Universal Algebra 1 – Exercises 6

Filippo Spaggiari

3 November 2022, Prague

- **Exercise 1.** Let $n \ge 1$ be an integer. Define $\mathbf{C}_n = \langle \mathbb{Z}_n, f_n \rangle$ to be the monounary algebra with the operation $f_n(x) = x + 1 \pmod{n}$.
 - (i) Describe \mathbf{C}_n as a planar graph.
 - (ii) Draw the graph of \mathbf{C}_n for $n \in \{2, \ldots, 6\}$.
 - (iii) For which $n \in \{2, \ldots, 6\}$ is \mathbf{C}_n a simple algebra?
 - (iv) For which $n \in \{2, \ldots, 6\}$ is \mathbf{C}_n subdirectly irreducible?
 - (v) For which $n \in \{2, ..., 6\}$ is \mathbf{C}_n directly indecomposable?
- **Exercise 2.** Let $\mathbf{A} = \langle \{0, 1, 2, 3, 4\}, f \rangle$ be the monounary algebra where the unary operation is described by $f: \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 2 \end{pmatrix}$
 - (i) Represent **A** as a graph.
 - (ii) Draw the lattice $\operatorname{Con}(\mathbf{A})$.
 - (iii) Is A subdirectly irreducible?
 - (iv) Is A directly indecomposable?
- **Exercise 3.** Let $\mathbf{A} = \langle \{0, 1\}, +, f \rangle$ and $\mathbf{B} = \langle \{0, 1\}, +, g \rangle$ be the algebras of type (2, 1), where + denotes the addition modulo 2, and f, g are the unary operations f(x) = x and g(x) = x + 1.
 - (i) Let $d: \mathbf{B}^2 \to \mathbf{A}$ be the map defined by d(x, y) = x + y. Show that d is a surjective homomorphism.
 - (ii) Let $\delta = \ker(d)$, and let η_i be the projection kernels of **B**, for i = 1, 2. Show that $\{\eta_1, \eta_2\}, \{\eta_1, \delta\}$, and $\{\eta_2, \delta\}$ each form a pair of complementary factor congruences on \mathbf{B}^2 .
 - (iii) Prove that $\mathbf{B} \times \mathbf{B} \cong \mathbf{B} \times \mathbf{A} \ncong \mathbf{A} \times \mathbf{A}$.
 - (iv) Deduce that the direct decomposition may be not unique.
- **Exercise 4.** Find a pair of similar algebras, neither of which can be embedded into their product.
- **Exercise 5.** Is the three-element chain subdirectly irreducible? If not, represent it as a subdirect product of subdirectly irreducible lattices.