Universal Algebra 1 – Exercises 12

Filippo Spaggiari

22 December 2022, Prague

- **Exercise 1.** Let \mathcal{V} be a variety with a majority term m. Prove that \mathcal{V} is congruence distributive (provide direct proof, without using Jonsson terms).
- **Exercise 2.** An algebra **A** is called *arithmetical* if it is both congruence permutable and congruence distributive. Let **A** be an algebra. Prove that **A** is arithmetical if and only if for every $\alpha, \beta, \gamma \in \text{Con}(\mathbf{A})$ we have

 $\gamma \land (\alpha \circ \beta) \subseteq (\gamma \land \beta) \circ (\gamma \land \alpha).$

Theorem (Jonnson). Let \mathcal{V} be a variety of algebras. The following are equivalent.

- (a) V is congruence distributive.
- (b) $\mathbf{F}_{\mathcal{V}}(3)$ is congruence distributive.
- (c) There is a positive integer n and ternary terms p_0, p_1, \ldots, p_n such that \mathcal{V} satisfies the identities
 - (i) $p_i(x, y, x) \approx x$, for $0 \le i \le n$.
 - (ii) $p_0(x, y, z) \approx x$.
 - (iii) $p_n(x, y, z) \approx z$.
 - (iv) $p_i(x, x, y) \approx p_{i+1}(x, x, y)$, for *i* even.
 - (v) $p_i(x, y, y) \approx p_{i+1}(x, y, y)$, for *i* odd.
- **Exercise 3.** In this step-by-step exercise we prove Jonsson's theorem. Let **F** denote the free algebra $\mathbf{F}_{\mathcal{V}}(3) = \mathbf{F}_{\mathcal{V}}(\{x, y, z\})$.

Step 1. Prove the trivial implication $(a) \implies (b)$.

- **Step 2.** Consider the implication $(b) \implies (c)$. Define $\alpha = \operatorname{Cg}^{\mathbf{F}}(x, y), \beta = \operatorname{Cg}^{\mathbf{F}}(y, z), \gamma = \operatorname{Cg}^{\mathbf{F}}(x, z)$ and show that $(x, z) \in (\alpha \land \gamma) \lor (\beta \land \gamma)$.
- **Step 3.** Use a characterization of the join of congruences and the generators of the free algebras to obtain a sequence of terms $u_i = p_i^{\mathbf{F}}(x, y, z)$.
- **Step 4.** Use the freeness of **F** to prove that those terms satisfy the conditions in (c).

- **Step 5.** Consider the implication $(c) \implies (a)$, and let $(a, b) \in (\alpha \lor \beta) \land \gamma$. Again, using the characterization of the join of congruences, find a chain of elements c_0, \ldots, c_n such that $a = c_0 \alpha c_1 \beta c_2 \ldots$
- **Step 6.** Prove that $(p_i(a, c_j, b), p_i(a, c_{j+1}, b)) \in (\alpha \land \gamma) \lor (\beta \land \gamma)$ for $i \le n$ and j < k.
- **Step 7.** Prove that $(p_i(a, a, b), p_i(a, b, b)) \in (\alpha \land \gamma) \lor (\beta \land \gamma)$ for i < n.
- **Step 8.** Prove that $(p_i(a, b, b), p_{i+1}(a, b, b)) \in (\alpha \land \gamma) \lor (\beta \land \gamma)$ for i < n and conclude.