NMAG405 - Universal Algebra 1 - winter term 2023/24Homework 3

Deadline 08.12.23 12:20

- 1. (10 points) Let **R** be a commutative ring such that for every non-zero element *a* also $a^n \neq 0$ holds for every n > 1 in **R** (such a ring is also called *reduced*).
 - Show that for every $a \in R \setminus \{0\}$ there is a prime ideal P_a with $a \notin P_a$ (Hint: Pick P_a as a maximal ideal that does not contain any power a, a^2, a^3, \ldots)
 - Prove that **R** is the subdirect product of integral domains.
- 2. (10 points) Let \mathcal{V} be the variety of algebras (A, \cdot, l, r) of type (2, 1, 1) that satisfy the identities

$$l(x \cdot y) \approx x$$
, $r(x \cdot y) \approx y$, $l(x) \cdot r(x) \approx x$.

- (a) Show that every non-trivial member of \mathcal{V} is infinite.
- (b) Prove that, if $\mathbf{A} \in \mathcal{V}$ is generated by $\{a_1, a_2, \dots, a_n\}$, then it is already generated by $\{(a_1 \cdot a_2), a_3, \dots, a_n\}$
- (c) Prove that $\mathbf{F}_{\mathcal{V}}(n) = \mathbf{F}_{\mathcal{V}}(m)$ for all positive integers n, m.
- 3. (10 points) Let A be the semigroup given by the following multiplication table:

•	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	2
3	0	1	2	3

Prove that the variety generated by **A** is exactly the variety of commutative semigroups satisfying $x^3 \approx x^4$.