 1 satisfying ◦v = ◦v1 . Since zk
1 − 1 and zk

2 − 1 are
coprime, the claim follows.

(K2) If t is an n-ary WNU operation such that ◦t = ◦ and s, s′ are WNU operations of arities k, k′

such that ◦s = ◦s′ = ?, then ◦v = •, where

v(x0, . . . , x(n−1)∗k+k′−1) = t(s(x0, . . . , xk−1), s(xk, . . . , x2k−1), . . . , s′(x(n−1)∗k, . . . , x(n−1)∗k+k′−1))

(K3) If t is an (n + 1)-ary WNU such that ◦t = ◦ and s is an n-ary WNU such that ◦s = ?, then
◦v = •, where

v(x0, . . . , xn) = t(s(x1, . . . , xn), s(x0, x2, . . . , xn), . . . , s(x0, . . . , xn−1)).

Theorem (4.10). Let A be a finite SD(∧) algebra. Let R be a family of subsets of A satisfying
the following conditions

• A ∈ R

• If t ∈ Clo A is a WNU operation, X ∈ R and x ∈ X, then x ◦t X = {x ◦t y : y ∈ X} ∈ R
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Then R contains a one-element set.

Proof. Let K be as in the last lemma and take any WNU operation t′ ∈ Clo A such that ◦t′ ∈ K.
From (K2) it follows that there exists a WNU operation t ∈ Clo A such that ◦t ∈ K and

a ◦t b = a ◦t′ (a ◦t′ (. . . ◦t′ (a ◦t′ (a ◦t′ b)) . . . )︸ ︷︷ ︸
|A|!

.

From the argument in Lemma 6.4 it follows that t is a special WNU. For brevity we denote ◦ = ◦t.
Let X be a member of R with minimal number of elements. Suppose, for a contradiction, that

|X| > 1. Therefore there exist a1, a
′
2 ∈ X such that a1 6= a′2. As X is minimal, |a1 ◦ X| = |X|,

hence a1 = a1 ◦ a1 6= a1 ◦ a′2. Let a2 = a1 ◦ a′2, X1 = a1 ◦ X. We have a1 6= a2, a1, a2 ∈ X1 and
a1 ◦ a2 = a2 (since a1 ◦ a2 = a1 ◦ (a1 ◦ a′2) = a1 ◦ a′2 = a2).

Let a3 = a2 ◦ a1, X2 = a2 ◦ X1 ∈ R, a4 = a3 ◦ a2, X3 = a3 ◦ X2 ∈ R, . . . . Obviously Xi ∈ R
and ai, ai+1 ∈ Xi. Since |Xi| = |Xi−1|, it follows that ai 6= ai+1.

Let us define operations ◦i as follows:
◦0 = ◦

a ◦i+1 b = (a ◦ b) ◦i a.

From Lemma 6.5 (K3) it follows that all these operations are in K.

Claim. For all k and all j ≥ 2, aj ◦k aj−1 = aj+k+1

Proof. Since, for all j ≥ 2, aj ◦ aj−1 = aj+1 (from the definition of aj+1), the claim holds for k = 0.
Assuming that the claim holds for k, the following calculation proves it for k + 1: for all j ≥ 2

aj ◦k+1 aj−1 = (aj ◦ aj−1) ◦k aj = aj+1 ◦k aj = aj+k+2.

Take arbitrary n and n′ so that n < n′ and an = an′ . From the claim it follows that an ◦(n′−n−1)

an−1 = an′ = an. But then an ◦(n′−n−1) Xn−1 has a smaller cardinality than Xn−1, because Xn−1

contains an−1 and an, a contradiction.

Now, in order to prove Theorem 4.11, we concentrate on a special case:

Lemma 6.6. Let A be a finite SD(∧) algebra. Let C,D ≤ A and R ≤ C×D be subdirect. Assume
that there exists d ∈ D such that C × {d} ⊆ R. Then either R = C × D or there exists a proper
absorbing set in C or D.

Proof. We may assume that all operations of A are idempotent, otherwise we can replace A by the
algebra of all idempotent term operations of A.

Let r, s ∈ Clo (A) be WNU operations such that

a ◦s b = (a ◦r b) ◦r a.

Their existence is provided by Lemma 6.5.

Claim (1). If X is a subuniverse of C such that C ◦r X = X and C ◦s X = X, then X absorbs C
wrt. ◦s.

Proof. For all c ∈ C and x ∈ X we have (trivially) c◦sx ∈ X and x◦sc ∈ X (as x◦sc = (x◦r c)◦rx ∈
X since C ◦r X = X), thus X absorbs C wrt. ◦s.
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Assume R  C ×D. For any X ⊆ C and Y ⊆ D let

X+ = {d : there exists x ∈ X such that (x, d) ∈ R},
Y − = {c : there exists y ∈ Y such that (c, y) ∈ R}.

Note that if X is a subuniverse of C, then X+ is a subuniverse of D.
For a subset X ⊆ C we put

NX = ∩x∈X{x}+

The assumptions of the lemma guarantees NC 6= ∅ and R  C ×D implies NC 6= D. For any X,
NX is a subuniverse of D – each {x} is a subuniverse (from idempotency), therefore each {x}+ is
a subuniverse, and the intersection of subuniverses is a subuniverse.

Claim (2). NX = N〈X〉, where 〈X〉 is the subuniverse of C generated by X.

Proof. It follows from the fact that {d}− is a subuniverse of C for any d ∈ NX .

Claim (3). For any X, Y ⊆ C, any WNU term operation t ∈ Clo A and any permutation σ we
have tσ(NX , . . . , NX , NY ) ⊆ NX◦wY .

Proof. It is an easy consequence of the definitions and the fact that R is a subuniverse of C×D.

For a subuniverse X of C, let fr(X) = 〈C ◦r X〉. Similarly fs(X) = 〈C ◦s X〉.
If X = fr(X) and fs(X) = X for a proper subuniverse of X, then by Claim (1) X is a proper

absorbing subset of C and we are done.
Otherwise for all c ∈ C we have . . . fr(fs(fr({c}))) = C for a sufficiently long chain. By Claims

(2) and (3), rσ(NC , . . . , NC , NX) ⊆ Nfr(X) for all X ⊆ C and any permutation σ and similarly for
the operation s. It follows that t = · · ·/ r / s/ r satisfies tσ(NC , . . . , NC , N{c}) ⊆ N...(fr(fs(fr({c})))... )
for all c ∈ C and any permutation σ. We get tσ(NC , . . . , NC , N{c}) ⊆ NC . As ∪c∈CN{c} = D, the
set NC absorbs D wrt. t.

Finally we are ready to prove the last theorem.

Theorem (4.11). Let A be a finite SD(∧) algebra. Let C,D ≤ A and let R ≤ C×D be subdirect
and fully linked. Then either R = C ×D or there exists a proper absorbing set in C or D.

Proof. Let us assume R 6= C ×D.

Claim. (1) We can assume N−
c = C for all c ∈ C (the notation is as in the last lemma).

Proof. If the condition is not satisfied, then R ◦R−1 is a proper subset of C ×C and we can work
with R ◦R−1 ≤ C×C instead of R. If the condition is still not satisfied, we again replace R with
R ◦R−1. This process stops, since R ◦R−1 ◦R ◦ · · · ◦R−1 = C × C as R is fully linked.

First suppose that there exists ∅ 6= X ( C such that for all t ∈ Clo A there exists a permutation
σ such that tσ(X, C,C, . . . , C) = X. Such a set X is clearly a subuniverse of C and C ◦r X = C
and C ◦s X = C, thus X absorbs C wrt. ◦s (see Claim (1) in the previous proof).

So we can suppose that for all ∅ 6= X ( C there exists tX ∈ Clo (A) such that tσX(X, C,C, . . . , C)
for all permutations σ. Let C = {c1, . . . , cm}. The term operation

t1 = t{c1} / t{c2} / · · · / t{cm}

has the property that for all one-element subsets X ⊆ C and for all permutations σ, tσ1 (X, C, . . . , C)
is at least two-element. Similarly (by composing through all the two-element subsets) we form a
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term operation t2 such that tσ2 (X, C, . . . , C) is at least three-element for all two-element X, etc.
Now t = tm−1 / · · · / t1 satisfies tσ({ci}, C, . . . , C) = C for all i and for all permutations σ.

A subset X of C is good, if N−
X = C. If C is good, since then NC is nonempty and by the last

lemma there exists a proper absorbing set in C or D. Therefore we assume that C is not good. On
the other hand, by Claim (1) we can assume that {c} is good for all c ∈ C. Take a maximal good
subset X of C. Claim (2) from the last lemma implies that X is a subuniverse of C. Since X is
good, NX∪{c} 6= ∅ for any c ∈ C.

If X is an absorbing set of C we are done. Otherwise there exist a coordinate i, ci ∈ C
and c0, . . . , ci−1, ci+1, . . . , cn−1 ∈ X (where n is the arity of t) such that t(c0, . . . , cn−1) = c 6∈ X,
therefore clearly

t(NX∪{c0}, NX , NX , . . . , NX) ⊆ NX∪{c}.

As X is a subuniverse of C, ci 6∈ X. For simplicity let us assume i = 0.
Let c′ ∈ C be arbitrary. Using the property of t we find c1, . . . , cn−1 ∈ C such that

t(c0, c1, . . . , cn−1) = c′. Since X is good, there exist d0 ∈ NX∪{c0} and d1, . . . , dn−1 ∈ NX

such that (cj , dj) ∈ R for all j = 0, . . . , n − 1. Now (t(c0, . . . , cn−1), t(d0, . . . , dn−1)) ∈ R, thus
(c′, t(d0, . . . , dn−1)) ∈ R. The element t(d0, . . . , dn−1) lies in NX∪{c} (see the inclusion in the last
paragraph). We have shown that X ∪ {c} is good, a contradiction with maximality of X.
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