CSP lecture 21/22 winter semester – Problem Set 2

Recall that $CSP(\mathbb{A})$ is polynomially reducible to $CSP(\mathbb{B})$ if there exists a polynomial-time algorithm that transforms an input I of $CSP(\mathbb{A})$ to an input r(I) of $CSP(\mathbb{B})$ so that I is satisfiable iff r(I) is satisfiable. In such a case, we write $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B})$. When $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B}) \leq_P CSP(\mathbb{A})$, we write $CSP(\mathbb{A}) \sim_P CSP(\mathbb{B})$ and say that the two problems are polynomially equivalent.

Observe that if $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B})$ and $CSP(\mathbb{B})$ is in P (i.e., solvable in polynomial time), then $CSP(\mathbb{A})$ in in P. Similarly, if $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B})$ and $CSP(\mathbb{A})$ is NP–complete, then $CSP(\mathbb{B})$ is NP–complete.

Problem 1. Let $\mathbb{A} = (\{0, 1, 2\}; C_0, C_1, Q)$, where

$$C_0 = \{0\}, C_1 = \{1\}, Q = \{000, 110, 120, 210, 101, 102, 201, 202, 011, 012, 021\}$$

(Q is a ternary relation, we omit the commas and parentheses, eg. 110 stands for (1,1,0).)

Moreover, let \mathbb{B} be the relational structure $\mathbb{B} = (\{0,1\}; C_0, C_1, G_1)$ (where the notation is from the 1st problem set). Prove that $CSP(\mathbb{A}) \sim_P CSP(\mathbb{B})$. (Hint: use homomorphisms $\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$).

Problem 2. Prove that for each finite relational structure \mathbb{A} there exists a relational structure \mathbb{B} such that

- there exists a homomorphism $\mathbb{A} \to \mathbb{B}$ and a homomorphism $\mathbb{B} \to \mathbb{A}$, and
- \mathbb{B} is a *core*, that is, each endomorphism of \mathbb{B} is an automorphism.

Deduce that we can WLOG concentrate on CSPs over cores.

Also prove that such a structure is unique up to isomorphism.

Problem 2'. Find a relational structure \mathbb{A} such that every structure \mathbb{B} with homomorphisms $\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$ is *not* a core. (Hint: \mathbb{A} can be taken to be a directed graph.)

Problem 3. Let $A = (A; R_1, R_2, R_4)$ be a relational structure, where R_i is an *i*-ary relation. Let E be the equality relation (ie. $E = \{(a, a) : a \in A\}$, let S be the ternary relation on A defined by

$$S(x, y, z)$$
 iff $R_1(x) \wedge R_2(x, z) \wedge R_4(y, z, y, x)$

and let T be the binary relation defined by

$$T(x,y)$$
 iff $(\exists z \in A) S(x,y,z)$

Prove that

- $CSP(A; R_1, R_2, R_4, E) \leq_P CSP(\mathbb{A})$
- $CSP(A; R_1, R_2, R_4, E, S) <_P CSP(A)$
- $CSP(A; R_1, R_2, R_4, E, S, T) \leq_P CSP(\mathbb{A})$

Try to formulate a general theorem covering these particular cases.

Problem 4. Prove that $CSP(\mathbb{A})$, $CSP(\mathbb{B})$ and $CSP(\mathbb{C})$ are polynomially equivalent, where

$$\mathbb{A} = (\{0, 1, 2\}, C_0, C_1, C_2, N), \quad N = \{0, 1, 2\}^2 \setminus \{(0, 0), (1, 1), (2, 2)\}
\mathbb{B} = (\{0, 1\}, S_{000}, S_{001}, S_{011}, S_{111}), \quad S_{ijk} = \{0, 1\}^3 \setminus \{(i, j, k)\}
\mathbb{C} = (\{0, 1\}, C_0, C_1, R), \quad R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$$

Try to use the general theorem from Problem 3.

Problem 5. Prove that $CSP(A) \sim_P CSP(\{0,1,2\},N)$, where A,N are from the previous problem.

Problem 6. Let \mathbb{A} be a finite *core* and let \mathbb{B} be the relational structure formed from \mathbb{A} by adding all the unary relations $C_a = \{a\}, a \in A$. Prove that $CSP(\mathbb{A}) \sim_P CSP(\mathbb{B})$.

Problem 7. Let \mathbb{A} be a finite relational structure such that $CSP(\mathbb{A})$ is in P. Prove that there is a polynomial–time algorithm for finding a solution of $CSP(\mathbb{A})$.