Universal Algebra 1 – Exercises 5

Filippo Spaggiari

27 October 2022, Prague

- **Exercise 1.** Prove that the composition of homomorphisms is a homomorphism.
- **Exercise 2.** Prove that the inverse of an isomorphism is an isomorphism.
- **Exercise 3.** Let $h: \mathbf{A} \to \mathbf{B}$ be a homomorphism. Prove that h is injective if and only if ker $(h) = 0_{\mathbf{A}}$.
- **Exercise 4.** Let **A** and **B** be similar algebras, and let $h: A \to B$ be a function. Prove that h is a homomorphism if and only if $h \in \text{Sub}(\mathbf{A} \times \mathbf{B})$.
- **Exercise 5.** Let $g, h: \mathbf{A} \to \mathbf{B}$ be homomorphisms, and let $X \subseteq A$ be a generating set of \mathbf{A} . Prove that if $g \upharpoonright_X = h \upharpoonright_X$ then g = h.
- **Exercise 6.** Let $f: \mathbf{A} \to \mathbf{B}$ and $g: \mathbf{A} \to \mathbf{C}$ be homomorphisms, with g surjective. Prove that if $\ker(g) \subseteq \ker(f)$ then there is a homomorphism $h: \mathbf{C} \to \mathbf{B}$ such that $f = h \circ g$. Draw an appropriate commuting diagram.
- **Exercise 7.** Let $h: \mathbf{A} \to \mathbf{B}$ be a homomorphism, and let $\psi \in \operatorname{Con}(\mathbf{B})$. Prove that there is an embedding $h/\psi: \mathbf{A}/\overleftarrow{h}(\psi) \to \mathbf{B}/\psi$. Draw an appropriate commuting diagram.
- **Exercise 8.** Find all homomorphisms from $\langle \mathbb{N}, + \rangle \times \langle \mathbb{N}, + \rangle$ to $\langle \{+1, -1\}, \cdot \rangle$.
- Exercise 9. Let A and B be similar algebras and let X be a generating set of A. Prove or disprove the following statements.
 - (i) Every arbitrarily defined function $h: X \to B$ extends to a homomorphism $h: \mathbf{A} \to \mathbf{B}$.
 - (ii) Assume that X is a minimal generating set of A, that is, every proper subset of X does not generate A. Then, every arbitrarily defined function $h: X \to B$ extends to a homomorphism $h: A \to B$.
- **Exercise 10.** Find a class of algebras \mathcal{K} and a finite class of algebras \mathcal{H} which are not closed under the operator H. Repeat with the operators S and P.
- **Exercise 11.*** Prove that the class operator inclusions $SH \leq HS$, $PS \leq SP$, $PH \leq HP$ may be strict.
- Exercise 12.* Prove that every finitely generated variety is locally finite.