Universal Algebra 1 – Exercises 2

Filippo Spaggiari

6 October 2022, Prague

Exercise 1. Prove that every distributive lattice is modular.

Exercise 2. Prove that every lattice of order $n \leq 4$ is distributive.

Exercise 3. Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice. Prove that \mathbf{L} is distributive if and only if $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ for every $x, y, z \in L$.

Exercise 4. Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice. Prove that for every $x, y, z \in L$

- (i) $x \lor (y \land z) \ge (x \lor y) \land (x \lor z)$.
- (ii) $x \leq y \implies x \land (y \lor z) \leq x \lor (y \land z)$.

Conclude that to prove whether a lattice is distributive/modular or not it is enough to verify the reverse inequalities.

Exercise 5.

- (i) Is distributivity of lattices invariant under isomorphism?
- (ii) Is modularity of lattices invariant under isomorphism?

Exercise 6. Construct two lattices M and N with the two following properties

- (i) For every lattice **L**, if **L** contains a copy of **N** then **L** is not modular.
- (ii) For every lattice L, if L contains either a copy of N or a copy of M then L is not distributive.
- **Exercise 7.** Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a distributive lattice. Define the majority terms

$$m_1(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z)$$
$$m_2(x, y, z) = (x \lor y) \land (x \lor z) \land (y \lor z).$$

Prove that $m_1(x, y, z) = m_2(x, y, z)$ for every $x, y, z \in L$.

Exercise 8. Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a modular lattice, and let $a, b \in L$. Prove that the intervals $\mathbf{I}[a \wedge b, a]$ and $\mathbf{I}[b, a \vee b]$ are isomorphic (as sublattices of \mathbf{L}).

- **Exercise 9.** Let $\mathbf{G} = \langle G, \cdot, ^{-1}, 1 \rangle$ be a group. Denote by Sub(G) the family of subgroups and by Nml(G) the family of normal subgroups of G), respectively.
 - (i) Prove that $(\operatorname{Sub}(\mathbf{G}), \subseteq)$ is a lattice ordered set.
 - (ii) Prove that $(Nml(\mathbf{G}), \subseteq)$ is a lattice ordered set.
 - (iii) Prove or disprove: $Sub(\mathbf{G})$ is modular.
 - (iv) Prove or disprove: $Sub(\mathbf{G})$ is distributive.
 - (v) Prove or disprove: $Nml(\mathbf{G})$ is modular.
 - (vi) Prove or disprove: Nml(G) is distributive.
- **Exercise 10.** Draw the Hasse diagram of the lattice $\langle Eq(X) \rangle, \subseteq \rangle$, where $X = \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}$. For which X is it distributive or modular?
- **Exercise 11.** Let X be a set. Find and prove formulas to compute meet and join in the lattice $\langle \text{Eq}(X), \subseteq \rangle$.