Universal Algebra 1 - Exercises 7

Filippo Spaggiari

10 November 2022, Prague

Exercise 1. Let $\mathbf{A}=\langle A, \cdot\rangle$ be a binar. A is called left-zero semigroup if it satisfies $x \cdot y \approx x$. Similarly, \mathbf{A} is called right-zero semigroup if it satisfies $x \cdot y \approx y$. Finally, \mathbf{A} is called rectangular band if it satisfies the identities

$$
(x \cdot y) \cdot z \approx x \cdot(y \cdot z), \quad x \cdot x \approx x, \quad(x \cdot y) \cdot z \approx x \cdot z
$$

(i) Let \mathbf{A} be a rectangular band. Define

$$
\lambda=\left\{(x, y) \in A^{2}: \forall z \in A, x \cdot z=y \cdot z\right\} .
$$

Prove that $\lambda \in \operatorname{Con}(\mathbf{A})$ and that \mathbf{A} / λ is a left-zero semigroup.
(ii) Prove that \mathbf{A} is a rectangular band if and only if $\mathbf{A} \cong \mathbf{L} \times \mathbf{R}$ for some left-zero semigroup \mathbf{L}, and right-zero semigroup \mathbf{R}.

Exercise 2. Let $\mathbf{S}=\langle S, \cdot\rangle$ be a semilattice. A nonempty set I of S is called ideal if for every $s \in S$ and $a \in I$, both $a \cdot s$ and $s \cdot a$ are elements of I.
(i) Prove that, for every ideal I, the binary relation $I^{2} \cup 0_{S}$ is a congruence on \mathbf{S} (called the Rees congruence induced by I).
(ii) Let $a \in S$. Prove that $a S=\{a \cdot s: s \in S\}$ is an ideal of \mathbf{S}. Describe $a S$ in terms of the ordering of \mathbf{S}.
(iii) Show that the only subdirectly irreducible semilattice is the twoelement chain.

Exercise 3.* Prove that every chain is a directly indecomposable lattice.
Exercise 4.* Let $n \geq 1, k \geq 0$ and p be prime. Define the monounary algebras

$$
\begin{aligned}
\mathbf{C}_{n} & =\left\langle\mathbb{Z}_{n},(012 \ldots n-1)\right\rangle \\
\mathbf{C}_{n}+1 & \left.=\left\langle\mathbb{Z}_{n},(012 \ldots n-2)(n-1)\right)\right\rangle \\
\mathbf{P}_{n} & =\left\langle\mathbb{Z}_{n}, u(x)=\min \{x+1, n-1\}\right\rangle
\end{aligned}
$$

(i) Draw the graph of $\mathbf{C}_{n}, \mathbf{C}_{n}+1, \mathbf{P}_{n}$.
(ii) Prove that $\mathbf{C}_{p^{k}}, \mathbf{C}_{p^{k}}+1, \mathbf{P}_{n}$ are subdirectly irreducible.
(iii) Prove that $\mathbf{C}_{p^{k}}, \mathbf{C}_{p^{k}}+1, \mathbf{P}_{n}$ are the only subdirectly irreducible monounary algebras.
(iv) Determine the minimal varieties in the lattice of subvarieties of the variety of monounary algebras.

