Universal Algebra 1 - Exercises 6

Filippo Spaggiari

3 November 2022, Prague

Exercise 1. Let $n \geq 1$ be an integer. Define $\mathbf{C}_{n}=\left\langle\mathbb{Z}_{n}, f_{n}\right\rangle$ to be the monounary algebra with the operation $f_{n}(x)=x+1(\bmod n)$.
(i) Describe \mathbf{C}_{n} as a planar graph.
(ii) Draw the graph of \mathbf{C}_{n} for $n \in\{2, \ldots, 6\}$.
(iii) For which $n \in\{2, \ldots, 6\}$ is \mathbf{C}_{n} a simple algebra?
(iv) For which $n \in\{2, \ldots, 6\}$ is \mathbf{C}_{n} subdirectly irreducible?
(v) For which $n \in\{2, \ldots, 6\}$ is \mathbf{C}_{n} directly indecomposable?

Exercise 2. Let $\mathbf{A}=\langle\{0,1,2,3,4\}, f\rangle$ be the monounary algebra where the unary operation is described by $f:\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 2\end{array}\right)$
(i) Represent \mathbf{A} as a graph.
(ii) Draw the lattice $\operatorname{Con}(\mathbf{A})$.
(iii) Is A subdirectly irreducible?
(iv) Is \mathbf{A} directly indecomposable?

Exercise 3. Let $\mathbf{A}=\langle\{0,1\},+, f\rangle$ and $\mathbf{B}=\langle\{0,1\},+, g\rangle$ be the algebras of type $(2,1)$, where + denotes the addition modulo 2 , and f, g are the unary operations $f(x)=x$ and $g(x)=x+1$.
(i) Let $d: \mathbf{B}^{2} \rightarrow \mathbf{A}$ be the map defined by $d(x, y)=x+y$. Show that d is a surjective homomorphism.
(ii) Let $\delta=\operatorname{ker}(d)$, and let η_{i} be the projection kernels of \mathbf{B}, for $i=$ 1,2 . Show that $\left\{\eta_{1}, \eta_{2}\right\},\left\{\eta_{1}, \delta\right\}$, and $\left\{\eta_{2}, \delta\right\}$ each form a pair of complementary factor congruences on \mathbf{B}^{2}.
(iii) Prove that $\mathbf{B} \times \mathbf{B} \cong \mathbf{B} \times \mathbf{A} \not \approx \mathbf{A} \times \mathbf{A}$.
(iv) Deduce that the direct decomposition may be not unique.

Exercise 4. Find a pair of similar algebras, neither of which can be embedded into their product.

Exercise 5. Is the three-element chain subdirectly irreducible? If not, represent it as a subdirect product of subdirectly irreducible lattices.

