Universal Algebra Exercises - Sheet 2

Definition. A lattice L is called *distributive*, if for all $x, y, z \in L$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \tag{2.1}$$

$$x \lor (y \land z) = (x \lor y) \land (x \lor z) \tag{2.2}$$

Exercise 9. Show that every lattice with less than four elements is distributive. Find examples of distributive lattices with a large number of elements.

Exercise 10. Show that in the definition of distributive lattices (3.1) and (3.2) are equivalent.

Definition. A lattice L is called modular, if for all $x, y, z \in L$

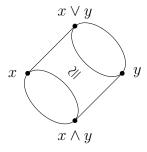
$$x \le z \implies x \lor (y \land z) = (x \lor y) \land z$$

Exercise 11. Show that every distributive lattice is modular and disprove the converse, i.e. find a modular lattice that is not distributive.

Exercise 12. Show that the following two statements hold for all lattices L and all $x, y, z \in L$

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$
$$x \le z \implies x \lor (y \land z) \le (x \lor y) \land z$$

Exercise 13 (Diamond isomorphism theorem). Let L be a modular lattice and $x, y \in L$. Show that the intervals $I[x \wedge y, x]$ and $I[y, x \vee y]$ are isomorphic lattices.



Exercise 14. A term m(x, y, z) of an algebra A is called *majority* if it satisfies the identities

$$x \approx m(x, x, y) \approx m(x, y, x) \approx m(y, x, x)$$

Show that every lattice has a majority term.

Theorem (Dedekind). Prove that a lattice is modular if and only if it does not contain the following lattice as a sublattice.

Theorem (Birkhoff). A modular lattice is distributive if and only if it does not contain the following lattice as a sublattice.

