Universal Algebra Exercises - Sheet 6

Exercise 31 (Second isomorphism theorem). Let $f : \mathbb{A} \to \mathbb{B}$ and $g : \mathbb{A} \to \mathbb{C}$ be two homomorphisms and let $\alpha \leq \beta$ be two congruences on \mathbb{A} and let ϕ be a congruence on \mathbb{B} . Prove that

(i) if f is surjective and $\ker(f) \subseteq \ker(g)$, then there exists a homomorphism $h: \mathbb{B} \to \mathbb{C}$ such that $g = h \circ f$.

- (ii) there is an embedding $\mathbb{A}/f^{-1}(\phi) \to \mathbb{B}/\phi$.
- (iii) there is a congruence β/α on \mathbb{A}/α such that

$$\mathbb{A}/\beta = (\mathbb{A}/\alpha)/(\beta/\alpha).$$

Exercise 33. Consider the algebra $C_n = (\{0, 1, ..., n-1\}, f)$, where f is the unary function $x \mapsto x+1 \mod n$. Decide for each $n \in \{2, 3, 4, 5, 6\}$ if C_n is simple, subdirectly irreducible or directly indecomposable.

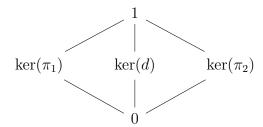
Exercise 34. Consider the algebra $\mathbb{A} = (\{0, 1, 2, 3, 4\}, g)$, where g is the unary function given by the following diagram.

$$0 \longrightarrow 1 \longrightarrow 2 \xrightarrow{4} \xrightarrow{5} 3$$

Draw the congruence lattice of \mathbb{A} and then decide whether \mathbb{A} is subdirectly irreducible and or directly indecomposable.

Exercise 35. Consider the to algebras $\mathbb{A} := (\{0,1\},+,\mathrm{id})$ and $\mathbb{B} = (\{0,1\},+,f)$, where + is addition modulo 2 and f is the unary function given by $x \mapsto x+1$ mod 2.

- (i) Show that $d: \mathbb{B}^2 \to \mathbb{A}, (x,y) \mapsto x+y$ is a surjective homomorphism.
- (ii) Show that the congruence lattice of \mathbb{B}^2 is



(iii) Show that $\mathbb{B}^2 \cong \mathbb{B} \times \mathbb{A} \ncong \mathbb{A}^2$ and conclude that direct decompositions are in general not unique.

Exercise 36. Find algebras \mathbb{A} and \mathbb{B} such that there are no homomorphisms

$$\mathbb{A} \to \mathbb{A} \times \mathbb{B}$$
 and $\mathbb{B} \to \mathbb{A} \times \mathbb{B}$

Exercise 37. Find a proper subdirect composition of the three element lattice into subdirectly irreducible lattices.