Universal Algebra Exercises - Sheet 5

Exercise 24. Let \mathbb{A} and \mathbb{B} be two algebras in the same signature and let $f: \mathbb{A} \to \mathbb{B}$ be a homomorphism.

- Given two subalgebras $U \leq \mathbb{A}$ and $V \leq B$, are $f(U) \subseteq \mathbb{B}$ and $f^{-1}(V) \subseteq \mathbb{A}$ subalgebras?
- Given two congruences $\theta \in \text{Con}(\mathbb{A})$ and $\psi \in \text{Con}(\mathbb{B})$, is $f(\theta) \in \text{Con}(\mathbb{B})$ and $f^{-1}(\psi) \in \text{Con}(\mathbb{A})$?
- Given a subset $X \subseteq A$ is $f(\operatorname{Sg}_{\mathbb{A}}(X)) = \operatorname{Sg}_{\mathbb{B}}(f(X))$?

Exercise 26. Let \mathbb{A} and \mathbb{B} be two algebras of the same type and let $f: A \to B$ be a map. Show that f is a homomorphism from \mathbb{A} to \mathbb{B} if and only if its graph is a subalgebra of $\mathbb{A} \times \mathbb{B}$.

$$\{(a, f(a)) \mid a \in A\} \le \mathbb{A} \times \mathbb{B}$$

Exercise 27. Let $f, g : \mathbb{A} \to \mathbb{B}$ be two homomorphisms and let $X \subseteq A$ with $\mathbb{A} = \operatorname{Sg}_{\mathbb{A}}(X)$. Show that

$$f|_X = g|_X \implies f = g.$$

Remark. The converse is also true: Given \mathbb{A} and $X \subseteq A$, then $\mathbb{A} = \operatorname{Sg}_{\mathbb{A}}(X)$ if and only if $f|_X = g|_X$ implies f = g for all algebras \mathbb{B} and all homomorphisms $f, g : \mathbb{A} \to \mathbb{B}$.

Exercise 28. Let $X \subseteq A$ be a subset that generates the algebra \mathbb{A} such that no proper subset of X generates \mathbb{A} . Is it true that every map $f: X \to B$ to any algebra \mathbb{B} can be extended to an homomorphism $\mathbb{A} \to \mathbb{B}$?

Exercise 29. Find all homomorphisms $(\mathbb{N},+)^2 \to (\mathbb{Z}_2,+)$.

Exercise 30. Show that a map $f: A \to B$ is injective if and only if its kernel is the equality relation.

Exercise 31 (Second isomorphism theorem). Let $f : \mathbb{A} \to \mathbb{B}$ and $g : \mathbb{A} \to \mathbb{C}$ be two homomorphisms and let $\alpha \leq \beta$ be two congruences on \mathbb{A} and let ϕ be a congruence on \mathbb{B} . Prove that

(i) if f is surjective and $\ker(f) \subseteq \ker(g)$, then there exists a homomorphism $h: \mathbb{B} \to \mathbb{C}$ such that $g = h \circ f$.

- (ii) there is an embedding $\mathbb{A}/f^{-1}(\phi) \to \mathbb{B}/\phi$.
- (iii) there is a congruence β/α on \mathbb{A}/α such that

$$\mathbb{A}/\beta = (\mathbb{A}/\alpha)/(\beta/\alpha).$$

Exercise 32. Find classes of algebras witnessing that

$$PS \leq SP$$
 $PH \leq HP$ $SH \leq HS$