CSP lecture 21/22 winter semester – Problem Set 1

Consider the following relations on $\{0, 1\}$:

- $C_i := \{i\}, \text{ for } i \in \{0, 1\}$
- $R := \{(0,0), (1,1)\}$
- $N := \{(0,1), (1,0)\}$
- $S_{ij} := \{0,1\}^2 \setminus \{(i,j)\}, \text{ for } i,j \in \{0,1\}$
- $H := \{0,1\}^3 \setminus \{(1,1,0)\}$
- $G_1 := \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}, G_2 := \{(0,0,1), (0,1,0), (1,0,0), (1,1,1)\}$

Problem 0. Prove that the definitions of CSP(A) (satisfiability of a list of constraints and homomorphism problem) are equivalent.

Problem 1. Find a polynomial–time algorithm for CSP(A), where

- 1. $\mathbb{A} = (\{0,1\}; R)$
- 2. $\mathbb{A} = (\{0,1\}; R, C_0, C_1)$
- 3. $\mathbb{A} = (\{0,1\}; S_{10})$
- 4. $\mathbb{A} = (\{0,1\}; S_{10}, C_0, C_1)$
- 5. $\mathbb{A} = (\{0,1\}; S_{01}, S_{10}, C_0, C_1)$
- 6. $\mathbb{A} = (\{0,1\}; N)$
- 7. $\mathbb{A} = (\{0,1\}; R, N, C_0, C_1)$
- 8. $\mathbb{A} = (\{0,1\}; R, N, C_0, C_1, S_{00}, S_{01}, S_{10}, S_{11})$
- 9. $\mathbb{A} = (\{0,1\}; \text{all unary and binary relations})$

Problem 2. Find a polynomial–time algorithm for $CSP(\{0,1\}; H, C_0, C_1)$.

Problem 3. Find a polynomial-time algorithm for $CSP(\{0,1\}; C_0, C_1, G_1, G_2)$.

Problem 4. Find a polynomial–time algorithm for $CSP(\mathbb{Q};<)$.

Problem 5. Prove that $CSP(\mathbb{Q}; <) \neq CSP(\mathbb{A})$, for every finite relational structure $\mathbb{A} = (A; R)$.