NMAG405 - Universal Algebra 1 - winter term 2023/24

Homework 3

Deadline 08.12.23 12:20

1. (10 points) Let \mathbf{R} be a commutative ring such that for every non-zero element a also $a^{n} \neq 0$ holds for every $n>1$ in \mathbf{R} (such a ring is also called reduced).

- Show that for every $a \in R \backslash\{0\}$ there is a prime ideal P_{a} with $a \notin P_{a}$ (Hint: Pick P_{a} as a maximal ideal that does not contain any power a, a^{2}, a^{3}, \ldots)
- Prove that \mathbf{R} is the subdirect product of integral domains.

2. (10 points) Let \mathcal{V} be the variety of algebras (A, \cdot, l, r) of type $(2,1,1)$ that satisfy the identities

$$
l(x \cdot y) \approx x, \quad r(x \cdot y) \approx y, \quad l(x) \cdot r(x) \approx x
$$

(a) Show that every non-trivial member of \mathcal{V} is infinite.
(b) Prove that, if $\mathbf{A} \in \mathcal{V}$ is generated by $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then it is already generated by $\left\{\left(a_{1} \cdot a_{2}\right), a_{3}, \ldots, a_{n}\right\}$
(c) Prove that $\mathbf{F}_{\mathcal{V}}(n)=\mathbf{F}_{\mathcal{V}}(m)$ for all positive integers n, m.
3. (10 points) Let \mathbf{A} be the semigroup given by the following multiplication table:

\cdot	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	2
3	0	1	2	3

Prove that the variety generated by \mathbf{A} is exactly the variety of commutative semigroups satisfying $x^{3} \approx x^{4}$.

