Universal Algebra 1 – Exercises 3

Filippo Spaggiari

13 October 2022, Prague

Exercise 1. Prove that every complete lattice is bounded.

Exercise 2. Find examples of

- (i) A complete lattice with a complete sublattice.
- (ii) A complete lattice with a sublattice which not a complete lattice.
- (iii) A non complete lattice with a sublattice which is a complete lattice.
- (iv) A complete lattice with a sublattice which is a complete lattice but not a complete sublattice.

Exercise 3. Let **L** be a complete lattice and let $a, b \in L$ be compact elements.

- (i) Is $a \lor b$ compact?
- (ii) Is $a \wedge b$ compact?
- **Exercise 4.** Let C be a closure operator on a set A. Prove that \mathbf{L}_C is closed under finite unions if and only if $C(X \cup Y) = C(X) \cup C(Y)$ for every $X, Y \in \mathcal{P}(A)$.
- **Exercise 5.*** Let **M** be an algebraic complete lattice. Prove that there is an algebraic closure operator C on a set A such that $\mathbf{M} \cong \mathbf{L}_C$.
- **Exercise 6.** Let X be a set, and let ϕ be the binary relation on $\mathcal{P}(X)$ defined by

$$(U,V) \in \phi \quad \stackrel{\text{def.}}{\iff} \quad U \cap V \neq \emptyset.$$

- (i) Let $X = \{1, 2, 3, 4\}$. Compute $\mathcal{A}^{\blacktriangleright \triangleleft}$ and $\mathcal{A}^{\triangleleft \flat}$ for $\mathcal{A} = \{\{1, 2\}, \{2, 3\}\}$ and $\mathcal{A} = \{\{1, 2\}, \{3\}\}$. Compare the results.
- (ii) Prove that if the Galois correspondence is defined by a symmetric relation on a set, then the closure operators induced by it coincide.
- (iii) [†]Prove that for every $\mathcal{A} \subseteq \mathcal{P}(X)$ we have $\mathcal{A}^{\blacktriangleright \blacktriangleleft} = \mathcal{P}_{\mathcal{A}}(X)$, where

$$\mathcal{P}_{\mathcal{A}}(X) := \{ U \in \mathcal{P}(X) \colon \exists V \in \mathcal{A} \mid V \subseteq U \}$$

is the family of subsets of X that contain an element of \mathcal{A} .

[†]It may require the Axiom of Choice.