Universal Algebra Exercises - Sheet 4

Exercise 19. Let X be a set and let ϕ be the binary relation on 2^X defined by

$$(U,V) \in \phi \iff U \cap V \neq \emptyset$$

Consider the Galois correspondence on the sets 2^{2^X} and 2^{2^X} induced by this relation

- (i) Let $X = \{1, 2, 3, 4\}$. Compute $A^{\leftarrow \rightarrow}$ and $A^{\rightarrow \leftarrow}$ for both $A = \{\{1, 2\}, \{2, 3\}\}$ and $A = \{\{1, 2\}, \{2\}\}$. Compare the results.
- (ii) Prove that if a Galois correspondence is defined by a symmetric relation on a set, then the closure operators induced by it coincide.
- (iii) Prove that for every $A \subseteq 2^X$ we have

$$A^{\to\leftarrow} = \{ U \in 2^X \mid \exists V \in A, V \subseteq U \}$$

Exercise 20. Let C be a closure operator on a set X. Find a relation $\phi \subseteq X \times 2^X$ whose induced Galois correspondence gives

$$C(U) = U^{\to \leftarrow}$$

for all subsets $U \subseteq X$.

Exercise 21. Let $\mathbb{A} = (A, *)$ be a binary algebra and θ an equivalence relation on A. Show that θ is a congruence relation if and only if for all $a, b, c \in A$ we have

$$(a,b) \in \theta \implies \begin{cases} (a*c,b*c) \in \theta & \text{and} \\ (c*a,c*b) \in \theta \end{cases}$$

Exercise 22. Let $\mathbb{A} = (A, *)$ be an algebra where $A = \{0, 1, 2, 3\}$ and * is defined by the following multiplication table.

Draw the lattice of subalgebras and the lattice of congruences of A.

Exercise 23. Consider the algebra $(\mathbb{Z}, +, \cdot) \times (\mathbb{Z}, \cdot, +)$. What is the subalgebra generated by the pairs (0, 1) and (1, 0)?

Exercise 24. Let \mathbb{A} and \mathbb{B} be two algebras in the same signature and let $f: \mathbb{A} \to \mathbb{B}$ be a homomorphism.

- Given two subalgebras $U \leq \mathbb{A}$ and $V \leq B$, are $f(U) \subseteq \mathbb{B}$ and $f^{-1}(V) \subseteq \mathbb{A}$ subalgebras?
- Given two congruences $\theta \in \text{Con}(\mathbb{A})$ and $\psi \in \text{Con}(\mathbb{B})$, is $f(\theta) \in \text{Con}(\mathbb{B})$ and $f^{-1}(\psi) \in \text{Con}(\mathbb{A})$?
- Given a subset $X \subseteq A$ is $f(\operatorname{Sg}_{\mathbb{A}}(X)) = \operatorname{Sg}_{\mathbb{B}}(f(X))$?

Exercise 25. Given a binary algebra $\mathbb{A} = (A, *)$ define its *nucleus* as

$$B := \{ a \in A \mid \forall x, y \in A, (x * a) * y = x * (a * y) \}$$

Show that B is a subalgebra of \mathbb{A} and find and an example of an algebra \mathbb{A} whose nucleus is empty.