NMAG 405 - Universal Algebra 1 - fall semester 2022/23

 Homework 1

 Homework 1}

Deadline 27.10.2022, 17:20

1. (10 points) A latin square $(A, *)$ is an algebra of type (2), such that for each $a, b \in A$ there exists a unique $x \in A$ with $x * a=b$ and a unique $y \in A$ with $a * y=b$; we then denote x by b / a and y by $a \backslash b$. (For finite A each row and each column of the multiplication table of $*$ contains every element of A exactly once, hence the name.) A quasigroup is an algebra $(A, *, \backslash, /)$ of type $(2,2,2)$, which satisfies the identities:

$$
y \approx x *(x \backslash y) \approx x \backslash(x * y) \approx(y / x) * x \approx(y * x) / x
$$

Let A be a fixed set. Prove that the map Φ that assigns to every latin square $(A, *)$ the algebra $(A, *, \backslash, /)$ as above, and the map Ψ that forgets the operations $\backslash, /$ are mutually inverse bijections between the set of latin squares and the quasigroups (with universe A).
2. (10 points) Let \mathbb{R}^{n} be the n-dimensional euclidean space and \mathcal{C} be the set of all its (topologically) closed subsets. Show that $(\mathcal{C}, \cap, \cup)$ is a complete lattice and describe \wedge and \bigvee. What are the compact elements of this lattice? Is it an algebraic lattice?
3. (10 points) A map $f: L_{1} \rightarrow L_{2}$ between two lattices is called monotone if $x \leq y$ implies $f(x) \leq f(y)$. Let L be a complete lattice, and $f: L \rightarrow L$ an monotone map. Prove that there is a fixpoint a of f, i.e. a point $a \in L$ such that $f(a)=a$.

