Universal Algebra 1 – Exercises 11

Filippo Spaggiari

15 December 2022, Prague

- **Exercise 1.** Let < be the *strict less-than* order relation on $\{0,1\}$. Prove or disprove the following.
 - (i) $Pol(<) = Pol(\{0\}, \{1\}).$
 - (ii) $Pol(<) = Pol(\{0, 1\}).$
- **Exercise 2.** An *n*-ary operation f on a set A is called *conservative* if for all elements $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\}$. Let A be a set and denote by C be the set of all conservative operations on A.
 - (i) Prove that \mathcal{C} is a clone on A.
 - (ii) Prove that $C = Pol(Rel_1(A))$.
- **Exercise 3.** Let f be a *boolean function*, that is, $f: \{0,1\}^n \to \{0,1\}$ for some $n \in \mathbb{N}$. Prove that the following are equivalent.
 - (i) There is an index $i \in \{1, \ldots, n\}$ such that $f(x_1, \ldots, x_n) \ge x_i$ for every $x_1, \ldots, x_n \in \{0, 1\}$.
 - (ii) The function f preserves the relation $R_k = \{0, 1\}^k \setminus \{(0, \dots, 0)\}$ for every $k \in \mathbb{N} \setminus \{0\}$.

Exercise 4. Let A be a set and define

$$\nu = \{ (x, y, z) \in A^3 \colon x = y \text{ or } y = z \}.$$

Prove that the clone of essentially unary operations, $\mathcal{U}(A)$, is equal to $\operatorname{Pol}(\nu)$.