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Abstract. A method for determining the boundary condition on artificial
boundaries is presented. This method is formulated as an optimization problem for
appropriate functional representing, for example, the dissipation of energy. We show
that this functional attains its minimum on the set of solutions to the stationary
Stokes (or Navier–Stokes) system with partially unspecified boundary condition.
Thus, this method gives rise to a physically reasonable boundary condition which
ensures the existence of a solution to the corresponding system. In particular, it is
proved that the implicit boundary condition obtained for the Stokes system implies
the modification of the “do-nothing” boundary condition for the symmetric velocity
gradient. To the author’s knowledge, methods and conclusions contained in this
paper are new.

Introduction

We consider a flow of an incompressible fluid through a region with an artificial boundary
(for example the outflow), such as the pipe flow. In order to complete the corresponding system
of equations, one needs to introduce some boundary condition at the outlet, where the flow
may be a priori unknown. The use of the popular “do-nothing” boundary condition has its
downsides. Not only does it seem to have no physical justification, but also the well-posedness
of the Navier–Stokes system with this boundary condition is unknown. See [Heywood et al.,
1996] for details.

In this paper we discuss the possibility of selecting the outflow boundary condition in
such a way that the resulting flow minimizes a given functional representing the dissipation of
energy, for example. This is physically reasonable from the point of view that for stable flows
the dissipation of the energy should decrease over time to a minimum value which corresponds
to a stationary flow. Also, the existence of a solution to the (Navier–)Stokes system with such
a boundary condition is obtained automatically — we only need to show that the selected
functional attains its minimum in the set of admissible solutions. The boundary conditions
obtained in this way are implicit and in general it is not obvious whether these can be reduced
to some convenient form. However, at least for the Stokes system, we show that such a reduction
is possible and leads to some familiar boundary conditions.

Notation

We distinguish between scalar, vectorial and matrix quantities (and corresponding spaces)
using different fonts as follows: a, a and A, respectively. Throughout this paper, the symbol
Ω ⊂ Rd, d ∈ N, d ≥ 2, stands for an open, bounded, simply connected set with Lipschitz
boundary ∂Ω. As usual, the symbols C∞(Ω), L2(Ω) and H1(Ω) represent the space of smooth
functions, the Lebesgue space and the Sobolev space, respectively. The norm of L2(Ω) is

denoted by ‖·‖2 and the norm of H1(Ω) is defined by ‖ϕ‖1,2 := (‖ϕ‖22 + ‖∇ϕ‖22)
1
2 . Fur-

thermore, let C∞0 (Ω) be the space of smooth functions with compact support in Ω and let
C∞0,div(Ω) be its subspace consisting of functions with zero divergence. If ∅ 6= Γ ⊂ ∂Ω, then the

space H1
Γ(Ω) is defined as the closure of the set

{
ϕ ∈ C∞(Ω) : ϕ = 0 on Γ

}
in the norm ‖·‖1,2.

Moreover, we set H1
0(Ω) := H1

∂Ω(Ω). Similarly, the space H1
Γ,div(Ω) is the closure of the set{

ϕ ∈ C∞(Ω) : ϕ = 0 on Γ, divϕ = 0
}

in the norm ‖·‖1,2 and H1
0,div(Ω) := H1

∂Ω,div(Ω).
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BATHORY: OPTIMAL OUTFLOW BOUNDARY CONDITION

We shall everywhere assume that ∂Ω consists of two parts Γ, Γa of positive measure. On
Γ, we prescribe the Dirichlet boundary conditions. For example, Γ can contain rigid walls or
the inflow, if it is available. On the remaining part Γa, we do not prescribe anything explicitly.
In typical situation, Γa is the artificial boundary such as the outflow, the inflow, or both. To
avoid technical difficulties, we shall also assume that Γa is a smooth hypersurface in Rd. This
way, we can define the space C∞0 (Γa) in a standard way.

Formulation of the optimization problem

The Stokes flow through Ω is described by the system

divT(v, p) = 0 in Ω

div v = 0 in Ω

v = ṽ0 on Γ, (1)where

T(v, p) := −pI + 2νDv, ν > 0, and Dv := 1
2(∇v + (∇v)T )

and ṽ0 is such that there exists its divergence-free extension v0 ∈ H1(Ω) (the construction of
v0 can be found in [Ladyzhenskaya, 1969, Chapter I, Problem 2.1]). Our goal is to find the
optimal boundary condition on Γa in the sense that the resulting flow will dissipate the least
amount of energy.

We shall say that a function v is a weak solution to system (1) if v ∈ v0 +H1
Γ,div(Ω) and∫

Ω
Dv · Dψ dx = 0 for all ψ ∈H1

0,div(Ω). (2)

Then the the set of all weak solutions of (1) will be denoted by S. This will be the domain of
our optimization problem. Note that (2) is equivalent to∫

Ω
∇v · ∇ψ dx = 0 for all ψ ∈H1

0,div(Ω). (3)

Note also that the function p does not appear explicitly in the definition of the weak
solution. It is determined (up to an additive constant) by the following simple version of De
Rahm’s lemma, for which we refer to [Temam, 1979, Chapter I, Remark 1.9] and references
there.

Lemma 1. If a continuous linear functional f on H1
0(Ω) satisfies

f(ϕ) = 0 for every ϕ ∈H1
0,div(Ω),

then there exists p ∈ L2(Ω) with ‖p‖2 ≤ c sup
‖ψ‖

H1
0(Ω)

=1
|f(ψ)| satisfying

f(ϕ) =

∫
Ω
p divϕ dx for all ϕ ∈H1

0(Ω).

In the view of Lemma 1, we shall also call the couple (v, p) a weak solution of (1) if
v ∈ v0 +H1

Γ,div(Ω), p ∈ L2(Ω) and

2ν

∫
Ω
Dv · Dψ dx =

∫
Ω
p divψ dx for all ψ ∈H1

0(Ω).

The set S is non-empty, for it contains, for example, the solutions of the classical Stokes
problem corresponding to some compatible Dirichlet conditions on Γa (see the proof of Theo-
rem 4 for the reference).

Finally, let

F (ϕ) :=

∫
Ω
|Dϕ|2 dx and G(ϕ) :=

∫
Ω
|∇ϕ|2 dx, ϕ ∈ S, (4)

where F represents the dissipation of energy (or the entropy production — recall the balance
of entropy for the Newtonian fluids), whereas G will be considered only for the comparison.
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Existence of a solution

For reader’s convenience, we prove here the following modification of Korn’s inequality,
which will be used to estimate F from below.

Lemma 2. There exists c > 0 such that

‖ϕ‖1,2 ≤ c‖Dϕ‖2 for all ϕ ∈H1
Γ(Ω). (5)

Proof. The usual form of Korn’s inequality reads as

‖ϕ‖1,2 ≤ c(‖Dϕ‖2 + ‖ϕ‖2) for all ϕ ∈H1(Ω) (6)

and for some c > 0 (see, for example, [Ciarlet, 2010, Theorem 2.1]). Now suppose that (5) does
not hold. Then there exists a sequence {ϕn}n∈N ⊂H1

Γ(Ω), such that ‖ϕn‖1,2 = 1 and

‖ϕn‖1,2 > n‖Dϕn‖2 (7)

for all n ∈ N. Since H1
Γ(Ω) is reflexive, there is a subsequence (not relabeled) and ϕ satisfying

ϕn ⇀ ϕ in H1
Γ(Ω), n→∞. (8)

This, together with (7) implies

‖Dϕn‖2 → ‖Dϕ‖2 = 0, n→∞, (9)

hence Dϕ = 0 a.e. in Ω. Then the identity

∂i∂jψk = ∂i(Dψ)jk + ∂j(Dψ)ki − ∂k(Dψ)ij

valid for all ψ ∈ C∞(Ω) and 1 ≤ i, j, k ≤ d shows (by approximating ϕ with smooth functions)
that every second and, consequently, also every higher distributional derivative of ϕ is zero.
Therefore, ϕ is of the form ϕ(x) = Wx + b for almost every x ∈ Ω and for some skew-
symmetric matrix W and vector b. Then, using the fact that ϕ ∈ H1

Γ(Ω) with |Γ| > 0, we get
ϕ = 0 a.e. in Ω. Thus, from (9), (8) and compact embedding H1

Γ(Ω) ↪→↪→ L2(Ω), we obtain

‖ϕn‖1,2 ≤ c(‖Dϕn‖2 + ‖ϕn‖2)→ 0 as n→∞,

a contradiction.

Now we can proceed with the main results of this paper concerning the optimization prob-
lem stated above.

Theorem 3. The functionals F and G attain its minima on S.

Proof. The proof will be done for F . For G the proof is easier — we just replace D by ∇ and
we do not use Lemma 2.

Take some minimizing sequence of F , that is, some {vk}k∈N ⊂ S, such that

lim
k→∞

F (vk) = inf
S
F <∞ (10)

(recall that S 6= ∅). Let us denote uk := vk − v0 ∈ H1
Γ,div(Ω), k ∈ N. Using (4), Hölder

inequality, Lemma 2 and the fact that ‖Dϕ‖2 ≤ ‖∇ϕ‖2 ≤ ‖ϕ‖1,2 for all ϕ ∈H1, we get
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that F is coercive, i.e.,

F (vk) =

∫
Ω
|Dvk|2 dx =

∫
Ω
|Duk|2 dx+ 2

∫
Ω
Duk · Dv0 dx+

∫
Ω
|Dv0|2 dx

≥ c1‖∇uk‖22 − c2‖∇uk‖2‖v0‖1,2

for some positive constants c1, c2. Thus, using (10), we deduce that the sequence {uk}k∈N,
is bounded in H1

Γ,div(Ω) and, consequently, there exist a subsequence {uk}k∈N (not relabeled)
and u, such that

uk ⇀ u in H1
Γ,div(Ω). (11)

By Lemma 2, the mapping (f , g) 7→
∫

Ω Df · Dg dx defines an inner product in H1
Γ,div(Ω).

Therefore, the property (11) implies, for every ψ ∈H1
0,div(Ω), that

0 =

∫
Ω
Dvk · Dψ dx→

∫
Ω
Dv · Dψ dx as k →∞,

where v := u + v0, and so it follows that v ∈ S . It is also obvious that the functional F is
lower semi-continuous with respect to the weak topology of H1

Γ(Ω). From that, we get

F (v) ≤ lim inf
k→∞

F (vk) = inf
S
F ≤ F (v)

and the proof is finished.

The previous lemma proves the existence of a weak solution to the problem

−div(Dv) = −∇p in Ω

div v = 0 in Ω

v = ṽ0 on Γ

v minimizes F. (12)

The additional constraint F (v) = minS F can be thus seen as an implicitly given outflow
boundary condition. We remark that everything that is stated above for the Stokes system
holds analogically also for the Navier–Stokes system, but we omit the corresponding discussion
to keep this paper as short as possible.

The optimal outflow boundary condition

Now we may ask what the implicit boundary condition F (v) = minS F actually means for
the flow or, even better, whether this condition can be made explicit. In our setting, this is
indeed possible as is shown by the next theorem.

Theorem 4. If (v, p) is a weak solution to (12), then there is a constant c0 ∈ R such that

−pn+ 2ν(Dv)n = c0n a.e. on Γa,

or, equivalently,
T(v, p+ c0)n = 0 a.e. on Γa.

Proof. Suppose that ϕ ∈H1
Γ,div(Ω) satisfies∫

Ω
Dϕ · Dψ dx = 0 for all ψ ∈H1

0,div(Ω) (13)
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(such functions ϕ indeed exist as is discussed below when deriving (17)). Then, using v ∈ S,
we also know that∫

Ω
D(v + εϕ) · Dψ dx = 0 for all ψ ∈H1

0,div(Ω) and for any ε ∈ R,

hence v+εϕ ∈ S is an appropriate candidate for testing the optimality condition in (12). Thus,
we get

F (v) ≤ F (v + εϕ), (14)

or, equivalently, (using (4))

0 ≤ 2ε

∫
Ω
Dv · Dϕdx+ ε2

∫
Ω
|Dϕ|2 dx (15)

for every ϕ ∈ H1
Γ,div(Ω) satisfying (13) and for all ε ∈ R. In inequality (15), we consider the

cases ε > 0 and ε < 0 separately, divide by ε and then we let ε→ 0±. This way we obtain∫
Ω
Dv · Dϕ dx = 0 for all ϕ ∈H1

Γ,div(Ω) satisfying (13). (16)

Now let w ∈H1
Γ(Ω) be such that

∫
∂Ωw ·ndS = 0 (here in the surface integral, the symbol

w stands for the trace of w). Then, by [Temam, 1979, Chapter I, Theorem 2.4] and by the
equivalence of (2) and (3), there exists an unique solution vw ∈H1

Γ,div(Ω) to the Stokes system∫
Ω
Dvw · Dψ dx = 0 for every ψ ∈H1

0,div(Ω),

vw −w ∈H1
0(Ω). (17)

Thus, we may apply (16) with ϕ = vw, which together with (17) and the weak formulation of
(12) gives

2ν

∫
Ω
Dv · Dw dx = 2ν

∫
Ω
Dv · Dvw dx+ 2ν

∫
Ω
Dv · D(w − vw) dx =

∫
Ω
p divw dx,

hence ∫
Ω
T(v, p) · Dw dx = 0. (18)

Now let us assume that there exists the trace of T(v, p) (in fact there exists normal component
of the trace of T(v, p) in the sense of distributions, since T(v, p) is an integrable solenoidal
function). Then, it follows from (18), (12) and integration by parts that

0 =

∫
Ω
T(v, p) · Dw dx =

∫
Γa

T(v, p)n ·w dS for all w ∈H1
Γ(Ω) s.t.

∫
Γa

w · ndS = 0. (19)

Since, at Γa, there is no restriction on the tangential part of the trace of w ∈H1
Γ(Ω), we deduce

from (19) that
(T(v, p)n)τ = 0 a.e. on Γa, (20)

or, equivalently
((Dv)n)τ = 0 a.e. on Γa,
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where uτ = u− (u · n)n. Furthermore, using (20) in (19), we also get∫
Γa

(T(v, p)n · n)(w · n) dS = 0 for all w ∈H1
Γ(Ω) s.t.

∫
Γa

w · ndS = 0. (21)

Using the trace theorem, for every ϕ ∈ C∞0 (Γa) there is w ∈ H1
Γ(Ω) such that the trace of w

times n is ϕ (extended by zero to ∂Ω). This, together with (21) yields∫
Γa

TϕdS = 0 for all ϕ ∈ C∞0 (Γa) s.t

∫
Γa

ϕdS = 0, (22)

where we abbreviated T := T(v, p)n · n. Let ψ, η ∈ C∞0 (Γa) be such that
∫

Γa
η dS > 0. Then

the function

ϕ := ψη −
∫

Γa
ψη dS∫

Γa
η dS

η

again belongs to C∞0 (Γa) and
∫

Γa
ϕdS = 0. Consequently, using the properties of ϕ and (22),

we obtain ∫
Γa

(
T −−

∫
Γa

T dS

)
ψη dS =

∫
Γa
ψη dS∫

Γa
η dS

∫
Γa

(
T −−

∫
Γa

T dS

)
η dS

where −
∫

denotes the mean value of an integral. Now we are going to use this identity for
a sequence of functions 0 ≤ ηk ∈ C∞0 (Γa), k ∈ N, satisfying ηk ↑ 1 as k → ∞ pointwise in Γa.
This way, if we apply the dominated convergence theorem, we get∫

Γa

(
T −−

∫
Γa

T dS

)
ψ dS =

(
−
∫

Γa

ψ dS

)∫
Γa

(
T −−

∫
Γa

T dS

)
dS = 0.

Since ψ ∈ C∞0 (Γa) was arbitrary, we may infer that T = −
∫

Γa
T dS a.e. on Γa, which means that

there exists a constant c0 ∈ R such that

T(v, p)n · n = c0 a.e. on Γa. (23)

Obviously, conditions (20) and (23) are together equivalent to

T(v, p+ c0)n = 0 a.e. on Γa

and the proof is finished.

Our final theorem shows that if we use G instead of F , we obtain essentially the “do-
nothing” boundary condition.

Theorem 5. If (v, p) is a weak solution to (12) with F replaced by G, then there is a constant
c1 ∈ R such that

−pn+ ν(∇v)n = c1n a.e. on Γa.

Proof. We use the equivalence of (2) and (3) in the weak formulation of (12). Then the proof
follows the same line as the proof of Theorem 4: We can just replace all occurrences of D and
T(v, p) by ∇ and −pI + ν∇v, respectively.
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