Universal Algebra 1 – Exercises 9

Filippo Spaggiari

1 December 2022, Prague

- **Exercise 1.** Let **G** be a group and let \mathcal{A} denote the variety of Abelian groups. Denote by *e* the identity element and by $[x, y] = xyx^{-1}y^{-1}$ the left commutator.
 - (i) Prove that

$$e/\lambda_{\mathcal{A}}^{\mathbf{G}} = \mathrm{Sg}^{\mathbf{G}} \left(\{ [x, y] \colon x, y \in G \} \right).$$

(ii) Prove that the variety $\mathcal{A} \cdot \mathcal{A}$ is defined by the group laws together with the identity

$$[[x, y], [z, w]] \approx e.$$

Exercise 2. Let \mathcal{A}_n denote the variety of Abelian groups satisfying $x^n \approx e$.

(i) Prove that the variety $\mathcal{A}_3 \cdot \mathcal{A}_2$ is defined by the group laws together with the identities

 $x^6 \approx e, \qquad [x^2, y^2] \approx e, \qquad [x, y]^3 \approx e.$

- (ii) Prove that the variety $\mathcal{A}_2 \cdot \mathcal{A}_2$ is defined by the group laws together with the identity $(x^2y^2)^2 \approx e$.
- **Exercise 3.** Let $C_{\mathfrak{r}_n}$ denote the variety of commutative rings satisfying $x^n \approx x$, and let \mathbb{F}_9 denote a commutative ring which is a finite field of order 9. Prove that $V(\mathbb{F}_9)$ is the variety defined by the axioms of $C_{\mathfrak{r}_9}$ together with the identity $3x \approx 0$.