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F O R E W O R D TO T H E T E N T H 
R U S S I A N E D I T I O N 

T H E present Collection of Problems is intended for students 
studying mathematical analysis within the framework of a 
technical college course. In the arrangement of the material, 
the style of the exposition and basic pedagogical tendencies 
the Collection is most suited to the widely used Course of 
Mathematical Analysis of A . F. Bermant*. A t the same time, 
since the book contains systematically selected problems and 
exercises on the main branches of a Technical College course 
of mathematical analysis, it forms a useful adjunct indepen-
dently of the text-book on which the course is based. 

Theoretical information and references to the necessary 
formulae are omitted in the Collection of Problems; it is 
assumed that the reader can find them in the relevant sec-
tions of his text-book. Most of the articles of the Collection 
of Problems are subdivided for convenience of use. A com-
mon instruction precedes a group of problems of the same 
type. Problems with a physics content are preceded by the 
necessary physical laws. In the case of more or less difficult 
problems, hints are given in the answers ; such problems are 
marked by an asterisk ( * ) . 

The Collection of Problems was produced directly for the 
first edition (1947) by Georgia Nikolayevich Berman. All 
the subsequent editions, which have twice included sub-
stantial revisions, have been brought out without the original 
author, who died on 9th February 1949 after a long and 
serious illness, resulting from wounds received at the front 
in the Second World War. Those who have undertaken the 
revision — essentially friends and co-workers of Georgii Ni-
kolayevich — always recall him with feelings of great respect; 
he was a man of wide culture and a talented pedagogue. 

Both revisions of the Collection of Problems (the first for 
the second edition of 1950, the second for the sixth edition of 
1956) have been carried out by I . G. Aramanovich, B. A . 

t This text-book is simply referred to as the Course in the text of 
the Collection. 
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χ FOREWORD 

Kordemskii, R. I . Pozoiskii and M. G . Shestopal. A part in 
this work was taken by A . F. Bermant, the author of the 
above-mentioned Course, who edited the Collection. 

With the aim of improving the Collection of Problems from 
the methodological point of view, and to take account of 
criticisms obtained from teachers using the Collection, firstly 
the second, then later the sixth edition were supplied with a 
substantially increased number of problems in several sect-
ions; in addition, the problems were regrouped, the state-
ment of them revised afresh, and the solutions checked. In 
the present tenth edition certain problems have again 
been given a fresh statement. The previous numbering has 
been retained for the unchanged problems. The only deviat-
ions from this system occur in two short chapters — the 
tenth and eleventh, in connection with an additional re-
grouping of the problems of these chapters and the inclusion 
of new problems on the theme of "Change of variables." The 
Collection contains a new chapter ( X V I ) on "Elements of 
the Theory of Fields" (problems no. 4401-4464) and tables 
of the values of certain elementary functions as an appendix. 
(The tables have been borrowed from the book by V. P. 
Minorskii, A Collection of Problems on Higher Mathematics 
(Sbornik zadach po vysshei matematike), with the consent 
of their compiler A . T. Tsvetkov.) 

Thus certain modifications brought into the tenth edition 
of the Collection of Problems do not hinder, in the vast major-
ity of cases, the simultaneous use of the present and pre-
vious editions (as from the sixth). 

The work on the tenth edition of the Collection has had to 
proceed in the absence not only of its first author, the late 
G . N . Berman, but also of one of the co-authors and editor of 
the work, Professor Anisim Fedorovich Bermant. A . F. 
Bermant died suddenly on 26 May, 1959. His cherished image 
will never be erased from our memories — he was a gifted, 
lively and noble comrade, and a progressive pedagogue. 

I . G . A R A M A N O V I C H 

B. A . K O R D E M S K I I 

R. I . P O Z O I S K I I 

M. G . SHESTOPAL 



C H A P T E R I 

F U N C T I O N S 

1. Functions and Methods of Specifying Them 

1. The sum of the interior angles of a plane convex polygon 
is a function of the number of sides. What sort of numbers can 
the values of the argument be ? 

Specify this function analytically. 

2. A function is given by the following table: 

Independent variable χ 0 0-5 1 1-5 2 3 

Function y —1-5 —1 0 3-2 2-6 0 

Independent variable χ 4 5 6 7 8 9 10 

Function y —1-8 —2-8 0 1 1 1-4 1-9 2-4 

Draw its graph by joining the points with a "smooth" 
curve, and enlarge the table by using the graph to find the 
values of the function at χ = 2'5; 3*5; 4*5; 5*5; 6*5; 7*5; 
8-5; 9*5. 

F I G . 1. 

3. A function is given by the graph illustrated in Fig. 1. 
Transfer the figure to millimetre paper by choosing a scale 

1 



2 PROBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

F I G . 2. 

5. The force F of interaction of two electric charges e1 

and e2 depends by Coulomb's law on the distance r between 
them : 

er
2 

Putting e1 = e2 = 1 and ε = 1, form a table of values of 
this function for r = 1, 2, 3, . . ., 10 and draw its graph by 
joining the points obtained with a "smooth" curve. 

6. Form the function expressing the dependence of the 
radius r of a cylinder on its height h for a given volume 
V (= 1). Work out the values of r for the following values 
of h: 05; 1; 15; 2; 25; 3; 3-5; 4; 45 ; 5. Draw the 
graph of the function. 

and several values of the independent variable. Take from 
the figure the values of the function corresponding to the 
chosen values of the independent variable and form a table 
of these values. 

4. A function is given by the graph illustrated in Fig. 2. 
Use the graph to answer the following questions: 

(a) For what values of the independent variable does the 
function vanish? 

(b) For what values of the independent variable is the 
function positive? 

(c) For what values of the independent variable is the 
function negative? 
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7. Write down the expression for the area of the isosceles 
trapezium with bases a and δ as a function of the angle 
α at base a. Draw the graph of the function for a = 2, b = 1. 

8. Express the length b of one adjacent side of a right-
angled triangle as a function of the length a of the other with 
constant hypotenuse c ( = 5). Verify that the graph of the 
function is a quadrant of a circle. 

2. Notation for and Classification of Functions 

9· Given the functions 

(a) f(z) (b) φ(χ) 
x + 1 χ + 1 

Find: / (0) ; / ( l ) ; / (2) ; / ( - 2 ) ; / 

<p(0); <p(l); <p(2); <p(—2); φ(4). Do / ( - l ) , <p( - l ) exist? 

10. Given the function 

f(u) = « » - 1, 

find: / ( l ) ; / ( a ) ; f(a + 1); / ( a - 1 ) ; 2/(2a). 

11. Given the functions 

^ ( z ) = 2
Z
-

2
 and <p(z) = 2 Ι Ί -

2
, 

find: -F(O); 2^(2); JP(3); F(— 1); .F(2-5); 1-5) and 
cp(0); φ(2); φ(- 1); ç>(- 1) + ^ ( 1 ) . 

12. Given the function 

^( ί ) = ta
1
, 

find: t^(0); y ( l ) ; ip(— 1); ψ(α)\ ψ(— a). 

13. <p(t) = fi + 1. Find <p(*
2
) and [<p(0]

2
. 

14. F (χ) = χ* - 2χ* + 5. Show that F (a) = α). 

15. Φ(ζ) = ζ
3
 — δζ. Show that Φ ( - ζ ) = - Φ ( ζ ) . 
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meaning of the ratio 
(b-a) 

21. Show that, if any chord of the graph of the function 
y = f(x) lies above the arc subtending it, we must have 

fM + f M > f ^ L + ^ for a l l ^ a , . 

22. Given: f(x) = x
2
 — 2x + 3. Find all the roots of the 

equations (a) f(x) = / (0) ; (b) /(a) = / ( — 1). 

23. Given: f(x) = 2x* - 5x
2
 — 23x. Find aU the roots of 

the equation f(x) = / ( — 2). 

24. Given a function f(x), indicate a root of the equation 
f(x) = f(a). 

16. f(t) = 2t
2
 + ~ + j + « . Show that /(*) = / j y ] · 

17. /(a;) = sin χ — cos a;. Show that / ( l ) > 0. 

18. ip(x) = log Show that \p(x) + ^ ( a ; + l ) = y[a;(;c + 1)]· 

19. i ^ z ) = α
2
. (1) Show that, for any z, 

. F ( - 2 ) JF(«) - 1 = 0. 

(2) Show that 
F(x) F(y) = F(x + y). 

20. We are given the graph of function y = f(x) and the 
values a and b of the independent variable χ (Fig. 3). Con-
struct f(a) and /(δ) on the figure. What is the geometric 

f(b) - /(α) , 
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25. Indicate the roots of the equation 

if it is known that f(x) is defined in the interval [-—5, 5]. 
Find all the roots of the equation for the case when 

26. F(x) = x
2
 + 6; φ(χ) = 5x. Find all the roots of the 

equation F(x) = 

27. f(x) = χ + 1 ; φ(χ) = χ — 2. Solve the equation 

28. Find the values of a and b in the expression for the 
function f(x) = ax

2
 + bx + 5 for which we have identically 

f(x + 1) - /(a) ^ 8* + 3. 

29. Let f(x) = α cos (bx + c). Find constants a, b and c 
from the condition that f(x + 1) — /(#) Ξ sin x. 

Functions of a Function 

30. Given: y = ζ
2
, ζ = a; + 1, express y as a function of x. 

31. Given: y = y ζ + 1, ζ = tan
2
 express y as a func-

tion of x. 3 

32. Given: y = ζ
2
, ζ = y a; + 1, a; = a*, express y as a 

function of t. 

33. Given: y = sin ν = log y; w = y i + ν
2
, express 

u as a function of 

34. Given: y = 1 + χ; ζ = cos y; ν = Yl — ζ
2
, express 

ν as a function of χ. 

35. Represent the following functions of a function with 
the aid of chains made up of basic elementary functions: 

(1) y = sm*x; (2) y = y (I + χ)
2
; (3) y = log tan χ; 

(4) y = sin
3
 (2a? + 1 ) ; (5) y = 5<

3
*+ D

2
. 

36. f(x) = x
z
 — χ; φ(χ) = sin 2a;. Find: 

f(x) = χ*- I2x + 3. 

\f(z) + tp(x)\ = \f(x)\ + \tp(x)\. 

3 



6 PROBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

F(x) 

Ί Ν 

F I G . 4. 

Implicit Functions 

38. Write down the explicit expressions for y, given impli-
citly by the following equations: 

+ ( 2 ) ^ - g = l ; 

(3) x
3
 + y* = a

3
; 

(4) xy = C; (5) 2*>- = 5; 

(6) logx + l o g ( y + 1) = 4; 

(7) 2
x
+y (z

2
 — 2) = x

3
 + 7; 

(8) (1 + x) cosy — x
2
 = 0. 

37. Check the validity of the following method for draw-
ing the graph of the function of a function y = f[cp(x)] = 
= F(x) when the graphs of the component functions y = 
= f[x)f y = φ(χ) are known. From a point A of the graph 
of φ(χ) (Fig. 4) corresponding to a given value of independent 
variable χ a straight line is drawn parallel to Ox to its inter-
section at Β with the bisector of the first and third quad-
rants; from Β a straight line is drawn parallel to Oy to its 
intersection with the graph of f(x) at C. I f a straight line is 
drawn from C parallel to Ox, its point of intersection D 
with the straight line NN' will be the point of the graph 
of F(x) corresponding to the given value of x. 
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39*. Show that, for χ > 0, the graph of function y given 
by the equation y -\- \y\ — χ — \x\ = 0 is the bisector of the 
first quadrant, whilst for χ ^ 0 the function is many-valued 
and its "graph" is the set of points of the third quadrant 
(including its boundary points). 

3. Elementary Investigation of Functions 

Domain of Definition of a Function 

40. Form a table of the values of the function of an integral 

argument y — for 1 ^ χ ^ 6. 

41. The value of the function of an integral argument 
u = φ(η) is equal to the number of positive integers not 
exceeding n. Make up a table of the values of u for 1 ^ 

42. The value of the function of an integral argument 
u = f(n) is equal to the number of integral divisors of the 
argument differing from 1 and η itself. Form a table of the 
values of u for 1 ^ η ^ 20. 

43. A girder consists of three sections of 1, 2, 1 units of 
length weighing 2, 3, 1 units of weight respectively (Fig. 5). 
The weight of a variable section AM of length # is a function 
of x. For what values of χ is this function defined? Form an 
analytic expression for the function and draw its graph. 

44. A tower has the following shape : a cylinder of radius 
R and height 2R is mounted on a right circular truncated 
cone with base radii 2R (lower) and R (upper) ; a hemisphere 
of radius R is mounted on the cylinder. Express the area 

^n^20. 

F I G . 5. 

7 



8 PROBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

S of the cross-section of the tower as a function of the dist-
ance χ of the cross-section from the lower base of the cone. 
Draw the graph of S = f(x). 

45. A cylinder is inscribed in a sphere of radius R. Find 
the volume V of the cylinder as a function of its height x. 
State the domain of definition of this function and the do-
main of definiteness of the corresponding analytic express-
ion. 

46. A right circular cone is inscribed in a sphere of radius 
R. Find the area S of the lateral surface of the cone as a 
function of its generator x. State the domain of definition 
of this function and the domain of definiteness of the corres-
ponding analytic expression. 

Give the domains of definition of the functions of problems 
47-48. 

47. (1) y = 1 - logs ; (2) y = log (x + 3); 

(3)2/ = / 5 - 2 s ; (4) y = Y-px(p > 0); 

2x 

(10) y = - J _ ; (11) y = Υ*-4χ + 3; 
y χ

2
 — ix 

Χ Χ 

(12) y = r ; (13) y = aresin — ; 

(14) y = arc sin (x — 2); (15) y = arc cos (1 — 2x); 

2 2x 
(16) y = arc cos — - — ; (17) y = arc sin \ 2x; 

(18 )y = /r=T|ï | ; (19)y = — 1 = ; 
|/\X\ X 

4 
2 

(22) y = log sin χ; (23) y = arc cos 2 + s i n a. ; 

(24) y = log
x

 2. 



I . FUNCTIONS 

(1) y = - 1 4 . ^ + 2; 
v 1

 * log (1 — x) ^
 f

 ^ ' 

(2) y = Υ Ζ — χ + arc sin -——— ; 
ο 

x 3 
(3) y = arc sin — log (4 — x); 

3 

(4) y = Τ* + ][^~2 - log (2* - 3); 

(5) y - Yx — 1 + 2 / l — χ + Yx
2
 + 1 ; 

(
6
) y = 4 = 1 » +

l o
« 

(7) y = log sin (χ - 3) + ]Al6 - a;
2
; 

(8) y = Vsin a; + y 16 - ζ
2
; 

ι » , 
(9) y = — = + /sïnx; 

Vsina; 

( i l ) y = 
Ac — 2 1/ 1 - x 

I x + 2
 +
 Uï+ïc' 

(12) y = y a;
2
 — 3a; + 2 + 

/ 3 + 2a; — a;
2
' 

(13) y = (a;
2
 + a; + 1)"!; 

(14) y = log (Yx~=é + l[W=x); 

(15) y = log [1 — log (a;
2
 — 5x + 16)]. 

49. Are the following functions identical? 

1̂  
x' (1) / (*) 

X 

~ X* 
and <p(x) 

(2) f(x) 
_x* 
~ X 

and φ{χ) 

(3) f(x) 

(4) f{x) 

= X 

- - log x
2 

and 

and 

φ(χ) 

φ(χ) 

9 

48. 
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2 '
 ν

 ' * 2 

(15) t/ = χ · g^i; (16) y = 2*-
χ
' ; 

(17) y = 1η 

α
χ
 + 1 

1 — χ 

1 + χ 

50. Suggest an example of a function specified analyti-
cally which is 

(1) defined only in the interval — 2 ^ χ ^ 2; 
(2) defined only in the interval — 2 < χ < 2 and is not 

defined at χ = 0; 
(3) defined everywhere except for χ — 2, χ — 3, χ — 4. 

51. Find the domains of definition of the single-valued 
branches of the function y = φ(χ) given by 
(1) y

2
 - 1 + log2 {χ - 1) = 0; (2) - 2xy

2
 + χ

2
 - χ = 0 

Elements of the Behaviour of Functions 

52. f(x) = y-̂ p-̂ ; state the domain of definition of f(x) 

and verify that the function is non-negative. 

53. Find the intervals in which the following functions are 
of constant sign or zero : 

(1) y = 3x - 6; (2) y = χ
2
 - 5x + 6; (3) y = 2*-*; 

(4) y = χ* — 2>χ
2
 + 2χ; (5) y = \ζ\. 

54. Which of the functions below are even, which are odd, 
and which are neither even nor odd? 

(1) y = χ* — 2x
2
; (2) y = χ — χ

2
; 

(3) y = cos χ; (4) y = 2*; 

χ^ χ^ 
(5) y = χ _ _ + _ ; (6) y = sin χ; 

(7) y = sin χ — cos χ; (8) y = 1 — χ
2
; 

(9) y = tan χ; (10) y = 2~*
2
; 

/ Π \ α
χ
 + α~

χ
 α

χ
 — α~

χ 

( ΐ ΐ ) 2 / = — s — ; ( ι
2
) V 
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55· Write each of the following functions as the sum of 
an even and an odd function: 

(1) y = x2 + 3x + 2; 

(2) y = 1 — χ* - χ* — 2x*\ 

χ 
(3) y = sin 2x + cos — + tan x. 

Δ 

56. Show that f(x) + /(— x) is an even function, and 
f(x) -f{-x) odd. 

57. Write the following as the sums of even and odd func-
tions : 

(1) y = a
x
; (2) y = (1 + χ )

1 00
 (see problem 56). 

58. Show that the product of two even functions is an 
even function, the product of two odd functions is even, 
and the product of an even and an odd function is odd. 

59. Which of the following functions are periodic ? 

(1) y = sin
2
 x; (2) y = sin x

2
; (3) y = χ cos χ; 

(4) y = sin i ; (5) y = 1 + tan χ; (6) y = 5; 
χ 

(7) y = E(x); (8) y = χ - Ε(χ). 

(The function E(x) is defined thus : if χ is an integer, E(x) = 
= x; if # is not an integer, E(x) is the greatest integer less 
than a. Thus E(2) = 2; E(i'25) = 3; #(-1*37) = - 2 . ) 

60. Draw the graph of the periodic function of period 
Τ = 1 which is given in the semi-open interval [0, 1) by 

(1) y = x- (2) y = χ
2
. 

61. State the intervals in which the following functions 
are increasing, decreasing and constant: 

(
l

) y = \
x

U ( 2 )y = \ x I — x-

62. Give the maxima and minima of the functions 

(1) y = sin x
2
; (2) y = cos x*; (3) y = I — sin x\ (4) y = 2

χ 2
. 



12 PEOBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

F I G . 6. 

(2) with the graphs shown in Fig. 7. 

F I G . 7. 

64. Knowing the graph of y = f(x), draw the graphs of: 

( i ) y= | / ( * ) | ; (2) y=\[\m\ + /(*)]; 

(3) 2/ = 2 [ l/(*) I - / ( * ) ] · 

63. Use graphical addition to draw the graph of the func-
tion 

y = / ( « ) + ψ(
χ
)
: 

(1) with the graphs shown in Fig. 6; 
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4. Elementary Functions 

Linear Functions 

65. Given that the current I = 0'8a when the voltage 
Ε = 2-4 V, use Ohm's law to express analytically the relat-
ionship between the current and voltage; draw the graph 
of the function obtained. 

66. A vessel of arbitrary shape is filled with liquid. At 
a depth h = 25*3 cm the pressure of the liquid is ρ = 18*4 
g/cm

2
. 

(a) Obtain the function expressing the relationship bet-
ween the pressure and the depth; 

(b) find the pressure at depth h = 14*5 cm; 

(c) at what depth does the pressure become 26*5 g/cm
2
? 

67. Starting from Newton's law, obtain the function 
giving the relationship between the force F and acceleration 
w if the force performs work A = 32 ergs at an acceleration 
of 12 cm/sec

2
 over a path s = 15 cm. 

68. Find the linear function y = ax -f- b from the follow-
ing data: 

(1) χ y (2) χ y (3) χ\y 
0 4 2 43 2-5J7-2 
3 6 — 1-6 0 3·2|β·8. 

69. A certain quantity of gas occupies a volume 107 cm
3 

at 20° C, and 114 cm
3
 at 40° C. 

(a) Starting from the Gay-Lussac law, obtain the function 
giving the relationship between the volume V of the gas 
and its temperature t. 

(b) What is the volume at 0° C? 

70. A particle in uniform motion is at a distance of 
32*7 cm from the initial point after 12 sec; after 20 sec 
from the initial instant the distance is 434 cm. Find the 
distance s as a function of time t. 

71. The voltage in a circuit falls uniformly (with a linear 
law). The voltage at the start is 12 V, and falls to 6*4 V at 
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the end of the experiment lasting 8 sec. Express the voltage 

V as a function of time t and draw the graph of the function. 

72. Find the increment of the linear function y = 2x — 7 

when the independent variable χ passes from the value x1 — 

= 3 to x2 = 6. 

73. Find the increment of the linear function y =—3x -f- 1 cor-

responding to an increment Ax = 2 of the independent variable. 

74. The function y = 25x + 4 has received the increment 

Ay = 10. Find the increment of the argument. 

75. Given the function y = - r ^ and the initial value 
σ
 a

2
 — b

2 

of the independent variable xL = a — b, for what finite 

value x2 of the independent variable χ is the increment 

Ay = -
]
- r ? 9

 a — b 

76. Function φ(χ) is given by: φ(χ) = -χ + 2 for — oo < 

< a; ^ 2; <p(#) = 5 — χ for 2 ^ # < + ° ° - Find the roots 

of φ(χ) = 2# — 4 analytically and graphically. 

77. Draw the graphs of the functions 

(1) y = \x+l\ + \ x - l \ ; 

(2) i, = | * + l | - | * - l | ; 

(3) y = μ - 3| - 2 μ + 11 + 2 | * | - χ + 1. 

78*. For what values of χ does the inequality hold: 

\f(x) + <p(x)\<\f(x)\ + \<p(x)\, 

if f(x) = χ — 3 and <p(#) = 4 — x. 

79*. For what values of χ does the inequality hold: 

\f(x)-<p(x)\ >\f(x)\ -W(x)\, 

if f(x) = # and φ(χ) — χ — 2. 

80. A function is defined thus: f(x) varies linearly in 

each of the intervals η ^ χ < η + 1 where τι is a positive 

integer, whilst f(n) = — 1, / ^ i + = 0. Draw the graph 

of the function. 
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Quadratic Functions 

81. Draw the graphs and indicate the intervals of increase 
and decrease of the functions : 

[\)y = \x
2
; (2) y = x

2
- l ; (S)y = \x

2
-1\; 

(4) y = I — x
2
; (5) y = χ

2
 — χ + 4; 

(6) y = x - x
2
; (7) y = \x - χ

2
 | ; 

(8) y = 2x
2
 + 3; (9) y = 2χ

2
 - ßx + 4; 

(10) y = — 3x
2
 + 6x — 1; 

(11) y = |— 3z
2
 + ßx — 1|; (I2)y=-x\x\. 

82. The graph of a single-valued function defined in the 
interval (— oo, 6] consists of: 

points of Ox with abscissae less than —3; 
points of a parabola symmetric about Oy and passing 

through the points A (—3,0), Β (0,5); 
points of the straight line OD, with 0 (3,0) and D (6,2). 

Form the analytic expression for the function. 

83. Find the maxima of: 

(1) y = - 2 * 2 + χ - 1; (2) y = -χ
2
 - Sx + 2; 

(3) y = 5 — ζ
2
; (4) y = —2a;

2
 + — α

2
; 

(5) y = a
2
x — δ

2
*

2
. 

84. Find the minima of: 

(1) y = χ* + \χ - 2; (2) y = 2x
2
- I5x + 0*6; 

(3) 2/ = 1 - Sx + 6x
2
; (4) y = α

2
*

2
 + α

4
; 

(5) y = (ax+ b) (αχ — 26). 

85. Express the number a as the sum of two terms such 
that their product is a maximum. 

86. Express the number α as a sum of two terms such 
that the sum of their squares is a minimum. 

87. We want to build a wooden fence so as to enclose a 
rectangular piece of ground next to a stone wall. The total 
length of the fence is 8 m. What must be the length of the 
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93. A cylinder is inscribed in a right circular cone such 
that the planes and centres of the circular bases of the cylin-
der and cone are the same. What is the ratio of the base 
radii of cylinder and cone for the lateral surface of the cylin-
der to be a maximum? 

94. A cylinder is inscribed in a given right circular cone 
of base radius R and height H, such that the planes and 
centres of the circular bases of cone and cylinder coincide. 
What must be the radius of the cylinder for its total surface 
area to be a maximum ? Consider the cases H > 2R, H ^ 2R. 

F I G . 8. 

part of the fence parallel to the wall for the enclosed area to 
be a maximum? 

88. In a triangle ABC angle A = 30° and the sum of 
the sides including this angle is 100 cm. What must be the 
length of side AB for the area of the triangle to be a maxi-
mum? 

89. Which of the cylinders with axial section of given 
perimeter Ρ = 100 cm has the greatest lateral surface? 

90. Which of the cones with axial sections of perimeter 
Ρ has the greatest lateral surface? 

91. A body consists of a right circular cylinder with a 
cone (of the same base) mounted on it. The angle at the 
vertex of the cone is 60°. The perimeter of the axial section 
of the body is 100 cm. What must be the radius of the cylin-
der for the lateral surface of the body to be a maximum ? 

92. A rectangle is inscribed in an isosceles triangle of 
base a and height h, as shown in Fig. 8. What must be the 
height of the rectangle for its area to be a maximum ? 
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95. What must be the radius of a circle for the area of a 
sector of given perimeter Ρ to be a maximum ? 

96. A window is in the form of a rectangle with an equilat-
eral triangle on top. The perimeter of the window is P . 
What must be the base a of the rectangle for the window to 
have maximum area? 

97. A window is in the form of a rectangle with a semi-
circle on top. What must be the base of the rectangle for 
the window to have maximum area when its perimeter is 

98. We want to cut out the corners from a rectangular 
piece of card-board of 30 X 50 cm

2
 so that, on bending along 

the dotted lines (Fig. 9), a box is obtained with the greatest 
lateral surface. Find the side of the squares cut out. 

99. Using a piece of wire of length 120 cm, we want to 
make a model of a rectangular parallelepiped with a square 
base. What must be the side of the base for the total area of 
the parallelepiped to be a maximum? 

100. A piece of wire of length a cm is to be cut in two ; 
a square is made from one piece and an equilateral triangle 
from the other. How must the wire be cut for the sum of 
the areas of the figures thus obtained to be a minimum? 

101. Find the point on the straight line y = χ such that 
the sum of the squares of its distances from the points (—a, 0), 
(a, 0) and (0, b) is a minimum. 

102. Find the point on the straight line y — χ - f 2 such 
that the sum of the squares of its distances from the straight 
lines 3x — 4y + 8 = 0 and 3x — y — 1 = 0 is a minimum. 

2 m? 

F I G . 9. 
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103. An electrical current J divides into two branches 
with resistances r± and r2 (Fig. 10). Show that the least loss 
of energy passing into heat per unit time corresponds to a 
distribution of the currents in inverse proportion to the re-
sistances of the branches. (Start from the law: the heat given 
out Q = 024J

2
ift.) 

r - V W W H 

108*. Show that the function / ( * ) = 

any real value if 0 < c ^ 1. 
x

2
 + 4* + 3c 

takes 

Linear Rational Functions 

109. Starting from the Boyle-Mariotte law, find the function 
showing how the volume of a gas depends on the pressure 

F I G . 10. 

104. Trace the parabola y = χ
2
 and use it for graphical 

solution of the following equations : 

105. Function φ(χ) is given by: for 

analytically and graphically all the real roots of the equation 
[φ{χ)γ =Ίχ+ 25. 

106. Give the domain of definition of the function 

for Find 

107. Find f(x + 1), given that 
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at t = const, if it is known that the volume is 2*3 1. at 
760 mm pressure. Trace the graph of the function. 

110. The variable χ is inversely proportional to y, y is 
inversely proportional to z, and ζ in turn is inversely propor-
tional to v. What is the relationship between χ and v\ 

111. Variable χ is inversely proportional to y, y is directly 
proportional to ζ, ζ is directly proportional to u, u is inversely 
proportional to v. What is the relationship between χ and ν ? 

112. During electrolysis the quantity of material separated 
at the electrode is proportional to the current, the current is 
proportional to the conductivity of the electrolyte, the 
conductivity is proportional to the concentration of electrol-
yte, the concentration for a given quantity of material is 
inversely proportional to the volume of solvent. How does 
the quantity of material separated at the electrode depend 
on the volume of solvent? 

113. Draw the graphs of the linear rational functions: 

/ i \ % — 1 / Λ \ 2a? / ox 2x — 5 

(4) Y = — ( « ) Y
 4

~
3

* 
1 ' χ-/ » - 3 - 2-25a; ' 

114. Find graphically the maxima and minima of the 
following linear rational functions in the stated intervals: 

V>y = TTÏ [0'4]· 
115. Prove : (1) if the abscissae of the four points M1(xv yj, 

k 
M2{x2, y2), Mz(xz, y2), MA(xA, yé) of the graph of y = -

m Χ 

Χ χ 
(Fig. 11) form the proportion — = — , the rectangular 

x2 x± 
trapezia MXM2N2N± and M3MANANZ are of equal area; 
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k 
(2) if points M1 and M2 lie on the graph of y = - (Fig. 12), 

χ 
the area of figures A1M1M2A2 and B1MlM2B2 are equal. 

F I G . 12. 

116. Use graphical addition to draw the graph of y 
χ

2
 + 1 

5. The Inverse Functions. Power, Exponential and 
Logarithmic Functions 

117. Find the inverses of the following functions: 

(1) y = x; (2) y = 2x; (3) y = 1 - Sx; 

(±)y = x
2
+l; (6)y=\\ (6) y = y - ^ ; 
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(i) y = χ
3
; (3) y = x

3 
+ 3x

2
; 

(4) y = x
3
 - χ + 1; (5) y = — χ

3
 + 2x -- 2 ; 

(6) y = 2χΙ; (7)?/ = 1χΓ; (8)2/ = * ° -
3
; 

(9) y = x
2 1

; (10) y = x
o c 2

; (11) y = ^*~ 0-2. 

(12) y = 5x-
2
'

5
; (13) i/ = 1 

3 

( 7 ) y = s » - 2 * ; (8) y = + 1 ; (9) y = 10*+*; 

(10) y = 1 + log (χ + 2) ; (11) y = log* 2; 

οχ 10
X
 10~

x 

(14) y = 2 sin Sx; (15) y = l + 2 s i n | ^ ; 

(16) y — 4 arc sin / l — #
2
. 

1 χ 
118. Show that the function y = -—-— is the inverse of 

I + χ 
itself. Give further examples of such functions. 

(XX • J) 
119. Show that the function fix) = is the same 

cx — a 
as its inverse. 

η 

120. Show that, if f(x) = γα — x
n
, χ > 0, then f[f(x)] = 

Find the inverse of f(x). 

121. What is the special feature of the graph of a function 
which is the same as its inverse? 

122. A function y of χ is given by the equation y
2
 — 1 + 

+ l ° g 2 — 1) = 0. Find the domain of definition of the 
function and write down its inverse. 

123. A function y οΐχ is given by the equation y
2
 + sin

3
 x— 

— y -f- 2 = 0. Find the inverse of the function. 

Power Functions 

124. Draw the graphs of the functions : 



22 PROBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

125. Find graphically the approximate values of the real 
3 _ 

roots of the equation χ + 3 = 4 Υ χ
2
. 

126*. Draw the graph of the cubical parabola y = #
3 

and use the graph to find graphically the solutions of the 
equations : 

(1) s
3
 + χ — 4 = 0; (2) s

3
 - 3#

2
 - χ + 3 = 0; 

(3) χ* — 6x
2
 + 9x — 4 = 0; 

(4) z
3
 + 3z

2
 + 6z + 4 = 0. 

127. Given the following data, form the corresponding 
equation and solve it graphically: 

(1) The square of a number is equal to the sum of the 
number and its reciprocal. 

(2) A wooden sphere of radius 10 cm and density 0*8 g/cm
2 

floats on water. Find the height of the segment submerged 
in the water. 

(3) A wooden cube and a pyramid with square base to-
gether weigh 08 kg. The side of the cube is equal to the side 
of the base of the pyramid, the height of which is 45 cm. 
Find the side of the cube. The specific gravity of wood is 0*8. 

128. For what values of χ has the function y = χ
η
, χ > 0, 

values greater than those of its inverse, and for what χ has it 
smaller values? 

Exponential and Hyperbolic Functions 

129. Draw the graphs of the functions: 

(1) y = - 2 * ; (2) y = 2*+*; (3) y =~ 3»; 

(4) y = 1 - 3 - 3 ; (5) y = j ^ ' * ' ; (6) y = 2~*\ 

130. Draw the graph of y = 2
X
. Obtain on the same figure 

without further calculations the graphs of the functions : 

( l ) y = 2 x - » ; (2) y = {Z) y + I. 
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irom the graph the coordinates ot the points ot intersection 
of these curves. 

135. Find the greatest possible value of η for which 
2* > x

n
 for all χ ^ 100 (n is an integer). 

136. Show that y = sinh χ and y = tanh χ are odd func-
tions, and y = cosh χ even (see the Course, sec. 22). Are 
these functions periodic? 

137. Prove the relationships: 

(1) cosh
2
 χ — sinh

2
 χ = 1 ; (2) cosh

2
 χ + sinh

2
 χ = 

= cosh 2x; (3) 2 sinh χ cosh χ = sinh 2x; 

(4) sinh (α + β) = sinh a cosh /? + sinh β cosh a; 

(5) cosh (a + /?) = cosh a cosh /? + sinh a sinh /?; 

(6) 1- tanh 2 a: = - ^ 2 ^ ; ( 7 ) 1 - 0 0 ^ = - ^ . 

Logarithmic Functions 

138. Draw the graphs of : 

(1) y= -log2x; (2) y = \0g—; (3) y = | l ogs | ; 

(4) y = l o g 2| s | ; (5) y = 1 + l o g ( a + 2 ) ; 

(6) y = log 211 - x\; (7) y = a
1
**-*; (8) y = log x 2. 

139. Draw the graph of y = log x. Obtain on the same 
figure without further calculations the graphs of: 

curves y = 2
X
, y , and ; 3. Find approximately 

134. Draw on millimetre paper the figure bounded by the 

133. Solve graphically: 

132. Use graphical addition to draw on millimetre paper 
the graphs of: 

131. Show that the graph of y = Jca
x
 (k > 0) is the same 

curve as for y = a
x
, but displaced with respect to the axes. 
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6. The Trigonometric and Inverse Trigonometric Functions 

Trigonometric Functions 

143. Give the amplitude and period of the following har-
monic oscillations: 

(1) y = sin 3#; (2) y = 5 cos 2x\ 

(3) y = 4 sinnx; (4) y = 2 s i n | ; 

/ K. . Ζπχ . 5* 
(5) y = sin — ; (6) y = 3 sin — . 

144. Give the amplitude, period, frequency and initial 
phase of the harmonic oscillations : 

(1) y= 2 sin (3* + 5); (2) y = - cos ; 

1 / 1\ 2£ + 3 
(3) y = - sin 2π ω - - ; (4) y = sin ^ . 

145. Draw the graphs of: 

(1) y = —sin*; (2) y = 1 —sin*; 
* 

(3) y = 1 —cos (4) y = sin 2x; (5) y = sin - ; 

(6) y = 2 sin | ; (7) ?/ = cos 2x; 

(8) 2/ = 2 sin * — - ; (9) y = 2 sin 3* + — ; 

(10) y = ^sin (2πχ — 1*2); 

140. Use graphical addition to draw the graph of the 

function y = χ + log - and use the graph to find the minima 
χ 

of the function in the interval (0, 2]. 

141. Show that the graph of y = logn (x + Yx
2
 + l ) is 

symmetric about the origin. Find the inverse function. 

142. Show that the ordinate of the graph of y = log a χ is 
equal to the ordinate of the graph ofy = logan χ multiplied by n. 
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(11) y = 2 + 2 S i n ^ + ^ ; (12) y = 2 c o s ^ ; 

(13) y = |sin x\; (14) y = |cos x\; (15) y = |tan#|; 

(16) y = |cotx | ; (17) j / = sec#; (18) y = cosec#. 

cos χ for — π ^ α; ^ 0, 

< 1 9 ) f f = <
 1 0 < Λ ; < 1

^ 

- for 1 =i χ ^ 2. 

146. A triangle has sides of 1 cm and 2 cm. Draw the 
graph of the area of the triangle as a function of the angle 
χ between these two sides. Find the domain of definition of 
this function and the value of argument χ for which the area 
is a maximum. 

147. A particle moves uniformly on a circle of radius 
R with centre at the origin anticlockwise with linear velocity 
ν cm/sec. The abscissa of the particle at the initial instant 
was a. Form the equation of the harmonic oscillation of the 
abscissa (see Course, sec. 25). 

148. A point moves uniformly along the circle x
2
 - f y

2
 = 1. 

At time tQ its ordinate is y0, at time tx the ordinate is yv 

Find the ordinate of the point as a function of the period 
and initial phase of the vibration and time. 

149. Figure 13 illustrates a crank mechanism. The radius 
of the fly-wheel is R, the length of the connecting-rod a. 
The fly-wheel rotation is clockwise and uniform, at a rate 
of η revolutions per second. At the instant t = 0, when the 
connecting-rod and crank form a straight line (the "dead" 
position), the cross-head (^4) is at point 0. Find the displace-
ment χ of the cross-head (^4) as a function of time t. 

150. Use graphical addition to draw the graphs of: 

(1) y = sin χ + cos x\ (2) y = sin 2πχ + sin 3πχ; 

χ χ 
(3) y = 2 sin - + 3 sin - ; (4) y = χ + sin χ; 

(5) y = χ — sin χ; (6) y = —2* +
 c

° s χ. 
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F I G . 13. 

151. Solve graphically the equations: 

(1) * = 2 sin x\ (2) χ = tan x\ (3) χ 

(4) 4 sin χ — 4 — x\ (5) 2~
x
 = cos *. 

cos* 0; 

152. Find the periods of the compound harmonic vibra-
tions : 

(1) y = 2 sin 3* + 3 sin 2*; (2) y = sin £ + cos 2£; 

/ o \ . nt . nt 
(3) y = sin — + sin — ; 

(4) y = sin |̂ 2πί + | j +
 2

 sin ^3nt + ĵ + 3 sin 5πί. 

153. Express as a simple harmonic vibration: 

(1) y = sin * + cos *; (2) y = sin * + 2 sin 

154. Give a proof of the following graphical method for 
adding harmonic vibrations. Given the vibrations 

A1 sin (ωχ + φλ) and A2 sin (ω* + <p2). 

we draw vectors A± and A2 of lengths and A2 respectively 
at angles φχ and φ2 to a horizontal axis (Fig. 14). On adding 
vectors A1 and A2 we obtain the vector A of length A at an 
angle φ to the horizontal axis; A and φ are the amplitude 
and initial phase respectively of the sum 

A1 sin (ωχ + + ^ 2 sin (ωχ -\- φ2) = A sin (ω* + φ). 

155*. Give the periods and draw the graphs of: 

(1) y = I sin x\ + I cos * | ; 

(2) v =
 l

( \ *
i n x

\ » *
i n x

) 
K 1 u

 2 \ cos* ^ I cos x\) ' 
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F I G . 14. 

156. Find the domain of definition and indicate the shape 

of the graph of: 

(1) y = log sin x; (2) y = ^log sin a;; 

Inverse Trigonometric Functions 

157. Draw the graphs of: 

(1) y = arc cot (2) y 

71 

(3) y = 1 - f arc tan 2x; (4) y = - — arc cos 2x; 

ι x 

(5) y = arc sin —-— . 

158. A circular sector with central angle α is folded into 
a cone. Find the angle ω at the vertex of the cone as a func-
tion of angle α and draw the graph of the function. 

159. A painting of height a m hangs at a slope against 
a wall so that the dihedral angle between them is φ. The 
lower edge of the painting is at δ m above the eye-level of 
the observer, who stands at a distance l m from the wall. 
Find the relationship between the angle γ at which the observ-
er sees the painting and the angle φ. 

= 2 arc sin - ; 
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1 

Γ + x
2 

1 + a; 

(8) arc cos -—J—^ = — 2 arc tan χ ; 

(9) arc tan χ + arc tan 1 = arc tan 
1 - x ' 

1 + χ 
(10) arc tan χ + arc tan 1 = π + arc tan . 

ι χ 

162. Using the identities of problem 161, find the domain 
of definition and draw the graph of: 

(1) y = arc cos γΐ — χ
2
; 

(2) y = arc sin y I — χ + arc sin Yx; 

(3) y = arc cos 

(4) y = arc tan χ — arc cot 

1 +x
29 

1 

163*. Draw the graph of y = arc sin (sin a:). Show that 

this is a periodic function. 

164. Draw the graph of y = arc cos (cos x). 

160· Give the relationship between the angle α of rotation 

of the crank and the displacement χ of the cross-head for 

the crank mechanism (see Fig. 13, problem 149). 

161. Indicate the domains of a; in which the identities 

hold: 

(1) arc sin χ + arc cos χ = ^ ; 

Δ 
(2) arc sin ^x + arc cos Yx = ^ ; 

(3) arc cos YI — x
2
 = arc sin a;; 

(4) arc cos YI — x
2
 = —arc sin x; 

(5) arc tan χ = arc cot - ; v
 ' χ 

(6) arc tan χ = arc cot - — π; 
χ 

I χ2 
(7) arc cos - — ; — ö = 2 arc tan x\ w
 1 + x

2 
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165. Draw the graph of y = arc tan (tan x). 

166. Draw the graph of: 

(1) y = χ — arc tan (tan x)\ 

(2) y = χ — arc sin (sin x) ; (3) y = χ arc sin (sin x) ; 

(4) y = arc cos (cos #) — arc sin (sin x). 

7. Numerical Problems 

167. Draw the graph of y = x
z
 + 2x

2
 — àx + 7 in the 

interval [—4, 2] for values of # at intervals of 0*2; use an ordi-
nate scale 20 times smaller than the abscissa scale. Find from 
the graph the maxima and minima of the function in the 
interval [ — 3, 2], What is the point of transition from in-
crease to decrease of the function ? Find the zero of the func-
tion in [—4, 2]. The accuracy of the evaluation to be 0*1. 

168. When studying the dispersion of shrapnel in artillery 
theory it is required to draw the graph of y = e -

4 c o s 2a
 ; 

e ^ 2*718. Carry out the construction for 4̂ = 2, giving α 
values from 0 to 90° every 5°. The accuracy required is 001. 

169. Draw the parabola y = ax
2
 + bx + c through three 

given points Mx (1, 8), M2(5, 6), -M3(9, 3). Find the zeros of 
ax

2
 + bx + c. The required accuracy is 001. 

170. We require to cut out equal squares from the corners 
of a square sheet of tin 30 X 30 cm

2
 so that a box of capacity 

1600 cm
3
 can be made by bending the remainder. What must 

be the length of side χ of the squares cut out ? The required 
accuracy is 0*01. 

171. Show that, if we put x
2
 = y in the equation 

ÎE
4
 + ν

χ 2
 + qx + s = 0, 

this can be replaced by the system 

J x
2
 = y> 

yo =
 1

 2

 V
 >

 x
o = — I and r

2
 = y

2
 + x

2
 — s. 
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(spiral of Archimedes) 

(hyperbolic spiral) 

(logarithmic spiral) 

(three-petal rose) 

(four-petal rose) 

(cardioid) 

Using this method, solve graphically the equation 

x* — 3x
2
 — Sx — 29 = 0. 

The required accuracy is 01 . 

172*. Using the method indicated in problem 171, show 
that, with the aid of the further substitution χ = χ' + α, 
every fourth degree equation x* -f- ax* + bx

2
 + cx -f- d = 0 

can be solved graphically by drawing a circle and the parabola 
y = χ

2
. 

Using this method, solve graphically the equation 

χ* + 1·2ζ
3
 — 22x

2
 - 39x + 31 = 0. 

The required accuracy is 0 Ί . 

173. Find graphically the roots of the equation 

e* sinz = 1, e ^ 2*718, 

lying between 0 and 10; give an approximate general formula 
for the remaining roots. The accuracy required is 0*01. 

174. Solve graphically the system: 

x + y2 = : l ; 16x
2
 + 2/ = 4. 

The required accuracy is 0*01. 

175. Draw the graphs of the following functions (in the 

polar system of coordinates) for values of φ every — : 

(1) ρ = αφ 

( 2 ) ρ = -

(3) ρ = (e ̂  2-718) 

(4) ρ = a sin 3φ 

(5) ρ = a cos 2φ 

(6) ρ = a (1 — cos φ) 

The required accuracy is 001. Choose an arbitrary constant 
a > 0. 



C H A P T E R I I 

LIMITS 

2 '
 3

 3 ' · " ' 
ηπ 

c o s ^ -

Find lim vn. What must η be for the absolute value of the 
η —> oo 

difference between vn and its limit not to exceed 0Ό01 ? 

31 

indefinitely. As from what η is the absolute value of the 

difference between un and unity not greater than 10~
4
? 

179· The function vn takes the values 

178. Show that un tends to unity as η increases 

and its limit to be less than a given positive ε ? 

Find lim un. What must η be for the difference between un 

177. Ihe function un takes the values 

η for the absolute value of the difference between un and its 
limit not to exceed 00001 ? 

What is the value of Km un ? What must be the value of 

176. A function of an integral argument takes the values 

functions of an Integral Argument 

1. Basic Definitions 
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Does vn take the value of its limit ? 

180. Ihe general term oi the sequence u 

has the form if η is odd, 

if η is even. and 

Find lim un. What must η be for the absolute value of the 

difference between un and its limit not to exceed (i) 10~
4
; 

(ii) a given ε? 

181. Show that the sequence tends to a 

limit equal to whilst increasing monotonically on indefi-

nite increase of n. As from what η is Ί not greater 

than a given positive εΊ 

182. Show that un = has a limit equal to unity 

as η increases indefinitely. As from what η is 11 — un | not 
greater than a given positive ε? 

What is the nature of the variation of variable un in the 
limit? 

183. A function vn takes the values ("binomial coeffi-
cients") 

where m is a positive integer. Find lim vn. 

184. Show that the sequence 
limit as η increases indefinitely. 

185. Show that the sequence 

has no 

has no 

limit as η increases indefinitely, whilst the sequence vn — 
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# 2 ι 3 
-s——- . When χ -+ 2, we have y -> -

-f- 1 5 
31 

What must δ be for | χ — 2 \ < δ to imply < 01? 

x ι ι 
192. Let y = . When χ 3, we have 

ζ (a* + 1) 4 
What must δ be for |# — 3| < δ to imply 

1 
< 001? 

193. Show that sin χ tends to unity as χ -> — . What 
Δ 

condition must χ satisfy in the neighbourhood of the point 

χ — ^ for 1 — sin χ < 001 ? 
Δ 

What is it? 

186· Do the following sequences have limits? 

. nn 
sin — 

(1) tin = η e i n ^ ; (2) un = (n > 1)1 

187· Prove the theorem: if sequences uv u2, . . un9 . . . 
and vv v2, . . vn, . . . tend to a common limit a, the sequence 
uv vlf u2, v2, . . un, vn, . . . tends to the same limit. 

188. Prove the theorem : if a sequence uv u2, . . un, . . . 
tends to a limit a, any infinite subsequence of it (say uv u3, 
u5, . . . ) tends to the same limit. 

189. The sequence uv uv . . ., un> . . . has limit a =h 0. 

Show that lim ^ = 1. What can be said about this 
Π —> OO IL η 

Umit if a = 0? (Give examples.) 

Functions of a Continuous Argument 

190. Given y = χ
2
, when χ -> 2, ?/ 4. What must δ 

be for J a — 2| < δ to imply \y — 4| < ε = 0001 ? 

191. Let 
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200. When χ tends to unity, the function y = 
(χ - l )

2 

increases indefinitely. What must δ be for | χ — 11 < δ to 

i m p ly
 - ^ τ ψ

> Ν = 1 0 1
· 

201. The function y = —^—- is infinitely large as χ 0. 

What inequality must χ satisfy for \y\ to be greater than 
100? 

as χ -> 3. What must χ be for \y\ to be greater than 1000? 

199· Show that the function y is of large order 

tion must χ satisfy for the inequality \y\ > 10
4
 to hold? 

198. As χ -+ 0, we have y . What condi-

197. Show that the general term un of any arithmetic 
progression is a large order magnitude as η - > oo. (When is 
it positive and when negative?) 

Does this statement hold for any geometric progression? 

Prove that un is a large order magnitude as η -+ oo. As from 
what η is un greater than iV? 

196. A function un takes the values 

Magnitudes of Large and Small Orders 

2. Orders oî Magnitude. Tests for the Existence of a Limit 

194. When χ increases indefinitely the function y = 

tends to zero: 

Ν to imply y 

What must Ν be 

What must Ν be for 195. As χ 

Ν to imply 

for 
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202. As χ -* oo, we have y = log χ oo. What must Jf 
be for χ > M to imply y > Ν = 100? 

203. Which of the basic elementary functions are bounded 
throughout their domain of definition? 

x2 

204. Show that the function y = is bounded 

throughout the real axis. 
x

2 

205. Is the function y = ———g bounded throughout the 
χ
 ~f~ χ 

real axis ? Is it bounded in the interval (0, oo) ? 

206. Is the function y = log sin χ bounded throughout 
its domain of existence ? 

Answer the same question for y = log cos x. 
207. Show that the functions y = χ sin χ and y = χ cos χ 

are not bounded as χ -* oo (indicate for each of them at 
least one sequence of xn such that yn - > oo) . 

Do the functions become infinitely large? 
Sketch the graphs of the functions. 

208. Sketch the graphs of f(x) = 2
X i l nx

 and f(x) = 2~
x sin

*. 
Indicate two sequences xn and a£ of values of χ for each 

of these functions such that lim f(xn) = oo and lim f(xn) = 0 
Π — > oo Π — > oo 

209. For what values of a is the function y = a
x
 sin # 

unbounded as χ oo (x — oo) ? 
210. Are the following functions unbounded ? 

(1) fix) = - cos- as χ 0; 

(2) /(#) = a; arc tan χ as a; oo ; 

(3) /(#) = 2
X
 arc sin (sin #) as χ - > + oo ; 

(4) f(x) = (2 -f- sin #) log a; as χ -+ +
 00

 î 

(5) /(#) = (1 + sin a:) log a; as a; + oo. 

211. The function un takes the values 

3 4 n+l 

Show that is an infinitesimal as η - > oo. 
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212. Function un takes the values 

1 1 1 

2> " » — 27 '
 4 _

 8 ' ' ' ' ' 

_ n*- 8 

Show that un is an infinitesimal as η oo. 

213. Show that 

u
 x+l 

as χ —• 0. What condition must χ satisfy for the inequality 
\y\ < 10"

4
 to hold? 

214. Prove that the function 

y — Υχ -F l —. fx 

tends to zero as χ - > oo. What must Ν be for χ > Ν to 
imply y < ει 

215. Write each of the following functions, which has a 
limit as χ - > oo, as the sum of a constant (equal to the limit) 
and a function; prove that the latter function is an infini-
tesimal as χ - > oo : 

χ
3
 χ

2
 1 χ^ 

Tests for the Existence of Limits 

216*. un takes the values 

_ 1 _ i J, J L _
 1

 .
 1

 .
 1 

« i - 4 . ^ - 4 + 1 0 '
 / ^

'
3
~ 4

i
" l 0 "

1
~ 2 8 ' · · ·

, 

1 + 
^ 32 ι ι ^ ^ 3η 

n
 3 + 1 1

 3
2
 + 1 1

 " "
 1

 3
n
 + 1 ' ' 

Show that un tends to a limit as τι -> oo. 

217. w„ takes the values 

_ 1 _ 1 , 1 _ 1 , 1 1 
u

i - 2>
 U

* - 2
 +
 2 . 4 ' ^

3
 ~ 2

 +
 271

 +
 2 . 4 . 6 ' ' 

%i = l + 7Γ-Ι + · · · + 1 

2
 1

 2 . 4 '
 1

 2 . 4 . . . (2n)
 9
 * ' 
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2 '
 1

 3 

3 
u0 = — ^ — — , Vo = — * 

and in general 
„, _U>n-l + Vn-l „ _ Un_1 + 2vn_1 

where u0 and v0 are given numbers (u0 < vQ). Use the theorem 

of the previous problem to show that the sequences both 

tend to the same limit, lying between uQ and v0. 

220. Show that the sequence un: 

= Ye, u2 = Yß + uv . . ., iin = Ϋ6 + ηη-λ) 

has a Umit and find the limit. 

3. Continuous Functions 

221. A function is defined as follows: 

y = 0 for χ < 0; 

y = x for 0 ^ χ < 1 ; 

y = —χ
2
 + 4# — 2 for 1 ^ χ < 3; 

y = 4 — χ for χ ^ 3. 

Is this function continuous? 

222. Three cylinders of the same height 5 m and base 
radii 3, 2 and 1 m respectively are set up end to end. Express 
the cross-sectional area of the figure obtained as a function 

Show that un tends to a limit as η oo. 

218. Prove the theorem: 

If, given the same variation of the independent variable, 
the difference between two functions is an infinitesimal, one 
function being increasing and the other decreasing, they both 
tend to the same limit. 

219. The terms of two sequences un and vn are given by 

_ u0 + v0 4, _ u0 + 2v0 m 

ΊΙΛ ~ , VA 
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A sin x + B, if — - < x < - ; 

COS x, if
 x

 = ö 

of the distance of the section from the lower base of the 
bottom cylinder. Is this function continuous ? Draw its graph. 

223. Let 

/ ( ( * + l , i f * S l ; 

( 3 — ax
2
, if χ > 1. 

For what choice of number a is f(x) continuous ? (Draw its 

graph.) 

224. Let 
/ 

-2 sin x, if x S — - ; 
Δ 

Choose the numbers A and Β so that f(x) is continuous; 
draw its graph. 

225. At what points have the functions 

and y discontinuities ? Draw the graphs of the 

functions. Describe the difference in the behaviour of the 
functions close to their discontinuities. 

226. The function j is not defined at χ = 1. 

What value must we give / ( l ) in order to make f(x) conti-
nuous at χ = 1 ? 

227. What sort of discontinuities do the functions y = 

and 1 

Show the nature of the graphs of the functions in the 
neighbourhood of χ = 0. 

228. Investigate the continuitv of the function given bv: 

Draw the graph of the function. 
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236. A function f(x) is defined as follows: f{x) = 

= (x + 1)2 for χ + 0 and /(0) = 0. Verify that 
the values of f(x) He exclusively between / ( — 2 ) and / ( 2 ) in 
the interval — 2 ^ χ ^ 2 and that /(#) is nevertheless discon-
tinuous (at what point?). Sketch its graph. 

229. How many discontinuities (and of what kind) has 

the function y = 

Sketch its graph. 

230. The function y = arc tan is not defined at χ = 0. 

Is it possible further to define f(x) at χ = 0 in such a way 
that the function is continuous at this point? Sketch the 
graph of the function. 

231. Investigate the continuity of the function given by 

Sketch the graph of the function. 

232. Sketch the graph of f(x) = What value must 

we give /(0) in order to make the function continuous every-
where ? 

233. Show that the function y - has a discontinu-

ity of the first kind at χ = 0. Sketch the graph of the 

function in the neighbourhood of χ = 0 (see Course, sec. 36). 

234. Investigate the character of the discontinuity of the 

function y = 1. Could y be defined at χ = 1 
in such a way that the function would become contmuous 
at χ = 1 ? 

235. Investigate the nature of the discontinuity of the
1

2x - 1
function y = 1 at the point x = o.

2x + 1
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237. Investigate the continuity of the function y = 

= -——\-— . What sort of graph has the function ? \ _i_ 2
t an x 

238. A function is defined thus : if χ is a rational number, 
f(x) = 0; if χ is irrational, f(x) = x. For what value of χ is 
the function continuous? 

239. Investigate the continuity and draw the graphs of: 

Function E(x) is equal to the greatest integer not greater than 
χ (see also problem 59). 

240. Use the properties of continuous functions to show 
that the equation x

5
 — 3x = 1 has at least one root lying 

between 1 and 2. 

241*. Prove that: (a) a polynomial of odd degree has at 
least one real root ; (b) a polynomial of even degree has at 
least two real roots if it takes at least one value of opposite 
sign to its first coefficient. 

242. Prove that the equation x2
x
 = 1 has at least one 

positive root less than unity. 

243. Show that the equation χ = a sin χ + δ, where 
0 < α < 1 , 6 > 0 , has at least one positive root, which does 
not exceed b + a. 

244*. Show that the equation + - % r + = 0, 
χ — λ1 χ — λ2 χ — /3 

where at > 0, a2 > 0, a3 > 0 and λ1 < λ2 < λ3, has two 
real roots in the intervals (λν λ2) and (λ2, λ 3) . 

4. Finding Limits. Comparison of Infinitesimals 

Functions of an Integral Argument 

Find the limits in problems 245-267 : 

(1) y = x-E(x); (2) y = 

(3) y = ( - ! ) * * > . 

1 
x-E(x)

 5 

245. lim 
η + 1 

η 
246. lim (η + I )

2 

2n
2 
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<U7 u™ (rc + l ) 3 - (rc- l ) ä .. v? - 100^2 + 1 
2 4 7 - ^ ( , + l)2 + ( n - l F

 2 4 8
· η ^ 1 0 0 * + lg» · 

0 . Q 1000rc
3
 + 3w

2

 Λ Ε Λ (w + i ) 4 _ ( n _ i)4 
2 4 9

· η ^ ^ - ι ο ο η 3 + ι ·
 2 5 0 \ h i E U i ) 4 + i , - - i y 4 -

2 5 ΐ · ^ ! Γ ί ! ! ί ( ; ~ ϋ : · 252. lim 3 / ^ + y - ~ ï . 

253. Um . 254. Hm
 { Υ

^ +
Ϊ
 + » > ' . 

}/n
6
 + ι 

255. Hm ^ - ^ + l + 3 ^ n 
V«

e
 + 6ra

5
 + 2 - / n ' + 3re

3
 + 1 

256. Hm + 

VV + 2 - V»3 + 1 

257. Um , χ ,•' , . 258. Um fe±S! +g + !î!. 

„..«, (n + 2)! — (n + 1)! 

1 + 1 + 5 + . . . 
260. Hm -n

— ι + 1 + - + . . . + — 
T

3
T

9
T
 ^ 3 " 

261. Hm \ (1 + 2 + 3 + . . . + n). 

n^oo ^ n + 2 2J 

2 6 3. Hm p - 2 + 3 - 4 + . . . - 2 ^ 

^ • • H ï V i V - •· + 5 Γ Π 5 ϋ ) · 

2 β 5· US ( ô + » 7 6 + • · • + ( i s m s W + T ) ) • 
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266. lim 
2

n
 - 1 

2" + 1 
267. lim 2" — 1 

2« + 1 

Functions of a Continuous Argument 

Find the limits in problems 268-304: 

268. Km
 χ 2 + 5 

270. lim 

X-.2 *
2
 - 3 

χ 

269. lim f *
3

-
3

* +
 1

 +i 

*
2
 - 3 

L1U.1 · 

X-I ι — χ 
Λ ™ ν #

2
 — 2* + 1 

272. hm 
Χ_*Ι χ

ό
 — χ 

n nA ,. (χ - 1) / 2 - x 
274. hm -

X-1 a
2
 — 1 

a;
3
 + χ — 2 

276. Urn 
Z\ *

3
 — χ

2
 — χ + 1 

2 7 L Ü
™ + *

2
 + 1 " 

χ - ρ 
273. Hm ^ Z T ^ T V ' 

8*
3
 — 1 

275. Hm -^ΓΖ^ΤΪ ' 

277. H m | — - T Z ^ 3 J 

278. Hm 
X-2 

279. Hm 
X-L 

1 1 
x(x - 2)

2
 x

2
 — 3* + 2 

* + 2 
+ 

* — 4 

*
2
 — 5x + 4

 1
 3(*

2
 — 3* + 2) 

280. Hm — (m and η are integers). 
χ—1 * I 

281. Hm 

Ί 

x
z
 -\- X 

a* — 3*
2
 + 1 

*
2
 — 1 

282. Hm 
*

4
 — 5* 

^ x
2
 — 3x + 1 

o d Ι·
 1

 + x - Sx* 
2 Η

· S 1 + ^ + 8 ^ 

2 8 5 · £ ( f t t - β ) · 2 8 6· £ ί ^ ϊ - s in 
3*

2
 (2*— l ) ( 3 *

2
 + * + 2)] 

287. Hm 
X - * o o 2x + 1 4a:

2 

(a; + 1 ) » + (x + 2 ) " + . . . + ( » + 100)" 
2 8 8,

 S * 1 0 + ίο10 
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289. Um
 Y
f +

 1
 + ^ . 290. H m + 

. 4 4 5 

X — + oo

 v
— — 

291. lim 

Yx* + χ — χ Yx* + 1 — Y& + 1 

5 4 

+ 3 + Y2x* — 1 

X - + ° 
f x

8
 + z

7
 + 1 — 

3 5 

292. lim ^ + 3 - ^ 3 + 4 

f x
7
 + 1 

293. lim ^ + ^ - ! . . 2 9 4. ^ - 1 
ζ

2 

Va; - 1 — 2 

χ — 5 

Yx + h • - yâT 

X-0 # X-0 

lAv2 I 1 _ 1 
295. lim [ZJL——- . 296. Hm 

X-O γχ* 4 -16 — 4 X-5 

297. lim
 X

*-V
x
 . 298. lim 

x - i Y χ — ι Λ-Ο ^ 

299. Hm ^ Y 2 - 1 . 300. Hm - fc^ 

Χ-0 & Χ-0 # 

Ο Λ1 ,. Yx — b — Υα — b . ,, 
301. hm - 2 - 2 (α > δ ) . 

χ-*- CL Χ"* @* 

η 
Υχ — 1 302. hm -~ (η and m are integers). 

303*.Um ί ϊ + Ζ ^ Ξ ^ . 304. lim
 V

" + * ~ 
X-0 x -\- x

2
 ' x+\ χ — 1 

305. How do the roots of the quadratic equation ax
2
 + 

+ bx + c = 0 vary when b and c remain constant (6 <=h 0) 
and a tends to zero ? 

Find the limits in problems 306-378: 

306. Urn (Va + a - Yx). 307. Km(Y& + i-Yx
2
^!). 
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X-0 x
2
 ' ' X_̂ O x sin 2x 

323. lim ^ . 324. lim
 1 + s i n a !

-
c o s

* 
" ° f ( l - cos α )

2
 * - o l - s i n x - c o s x 

325. lim
 t a n a

T
s i na

 . 326. lim -
( I

 ~
 c os

 «>
2 

«-*o α α_ 0 tan
3
 α — sin

3
 α 

327. l i m i J - - 328. lim
 l

~
s h lx 

X- sin χ tan ; 

329. Um ,
 C 0 S

* . 330. Um ^ . 
π * x^n S in 2X 

— sinx)
2 

331. lim I £ - s I tan s. 332. Hm
 S m a

0 l i m - — χ 
\

2
 J 

t In problems where we indicate χ —> + oo, the cases χ —> + oo 

and # —» — oo have to be considered separately. 

308. Um ( f x
2
 + 1 - x)t. 309. lim χ ()/χ

2
 - f 1 - χ). 

310. Um (Y(x + α) (χ + b) - χ). 
Χ — ± ο ο 

311. Um {γχ
2
 — 2χ — I — /χ

2
 — ΐχ~+Ί). 

Χ—±°° 

3 3 
312. lim (Ϋ(χ + I )

2
 - / ( χ - I )

2
) . 

Χ - « ο 

3^ 

313. lim χ
γ
()/χζ + 1 - y χ

3
 - ΐ ) . 

Χ — ο ο 

,. sin 3a; Λ_ ,. tan fcc 
314. lim . 315. lim . 

X-0 0C Χ̂ Ο X 

0 1 /? sin αχ .. tan 2x 
31b. lim -— - n- . 317. lim — — — . 

x^o sin px x^q sm ox 

sin (ocO 
318. lim —. r^- (τι and m are positive integers). 

α̂ ο (sm a )
m v r 6

 ' 

0 - Λ 2 arc sin χ Ο ΛΛ 2x — arc sin χ 
319. hm 0 . 320. hm - — , - . 

X-O àx X_O 2x -F- arc tan χ 

321. lim . 322. hm 
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333. Um (1 - ζ) tan ? . 334. Hm f sin tan 

2-1 2 y^a \ 2 2aJ 
sin — -

o o K τ cosa; — sin χ \ 6; 335. hm . 336. hm — . 
π cos 2x „ 1 A 3 

x
^ 4

 X
"*6 COS X 

. a? 1 - sin -
337. lim x+n Λ X ( X . X\ ' 

cos - ĵ cos _ — sm Ĵ 

338. lim (2x tan χ —) . 

π I COS X I 

339. lim
 C QS

 (
a
 + s) —

 C QS
 (g — a?) 

x - 0 X 

340. Urn
 C QS 

341. lim
 s in

 (
α
 + g) ~ sin (Ο - g) 

Χ-Ο tan (a -\- χ) — tan (a — x) " 

Qj ο τ
 s i n2

 a — sin
2
 θ 342. hm --—ζ . 

a-»ß OL
2
 — β

2 

3 43 i j m sin (a + 2h) — 2 sin (a + h) + sin a 

Λ-0 A2 

3 44 j . tan (a + 2h) — 2 tan (a + h) + tan α 

Λ-Ο h
2 

345. lim 
x-.o sin

2
 χ 

346. lim Vl + s i n a - f l - j i n * 
Χ-*Ο tan χ 

Yl + χ sin ÎC — /cos 2# 
347. Urn 

»-1 
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3 3 

Λ ΛΛ Vi + arc tan 3* — Vi — arc sin 3x 
349· hm 

350*. lim 

X-O y i — aresin 2x — y 1 + arc tan 2x 

Υπ — /arc cos * 

Χ—ι Yx + 1 

351. lim f r 4 - T · 3 5 2
· Hm i l - J Ï . 

x+l 

353. lim i l + - )
 X

 . 354. lim i l + -Y*. 

Χ+1 

- • - ( ^ Γ ' · 8 5 Β· Ϊ ^ Γ · 

357. Um fê±-îf . 358. lim f ^ - l f . 

359. lim (
2
±±JY . 360. lim i l + -X . 

+ ^ X 1 J X - * o o ^ X J 

361. lim i l + - Γ . 362. lim Κ ~ f + *f · 

363. lim (1 + sin x)
c
°

s e c
*. 364. lim ( 1 + tan

2
 iß)

2x
. 

365. Um
 l n (1

 +
 k x)

 . 366. lim + 
X-O X-O 

367. lim {x [ln (a? + a) — ln 3 ] } . 

368. lim
 l n X

~
 1
 . 369. lim 

X-E # — Β Λ^ϋ ^ 

p2x 1 p X ρ 

370. lim 0 . 371. lim - , 
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389. H m
i ^ c o s ( l - c o

S a ;
) 

X-0 CC
4 

( a* a* a? \ 
cos - cos - . . . cos — I 

391. Hm a;

2

 i l — cos - ) . 

392. Hm (cos Υ χ + 1 — cosYx) · 
X-+oo 

( X + 1 7t\ 393*.Hm χ arc tan — — — - . 
X - oo  ̂ X + * *) 

376· lima; (e* — 1). 377. lim (cosh χ — sinh x). 
X - * oo X - * ± oo 

378. lim tanh x. 

Miscellaneous Limits 

Find the limits in problems 379-401 : 

ι ax _!_ \\n 

379. Um -—n . Δ~> Consider the cases separately when 
Χ—ΣΟ Χ γ~ Ά-

(1) η is a positive integer, (2) η is a negative integer, (3) η 
is zero. 

380. Urn χ 
X - * ± oo 

381. lim — ^ — (a > 0). 382. lim
 α

* ~
α
~ * (a > 0). 

x ~ ± a oa
x
+ l χ^±χ,α

χ
+α-

χ 

383. Um * ™ . 384. Um
 a r c t a n

* . 
X-+0O X X - » oo X 

ooK v # + sina; arcsina; 
385. hm — . 386. lim . 

X-^oo χ + cos χ . πχ 
t a n -

387 Urn
 S

^
n
 ^

a
 + ^A) — 3

 s
*

n
 (

α
 + 2A) + 3 sin (a + A) — sin a 

388. hm tan
2
 χ (γ2 sin

2
 χ + 3 sin a: + 4 — 

π 

'
T
 —

 /sin2 a; + 6 sin a; + 2). 
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( ΊΤ + 1 
394. lim χ | arc tan — — , — arc tan 

χ + 2 X-+00 x+2) 

ι. arc sin # —arc tan # Λ ΛΛ / , , I V
e
, 

395*. hm § . 396. hm 1 + — (η > 0). 
Χ Χ—+ ΟΟ ^ Χ J χ—0

 Λ
 χ-

— ολο τ In cos α; 
397*. lim (cos * )

s in
 * . 398. hm — ^ — 

400. Hm (cos χ + sin χ)
x 

x-+0 399. Hm 
x^o{ x ) 

401. Hm (cos χ -f- α sin δα;)
x
 . 

X-0 

Comparison of Infinitesimals 

402. An infinitesimal ^ takes the values 

_ ι _
 1

 _ 1 _ 1 
ux — ι, u2 — 2 >

 M
z — g > · · ·> — ^ > · · ·* 

whilst the corresponding values of infinitesimal vn are 

_ ι _
 1

 _
 1

 _ 1 v 1 - i > v2 — 2 [f % - 3 !, . . ν π — ^ , . . . 

Compare wn and vn ; which is of the higher order of smaUness ? 

403. The function un takes the values 

_ 3 _ 8 η
2
 — 1 

^ _ 0, w2 — - , uz — ^ , . . un — ^3 , . . 

whilst the corresponding values of vn are 

5 _ 10 n
2
 + 1 

8'
 V 3

~ 2 7 ' * 

Compare these infinitesimals. 

404. An infinitesimal un takes the values 
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whilst the corresponding values of infinitesimal vn are 

5 7 2n + 1 

Show that and v n are infinitesimals of the same order but 
are non-equivalent. 

405. Functions y = •—-— and y = 1 — Yx are infini-

χ ~j~ χ 
tesimals as χ —» 1. Which has the higher order? 

406. Given the function y == ζ
3
, show that zly and Ax 

are in general infinitesimals of the same order as Ax -* 0. 
For what value of χ will the order of smallness of the incre-

ments be different? 

For what values of χ are increments Ax and Ay equivalent ? 
3 _ 

407. Show that 1 — χ and 1 — Yx are infinitesimals of 
the same order as χ —> 1. Are they equivalent ? 

408. Let χ -> 0. Then Va + χ
2
 — Yä(a > 0) is an infini-

tesimal. Find its order with respect to x. 

409. Find the order with respect to χ of the following 
infinitesimals as χ 0 : 

3 
(1) χ* + 1000 χ

2
; (2) γα* — Yx; 

1 + YÏ' ' 

410. Show that the increments of functions y = aYx 
and ν = bx

2
 are of the same order of smallness for χ > 0 

and the common increment Ax —> 0. For what value of χ 
are they equivalent (a and b differ from zero) ? 

411. Show that, as χ -> 1, the infinitesimals 1 — χ and 

α ( l —- Yx), where α φ 0 and & is a positive integer, are of 
the same order. 

For what value of a are they equivalent ? 

412. Prove that sec χ — tan χ and π — 2x are infinitesi-

mals of the same order as χ —> ^ . 
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Are they equivalent? 

413. Prove that the infinitesimals e
2x

 — e
x
 and sin 2x — 

— sin χ are equivalent as χ —> 0. 

414. Find the order with respect to χ of the following 
functions, infinitesimal as χ —> 0 : 

3 

( I ) f l (2) / Γ + ~ 2 Ϊ - 1 -

( 3 ) e V * — l ; ( 4 ) e
s i n

* - l ; (5) In (1 + Yzsmx); 

(6) y i + a;
2
 tan — ; (7) e

x
 - coax; (8) e^

2
 - cos χ ; 

Δ 

3 
(9) cosa; — /cos a;; (10) sin ( f 1 + a; — l ) ; 

3 
( I I ) l n ( l +x

2
) - 2 / (e* — l )

2
; 

(12) arc sin (Y4 + a;
2
 — 2). 

/Some Geometrical Problems 

415. Starting from an equilateral triangle of side a, a new 
triangle is constructed from the three heights of the first 
triangle, and so on η times ; find the limit of the sum of the 
areas of all the triangles as η - > oo. 

416. A square is inscribed in a circle of radius R, a circle is 
inscribed in the square, then a square in this circle, and so 
on η times. Find the limit of the sum of the areas of all the 
circles and the limit of the sum of the areas of all the squares 
as η - > oo. 

417. A step figure is inscribed as shown in Fig. 15 in a 
right-angled isosceles triangle, the base of which is divided 

Β 

F I G . 15. 
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into 2n equal parts. Show that the difference between the 
area of the triangle and that of the step figure is an infini-
tesimal as η increases indefinitely. 

418. The hypotenuse of a right-angled isosceles triangle 
of adjacent side a is divided into η equal parts and straight 
lines drawn from the points of subdivision parallel to the 
adjacent sides. The step line AKLMNOPQRTB (Fig. 16) 

Β 

A K C 

F I G . 16. 

is thus obtained. The length of this step line is equal to 2a 
for any n, i. e. the limit of its length is equal to 2a. But on 
the other hand, as η increases indefinitely the step line ap-
proaches indefinitely the hypotenuse. Consequently the length 
of the hypotenuse is equal to the sum of the lengths of the 
adjacent sides. Find the error in this argument. 

419. The straight line AB of length a is divided into equal 
parts by η points, and lines are drawn from these points at 

71 

angles — (Fig. 17). Find the limit of the length of the step 

line obtained as η increases indefinitely. Compare with the 
result of the previous problem. 

. Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ π 

F I G . 17. 

420. The straight fine AB of length a is divided into η 
71 

equal parts. An arc of a circle equal to — radians is erected 
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on each part of AB (Fig. 18). Find the limit of the length of 
the resulting curve as η - > oo. How does the result change if 
semicircles are erected on each subdivision? 

F I G . 18. 

421. A circle of radius R is divided into equal parts by η 
points. Taking the points as centres, arcs of circles of radius 
r are drawn to their intersections with neighbouring arcs 
(Fig. 19). Find the limit of the length of the resulting closed 
curve when η increases indefinitely. 

F I G . 19. 

422. Two circles of radii R and r (R > r) are located to 
the right of OF and touch it at the origin (Fig. 20). As χ 0, 
of what order with respect to χ are the infinitesimal segment 
MM' and the infinitesimal angle a? 

423. The straight line OP joins the centre of a circle to a 
point Ρ lying outside the circle. A tangent PT is drawn to 
the circle from Ρ and a perpendicular TN dropped from Τ 
to OP. Prove that segments ^4P and AN, where A is the point 
of intersection of OP with the circle, are equivalent infini-
tesimals as Ρ -> A. 
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F I G . 20. 

424. Tangents are drawn at the ends and mid-point of the 
arc AB of a circle and points A and Β are joined by a chord. 
Show that the ratio of the areas of the two triangles thus 
formed tends to 4 as arc AB diminishes indefinitely. 

Numerical Problems 

425. Starting from the equivalence of functions 

1 and (see Course, sec. 40) as χ -+ 0, evaluate approxi-

mately : 

426. Prove that 1 and are equivalent infini-

tesimals as χ 0. Use this fact to find approximately the roots 

Find the same roots from logarithmic tables. Compare the 
results. 

427. Use the equivalence of In (1 - f x) and χ as χ -> 0 
for approximate evaluation of the natural logarithms of 
the following numbers : 101; 102; 11 ; 1*2. Find the loga-
rithms to base ten of the same numbers and compare with 
the tables. 



C H A P T E R I I I 

D E R I V A T I V E S AND D I F F E R E N T I A L S . 
D I F F E R E N T I A L CALCULUS 

1. Derivatives. The Rate of Change of a Function 

Some Physical Concepts 

428. A particle moves in a straight line according to the 
law 

s = 5t + 6. 

Find the average velocity : (a) during the first six seconds, 
(b) during the interval from the end of the third to the end 
of the sixth second. 

429. A particle M moves away from a fixed point A so 
that the distance AM increases proportionally to the square 
of time. After 2 min from the initial instant distance AM 
is equal to 12 m. Find the average velocity: (a) during the 
first 5 min, (b) during the interval from t = 4 min to t = 7 
min, (c) during the interval from t — tx to t = t2. 

430. The equation of a rectilinear motion is 

54 

Find the average velocity during the interval from t = 
= 4 to t == 4 + At, putting At = 2, 1, 0 1, 003. 

431. A freely falling body moves according to the law 

where g ( = 980 cm/sec
2
) is the acceleration due to 

gravity. Find the average velocity during the interval from 
t = 5 sec to (t + At) sec, putting At = 1 sec, 01 sec, 005 
sec, 0001 sec. Find the velocity at the end of the fifth second 
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and at the end of the tenth second. Obtain the formula 
for the velocity of the falling body at any instant t. 

432. AB is a thin non-homogeneous rod of length L = 20 
cm. The mass of a piece AM increases proportionally to the 
square of the distance of point M from point A, and we know 
that the mass of AM = 2 cm is equal to 8 g. Find: (a) the 
average linear density of the piece of rod AM = 2 cm, 
(b) of the whole rod, (c) the density of the rod at point M. 

433. The mass (in g) of a thin non-homogeneous rod AB 
of length 30 cm is distributed according to the law 

m = 3Z
2
 + 51, 

where I is the length of a piece of rod measured from A. Find: 
(1) the average linear density of the rod, (2) the linear den-
sity: (a) at the point distant I = 5 cm from A, (b) at point 
A itself, (c) at the end of the rod. 

434. The amount of heat Q required to raise unit mass of 
water from 0 to t° C is given by 

Q = t + 0-00002*
2
 + 0Ό000003*

3
 (cal/g). 

Find the specific heat of water at t = 30°, t = 100°. 

435*. The angular velocity of a uniform rotation is defined 
as the ratio of the angle of rotation to the corresponding 
time interval. Give the definition of the angular velocity 
of a non-uniform rotation. 

436. I f the process of radioactive decay were uniform, 
the rate of decay would be reckoned as the amount of materi-
al disintegrating in unit time. The process is in fact non-
uniform. Given the definition of the rate of radioactive 
decay. 

437. A constant current is defined as the quantity of 
electricity flowing through the conductor cross-section in 
unit time. Define a variable current. 

438. The thermal coefficient of linear expansion of a rod 
is the increase in unit length per 1° C rise in temperature if 
we assume uniform expansion. The process is in fact non-
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uniform. Let I = f(t), where I is the length of the rod, t the 
temperature. Define the coefficient of linear expansion. 

439· The coefficient of extension of a spring is defined as 
the increase in unit length of the spring under the action of 
unit force acting per square centimetre of the spring cross-
section. I t is assumed here that the extension is proportional 
to the force (Hooke's law). Define the coefficient of extension 
k when there is a deviation from Hooke's law. (Let I be the 
spring length, S the cross-sectional area, Ρ the extending 
force and I = φ{Ρ).) 

Derivatives 

440. Find the increment of the function y = χ* at the 
point xx = 2 when the increment Ax of the independent 
variable is (1) 2, (2) 1, (3) 0*5, (4) 01 . 

Ay 
441. Find the ratio -r- for the functions: 

Ax 

(1) y = 2x* - x
2
 + 1 for χ = 1 ; Ax = 01 ; 

( 2 ) y = i for χ = 2; Ax = 0Ό1; 

(3) y = Yx for χ = 4; Λχ = 0*4. 

Show that, as Ax —• 0, the ratio tends in the first case to 4, 

in the second to — \ , in the third to \ 
4 4 · 

442. Given the function y = χ
2
, find approximate numeri-

cal values for the derivative at χ = 3 when Ax is equal to 
(a) 0-5, (b) 0-1, (c) 0-01, (d) 0Ό01. 

443. / ( * ) = **; find/'(5); / ' ( - 2 ) ; / ' ( - f ) . 

444. / ( * ) = * » ; find/'(l); / ' (0 ) ; / ' ( - / 2 ) ; / ' ^ j . 

445. f(x) = x
2
. A t what point does f(x) = f'(x) ? 

446. Given f(x) = x
2
, show that f'(a + b) = f'{a) + f'(b). 

Does the same equation hold for f(x) = x
3
? 
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(6) x - » ; (7) i ; (8) 
1 * 

(9) x } ^ ; (10) 0·7χ
5
; 

(11) ^x"; (12) α « - ' ; (13) fx~; (14) | ; 

(15) ax
 J

. 

Geometrical Meaning of the Derivative 

454. Find the slope of the tangent to the parabola y = χ
2
 : 

(1) at the origin, (2) at the point (3, 9), (3) at the point (—2, 4), 
(4) at its points of intersection with the straight line 
y — 3x — 2. 

455. At what points is the slope of the tangent to the 
cubical parabola y = x

s
 equal to 3 ? 

456. At what point is the tangent to the parabola y = χ
2
 : 

(1) parallel to Ox, (2) at an angle of 45° to Ox% 

447. Find the numerical value of the derivative of y = 
= sin χ at χ = 0. 

448. Find the numerical value of the derivative of y = 
= log χ at χ = I. 

449. Find the numerical value of the derivative of y = 
= 10

x
 at χ = 0. 

450. What is the limit of ^ as a;->0 if /(0) = 0? 
χ 

451. Prove the theorem: if f(x) and φ(χ) vanish at χ = 0: 
/(0) = 0, φ(0) = 0, and their derivatives exist at χ = 0, 
whilst <p'(0) =f= 0, we have 

i i m M = m . 
x_o <p(x) <p'(0) 

452. Prove that, if f(x) has a derivative at χ = a, then 

— af(x) , 
h m - ^ - f — = /(a) - a/ (a). 

453. Find the derivatives of the functions: 

3 3 

(1) χ*; (2) χ*; (3) a? ; (4) (5) fa 

5 
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457. Can the tangent to the cubical parabola y = x
z
 form 

an obtuse angle with Ox% 

458. At what angle does the parabola y = χ
2
 cut the 

straight line 3x — y — 2 = 0? 

459. At what angles do the parabolas y — χ
2
 and y

2
 = χ 

intersect ? 

460. At what angles do the hyperbola y = - and the 
χ 

parabola y = Yx intersect ? 

461. Write down the equations of the tangent and normal 
to y = χ

3
 at the point with abscissa 2. Find the subtangent 

and subnormal. 

462. For what values of the independent variable are the 
tangents to y = χ

2
 and y = x

z
 parallel ? 

463. At what point is the tangent to the parabola y = 
= χ

2
: (1) parallel to the straight line y = 4x — 5; (2) per-

pendicular to the straight line 2x — 6y + 5 = 0; (3) at an 
angle of 45° to the straight line 3x — y + 1 = 0? 

464. Show that the subtangent corresponding to any point 
of the parabola y = ax

2
 is equal to half the abscissa of the 

point of contact. Using this fact, give a method of drawing 
the tangent to the parabola at any given point. 

465. Show that the normal to a parabola at any point 
is the bisector of the angle between the line joining the point 
to the focus and the line through the point parallel to the 
parabola's axis. 

2. Differentiation of Functions 

Sums, Products and Quotients of Power Functions 

466. Differentiate the following functions (x, y, z, t, u, 
ν are independent variables ; a, 6, c, m, n, p, q are constants) : 

(1) Zx
2
 - 5x + 1 ; (2) χ* -\x* + 2'5x

2
 - 0'3x + 0 Ί ; 

ό 
3 _ S _ 

(3) ax
2
 + bx + c; (4) γχ + γ2; 
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( 5 ) 2 ^ - 1 + ^3 ; (6) 0 · 8 ^ - ^ 3 + ^ ; 

χ ! η , χ
2
 , m

2

 / {n mx
2
 , » x ^ x 2?V#. 

. _ x /if Ο, / / & / ct\ ι 

fx 

mz
2
 + nz + 4p . . . . . . . . - | 5-2 2-5 

( 9) ^ . ( 1 0) 0 > LF 3 _ ~ + 5 

(11) (χ - 0-5)
2
; (12) }/χ (x

3
 — / x + 1); 

(13) (β + l )
2
 (t> - 1); (14) 0-5 - 3 (α - a;)

2
; 

η κ\
 α χΆ

 + bx
2
 + c (mu + n\

3 

( 1 5)
 (a + b)x >

 ( 1 6 )
h ^ J ' 

467. f(x) = 3x - 2Yx. Find: / ( l ) ; / ' ( l ) ; / (4) ; / ' (4 ) ; 

/ ( a
2
) ; / ' ( a

2
) . 

468. /(<) =
 < 2

~ ^
- 1

 . Find: / ( - l ) ; / ' ( - l ) ; / ' ( 2 ) ; / ' g . 

469. f(z) = + . F i n d; f g ) . 

470. / (x) = 4 — 5x + 2a;
3

 — x
5

. Show that 

/ ' (a) = / ' ( - a ) . 

Differentiate the functions of problems 471-489 (χ, ι/, ζ, t, 

u, ν, s are variables; a, b, c, d, m are constants). 

471. (1) y = (x
2
 - 3x + 3) (x

2
 + 2x — 1); 

(2) y = (x
3
 - 3x + 2) (x

4
 + x

2
 — 1); 

3 
3 

(3) y = + l ) 

3 _ 3 

(5) y = ( / * + 2x) (1 + } ^ + 3x); 

(6) y = (χ
2
 - 1) (χ

2
 - 4) (x

2
 - 9) ; 

(7) y = (1 + fa) (1 + Y2x) (1 + Jfêï). 
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472. y = ^ ± \ . 473. 2 / =
 X 

3t
2
 + 1 . _ E — 2v 

474. 5 = , , . 475. w 

476. y 

t — 1 ' ~ ™ ~ ν
2
 + ν + 1 

ax -\- b 

cx + d ' 

4 7 7
·

2
 = S^T)+ {χ2 ~1){ϊ~ χ)· 

478. u = . 479. y = . 

v
3
 — 2 * 1 + x

3 

482. 2/ = i - ^ . 483. ζ
 1 

/π *
2
 + ί + 1 

1 2 r
4 

484- * = , 2 , « · 485. y Ρ - dt + 6
 -
 * ό

2
 - χ

2
 ' 

486. y = ^+4^·
 4 8 7

· 2 / =
 3 

χ
3

+ 1 ' * ( 1 - χ
2
) ( 1 - 2 χ

3
) * 

αχ + δχ
2 

am + 6ra
2
 ' 

a
2
6

2
c

2 

488. y 

489. y _ - . 
(x — a) (x — ο) x — c) 

490. f(x) = (χ
2
 + x + 1) (x

2
 - x + 1); find / ' (0) a n d / ' ( l ) . 

491. ^ ( x ) = (x - 1) (x - 2) (x - 3); find J"(0); J"( l ) 

and F'(2). 

492. ^ ( x ) = ^ - L - + find J"(0) and 

493. = — — t + ζ; find β'(0) and s'(2). 

494. y(x) = (1 + χ
3
) (δ - l j ; find y'{\) and * / ' ( « ) . 

495. ρ(9>) = γζτψ' find ^'(2) a n d 
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(ζ
2
 — # + l )

2 

3 

ι 1 + a; 
κηα _ . 510. y = , -

511. t/ = ^ = ^ „ - 612. u 
Yx

2
 + a

2
 ν — y a

2
 + v

2 

513. ^ = 3 - ^ + 4 — ^ — -

Y2x- 1 f ( z
2
 + 2 )

3 

3 

514. = (v
2
 + v + 2)

2
; find 

496. φ(ζ) = find <p'(l). 

497. z(t) = + 1) t; find z'(0). 

Powers of Functions 

Differentiate the functions of problems 498-515: 

498. (1) (x -a)(x- b) (x - c) (x - d); 

(2) (a? + 1)*; (3) (1 - a?)»; (4) (1 + 2*)»; 

(5) (1 - a;
2
)

1 0
; (6) (5a;

3
 + a;

2
 - 4)

5
; (7) (as» -

(8) (
7

*
2

- ^ + 6J
6
; (9) e = | < » - ^ + 3J

4
; 

(12) y = (2a? + 3a;
2
 + 6a; + l )

4
. 

3 

6 0 1 . , - A + i i . 502. , = 1 ^ . 

1_ 

503. y = YI - χ
2
. 504. y = (1 - 2x

2
)K 

505. u = | j ^ ; j
m

. 506. 2/ 2 

61 
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515. y(x) = j/£±4; find y'(2). 

516. Show that the derivative of an even function is an 
odd function, and the derivative of an odd function is even. 

Trigonometric Functions 

Differentiate the functions in problems 517-546: 

517. y = sin χ + cos x. 518. y
 X 

1 — cos χ 

519. y = -
 X

 . 520. ρ = φ sin ψ + cos φ. 
χ 

sin α α sin t 
521. ζ = 1- . 522. s •• 

α sin α 1 + cos t 

523. y = - . 524. y = . 
sm a; +

 c os
 # 1 + tan a; 

525. y = cos
2
 a;. 526. y = ^tan

4
 a;. 

527. y = cos a; — ~ cos
3
 x. 528. y = 3 sin

2
 a; — sin

2
 a;. 

529. y = ^ tan
3
a; — tana; + x. 530. y = x sec

2
 a; — tan a;. 

531· y = sec
2
 a; - f cosec

2
 a:. 532. y = sin 3a;. 

x 
533. y = a cos - . 534. y = 3 sin (3a; + 5). 

ο 

535. y = t a n ^ t i . 536. y = / i + 2 tan x. 
Δ 

537. y = sin - . 538. y = sin (sin a;), 
a; 

539. y = cos
3
 4a;. 540. y = ^tan | . 

541. y = sin Vl + x2. 542. y = cot /Γ+α2. 

543. ι/ = (1 + sin
2
 a;)

4
. 544. y = j / l + t a n | a ; + i j . 

1 - }fc 1 — Vx 
545. 2/ = cos2 -=. . 546. y = sin2 (cos 3a;). 
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548. y — χ arc sin χ. 549. y 

550. y = (arc sin χ)
2
. 

551. y = χ arc sin a; + / l — #
2
· 

552. y = — . 553. y 

554. y 

556. y 

arcsm χ 

arc cos χ 

χ 

557. y = arc sec a;. 

Κ ΚΛ arc sin a; 
559. ^ 

561. y 

(arc cos a; + arc sin x)
n
. 

558. y : 

YI - x
2 

arc sin (a: — 1). 

563. y = arc tan x
2
. 

565. y = arc sin (sin x). 

sin α sin a; 

arc cos χ 

xsmx arc tan x. 

555. y = Yx arc tan a\ 

1 + a;
2 arc tan x. 

560. y = 

562. y = arc cos 

x* 
arc tan χ ' 

2x- 1 

564. y = arc sin- . 
° χ 

566. y = arc tan
2
- . 

* a; 

567. 2/ = Vl — (arc cos a;)
2
. 568. 2/ = arc sin 

4 

569. 2/ = I]/arcsinj/a;
2
 + 2a; . 

570. 2/ = arc sin : 

1 — χ 
1 + χ ' 

1 cos α cos a; 

547. Deduce the formulae: 

(sin
n
 χ cos ηχ)' = η s in"

-1
 χ cos (η + 1) χ\ 

(sin
n
 χ sin ηχ)' = η s in

n _1
 χ sin (η + 1) %\ 

(cos
n
 χ sin = w cos"

-1
 χ cos (τ& + 1) Λ:; 

(cos
n
 χ cos wa;)' = —η c o s

n _1
 χ sin (τι -f- 1) χ. 

Inverse Trigonometric Formulae 

Differentiate the functions in problems 548-572: 

arc sin χ 
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573. y -

575. y 

577. y 

579. y 

581. y 

x
2
 log3 x. 

x log x. 

x - l 
log2 x ' 

1 
ln x

 9 

1 — ln x 
1 + ln x ' 
x

n
 ln x. 

: ln (1 - 2x). 

In sin 

ln tan x. 

In
4
 sin 

(1 + lns in#)
n
. 

ln arc tan γΐ + x
2
. 

574. y 

576. y 

578. y : 

580. y : 

ln
2
 x. 

Vïnx. 

x sinx ln 

ln x 
~x^ ' 

583. y 

585. 2/ 

587. 2/ 

589. y 

591. 2/ 

593. y 

595. 2/ 

596. 2/ = arc sin
2
 [ln (a

3
 -f- #

3
) ] 

582. y 
ln x 

~ 1 + s
2
 ' 

584. y = ΫΙ + ln
2
x. 

586. y - ln (x
2
 — éx). 

588. y = log3 (x
2
 - 1). 

590. y = In arc cos 2x. 

592. y = arc tan [ln(a# - f b) ] . 

594. y = log2 [log3 (log
5
 x)]. 

597. 2/ = In sin 
x + 3 

Exponential Functions 

Differentiate the functions of problems 598-633 : 

598. y = 2*. 599. y = 10*. 
α; 
4^ 

600. y = 601. 2/ = ±X 

602. 2/ = #10x. 

604. 2/ = 5 · 
603. y = xe

x
. 

Ψ „ Λ b + a cos χ 
571. y == arc cos —-— . 

a + b cos χ 
572. y = arc tan (a; - y i + x

2
). 

Logarithmic Functions 

Differentiate the functions of problems 573-597 : 
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606. y = e
x
 cos x. 607. y = 

sin χ 
X 

η χ 608. y . 609. y = 2' 

610. y = x
3
- 3

X
. 611. y = \1 + e*. 

1 + e
x 

1 — e
x 612. y = (χ

2
 - 2a; + 3) e*. 613. y 

a t. 1 - 10* „ t E e* 
6 1 4

· ^ = Τ + Ί Ο * ·
 6 1 5

· ^ = Γ + ^ · 

616. y = aœ* (cos χ + sin 617. y = e~
x
. 

618. y = 10
2 x

"
3
. 619. y = e V ^ . 

620. y = sin (2*). 621. y = 3
s l n x

. 

622. y = a
s i n

'
x
. 623. y = e

a r c s i n 2 x
. 

624. y = 2
3 x

. 625. y = e ^ . 

626. y = sin (e
x2

 +
 3 x

"
2

) . 627. y = 1 0
!
- «

l n 4 3 x
. 

3 
628. y = eVM^+ÖX+ö 6 29 . = In sin fare tan e

3 x
. 

χ* 
630. y = ae~

blxt
. 631. y = x

2
e

 û
' . 

632. y = Ae~
ktx
 sin {ωχ + α). 633. y = a

x
a^. 

Hyperbolic Functions 

Differentiate the functions of problems 634-649 : 

634. y = sinh
3
 x. 635. y = ln cosh 

636. y = arc tan (tanh x). 637. y = tanh (1 — #
2
) . 

638. y = sinh
2
 χ + cosh

2
 639. y = cosh (sinh x). 

640. y = Vcosh x. 641. 2/ = e
c o s h , x

. 

642. y = tanh (ln x). 643. 2/ = a; sinh a; — cosh x. 

1 . , x 1 . , 
644. 2/ = f ( 1 + tanh

2
 xf. 645. 2/ = 0 tanh | — - tanh

3 

6 4 7 . y = =l t a n h a ; + gln
1 + Î

Î
T A N H

" . 
2 ^ 8 i _ / 2 t a n h a ; 

e
x 
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652. y 

654. y = 

651. y = 

653. y = 

= V(x + i )
2 

(ln x)
x
. 

655. y = x
2
e

x
* sin 2#. 

656. y = % Τ ^ · 6 5 7 . 1 , - « · « . 

4 

658. y = (
g

+
1

)
3

^ - ^ . 659. y = yxsinx/n^. 
V ( * - 3 )

: 

660. 2/ 

662. 2/ = a
s i n

* 

664. y 

666. y 

1 — arc sin x 
1 -f- arc sin x 661. 2/ = z

x
. 

663. y 

r = 2XÎ* 

_ Ίχ(χ
2
 + 1) 

~~ / ( z
2

-

( l + * ) 

665. 2/ = (z
2
 + 1) 

l )
2 

Varions Functions 

Differentiate the functions of problems 667-770: 

3 , Ν 

667. y = ( l + V ^ )
3
. 668. y = α t a n | | + 6j . 

669. y : 

670. 2/ ; 

671. y 

: Vi + Y2px. 

• arc tan (x
2
 - _„ 

: log (x — cos x) . 

: arc tan (x
2
 — 3# + 2). 

672. y : 

673. y = 5 t a n | + tan ^ . 674. 2/ = F 

3 cos
2
 x — cos

3
 χ. 

1 

Vx + Y χ 

648. y = - cosh 2x + }^sinh 2x. 649. y = #
2
e

3x
 cosech 

a; 

Logarithmic Differentiation 

Differentiate the functions of problems 650-666 by using 
the rule for logarithmic differentiation: 

650. y = x
x
\ 

(sin x)
cosx

. 
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X 

675. y = sin - sin 2z. 

677. y = χ
5
 Yx

6
 — 8. 

679. y 

681. y = 

682. y = 

684. y = 

686. y -

688. y = 

689. y 

690. y 

691. y 

Κ γ / · 
e

2
* +

3
| a ;

2
- a ; + i j 

2 sin
2
 a; 

cos 2a; 

tan I + cot I 
x 

676. y = sina;e
c o s x

. 

678. y = e-*
2
 ln x. 

680. ι/ = arc tan
 X
 \ . 
x — 1 

683. y = -= arc tan-—-—^ 
K3 l - x

2 

685. y = sin
2
 | cot ̂  

9 

Y4x* + 2 

a; arc tan Yx. 

687. i/ = ln(a; + Ya
2
 + x

2
). 

V 1 + tan
2
 a; + tan

4
 a;, 

cos 2x ln a;. 
2
 * .

 1 x 

- arc tan x + - arc tan r-

3 3 1 — x
2 

sin
6
 3a; — ^ - sin

8
 3a\ 

lo 24 

692. 2/ = arc sin (n sin x). 693. y = arc sin y sin x. 

694. y 

695. y 

696. ι/ = cos 

x — y i — x
2
 arc sin a;, 

arc sin x 
697. 2/ = 

698. y 

700. y 

702. y 

arc cosyi — 3a;. 699· V = ^ 
1 — InaA . 9 ( \ — InaA 

in
2 

log3 (a;
2
 — sin x). 701. 2/ = arc tan 

x + f T ^ ô 2 

1 — x 

ln 
a; 

1+x 

703. y = x arc sin (ln a;). 
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f 2x 4 - 1 \

2 

\. y = 0*4 cos — sin 0*8 χ I 706, 
V 

707. y = a;10^*. 

709. y = ln arc tan — 7 — . 

* 1 + χ 
3 

711. y = f l + a; Va; + 3. 

1 
713. ι/ = ί /ί , . 2 · 

* y 1 + sin
2
 a; 

ln sin a; 
715. y = ι · 

a
 ln cos χ 

arc sin 4a; 
717. y = - 3 ^ - . 

= ln 

725. y 

726. y 

729. 

730. 

1 — e
x 

719. y 

721. y = sin
2
 χ sin a;

2 

723. y = x 
fl — χ 

Y+~x
2 

7 0 8
^ = t ^ r a -

710. y = ln * * α: + ΓΧ* - 1 

712. y = x
2
^l + Yx. 

714. y = x
z
 arc tan a;

3
. 

716. y = arc sin χ + y 1 — χ
2 

ι 
718. y = e

lnx
 . 

720. y = 10*
t a n x

. 

_ ΛΛ 2 cos a; 722. y = . 
y cos 2a; 

n n. 1 , 1 + χ 1 
724. ν = - ln arc tan x. u

 4 1 — χ 2 

= 2
ln
 * . 

= / ( a — a;) (a; — 6) — (a — 6) arc tan j / ^ ^ . 

sin 3a; _ Λ_ bin o;c 
727. y = —R--= 

2 sin
2
 a; cos a; 

728. ι/ = X + * · 

y = y α
2
 — a;

2
 — a arc cos - . 

I QX 704. y = tan χ eX . 705. y = cos χ Yl + sin
2
 χ. 
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737. y = 3a;
3
 arc sin χ + (χ

2
 + 2) / l — a;

2
. 

738. y
 1 

. a; — 2 
739. 2/ = 2 arc sin —— ^ 2 + éx - a;

2
. 

ye 
740. 2/ = In (e

x
 cos a; + e~

x
 sin a;). 

1 + a ; arc tan a; _ . Λ 1 
741. y = - ^ = = — . 742. 2/ = y i _|_ #2 * * cos (x — cosx) ' 

11 

743. y = e
x
 sin χ cos

3
 a;. 744. 2/ = )f 9 + 6 Υα? . 

745. y = a; - In (2e
x
 + 1 + Ye

2x
 + 4e* + l ) . 

746. y = e
a r c t a n

^ +
 l n

(
2
* +

 3
>. 747. y = ^χ . 

χ 
748. y = In tan - — cot a; In (1 + sin x) — a;. 

749. y = 2 In (2a; — 3 / l — 4a-
2
) — 6 arc sin 2a;. 

3^2 2 
750. y = — ^ 3 f- In yi + a;

2
 + arc tan a;. 

751. 2/ = \ (3 - a;) Vi ~ 2a; - x
2
 + 2 arc s i n . 

752. y = In (a;sin a; — a;
2
). 753. 2/ = # Vl + #

2
 sin a;. 

754. y - V ^ W - J * . 7 6 6 . y - f ( l + » r ? ) > . 

73 j _
 s

*
n 2 x c o s2 X 

^ 1 + cot x 1 + tan χ ' 

732. y = In (χ + - . 

y χ
2 — ι 

733. y = e
ÛX

 (α sina; — cos χ). 734. y = xe*~
cosx

 . 

735. y = — . 736. ν = e
x
 (sin 3a; — 3 cos 3a;). 

* arctane
- 2
* *

 v 
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1 χ
2
 — a r c t a n x + î - l n x + 1 

— θ
 2 

Yx 

ο · ο
 1

 +
 t a n

ö 
_ r_ Sinz , 3 sin χ , 3 , 2 
757. y = h κ ο h ö In * 4 cos4 χ ^ 8 cos2 a; ^ 8 ,

 Α α 1
 — tan-

Δ 

758. y 
a;e

x
 arc tan χ 

In
5
 a; 

759. y = 

3a
2
x 

(1 — a;
2
)e

3 x _ 1
cosa; 

(arc cos a;)
3 

3a
4
, 

760. y = x V(x
2
 + a

2
)

3
 + ~ fa;

2
 + α

2
 + ln (χ + 

+ Va;
2
 + α

2
) . 

761. 2/ = a: (arc sin χ)
2
 — 2x -f- 2 f l — a;

2
 arc sin a;. 

φΧ g—X 

762. 2/ = In cos arc tan - · 

763. y = 
1 

m Y ab 
arc tan (-yi) 

™ , 1 , a; + 1 , 1 2α; — 1 
764. y = - ln — + — arc tan — — — 

3 y a ;
2
- a ; + l ^ 3 

765. 2/ = ln
 r

,
 τ

 y + 2 arc tan 
f i + x + yi - χ 

1 - a; 
1 + a; 

COt ; 
766. y = (tan 2a;)

 2
 . 767. i/ = 

Va;
2
 + 4 

. 2» + 1 , 
arc tan — — [-

Iß 
-f- arc tan 

2a; — 1 

x
2n
 — 1 

) 
769. y = arc cos χ 2η + 1 

770. y = - y 
* j _ ( l + 2a;)

2 

+ 8a? ' 12 1 — 2a; + 4a;
2 

, f 3 4a; - 1 + γ arc tan — - — 

756. y 
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771. Show that the function y = ln 

relationship 

1 
satisfies the 

1 + χ 

772. Show that the function 

j + lxVx2+ 1 +Ιη
1
\/χ + ΥχΖ+ 1 

satisfies the relationship 

2y = xy' + ln y'. 

773. Show that the function 

arc sin χ 
y = 

y 1 - χ
2 

satisfies the relationship 

(1 — x
2
) y' — xy = 1. 

774*. Evaluate the sums: 

1 + 2x + Sx2 + . . . + TO""1; 
2 + 2 . 3z + 3 . ex

2
 + . . . + η {η — 1) x

n
"

2
. 

Inverse Functions 

775. Suppose that the rule for differentiating power func-
tions is only proved for positive integral powers. Deduce the 
formula for differentiating a root by using the rule for dif-
ferentiating an inverse function. 

776. χ = e
arcs[n

y; find ^ in terms of y} in terms of x. 
ax 

ds 
777. t = 2 — 3s + s

z
 ; express ^ in terms of s. 
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779. Knowing that arc sin Υ χ and sin
2
 χ are the inverse 

of each other, and that (sin
2
 x)' = sin 2x, find : 

(arc sin Yx)'. 

780. We use the symbol OL{X) to denote the inverse of the 
exponential function y = x

x
, i.e. y = x

x
 implies χ = a.(y). 

Find the formula for the derivative of the function y = OL(X). 

781. The inverse hyperbolic functions are written as 
Arc sinh χ Arc cosh x, Arc tanh x. Find the derivatives of 
these functions. 

782. s = te-< ; find ^ . 
as 

783. y = 1 . Express ^ in terms of x, in terms of y. 
u
 1 + x*

 r ay * 
Show that ψ - ̂  = 1. 

ax ay 

784. χ = y* - 4y + 1. Find ^ . 

ds 
785. t = arc sin 2

s
. Find -R- in terms of s, in terms of t. 

dt 
dti dx 

786. Show that ^ · — = 1 if a; and y are connected by 
dx dy 

the relationships: 

(l)y = x* + ax + b; (2) y = χ-«; 

(3) y = ln ( ζ
2
 - 1). 

Functions Given Implicitly 

787. Show that the derivatives of both sides of the equation 

sin
2
 χ = 1 — cos

2
 χ 

are identically equal, i.e. that the equation can be differenti-

ated term by term. Is it "possible" to differentiate term by 

term the equation sin χ = 1 — cos χ ? 

788. Show that the equation 

2 sin
2
 a; — 1 , cos χ (2 sin χ + 1) 

— . = tan χ 
cos χ 1 + sin χ 

can be differentiated term by term. 
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789. What must the function y = f(x) be for the equation 

to be differentiable term by term (i.e. for the derivatives of 
both sides to be identical) ? 

790. What must y be for the derivatives of both sides of 

to be equal, i.e. for the equation to be differentiable term by-
term? 

791. What is the slope of the tangent to the circle 

at the point (2, 1)? 
Find the derivatives of functions y given implicitly in 

problems 792-812: 

794. x
z
 + y

z
 — Saxy = 0. 795. y

2
 cos χ = a

2
 sin Sx. 

796. ι/
3
 — Sy + 2ax = 0. 797. y

2
 - 2xy + b

2
 = 0. 

798. & + y* = x
2
y

2
. 

799. a? + ax
2
y + bxy

2
 + 2/

3
 = 0. 

800. sin (xy) + cos (xy) = tan (x + y). 

801. 2
X
 + 2y = 2

x
+y. 802. 2y ln y = χ. 

803. χ — y = arc sin χ — arc sin y. 

804. â  = y
x
. 805. i/ = cos (x + y). 

cos
4
 χ + 2 sin

2
 a; cos

2
 a: + y

2
 = 1 

a;
2
 - f y

2
 = 1 

(a - l )
2
 + (y + 3)

2
 = 17, 

793. x
2
 + y

2
 = a

2
 . 

2 2 2 

806. cos (a;?/) = 807. 

808. y = 1 + a;e>\ 

809. a; sin y — cos y + cos 2y = 0. 

807. x
3
 + y

3
 = a

3
 . 

811. y sin a; — cos (x — y) = 0. 

812. y = χ -f- arc tan 
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813. Show that the function y defined by the equation 
xy — ln y = 1 satisfies also the relationship 

y* + (xy- 1 ) ^ = 0. 

Geometrical and Mechanical Applications of the Derivative 

814. Two points with abscissae Χγ — 1 y x2 — 3 are taken 
on the parabola y = χ

2
. A secant is drawn through these 

points. At what point of the parabola is the tangent to it 
parallel to this secant? 

815. A chord is drawn through the focus of a parabola 
perpendicular to its axis. Tangents are drawn to the parabola 
at its points of intersection with the chord. Show that the 
tangents cut at a right angle. 

816. Form the equations of the tangent and normal to 

the hyperbola y = - at the point with abscissa χ = — ]- . 
Χ Δ 

Find the subtangent and subnormal. 

817. Show that the intercept of the tangent to the hyper-

bola y = - between the coordinate axes is bisected at the 
χ 

point of contact. 

818. Show that the area of the triangle formed by any 
tangent to the hyperbola xy = a and the coordinate axes 
is equal to the area of the square constructed on the semi-
transverse axis. 

819. A particle moves along a straight line so that its 
distance s from the initial point after t seconds is equal to 

s = \ fl — 4*
3
 + m

2
. 

4 

(a) At what instant was the particle at the initial point? 
(b) At what instant does its velocity vanish ? 

820. A body of mass 3 kg moves along a straight line 
according to the law 

s = 1 + t + t
2
\ 
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s is given in centimetres, t in seconds. Find the kinetic energy 

TYIV
2 

—— of the body 5 sec after the initial instant. 

821· The angle α of rotation of pulley is given as a function 
of time t by α = t

2
 + 3£ — 5. Find the angular velocity at 

t = 5 sec. 

822. The angle of rotation of a wheel is proportional to 
the square of the time. The first revolution is accomplished 
in 8 sec. Find the angular velocity ω, 32 sec from the start of 
the motion. 

823. The angle 0 through which a wheel rotates in t sec 

is equal to β = at* - bt + c, 

where a, 6, c are positive constants. Find the angular velocity 
ω of the wheel. After how long will the angular velocity be 
zero? 

824. The quantity of electricity flowing through a con-
ductor, starting from the instant t = 0, is given by 

Q = 2t
2
 + 3t + 1 (coulombs) 

Find the current at the end of the fifth second. 

825. Find the points of the curve y = χ
2
 (χ — 2)

2
 at which 

the tangents are parallel to the axis of abscissae. 

826. Show that the curve y — x
5
 5x ~ 12 is inclined 

to Ox at every point at an acute angle. 

827. At what points of the curve y = χ* -\- χ — 2 i s the 
tangent parallel to the straight line y = 4# — 1. 

828. Form the equations of the tangents to the curve 

y = χ — — at its points of intersection with the axis of 
χ 

abscissae. 

829. Find the equation of the tangent to the curve y = 
= χ* + Sx

2
 — 5 perpendicular to the straight line 2x — 

- Oy + 1 = 0. 
Find the equations of the tangents and normals to the 

curves of problems 830-833 : 
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830· y = sin χ at the point M(x0, y0). 

831. y = ln χ at the point M(x0, y0). 
8a

3 

832. y = —2 at the point with abscissa χ = 2a. 
oa ~j~ χ 

Λ /
3 

833. y
2
 = (cissoid) at the point M(x0, y0). Δα — χ 

834. Show that the subtangent to the nth. order parabola 

y = x
n
 is equal to ^ times the abscissa of the point of 

contact. 
Give a method of drawing the tangent to the curve y = x

n
. 

835. Find the subtangents and subnormals to the curves 
y = #

3
; y

2
 = χ*; xy

2
 = I. Give methods of drawing the 

tangents to these curves. 

836. Find the equations of the tangent and normal to 
the parabola x

2
 = 4ay at the point (x0, y0) ; show that the 

equation of the tangent at the point with abscissa x0 = 2am 

is χ = — + am. 
m 

837. A chord of the parabola y = χ
2
 — 2x -f- 5 joins the 

points with abscissae xx = 1, x2 = 3. Find the equation of 
the tangent to the parabola parallel to the chord. 

838. Find the equation of the normal to the curve 

x
2
 — 3x + 6 

y
= — x

2
— 

at the point with abscissa χ = 3. 

839. Find the equation of the normal to the curve y = 

= — Yx + 2 at its point of intersection with the bisector 

of the first quadrant. 

840. Find the equation of the normal to the parabola 

y = χ
2
 — 6x + 6 perpendicular to the straight fine joining 

the origin to the vertex. 

841. Show that the normals to the curve y = χ
2
 —- χ + 1 

through the points with abscissae xx = 0, x2 = — 1 and 
5 . . . , 

# 3 = - intersect m a single pomt. 
Δ 
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842. Normals are drawn to the parabola y = χ
2
 — 4# + 5 

at its intersections with the straight line χ — y - f 1 = 0. 
Find the area of the triangle formed by the normals and 

the chord joining the points of intersection. 

843. Show that the tangents to the hyperbola y = 

= at its points of intersection with the coordinate 
χ — Δ 

axes are parallel. 
3* ι 9 

844. Find the tangent to the hyperbola y = — — - such 
χ - j - 5 that it passes through the origin. 

845. Find the point of the curve y = ———^
 a

^ which 
ι - j - χ 

the tangent is parallel to the axis of abscissae. 

846. Find the equation of the tangent to the curve 
x

2
(x -\- y) = a

2
 (x — y) at the origin. 

847. Show that the tangents to the curve y = —2" 
ο —j- X 

through the points for which y == 1 intersect at the origin. 

848. Draw the normal to the curve y = χ ln χ parallel to 
the straight line 2x — 2y + 3 = 0. 

849. Find the distance from the origin to the normal to 
the curve y = e

2x
 + x

2
 at the point χ = 0. 

850. Draw the graph of the function y = sin ^2x — 

and find the point of intersection of the tangents to the 
graph when one is drawn through the point of intersection 
of the graph with Oy and the other through the point 

l - Λ 
851. Show that the subtangent at any point of the curve 

y = ae
bx
 (a and b are constants) is of constant length. 

852. Show that the subnormal at any point of the curve 
y = χ ln (cx) (c is an arbitrary constant) is the fourth pro-
portional of the abscissa, ordinate and sum of abscissa and 
ordinate of the point. 
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F I G . 21. 

Deduce from this a method of drawing the tangent and nor-
mal to the ellipse; solve the corresponding problem for the 
hyperbola. 

857. Find the equations of the tangents to the hyperbola 
x

2
 v

2 

— — ̂ - = 1 perpendicular to the straight line 2x + éy — 
Δ i 
- 3 = 0. 

858. A straight line is drawn through the origin parallel 
to the tangent to a curve at a given point M. Find the locus 
of point Ρ of intersection of this straight line with the straight 
line through M parallel to the axis of ordinates. 

853. Show that any tangent to the curve y = χ ^ Yx — 4#
2 

Δ 

cuts the axis of ordinates at a point equidistant from the 
point of contact and the origin. 

854. Show that the tangent to the ellipse — 4-^-== I at 
a

2
 b

2 

the point M(x0, y0) has the equation + -~ = 1. 

x
2
 v

2 

855. Show that the tangent to the hyperbola — — | - = 

XX ΊΙΊΙ 

= 1 at the point M(x0, y0) has the equation — -~ = 1. 

856. Prove that the normal at any point of an ellipse 
bisects the angle between the focal radii of the point (Fig. 21). 
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^ + 2 * 16 

(2) y = (x — 2)
2
 and y = 4a; — a:

2
 + 4. 

860. (1) x
2
 + y

2
 = 8 and t/

2
 = 2a;. 

(2) x
2
 + y

2
 — 4x= 1 and a;

2
 + y

2
 + 2y = 9. 

861. a * - î , » = 6 a n d ^ + - £ = l . 

862. a;
2
 + y

2
 = 8ax and y

2
 = 

2a — χ ' 
8a

3 

863. x2 = 4ay and y =
 χ2 + ^ . 

864. y = sin a; and y =
 c os

 χ (0 ^ χ ^ π). 

865. Find the equations of the tangent and normal to 
the curve , xn / Nn 

at the point with abscissa a. 

866. Prove that the sum of the intercepts cut from the 
coordinate axes by the tangent at any point of the parabola 

I i i 
# 2 _j_ y2 _ a2 equal to a. 

867. Prove that the segment of the tangent to the astroid 
1 1 1 

x3 _f-^3 = A3 lying between the coordinate axes has a 

constant length a. 

868. Prove that the segment of the tangent to the tractrix 

a + Y a
2
 — x

2 

y = ö
l n

— \ n — 2 ~~ v
a
 ~

 x
 ' 

Δ
 a — y a

2
 — a;

2 

lying between the axis of ordinates and the point of contact 
has a constant length. 

Find these loci for (a) the parabola y
2
 = 2px, (b) for the 

logarithmic curve y = logb x, (c) for the circle x
2
 + y

2
 = a

2
, 

(d) for the tractrix y = / α
2
 — χ

2
 — a In

 a
 ~^^

a
 ?L . 

Λ/ 
Find the angles at which the curves of problems 859-864 

intersect: 

CKft /n x+1 , x
2

 + 4x + S 
859. (1) y = — — and y = 
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869. Prove that the length of the normal at any point 
M(x0, y0) of the equilateral hyperbola x

2
 — y

2
 = a

2
, measured 

from M to the point at which it cuts the axis of abscissae, 
is equal to the radius vector of point M. 

870. Show that the intercept cut off on the axis of abs-

cissae by the tangent at any point of the curve ^ + 
b

 X 

-\—- = 1 is proportional to the cube of the abscissa of the 
y 

point of contact. 

871. Prove that the ordinate of any point of the curve 
2x

2
y

2
 — x

4
 = c (c is an arbitrary constant) is the mean pro-

portional between the abscissa and sum of abscissa and sub-
normal to the curve at that point. 

872. Show that the tangents at points with the same ab-
x

2
 y

2 

scissa to the ellipses — + f- = 1, where the axis 2a is com-

mon and axes 26 are different (Fig. 22), have a common 
point of intersection on the axis of abscissae. Use this fact to 
indicate a simple method of drawing the tangent to an ellipse. 

F I G . 22. 

873. Prove that the curve y = e
/ iX

 sin mx is touched by 
each of the curves y = e

kx
, y = — e

kx
 at every point common 

to them. 
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874. The following method is used for drawing the tangent 
j X X 

to the catenary y = -a (e
a
 + e

 a
) : a semi-circle is drawn 

Δ 
on the ordinate MN of point M as diameter (Fig. 23) and 
the chord NP = a obtained ; the line MP is the required tan-
gent. Prove this. 

F I G . 23 . 

Graphical Differentiation 

875. The following results were obtained by measuring the 
winding temperature of an electric motor when current 
passed: 

Time t min 0 5 10 15 20 25 

Temperature θ °C 20 26 32-5 41 46 49 

Time t min 30 35 40 45 50 55 

Temperature θ °C 52-5 54-5 56-5 58 59-5 61 

Draw a rough graph of the continuous dependence of 
temperature on time. Use graphical differentiation to 
draw the graph of the rate of change of temperature 
with time. 

876. Figure 24 illustrates the curve of the rise of a steam 
engine (low pressure) inlet valve. Draw the velocity curve 
by graphical differentiation. 



3. Differentials. Differentiability of a Function 

Differentials 

877. Find the increment of the function y = χ
2
 corre-

sponding to the increment Ax of the independent variable. 
Evaluate Ay if χ = 1 and Ax = 0'l; 001. What will be the 
error (absolute and relative) in the value of Ay if we confine 
ourselves to the term linear in Ax\ 

878. Find the increment Δυ of the volume ν of a sphere 
when the radius R = 2 changes by AR. Evaluate Av if AR = 
= 05 ; 0 1 ; 001. What will be the error in the value of 
Av if we confine ourselves to the term which is linear in 
AR\ 

879. Given the function y = x
z
 + 2x, find the value of 

the increment and its linear principal part corresponding to 
variation of χ from χ = 2 to χ = 21 . 

880. What is the increment of the function y = 3x
2
 — χ 

when the independent variable passes from the value χ = 1 
to χ = Γ 02. What is the value of the corresponding prin-
cipal part ? Find the ratio of the second quantity to the first. 

881. We know that the increment Ax = 0*2 for a given 
function y = f(x) at the point x. The corresponding principal 
part of the increment of the function is known to be 0*8. 
Find the numerical value of the derivative at x. 

882. We know that the principal part of the increment 
df(x) — —0*8 of the function f(x) = x

2
 corresponds to the 

F I G . 24. 

82 PROBLEMS ON A COURSE OP MATHEMATICAL ANALYSIS 
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increment Αχ = 0*2 of the independent variable at a certain 
point. Find the initial value of the independent variable. 

883. Find the increment and differential of the function 
y = χ

2
 — χ for χ = 10 and Ax = 01 . Find the absolute and 

relative error on replacing the increment by the differential. 
Draw a figure. 

884. Find the increment and differential of the function 

y = Υχ for χ = 4 and Ax = 0*41. Find the absolute and rela-

tive errors. Draw a figure. 

885. y = x
z
 — x. Evaluate Ay and dy at χ = 2, giving 

Ax the values Ax = 1, Ax = 0*1, Ax = 001. Find the corres-

ponding value of the relative error δ = ^ ^ ^ ^ · 

886. Find graphically (by drawing a large scale figure on 
millimetre paper) the increment and differential, and evaluate 
the absolute and relative errors, on replacing the increment 
by the differential for the function y = 2

X
 with χ = 2 and 

Ax = 04. 

887. The side of a square is 8 cm. How much is its area 
increased if each side is increased by (a) 1 cm, (b) 0*5 cm, 
(c) 0*1 cm. Find the linear principal part of the increment of 
the area of the square and estimate the relative error (in 
per cent) on replacing the increment by its principal 
part. 

888. We know that, when the side of a given square is 
increased by 03 cm, the linear principal part of the increment 
in the area amounts to 2*4 cm

2
. Find the linear part of the 

increment of the area corresponding to an increment in each 
side of (a) 0*6 cm, (b) 0*75 cm, (c) 1*2 cm. 

889. Find the differentials of the functions: 

3 

( l ) 0 - 2 5 / i ; ( 2 ) - ^ ; (3) ( 4 ) — · (5) 
0-2'

 x
 ' 0-5**'

 v
 ' 4**'

 17
 2γχ 

V a + b'
 ( ö/

 g* ( · ) 4 - ; P ) 4 ( 8 ) 5 ; 
Yx 
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(21) 3 arc sin χ — 4 arc tanx- arc cos χ arc cot χ ; 

890. Find the value of the differential of the function: 

when the independent variable changes 

from χ cos
2
 φ when φ varies from 

60° to 60°30'; (3) y = sin 2<p when φ varies from 

(4) y = sin 3<p when φ varies from 

when 0 varies from 

891. Find the approximate value of the increment of the 
function y = sin χ when χ varies from 30° to 30°Γ. What 
does sin 30° 1' equal? 

892. Find the approximate value of the increment of the 
function y = tan χ when χ varies from 45° to 45°10\ 

893. Find the approximate value of the increment of 

when χ varies from 

Evaluate dy for χ = 1 and 

find dg. 

dx = 02. 
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1. 1 
1

 1 

f ^ ι 0̂ ^ 

(a) Work out the change in the length of the cord when its 
sag / increases by d/. 

(b) I f we assume a change in the length of the cable d# 
(say due to a change in temperature or load), how does the 
sag vary? 

904. Compare the errors in finding an angle from its 
tangent and from its sine with the aid of logarithmic tables, 
i.e. compare the accuracy of finding χ from the formula 
log sin χ = y and log tan χ = ζ, if y and ζ are given with 
the same errors. 

896· Evaluate approximately sin 60°3', sin 60°18'. Compare 

the results with the tabulated figures. 

897. Show that the function y • satisfies the 

relationship 

898. Show that function y given by 

satisfies the relationship x(dy — ax) = y (ay + dx). 

899. f(x) = e
0
'

1
*

1
-^. Work out approximately /(1*05). 

900. Evaluate arc tan 1*02, arc tan 0*97. 

901. Evaluate approximately 

902. Evaluate approximately arc sin 0*4983. 

903. I f the length of a heavy cord (cable, chain) (Fig. 
25) is 2s, the half-span I, and the sag / , the approximate 
equation holds: 
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905. In engineering calculations π and Yg (g is the accel-
eration due to gravity) are often cancelled when one occurs 
in the numerator and the other in the denominator. Find 
the relative error resulting from this. 

906. Express the differentials of the following functions 
of a function in terms of the independent variable and its 
differential : 

3 
(1) y = Yx

2
 + 5x; χ = fi + 2t + 1 ; 

(2) s = cos
2
 ζ, ζ — *

 1
 ; 

(3) ζ = arc tan ν, ν = — ; 
tan s 

_\_ 

(4) v = 3
 x

, x = ln tan s; 

(5) s = e
2
, ζ = \ ln t, t=2u

2
 — 3u+l; 

(6) y = ln tan — ; u = arc sin ν, v = cos 2s. 

Differentiability of Functions 

907. The function y = \x\ is continuous for any x. Show 
that it is not differentiable at χ = 0. 

908. Investigate the continuity and differentiability of 
the function y = | #

3
| at χ = 0. 

909. A function f(x) is defined as follows: f(x) = I -\- χ 
for χ ^ 0; f(x) = x for 0 < χ < 1 ; /(#) = 2 — # for 
1 ^ χ ^ 2 and f(x) = 3x — x

2
 for a; > 2. Investigate the 

continuity of f(x) and examine the existence and continuity 
of / ' (* ) · 

910. The function y = |sin#| is continuous for any x. 
Show that it is not differentiable at χ = 0. Are there any other 
values of the independent variable at which the function is 
not differentiable? 

911. Investigate the continuity and differentiability of the 
function y = e~'

x
l at χ = 0. 
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912. f(x) = x
2
 sin- for χ + 0, /(Ο) = 0. Is f(x) differenti-

able at χ = 0 ? 

913. /(a?) = ' *
 +
 * ~~

 1
 for α φ 0, /(Ο) = 0. Is / ( » ) con-

fa; 
tinuous and differentiable at χ = 0 ? 

3 

914. Given /(a;) = 1 + V(# — l )
2
, show that it is impos-

sible to extract from the increment of f(x) at χ = 1 a linear 
principal part, so that f(x) has no derivative at χ = 0. Inter-
pret the result geometrically. 

915. f(x) = a; arc tan 1/a; for a; = 0, /(0) = 0. I f /(a:) conti-
nuous and differentiable at χ = 0 ? Interpret the result geo-
metrically. 

916. f(x) = —^—ρ for a; 0 and /(0) = 0. Is f(x) con-

1 +e* 
tinuous or differentiable at χ = 0 ? 

4. Derivative as Rate of Change (Further Examples) 

Refative Velocity 

917. A particle moves along the spiral of Archimedes 
ρ = αφ. Find the rate of change of the radius vector ρ rela-
tive to the polar angle φ. 

918. A particle moves along the logarithmic spiral ρ = e
0
?. 

Find the rate of change of the radius vector if it is known 
to rotate with angular velocity ω. 

919. A particle moves along the circle ρ = 2r cos φ. Find 
the rate of change of the abscissa and ordinate of the particle 
if the radius vector rotates with angular velocity ω. The 
polar axis is the axis of abscissae and the pole the origin in 
the system of Cartesian coordinates. 

920. A circle of radius R rolls along a straight line without 
slip. The centre of the circle moves with constant velocity v. 
Find the rate of change of the abscissa χ and ordinate y of a 
point on the circumference of the circle. 
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921. The barometric pressure ρ varies with the height h 
in accordance with the function 

In — = ch, 
Po 

where p0 denotes the standard pressure. The pressure at a 
height of 5540 m is half the standard; find the rate of change 
of the pressure with the height. 

922. The relationship y
2
 = I2x connects y and x. The 

argument χ increases uniformly with a velocity of 2 units per 
second. What is the rate of increase of y at χ = 3 ? 

923. The ordinate of a point describing the circle x
2
 + 

+ y
2
 = 25 decreases at a rate of 1*5 cm/sec. What is the rate 

of change of the abscissa of the point when the ordinate 
becomes 4 cm? 

924. At what point of the ellipse I6x
2
 + 9y

2
 = 400 does 

the ordinate decrease at the same rate as the abscissa in-
creases ? 

925. The side of a square increases at a rate of ν cm/sec. 
What are the rates of change of the perimeter and area of 
the square at the instant when the side is a cm. 

926. The radius of a circle varies with velocity v. At what 
rates do the area and circumference of the circle change ? 

927. The radius of a sphere varies with a speed v. What 
are the rates of change of the volume and surface of the 
sphere ? 

928. For what angles does the sine vary twice as slowly as 
the argument? 

929. At what angles are the rates of change of the sine and 
tangent of the same angle equal ? 

930. The rate of increase of a sine is increased η times. 
How many times will the rate of increase of the tangent be 
increased ? 

931. Assuming that the volume of a wooden cask is pro-
portional to the cube of its diameter and that the latter in-
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creases uniformly from year to year, show that the rate of 
increase of the volume when the diameter is 90 cm is 25 times 
greater than the rate when the diameter is 18 cm. 

Functions given Parametrically 

932. How do you prove whether or not a point given by 
Cartesian coordinates lies on a curve whose equation is 
given in the parametric form? (a) Does the point (5, 1) he 
on the circle χ = 2 -f- 5 cos t, y = — 3 - f 5 sin t\ (b) Does 
the point (2, Y%) he on the circle χ = 2 cos t, y = 2 sin t\ 

933. Plot the graphs of the functions given parametri-
cally: 

934. Eliminate the parameter from the parametric equa-
tions of the functions : 

(1) χ = 3t, y = 6t — t
2
\ (2) χ = cos t, y = sin 2t; 

(3) χ = t
z
 - f 1, y = t

2
\ (4) χ = φ — sin φ, y = 1 — cos φ; 

(5) χ = tan t; y = sin 2t -f- 2 cos 2£. 

935. Given the following curves, specified by parametric 
equations, find the values of the parameter corresponding to 
the points with given coordinates on the curves : 

(1) χ = 3(2 cos t — cos 2t), y = 3(2 sin t — sin 2t) ; 
( - 9 , 0); 

(2) x = t
2
 + 2t, y = P + t; (3 ,2) ; 

(3) χ = 2 tan t, y = 2 sin
2
1 + sin 2t\ (2, 2); 

(4) x = t
2
- l , y = t*-t; (0,0). 

Find the derivatives of y with respect to χ in problems 
936-945: 

936. χ = a cos <p, y = b sin 99. 

937. χ = a cos
3
 ç>, y = b sin

3
 <p. 

(a) a; = 3 cos t, 
(b) a; = t

2
 - 2*, 

(c) a; = cos t, 

(d) a; = 2'"
1
, 

y = 4 sin t; 
y = t

2
 + 2t; 

y = t + 2 sin t\ 

y = i (*> + 1). 
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Find the slope of the tangents to the curves of problems 
946-949: 

946. χ = 3 cos t, y = 4c sin t at the point >
 2
 Y% j · 

947. a; = t — i
4
, y = t

2
 — Ρ at the point (0, 0). 

948. χ = t
z
 + 1, ι/ = *

2
 + * + 1 at the point (1, 1). 

949. χ = 2 cos y = sin £ at the point | l , — - ^ j . 

950. Give the simplest geometrical significance of para-
meter t for the following curves specified parametrically: 

t
2 

( χ = cos t + t sin £ — — cos £, 

t
2
 . 

y = sin t — t cos £ — - sin £ ; 

(i) 

( 2 ) a: = a cos
3
 t, y = a sin

3
 £; 

(3) a; = α cos £ / 2 cos 2t, y = a sin t y 2 cos 2t. 

951. Show that the function given by the parametric 
equations 

x = 2t + 3i
2
, y = t

2
 + 2*

3
, 

satisfies the relationship 2/ = 2/'
2
 + 22/'

3
 (the prime denotes 

differentiation with respect to x, i.e. y' = . 

938. χ = α (φ — sin φ), y = a (1 — cos φ). 

939. x = 1 — t
2
, y = t — P. 

941. # = ln (1 + *
2
)> V = * —

 a r
c tan £. 

942. a; = ψ (1 — sin φ), y = ψ cos 99. 

944. a; = e' sin y = e' cos £. 

3αί 3α*
2 

945. a; = 3, y 
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1 + *
3
 ' * 6 (1 + *

3
)

2
 ' 

satisfies the relationship 

a* + y* = axy' \y* = . 

954. Show that the function given by the parametric 

equations 

1 1 + ] Π Γ Τ ^ * 
* = , ^ ^ τ -

l n
— - > y -y 1 + 1 * t γι + ί

2
 ' 

satisfies the relationship 

955. Show that the function given by the parametric 

equations 
_ 1 + ln* _ 3 + 2 1 n * 

X
 - J

2
 '

 y
 - ~t ' 

satisfies the relationship 

yy' = 2xy'*+l \y> = . 

956. Find the angles at which the following curves intersect : 

!

y = x
2 

χ = - cos t, y = - sm t; 
ό 4 

!

x = a cos φ, y = α sin φ and 

_ α*
2
 _ atjZ 

952. Show that the function given by the parametric 

equations 1 + f 3 2 

satisfies the relationship 

Xy«=l+y> 

953. Show that the function given by the parametric 

equations 2 rt , 
^ α£ α

2
 4£

3
 + 1 
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957· Show that, whatever the position of the generating 
circle of the cycloid, the tangent and normal at the corre-
sponding point of the cycloid pass through its highest and 
lowest points (see Course, sec. 55). 

958. Find the lengths of the tangent, normal, subtangent 
and subnormal at any point of the curve (cardioid) 

x = a(2 cos t — cos 2t), y = a(2 sin t — sin 2t) 

959. Find the lengths of the tangent, normal, subtangent 
and subnormal at any point of the curve (astroid) 

χ = a sin
3
1, y = a cos

3
1 

960. Prove by evaluation that the tangent to the circle 
#2 _|_ yi — a2 i s normal to the curve (involute of circle) 

x = a(cos t - f t sin t), y = a(sin t — t cos t). 

961. Find the lengths of the tangent, normal, sub tangent 
and subnormal of the involute of the circle (see the equations 
of the latter in the previous problem). 

962. Prove that the segment of the normal to the curve 

x = 2a sin t + a sin t cos
2
 t, y = —a cos

3
 t, 

lying between the coordinate axes is equal to 2a. 
Find the equations of the tangent and normal to each of 

the curves of problems 963-966 at the point in question: 

963. χ = 2e' ; y = e~< at t = 0. 

964. χ = sin t, y = cos 2t at t = — . 

965. χ = 2 In cot t + 1, y — tan t + cot t at t = — . 

966. (1) χ = γ^-ρ> V = at t = 2; 

. ί χ — t(t cos t — 2 sin t) , _ π 
(J) < at t — — ; 

( y = *(* sin t + 2 cos i)
 4 

(3) a; = sin t, y = α' at t = 0. 
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967. Show that, for the cardioid (see problem 958), the tan-
gents are parallel at any two points corresponding to values 

of the parameter differing by ^ π. 

968. I f OT and ON are the perpendiculars dropped from 
the origin to the tangent and normal at any point of the 
astroid (see problem 959), we have 

WT
2
 + ON

2
 = a

2
. 

Prove this. 

969. Find the length of the perpendicular dropped from 
the origin on to the tangent to the curve 

2x = a(3 cos t + cos Zt), 2y = a(3 sin t + sin 3tf). 

Prove that 
4ρ

2
 == Zp

2
 + 4a

2
; 

ρ is the radius vector of the given point, and ρ the length 
of the perpendicular. 

Rate of Change of Radius Vector 

970. Find the angle θ between the radius vector and 
tangent, and the angle α between the polar axis and tangent, 
for the circle ρ = 2r sin φ. 

971. Show that the sum of the angles formed by the tan-
gent with the radius vector and with the polar axis is equal 

to two right angles for the parabola ρ = a sec
2
 ^ . Use this 

Δ 

property for drawing the tangent to the parabola. 

972. Given the curve ρ = a sin
3
 ^ (conchoid), show that 
ό 

α = 40 (the notation is the same as in problem 970). 

973. Prove that the two parabolas ρ = a sec
2
 ^ and 
Δ 

ρ = b cosec
2
 ^ intersect at right angles. 

974. Find the tangent of the angle between the polar 
axis and tangent to the curve ρ = a sec

2
 φ at the point for 

which ρ = 2α. 
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975. Find the tangent of the angle between the polar 
axis and the tangent at the origin for (1) the curve ρ = 
= sin

3
 φ, (2) for the curve ρ = sin 3<p. 

976. Show that the two cardioids ρ = α(1 +
 c

° s φ) and 
ρ = α(1 — cos φ) intersect at right angles. 

977. The equation of a curve in polar coordinates is given 
parametrically : ρ = fx(t)9 φ = f2(t). Express the tangent of the 
angle θ between the tangent and radius vector as a function of t. 

978. A curve is given by the equations ρ = at*, φ = bt
2
. 

Find the angle between the radius vector and tangent. 

979. Express the radius vector ρ and polar angle φ as 
functions of parameter t for the ellipse χ = a cos t, y = b sin t. 
Use this form of writing the ellipse to evaluate the angle 
between the tangent and radius vector. 

The polar subtangent is defined as the projection of the 
piece of tangent, measured from its point of contact to its 
intersection with the perpendicular erected on the radius 
vector at the pole, on to this perpendicular. The polar sub-
normal is similarly defined. Use the definitions to solve pro-
blems 980-984. 

980. Deduce the expression for the polar subtangent and 
polar subnormal of the curve ρ = /(φ). 

981. Show that the length of the polar subtangent of 

the hyperbolic spiral ρ = ^ is constant. 

982. Show that the length of the polar subnormal of the 
spiral of Archimedes ρ = αφ is constant. 

983. Find the length of the polar subtangent of the loga-
rithmic spiral ρ = a*. 

984. Find the length of the polar subnormal of the loga-
rithmic spiral ρ = a?. 

Rate of Change of Arc Length 

In problems 985-999, s denotes the length of arc of the 
curve. 
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997. The tractrix is 

x = a |cos t + ln tan ^j, y = a sin £; ds = ? 

998. The involute of a circle is 
ds 

χ = a(cos t + * sin t), y = a(sin * — t cos £) ; ^ = ? 

999. The hyperbola is a; = α cosh y = a sinh £; ds = ? 

Velocity of Motion 

1000. A ladder of length 10 m has one end resting against a 
vertical wall and the other on the ground. The lower end 
moves away from the wall at a speed of 2 m/min. At what 

996. The cardioid is 

994. The astroid is χ = a cos
3
t, y = a sin

3
 t\ ds = ? 

995. The spiral of Archimedes is χ = at sin t, y = at cos t ; 

ds = ? 

993. The cycloid is χ = a(t — sin t), y = α(1 — cos £); 

992. The circle is χ = r cos 2/ = r sin :̂ 

991. The catenary is y = 

990. The sine wave is y = sin a; ; ds = 

989. The semi-cubical parabola is j 

988. The parabola is y
2
 = 2px; 

987. The ellipse is 

986. The circle is x
2
 + y

2
 = r

2 

985. The straight line is y = ax + b. Find 
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speed is the upper end falling when the bottom is 6 m from 
the wall ? What is the direction of the velocity vector ? 

1001. A train and a balloon leave the same point at the 
same instant. The train travels uniformly at a speed of 
50 km/hr, and the sphere rises (also uniformly) at a speed 
of 10 km/hr. At what speed are they leaving each other? 
What is the direction of the velocity vector ? 

1002. A man of height 1*7 m moves away from a light 
source at a height of 3 m at a speed of 6*34 km/hr. What 
is the speed of the shadow of his head ? 

1003. A horse runs round a circle at a speed of 20 km/hr. 
A lamp is located at the centre of the circle, whilst there is 
a fence tangential to the circle at the point at which the 
horse starts. A t what speed is the shadow of the horse moving 

along the fence when the horse has travelled ^ of the 

ο circle ? 

1004. Figure 26 illustrates schematically the crank mecha-
nism of a steam engine : A is the cross-head, BB

f
 the guide, 

ρ 

F I G . 26. 

AP the connecting-rod, Q the fly-wheel. The fly-wheel rotates 
uniformly with angular velocity ω, its radius is R, and the 
length of the connecting-rod is I. At what speed does the 
cross-head move when the fly-wheel has rotated through 
the angle a? 

1005. A fly-wheel disrupts when rotating at 80 rev/min. 
The radius of the wheel is 90 cm, the centre is 1 m above the 
ground. What is the speed of the piece indicated by A in 
Fig. 27 when it strikes the ground ? 



5. Repeated Differentiation 

Functions given Explicitly 

1006. y = x
2
- 3 * + 2; y" = ? 

1007. y = 1 - χ
2
 - x*; y'" = ? 

1008. /(as) = {x+ 10)«; / " ' (2) = ? 

1009. f(x) = x« - 4a:
3
 + 4; /<

IV
>(1) = ? 

1010. ι/ = (a;
2
 + l )

3
; j / " = ? 1011. y = cos

2
 x; y'" = ? 

1012. f(x) = e
2
*"

1
; /"(0) = ? 

1013. / ( ζ ) = arc tan a;; / " ( l ) = ? 

1014. / ( * ) = ϊ - ^ ; / < v ) ( a ; )= ? 

1015. « = x3 ln *; 2/'lv> = ? 1016. /(a;) = ; y"(x) = ? 

1017. ρ = α sin 2<p; ^ = ? 1018. y = j - j p j ^
( n)

 = ? 

Find the second derivatives of the functions of problems 
1019-1028: 

1019. y = xe
x2
. 1020. y = * . 

1021. y = (1 + χ
2
) arc tan a\ 1022. y = Va

2
 — χ

2
. 

1023. y = ln (χ + ΥΤ+~ζ
2
). 1024. y =

 l
—— . 

a + yx 

F I G . 27 . 
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1025. y = eV*. 1026. y = Vi — χ
2
 arc sin χ. 

1027. y = arc sin (α sin 1028. y = x
x
. 

Find general expressions for the nth. order derivatives of 
the functions of problems 1029-1040: 

1029. y = e
a x

. 1030. y = e~
x
. 

1031. y = sin a# + cos bx. 1032. y = sin
2
 x. 

1033. i/ = xe
x
. 1034. y = χ ln a;. 

1035. y = —
1
— τ . 1036. y = ]n(ax + b). 

(XX -f- 0 

1037. i/ = log a x. 1038. y=
 X 

χ* — 1 

1039. «/ = ^—7-9- · 1040. y = sin
4
 χ + cos* x. 

X — oX ~\~ Δ 

1041. Prove that the function y = (x
2
 — l)

n
 satisfies the 

relationship 

(χ
2
 — 1) ?/(

n
+

2
) — 2xy(

n+1>
> — n{n + 1) y(

n
> = 0. 

1042. Prove that the function y = e
x
 sin # satisfies the 

relationship y" — 2y' + 2y = 0, whilst = e
_ x

 sin # satisfies 
*/" + 22/' + 2y = 0. 

# 3 
1043. Show that the function y = —-—- satisfies the rela-υ

 χ + 4 

tionship 2y'
2
 = (y — 1) y". 

1044. Show that the function y = \2x — x
2
 satisfies the 

relationship y
z
y" + 1 = 0. 

1045. Show that the function y = e
4x
 + 2 e

_x
 satisfies the 

relationship y'" — 13y' — I2y = 0. 

1046. Show that y = e^
x
 + e~^

x
 satisfies the relationship 

„ 1 , 1 
*y + ^ 2 / — 42 / = ° -

1047. Show that y = cos e
x
 + sin e

x
 satisfies the equation 

y" - y' + 2/e
2x
 = 0. 

1048. Show that the function 

y = A sin (cot + ω 0) + Β cos (cot + ω 0) 



8 
_y"' 3(y"\

2 

is unchanged if y is replaced by - , i.e. if we put y = — , 
y 2/1 

we have 
y'ï 

d?x dt/ 
1054. Given y = f(x), express in terms of ^ and 

3 

d
2
y (1 + y'

2
)

2 

-τ-^ζ. Show that the formula R = - 1f — - can be trans-
dx

z
 y 

formed to 
?. 1 , 1 
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(Α, Β, ω, ω0 constant) satisfies the equation 

1049· Show that the function 

(av a2, aZi α4, η constant) satisfies the equation 

1050. Show that the function 

satisfies the equation 

ν = sin (n arc sin x) 

1051. Show that the function e
a a r c s i nx

 satisfies the equa-
tion 

1052. Prove that the function y = 
fies the relationship 

1053. Prove that the expression 

satis-
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Functions given Implicitly 

1056. 6
2
a;

2
 + « V = «

2
δ

2
; ? ! = ? 

* da;
2 

1057. a;
2
 + y

2
 = r

2
; ^ = ? 

1058. y = tan(a: + y ) ; j j | = ? 

1059. 5 = 1 + ^ = ? 

1060. y
3
 + x* — 3axy = 0; y" = ? 

1061. y = ein(a; + y ) ; y" = ? 

1062. e
x
+y = xy; y" = ? 

1063. Deduce the formula for the second derivative of the 
inverse of y = f(x). 

1064. ey + xy = e; find y "(a) for a; = 0. 

v" 
1065. y

2
 = 2px; find i = ,

 y
 _ . 

f ( T T ?
2
)

3 

1066. Show that y
2
 + x

2
 = i?

2
 implies £ = -^, where 

ί ( 1 + 2 / '
2
)

3 

1067. Prove that, if 

ax
2
 + 2bxy + cy

2
 + 2gx + 2fy + h = 0, 

then 

dy _ ax + by + g a nd = 

da; bx + cy + f dx
2
 (bx + cy + /)

3
 ' 

where 4̂ is constant (independent of a; and y ) . 

1055. Given F(x) = f(x)cp(x), where f(x)(p'(x) = C, show 
that 

F" _ f" , φ" , 2(7 J"" _ / " ' φ'" 
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1068. Prove that, if 
y_ 

(a + bx) e
x
 = x, 

then 

Functions given Parametrically 

1069. χ = -- at
2
, y = δί

3
, 

d
2
x 

dy
2 = 2 

1070. χ = = a cos t, y = a sin t; 
d

2
y 

dx
2 = ? 

1071. χ = - a cos t, y = b sin t; 
da;

3 ? 

1072. χ = - α(φ — sin φ), y - a(l — cos φ); 
da;

2 = 2 

1073. (1) χ = a cos
3
t, y — a sin

3
 t; 

da;
3 = ? 

(2) χ = a cos
2
1, y = a sin

2
1; 

dty 
da;

2 = ? 

1074. (1) χ = In t, y = t
2
- l ; 

d
2
*/ 

da;
2 = ? 

(2) χ = arc sin t, y = l n ( l - i
2
) ; 

d
2
y 

da;
2 = % 

1075. χ = = at cos t, y = at sin t; 
d

2
y 

da;
2 = ? 

1076. Show that y = f(x) given by the parametric equa-
tions y = e' cos a; = e* sin t, satisfies y"(x + y)

2
 = 

= 2(xy
f
 - y). 

1077. Show that y = f(x) given by the parametric equa-
tions y = 3£ — t

z
, χ = 3£

2
, satisfies 

362/" (y - Yte) = a; + 3. 

1078. Show that the function given by the parametric 
equations 

χ = sin t, y = sin kt, 
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satisfies the relationship 

1079. Prove that, if 

x = f(t) cos t — f'(t) sin t, y = f(t) sin t + f'{t) cos t, 

we have 
ds

2
 = dx

2
 + dy

2
 = [f(t) + f"(t)]

2
 dt

2
. 

Acceleration 

1080. A particle moves along a straight line such that 
4 

s = - £
3
— - £ + 5. Find the acceleration a at the end of the 

ό 

second second (s is given in metres, t in seconds). 

1081. A rectilinear motion is given by 

s = t
2
 — At + 1. 

Find the speed and acceleration. 

1082. A particle moves on a straight Une such that 
2 1 

s = - sin - nt - f s0. Find the acceleration at the end of the 
y Δ 

first second (s in cm, t in sec). 

1083. A particle moves in a straight line, and s = ψΤ. 
Show that the motion is slowing down and that the accele-
ration a is proportional to the cube of the velocity v. 

1084. A heavy beam of length 13 m is being lowered to 
the ground, its lower end being fixed to a trolley (Fig. 28) 
and its upper end attached to a rope wound round a windlass. 
The rope unwinds at a speed of 2 m/min. What is the accele-
ration of the trolley away from point Ο when its distance 
from Ο is 5 m? 

1085. A barge, the deck of which is 4 m below the level of 
the wharf, is drawn towards the latter by a rope wound up 
on a windlass at a speed of 2 m/sec. 

What is the acceleration of the barge at the instant when 
it is 8 m away from the wharf (measured horizontally) ? 
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1086. A particle is moving along a straight line in such 
a way that its speed is changing proportionally to the square 
root of the path traversed. Show that the motion occurs 
under the action of a constant force. 

F I G . 28 . 

1087. I f the force acting on a particle is inversely propor-
tional to the speed, show that the kinetic energy of the 
particle is a linear function of time. 

Leibniz's Formula 

1088. Use Leibniz's formula to evaluate the following 
derivatives : 

(1) [(x
2
 + 1) sin #]<

20
>; (2) (e* sin x)W; 

(3) (x* sin a#)(
n
>. 

1089. Show that, if y = (1 — x)~* e~**, then 

Prove by using Leibniz's formula that 

(1 — x) «/<
n+1

> — (n + <xx)yW — nayi"-
1
) = 0. 
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1090. The function y = e

a a r c s i n
* satisfies the equation 

(1 — x
2
) y" — xy' — <x?y = 0. 

(see problem 1051). By applying Leibniz's theorem and 

differentiating this equation η times, show that 

(1 - x
2
) 2/("+

2
> — (2n + 1) # 2 / (

N + 1
> — (η

2
 + a

2
) yW = 0. 

1091. Prove that 

where 

Obtain the following formulae by using Leibniz's theorem: 

1092. Prove that 

1093. Prove that y = arc sin χ satisfies the equation 

Apply Leibniz's formula to both sides of this equation to 

find yW(0) {η ̂  2). 

1094. By applying Leibniz's formula η times, show that 

satisfies the relationship 

1095. I f y = (arc sin x)
2
, we have 

Find y'(0), y"(0) . . ., y<O(0). 
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Differentials of Higher Orders 
3 

1096. y = fx*; d
2
y = ? 

1097. y = x
m
; à

3
y = ? 

1098. y = ( * + i )
3

( * - i )
2
; ; &y 

1099. y = 4-*'; d
2
y = ? 

1100. y = arc tan ( - tan a;) ; d
2
î/ : 

1101. y = V ln
2
a; - 4; d

2
y — ? 

1102. y = sin
2
 x; d

3
y = ? 

1103. ρ
2
 cos

3
 φ — α

2
 sin

3
 <p = 0; ά

2
ρ = ? 

A A A 
1104. χ

3
 + y

3
 = α

3
; d

2
y = ? 

J #2 

1105. y = In ̂  ^ 2 ; χ = tan express d
2
y in terms of: 

(1) χ and d#, (2) ί and di. 

1106. y = sin ζ; ζ = α
χ
; # = ί

3
; express d

2
y in terms of: 

(1) ζ and dz, (2) # and &r, (3) t and di. 



C H A P T E R I V 

1110. Starting directly from the definition, describe the 
behaviour of the following functions at χ = 0: 

3 

(1) y = 1 — a?*; (2) y = χ* - χ*; (3) y = fie; 
3 5 

(4) y = Υ&; ( 6 ) y = l - y ? ; (β) y = |tan a | ; 

( 7 ) y = | l n ( s + l ) | ; ( 8 ) y = e - W ; 

(9) ι/ = V a
3
 + a;

2
. 

1111. Show by using the tests for the behaviour of a 
function at a point that y = In (#

2
 + 2# — 3) is increasing 

at x1 = 2, is decreasing at x2 = —4 and has no stationary 
points. 

106 

has a maximum at xz = 0 and a minimum at 

function y = cos 2x is increasing at xx • is decreasing at 

1109. Starting directly from the definition, show that the 

1108. Starting directly from the definition, show that the 
function y = χ

2
 — 3x + 2 is increasing at x1 = 2, is decreas-

ing at x2 = 0, has a maximum at x3 = —1 and a minimum 
at £ 4 = 1 . 

1107. Plot the graph of the function 

1. The Behaviour of a Function "at a Point" 

T H E INVESTIGATION OF 
FUNCTIONS AND C U R V E S 
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71 

at x± = 0, x2 = 1, x3 = — - and a;4 = 2. 

1113. Examine the behaviour of the function 

y = χ — In χ 

at x1 = -, x2 = 2, x3 = e and # 4 = 1, and show that, if the 
Δ 

function is increasing at χ = a > 0, it is decreasing at χ' = 
1 

~ a ' 

1114. How does the function 

y = χ arc tan χ 

behave at xx = 1, x2 = — 1 and χΆ = 0? 

1115. Examine the behaviour of the function given by 

2. Applications of the First Derivative 

Theorems of Rolle and Lagrange 

1116. Prove that Rolle's theorem holds for y = x
z
 + 

+ 4z
2
 — lx — 10 in the interval [ — 1, 2]. 

1117. Prove that Rolle's theorem holds for y = ln sin χ 

in the interval %, . 
ο ο 

1118. Prove that Rolle's theorem holds for y = 4
8 i n

* 
in the interval [0, π] . 

1119. Prove that Rolle's theorem holds for the function 
3 

y = γχζ — 3a; + 2 in the interval [1, 2]. 

1112. Examine the behaviour of the function 

y = sin χ + cos χ 

and 
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1120. The function y = — ^ — takes equal values at 

the ends of the interval [ — 1, 1]. Show that there is no point 
in the interval at which the derivative vanishes, and explain 
this deviation from Rolle's theorem. 

1121. The function y = \ χ | takes equal values at the 
ends of the interval [—a, a] . Verify that there is no point of 
the interval at which the derivative of the function vanishes, 
and explain this deviation from Rolle's theorem. 

1122. Prove the theorem: if the equation 

aQx
n
 -f- a^"

-1
 + . . . + an_xx = 0 

has a positive root χ = x0i the equation 

ηα0χ
η
-

χ
 + {η — 1) axx

n
~

2
 + . . . + an_x = 0 

also has a positive root, which is less than x0. 

1123. Given the function f(x) = 1 + x
m
(x — l )

n
, where 

m and η are positive integers, show without working out the 
derivative that the equation f(x) = 0 has at least one root 
in the interval [0, 1]. 

1124. Show that the equation x
2
 — Sx + c = 0 cannot 

have two different roots in the interval [0, 1]. 

1125. Given 

f(x) = ί χ - ΐ ) ( χ - 2) (x -3)(x- 4), 

discover how many roots the equation f'(x) ==. 0 has, and 
indicate the intervals in which they he. 

1126. Show that the function f(x) = x
n
 + px + q cannot 

have more than two real roots for η even or more than 
three for η odd. 

1127. Obtain Lagrange's formula for the function y = 
= sin 3x in the interval [xv x2]. 

1128. Obtain Lagrange's formula for y = x(l — ln x) in 
the interval [α, δ], 

1129. Obtain Lagrange's formula for y = arc sin 2x in the 
interval [x0, xQ + Ax], 
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χ
Δ
 sin - = χ \2ξ sin T — cos -r 

whence cos \ = 2 | sin \ — χ sin - . I f we now let χ tend 
I I a; 

to zero, ξ will also tend to zero, and we get : Urn cos -r = 0. 

Explain this paradoxical result. 

1136. By applying to the function f(x) = arc tan a; in the 
interval [1, 1*1 J the formula 

f(x0 + Ax) PÖ f(x0) + / ' â:0 + Ax, 

find the approximate value of arc tan Γ 1 . 

1130. Prove that Lagrange's theorem holds for the func-
tion y = x

n
 in the interval [0, α ] ; η > 0, a > 0. 

1131. Prove that Lagrange's theorem holds for the function 
y = ln χ in the interval [1, e ] . 

1132. Use Lagrange's formula to prove the inequality 

a — b _ , a ^ a — b 
^ ln-7 ^ —y— , 

a 6 6 

when 0 < 6 ^ a. 

1133. Use Lagrange's formula to prove the inequality 

^ 4 ^ tan α - tan β ^ , if 0 < β ^ α < \π. 
cos

2
 β cos

2
 α 2 

1134. Prove with the aid of Lagrange's formula that the 
inequalities 

τιδ"-
1
 (a — 6) < a

n
 — b

n
 < ηα

η
~

λ
 (a — 6), 

hold with a > b if η > 1, whilst they hold in the opposite 
sense if η < 1. 

1135. The function /(#) = a;
2
 sin- for χ φ 0, /(Ο) = 0 is 

differentiable for any x. Lagrange's formula for it gives in 
the interval [0, x] : 

f(x) - /(0) = */ '(£) (0 < ξ < χ). 
We have: 
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In problems 1137-1141, use the formula 

f(x0 + Ax) & f{x0) + /' + Ax, 

to find approximate values of the given expressions. 

1137. arc sin 0*54. 

1138. log 11. Compare with tables. 

1139. In (x + Vi + x
2
) for χ = 02. 

1140. log 7, knowing that log 2 = 0*3010 and log 3 = 
= 0*4771. Compare the result with tables. 

1141. log 61. Compare the result with tables. 

1142. Show that, if we use the formula 

/(δ) = /(α) + ( δ - α ) / ' ( ^ ) 

to work out the logarithm of Ν + 00LZV, i.e. if we put 

log (N + 001 N) = log Ν Η V T * 0-01 Ν 
Ν + ^ Ν 

. Λτ 0-43429 
= 1

° δ ^ + -ΪΟ<ΗΓ ' 

the error involved is less than 0*00001, i.e. the answer is 
correct to five figures after the decimal point, provided log Ν 
is correct to five figures. 

The Behaviour of a Function in an Interval 

1143. Prove that the function 

y = 2ζ
3
 + Sx

2
 — 12a; + 1 

is decreasing in the interval (—2, 1). 

1144. Prove that the function 

y = γ2χ — χ
2 

is increasing in the interval (0, 1) and decreasing in (1, 2). 
Draw the graph of the function. 
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1149*. Prove that > ^ if 
ud/Il X-^ X-^ 

0 < a?x < x2 < I . 
1150. Find the interval in which 

y = χ* — 2>x
2
 — 9x + 14 

is monotonie, and plot its graph in the interval (—2, 4 ) . 

1151. Do the same for the function 

y = x* — 2x
2
 — 5 

in the interval (—2, 2). 
Find the intervals in which the functions of problems 

1152-1164 are monotonie: 

1152. y = (x- 2)
5
 (2a? + l )

4
. 

3 

1153. y = V (2x - a) (a - xf (a > 0). 

1154·y = \ + χχΧΐ* ·
 1 1 5 δ

·
y
 = ix>-

l
9%+<>x · 

1156. y = χ — e*. 1157. y = x
2
 e~

x
. 

1158. y=-—. 1159. y = 2x* - ln x. 

* mx 
1160. y = x — 2 sin s (0 ^ χ ^ 2π). 

1161. y = 2 sin x + cos 2z (0 ^
 χ

 ^ 2π). 

1162. y = a + cos x. 1163. y = ln {x + ] / l + z
2
) . 

notonically in any interval not containing a discontinuity. 

1148. Prove that the function ν = varies mo-

any interval not containing the point χ = 0. 

1147. Prove that the function y = is increasing m 

1145. Prove that the function y = χ
3
 + χ is always in-

creasing. 

1146. Prove that the function y = arc tan χ — χ is always 
decreasing. 
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• 77 a;
2
 — 

Ί =
 ^ ~~ 1)

 a rC S În
 *

 +
 ï * ^

1
 ~~

 χ 2
 ~~

 r 

I = x sin x - f cos a; — - a;
2
 — — ^ χ ^ - \ . 

= ^ — a;j cos a; + sin x —
 X
 ^

 X
 ^0 ^ x ^ ^ j . 

2 # 1 
= cos π(χ + 3) + sin :r(a; + 3) (0 < a; < 4). 

1184. y = ae
p
* + be~P

x
. 

Find the maxima and minima of the functions of problems 
1185-1197 in the intervals quoted: 

1185. y = - 2x
2
 + 5; [ - 2 , 2] . 

1186. y = χ + 2 Yx; [0, 4]. 

1187. y = a;
5
 — 5â  + 5ar> + 1; [ — 1, 2]. 

1164. y = χ Yax — x
2
 (a > 0). 

Find the extrema of the functions of problems 1165-1184: 

1165. y = 23?- 3a;
2
. 

1166. y = 2a? — 6a;
2
 — 18x + 7. 

1167. y =
 3 x

' t
 4

* ,
+
,

4
 · 1168. y = y ^ - 3 z

2
 + 8. 

Χ
Δ
 - j - X -f- 1 

1 1 6 9
'
 y =

 ln (aï* + 4a;
3
 + 30) " 

1170. y = - x
2
 Va;

2
 + 2. 1171. y = | a;

2
 f 6a; - 7. 

1172. y=
 4

, G _ . 117». y - ,
1
 +

 3
* . 

te/l —α / 4 + 5a;
2 

3 
1174. y = /(a;

2
 - a

2
)

2
. 1175. j / = x - ln (1 + x). 

3 
1176. y = : r - l n ( l + ζ

2
) . 1177. y = (x - 5)

2
 /(a? + l )

2
. 

1178. y = (x
2
 — 2a:) ln a; - | a;

2
 + 4a;. 

1 π 
1179. y = - (a;

2
 + 1) arc tan x — -

2 ο 

1180. y = \[x
2
- ^ |arc sin a; + j a ? / l - x

2
 — ^x

2
. 

1181. Î/ 

1182. y 

1183. y 



I V . I N V E S T I G A T I O N O F F U N C T I O N S A N D C U R V E S 113 

1189. y = ] / 1 0 0 - Ζ
2
 ( - 6 ^ χ ^ 8). 

1 — χ + χ
2 

1 + χ — χ
2 

1191. y = ^ - p i - ( 0 S ^ 4). 

1192. y = — - f y - ? — (0 < α < 1) (α > 0, δ > 0). 
Χ L Χ 

1193. y = sin 2x — a; ^— | ^ a; ^ | j . 

1194. y = 2 tan a; — tan
2
 χ ^0 ^ χ < | j . 

1195. y = a;
x
 (01 ^ a; < oo). 

3 
1196. y = Y(x

2
- 2x)

2
 (0^x^ 3). 

1197. y = arc tan J— -̂- (0 ^ a; ^ 1). 
* 1 + χ 

Inequalities 

Prove the inequalities of problems 1198-1207: 

1198. 2 Yx > 3 - - (x > 1). 

a? 
1199. e* > 1 + χ (x-t-0). 

1200. a; > ln (1 + a;) (a; > 0). 

1201. ln χ >
 2 ( a?

 (a; > 1). 
χ + 1 

1202. 2a; arc tan a; ^ ln (1 + a;
2
). 

1203. 1 + * ln (χ + γΐ + χ
2
) ^ f l + x

2
. 

1204. ln (1 + * ) >
 & T O t

*
n X

 (x > 0). 
1 ~j— X 

x^ â  
1205. sin χ < χ — — + — > °)· 

1188. y = a;
3
 - 3a;

2
 + 6a; - 2; [ - 1 , 1]. 
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1206. sin χ + tan χ > 2x 0 < χ < 

Problems on Finding Maxima and Minima 

1208. Divide the number 8 into two parts such that the 
sum of their cubes is a minimum. 

1209. What positive number gives the least sum when 
added to its reciprocal ? 

1210. Divide the number 36 into two factors such that 
the sum of their squares is a minimum. 

1211. We want to make a box with a lid, its volume being 
72 cm

3
, and the sides of the base in the ratio 1:2. What must 

be the dimensions of all the sides for the total surface area 
to be a minimum? 

1212. We want to cut out equal squares from the corners 
of a square piece of paper measuring 18 X 18 cm

2
 so that the 

box made by folding the paper along the dotted lines (Fig. 29) 
has the maximum capacity. What is the side of the squares 
cut out? 

1213. Solve the previous problem for a rectangular sheet 
measuring 8 x 5 cm

2
. 

1214. The volume of a regular triangular prism is v. What 
must the side of the base be for the total surface area of the 
prism to be a minimum ? 

F I G . 29 . 
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1215. An open vat has a cylindrical shape. Given the 
volume v, what must be the radius of the base and the height 
for its surface area to be a minimum ? 

1216. Find the ratio of the radius R and height H of a 
cylinder of given volume when its surface area is a mini-
mum. 

1217. We want to make a conical funnel with a generator 
20 cm long. What must be the height of the funnel for its 
volume to be a maximum ? 

1218. A sector with central angle α is cut out of a circle. 
The sector is folded to form a conical shape. What is the 
value of α for the cone to have maximum volume ? 

1219. The perimeter of an isosceles triangle is 2p. What are 
its sides for the volume of the solid formed by revolving the 
triangle about its base to be a maximum ? 

1220. The perimeter of an isosceles triangle is 2p. What are 
its sides if the volume of the cone formed by revolving the 
triangle about its height is a maximum? 

1221. Find the height of the cylinder of maximum volume 
that can be inscribed in a sphere of radius R. 

1222. Find the height of the cone of maximum volume 
that can be inscribed in a sphere of radius R. 

1223. A rain drop of initial mass m0 evaporates uniformly 
whilst falling under the action of gravity, so that its mass 
decreases proportionally to time (coefficient of proportiona-
lity k). How many seconds after the drop starts falling is its 
kinetic energy a maximum, and what is the maximum? 
(Air resistance is neglected.) 

1224. A lever of the second kind has support point A ; 
the load Ρ is suspended at point Β (AB = a). The weight of 
unit length of the lever is k. What is the length of the lever 
for load Ρ to be balanced by the least force ? (The moment 
of the balancing force must be taken equal to the sum of 
the moments of load Ρ and the lever.) 

1225. The cost of fuel for the furnace of a steamer is 
proportional to the cube of its speed. We know that the fuel 
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costs at a speed of 10 km/hr amount to 30 roubles/hour, 
the remaining costs (independent of the speed) being 480 
roubles/hour. What is the speed for the total cost per km 
travelled to be a minimum ? What is the total cost per hour 
in this case? 

1226. A, Β and C are three non-collinear points, and 
/_ABC = 60°. A car leaves from A, and a train from B, 
at the same instant. The car travels towards Β at a speed of 
80 km/hr and the train towards C at 50 km/hr. I f AB = 
= 200 km, how long after the start are the car and train 
a minimum distance apart ? 

1227. Given the point A on a circle, draw the chord BG 
parallel to the tangent at A such that the area of the triangle 
ABC is a maximum. 

1228. Find the sides of the rectangle of maximum peri-
meter inscribed in a semi-circle of radius B. 

1229. Inscribe the rectangle of maximum area in a given 
segment of a circle. 

1230. Circumscribe the cone of maximum volume about 
a given cylinder (the planes of the bases of cylinder and cone 
must coincide). 

1231. Find the height of the right circular cone of least 
volume circumscribed about a sphere of radius R. 

1232. Find the vertex angle of the axial section of the 
cone of least lateral surface area circumscribed about a given 
sphere. 

1233. What is the angle at the vertex of an isosceles triangle 
of given area for maximum radius of the inscribed circle? 

1234. Find the height of the cone of least volume circum-
scribed about a hemisphere of radius R (the centre of the 
base of the cone lies at the centre of the sphere). 

1235. What must be the height of a cone inscribed in a 
sphere of radius R if its lateral surface is a maximum ? 

1236. Prove that a conical tent of given capacity requires 
a minimum amount of material when its height is γ2 times 
the base radius. 
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1237. Draw a straight line through the given point Ρ (1,4) 
such that the sum of the lengths of the positive intercepts that 
it cuts off the coordinate axes is a minimum. 

1238. Find the sides of the rectangle of greatest area 

inscribed in the ellipse — 4- = 1. 
a

2
 b

2 

1239. Find the ellipse of least area circumscribed about 
a given rectangle (the area of an ellipse with semi-axes a 
and b is nab). 

1240. I f the area of the triangle formed by a tangent to 

the ellipse — + TÖ
 =
 *

 a n (
* ^he coordinate axes is a mini-

o lo 

mum, what is the point of contact ? 

1241. Two points A (1, 4) and Β (3, 0) are given on the 
ellipse 2x

2
 + y

2
 = 18. Find the third point C of the ellipse 

such that the area of triangle ABC is a maximum, a minimum. 

1242. Given a point on the axis of the parabola y
2
 = 2px 

at a distance a from the vertex, find the abscissa χ of the 
point of the parabola closest to it. 

1243. An iron strip of width a has to be bent to form an 
open cylindrical gutter (the gutter section is the arc of a 
circle). Find the angle subtended by the arc at the centre 
of the circle for maximum capacity of the gutter. 

1244. A log 20 m long is in the form of a frustum of a 
cone, the base diameters of which are 2 m and 1 m respectively. 
We want to cut out a beam from the log with a square cross-
section and the same axis as the log, the volume of the beam 
being a maximum. What will be the dimensions of the beam? 

1245. A series of experiments leads to η different values 
xv x2, . . ., xn for the required quantity A. The value of A 
is often taken as the χ such that the sum of the squares of 
its deviations from xv x2, . . ., xn is a minimum. Find the χ 
satisfying this requirement. 

1246. A torpedo-boat stands at anchor 9 km from the 
nearest point of the coast ; an express messenger has to be 
sent from the boat to a camp 15 km along the coast, measured 
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from the point nearest the boat. I f the messenger can walk 
at 5 km/hr and row at 4 km/hr, at what point should 
he land on the coast in order to reach the camp in the shortest 
time? 

1247. A lamp has to be suspended directly above the centre 
of a circular area of radius R. What should its height be in 
order to get the best illumination of a path round the area ? 
(The degree of illumination of an area is directly proportional 
to the cosine of the angle of incidence of the ray and inversely 
proportional to the square of the distance from the source.) 

1248. Find the least illuminated point on a straight line 
of length I joining two light sources of intensities Ix and I2. 

1249. A picture 1*4 m high hangs on a wall so that its 
lower edge is 1*8 m above the eye of an observer. At what 
distance should the observer stand from the wall for his posi-
tion to be the most favourable for viewing the picture? 
(i.e. for maximum angle of vision). 

1250. A load of weight Ρ on a horizontal plane has to be 
shifted by applying a force F to it. The friction force is pro-
portional to the force pressing the body to the plane and 
is directed in opposition to the displacing force. The coefficient 
of proportionality (coefficient of friction) is k. At what 
angle φ to the horizontal should the force be applied in order 
for it to be a minimum ? What is the value of this minimum ? 

1251. The speed of flow of water along a circular pipe is 
directly proportional to the so-called hydraulic radius R, 

S 
calculated from the formula R = —, where S is the cross-

V 
sectional area of the water in the pipe and ρ is the wetted 
perimeter of the pipe section. The degree to which the water 
fills the pipe is characterized by the angle subtended at the 
centre by the horizontal surface of the water. A t what degree 
of filling is the speed of flow of the water a maximum? 
(Find graphically the roots of the transcendental equation 
encountered in this problem.) 

1252. The printed text has to occupy S square centimetres 
on the page of a book. The upper and lower margins must be 
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a cm, the left and right margins b cm. I f we are concerned 
only with paper economy, what are the best dimensions of a 
page? 

1253*. A conical funnel of base radius R and height H is 
filled with water. A sphere is submerged in the water. What 
should the radius of the sphere be for the maximum volume of 
water to be displaced from the funnel by the submerged part 
of the sphere ? 

1254. The vertex of a parabola lies on a circle of radius 
R, the parabola axis being along a diameter. What should the 
parabola parameters be for maximum area of segment boun-
ded by the parabola and its common chord with the circle ? 
(The area of a symmetrical parabolic segment is equal to 
two-thirds the product of its base and height.) 

1255. A cone of base radius R and height H is cut by a 
plane parallel to a generator. What is the distance between 
the line of intersection of this plane with the base plane and 
the centre of the base for a maximum area of intersection 
(See the previous problem.) 

1256. At what point Ρ of the parabola y
2
 = 2px is the 

segment of the normal at P , contained inside the curve, a 
minimum ? 

1257. Prove that the tangent to an ellipse, the intercept 
of which between its axes has minimum length, is divided 
by the point of contact into two pieces respectively equal to 
the semi-axes. 

1258. Prove that the distance from the centre of an ellipse 
to any normal does not exceed the difference between the 
semi-axes. (It is advisable to use the parametric equations of 
the ellipse.) 

1259. A point (a, b) and a curve y = f(x) are given in a 
rectangular system of coordinates xOy. Show that the di-
stance between the fixed point (a, b) and the variable point 
(x, f(x)) can only have an extremum in the direction of the 
normal to the curve y = f(x). 
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1 + x
2 

is constant for χ ^ 1. Find the value of the constant. 

1265. Prove that the function 

a cos χ + b 
y = arc cos —,—, 

a + b cos χ 
2 a r c t a n ^ ^ - j - | t a n | j , 

where 0 < b ^ a} is constant for χ ^ 0. Find the value of the 
constant. 

1266. Show that the functions - e
2 x

, e
x
 sinh χ and e

x
 cosh χ 

Δ 
differ by a constant. Show that each function is a primitive 

e
x 

of 
cosh χ — sinh χ ' 

3. Applications of the Second Derivative 

Extrema 

Find the extrema of the functions of problems 1267-1275 
by using the second derivative: 

1267. y = χ* — 2ax
2
 + a

2
x (a > 0). 

1268. ρ = χ
2
 (a - x)

2
. 1269. y = χ + — (α > 0). 

χ 

A Property of the Primitive 

1260. Prove (by two methods) that the functions y = 
= ln ax and y = ln χ are primitives of the same function. 

1261. The same for functions y = 2 sin
2
 χ and y = —cos 2x. 

1262. The same for y = (e
x
 + e ~

x
)

2
 and 2/ = (e

x
 — e ~

x
)

2
. 

1263*. Prove that the function 

y = COS
2
 X + COS

2
 ^ + Xj — COS # COS ^ + #j 

is constant (independent ofx). Find the value of this constant. 

1264. Prove that the function 

y = 2 arc tan # + arcsin 
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1270. y = χ + Yl - χ. 1271. y = χ Y2 - χ
2
. 

1272. y = e
û
 + © ~

û
. 1273. y = x

2
e~

x
. 

x 1 
1274. y = ^ - . 1275. y = a;*. 

1276. For what value of a has the function 

f(x) = α sin χ + ^ sin 3x 
Ô 

71 
an extremum at χ = - ? Is this a maximum or minimum ? 

1277. Find the values of a and b for which the function 

y z= alnx -{- bx
2
 - f a; 

has an extremum at points a;x = 1 and x2 = 2. Show that, with 
these values of a and δ, the function has a minimum at a;x and 
a maximum at a;2. 

Convexity, Concavity, Points of Inflexion 

1278. Find whether y = χ
5
 — 5a;

3
 — 15a;

2
 + 30 is convex 

or concave in the neighbourhood of points (1, 11) and (3, 3). 

1279. Find whether the curve y = arc tan χ is convex or 

concave in the neighbourhood of points | l , and |— 1, 

_ I
J ' 

1280. Find whether the curve y = χ1 ln χ is convex or 

concave in the neighbourhood of points (1,0) and I - Ö , 
_ —\ ^ 

•?)' 
1281. Prove that the graph of y = χ arc tan χ is concave 

everywhere. 

1282. Prove that the graph of y = ln (χ
2
 — 1) is convex 

everywhere. 

1283. Prove that, if the graph of a function is everywhere 
concave or convex, the function cannot have more than one 
extremum. 
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1294. y = a - Yx — δ. 

1295. y = e
s i n

* ^ - a? ^ | j . 

1296. y = In (1 + a;
2
). 1297. y = - ln - (a > 0). 

a; ο-

1298. y = a — Y(x — δ )
2
. 1299. y = e

a r c t a n 3 C
. 

1300. y = a*(121na- — 7). 
χ 4 - 1 

1301. Show that the curve y = 2 has three points 
χ ~\~ 1 

of inflexion which are collinear. 

1302. Prove that the points of inflexion of y = χ sin χ He 

on the curve y
2
 (4 + %

2
) = 4:X

2
. 

1284. Let P(x) be a polynomial with positive coefficients 
and even powers. Show that the graph of y = P(x) + ax + b 
is everywhere concave. 

1285. The curves y = φ(χ) and y = \p{x) are concave in 
the interval (a, b). Show that, in this interval: (a) the curve 
y = φ(χ) -|- ψ(χ) is concave; (b) if φ(χ) and \p{x) are positive 
and have a common minimum, the curve y = φ(χ) ψ(χ) is 
concave. 

1286. Find the shape of the graph of the function when we 
know that, in the interval [a, b]: 

(1) y > 0, y' > 0, y" < 0; (2) y > 0, %f < 0, y" > 0; 
(3) y < 0, y' > 0, y" > 0; (4) y > 0, 2/' < 0, j , " < 0. 

Find the points of inflexion and the intervals of convexity 
and concavity of the graphs of the functions of problems 
1287-1300: 

1287. y = χ
3
 - 5x

2
 + 3x - 5. 1288. y = {χ + l )

4
 + e*. 

1289. y = χ
4
 - 12a;

3
 + 48a:

2
 — 50. 

1290. y = χ + 36a;
2
 - 2a;

3
 — a;

4
. 

1291. y = 3a* - 5â  + 3a; — 2. 

1292. y = (a; + 2)· + 2a; + 2. 1293. y = ^ (α > 0). 
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1303. Prove that the points of inflexion of the curve y = 
sin χ 

he on the curve ?/
2
(4 - f x

4
) = 4. 

1304. Show that the graphs ofy= +e~"
x
 and y = e~

x
 sin χ 

(the curve of a damped vibration) have common tangents at 
the points of inflexion of the curve y = e~

x
 sin x. 

1305. For what values of a and b is the point (1, 3) a 
point of inflexion of the curve y = ax

z
 + bx

2
 ? 

1306. Choose α and β such that the curve x
2
y + ax + 

- f ßy = 0 has a point of inflexion at .4(2, 2*5). How many-
further points of inflexion are there ? 

1307. For what values of a has the graph of y = e
x
 + ax? 

a point of inflexion ? 

1308. Prove that the abscissa of the point of inflexion of 
the graph of a function cannot coincide with an extremal 
point of the function. 

1309. Prove that, for any twice differentiable function, at 
least one abscissa of a point of inflexion of the graph lies 
between two extremal points. 

1310. Prove by taking y = χ
4
 + 8χ

3
 + 18α;

2
 + 8 as an 

example that there can be no extremal points between the 
abscissae of points of inflexion of a function (cf. the previous 
problem). 

1311. Find the shapes of the graphs of the first and second 
derivatives from the graph of the function of Fig. 30. 

χ 

y 

ο Α b Χ 

F I G . 30. 
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1312. Do the same from the graph of the function of 
Fig. 31. 

F I G . 31 . 

1313. Find the shape of the graph of a function, given the 
graph of its derivative (Fig. 32). 

b Χ 

F I G . 32 . 

1314. Find the shape of the graph of a function, given the 
graph of its derivative (Fig. 33). 

fy 

F I G . 33 . 

1315. A curve is given by the parametric equations χ = 
= cp(t), y = ip(t). Show that the curve has points of inflexion 
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4. Auxiliary Problems. Solution of Equations 

Cauchy's Formula and VHôpital
9
β Rule 

1318. Write Cauchy's formula for the functions f(x) = 
= sin χ and φ(χ) = ln χ in the interval [a, b], 0 < a < 6. 

1319. Write Cauchy's formula for the functions f(x) = e
2
* 

and φ(χ) = 1 + e
x
 in the interval [a,b], 

1320. Prove that Cauchy's formula holds for f(x) = #
3
 and 

φ(χ) = χ
2
 + 1 in the interval [1, 2], 

1321. Prove that Cauchy's formula holds for f(x) = sin χ 

and φ(χ) = χ + cos χ in the interval 

1322. Prove that, if \f'(x)\ ^ \φ'(χ)\ in the interval 
[a, 6], we also have | ^ / ( # ) | ^ |ζ!φ(#)|, where Af(x) = 
= f(x + Ax) — f(x), Αφ(χ) = φ(χ + Ax) — φ(χ), and χ and 
χ + Ax are arbitrary points of interval [a, 6], 

1323. Prove that the increment of y = ln (1 + x
2
) is less 

than the increment of y = arc tan χ in the interval 

(x ^ 0), whilst the converse holds in 
1 

2 ' * 

Γ i l 
*'2 

A arc tan a; < 

< A In (I + x
2
). Use the latter relationship to show that, 

Π in the interval 
2' 

π 
arc tan # — ln (1 + χ

2
) ^ - — ln 2. 

at the values of t for which the expression ^ Ψ ) 

changes sign (the primes denote differentiations with respect 
to t), and <p'(J) + 0. 

1316. Find the points of inflexion of the curve χ = t
2
, 

y=3t + Λ 

1317. Find the points of inflexion of the curve χ = e
f
, 

y = sin t. 
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χ-*α Y~x — γα x - 0 X 

ίο™ e* — 1 . Ο Λ_ e
ax

 — cos olx 
1326. hm —: . 1327. hm - R 7r 

x^ o sin χ x^ o &
x
 — cos px 

1328. lim · 1329. lim *
 Γ %

~
 1 

χ - ο
 x

 x-*o y sin bx 

χ — sin χ 
lim 

# — tan χ 

1330. lim X ~ s i n X . 1331. lim * "
 2 a r C U n

* 
/" 1\ 

ln 1 + -

γτη ΓΙ τη nx 

1332. lim — = - . 1333. lim x
n
 — α" ' χ^ ο c

x
 — d 

1334. Hm
 e

*' ~
 1

, . 1335. lim ^ ~
 e

~ 

X 

x̂o cos α; — 1 x^ 0 sin x cos a: * 

1336. lim . 1337. lim °°f
 a

^
 (a

 "
 α) 

x , o x f 1 — χ
2
 In (e

x
 — e°) 

pX ρ—X O/v. p t a n x pX 

1338. hm — ^ - - . 1339. lim
 Θ θ 

x_ o x — sin a:
 χ^ ο tan χ — χ 

χ
3
 χ

2 

(3
Χ
 — τ — 1 1340. lim

 6 2 

χ - ο , a:
2 

cos χ + — 
Δ 

ΡΧ
3
 Ι ΎΖ 

1341. l i m
6 1 Χ 

χ_.ο sin
6
 2a; 

ln (1 + xf — éx + 2x
2
 — ί a;

3
 + â  

1342. hm _ 
x̂o 6 sm a; — 6a; -J- a;

0 

1343. lim l "
8

™
2

* . 1344. lim
 1 η

* 
x_*o In sin χ x^ o In sin χ 

ln (1 — x) + tan ^ 
1345. lim . 1346. lim (x

n
e~

x
). 

x^i cotnx x ^ + o o 

Find the limits of the functions of problems 1324-1364: 
3 3 _ 

1324. lim S^S. 1325. lim
 m 0 08

 * 
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1348. lim 

1350. lim 

χ sin- 1349. lim 
x-1 

5 L I 
- 1 In x\ 

(α
2
 - φ

2
) tan ψ. . 1351. lim (r-L - . T

 2a \ln x m χ) 

1352. lim (cot χ — -] . 
x - 0 ^ #J 

1353. lim 
x-1 71X cos — In (1 — x) 

1354. lim [V(a + a;) (6 + s ) (c + a?) — s ] . 

1355. lim[a;(e
x
 - l ) ] . 

1357. lim (tan x)**-». 

1356. lim 
x - 0 

[x*Ji 

1358. lima;
s i n x

. 
x - 0 

1359. l ima ;
1
"^ -

1
) . 

x - 0 

1361. lim (e* + x)
x 

x - 0 

, U I P . 1360 

1362. lim 

1363. lim 
X 

1364. lim 
x - 0 

l n ( l + a Q
1 +

* 1 
χ Χ

Δ 

sin χ 
1365. Prove that lim —•—-. exists but cannot be eval-

x^ o o x + sin χ 
uated by l'HopitaTs rule. 

1366. For sufficiently large values of x, which is the big-
ger : a

x
x? or â  ? 

1367. Assuming that f(x) —• oo as χ - > oo, which is the 
greater, f(x) or ln/(a;), for sufficiently large values of #? 

]_ 

1368. Let χ -> 0. Prove that e — (1 +x)
x
 is a first-order 

infinitesimal with respect to x. 

1369. Let χ -> 0. Prove that ln (1 + x) — e(lnln(e + a;)) 
is a second-order infinitesimal with respect to x. 

1347. lim [(π — 2 arc tan χ) lux]. 
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1370. A length AN is marked off along the tangent to a 
circle of radius r at point A (Fig. 34) equal to the length of 
arc AM. NM produced cuts diameter ^40 produced at B. 
Prove that 

r (acos a — sin a) 
0B = 

sm a — a 

where a is the angle in radians subtended at the centre by 
arc AM, and show that lim OB = 2r. 

a - 0 

F I G . 34. 

Asymptotic Variation of Functions and Asymptotes to Curves 

1371. Prove directly from the definition that y = 2x + 1 
is the asymptote to the curve 

2x* + α
3
 + 1 

y =
 x> ' 

1372. Prove directly from the definition that χ + y = 0 
is an asymptote to the curve x

2
y + xy

2
 = 1. 

3 
1373. Prove that the curves y = Yx* + 3x

2
 and y = 

χ
2 

= - — are asymptotic to each other as χ + oo. 

1374. Prove that the functions 

f(x) = Yx
6
 + 2x* + lx

2
 + 1 and φ(χ) = a

3
 + χ 

are asymptotically equal as χ oo. Use this fact to evaluate 
approximately / ( l l 5) and /(120). What is the error if we put 
/(100) = 9>(100)? 
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X
 = T > y = t' » t + l 

Find the asymptotes of the curves of problems 1375-1391: 

2 2 

1375. % - | : = 1. 1376. xy = a. 
a

2
 b

2 

1377. y = —, j - — : — z - . 1378. y = c + ,
 a

° . 

* *
2
 — 4x + 5 *

 τ
 (χ — b)

2 

1379. 2y (χ + I)
2
 = « · . 1380. y* = a* — χ*. 

1381. y
3
 = 6x

2
 + ζ

3
. 1382. y

2
(x

2
+l) = x

2
(x

2
-l). 

1383. an/
2
 + x

2
y = a

3
. 

1384. y(x
2
 — Zbx + 2b

2
) = x

3
 — Sax

2
 + a

3
. 

1385. (y + x + l)
2
 = x

2
 + 1. 

1386. y = x ln |e + i j . 1387. y = a»?. 

2 

1388. y = a;e* + 1· 1389. y = x arc sec » . 

X 
1390· y = 2# - f arc tan - . 

Δ 

xf(x} I 
1391· y = — ̂ f - r — , where /(x) is a polynomial (a + 0). 

/ ( « ) 
1392· A curve is given by the parametric equations χ = 

= φ(ή, y = \p(t). Show that there can only be asymptotes, 
not parallel to either axis, for the values t = t0 at which 
simultaneously 

hm (p(t) = oo and Hm \p(t) = oo. 

In this case, if the equation of the asymptote is y = ax + b, 
we have 

a = Hm , b = Hm [w(t) - αα>(*)]. 

How do we find the asymptotes paraUel to an axis ? 

1393. Find the asymptotes of the curve 

1 t 
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t - 1 ' *~ t- 1 ' 

1395. Find the asymptotes of the curve 

2t t
2 

χ
 = λ—72> y 1 _ ρ > * ι t

2
 ' 

1396. Find the asymptotes of the folium of Descartes: 

3a* 3at
2 

y ~ - ι + > * - ι + tz ' 

1397. Find the asymptotes of the curve 

_ t - 8 _ 3 
x
 - t

2
 - 4 '

 y
 - t(t

2
 - 4) * 

General Investigation of Functions and Curves 

Carry out a full investigation and draw the graphs of the 
functions of problems 1398-1464: 

1398. , = ^ . 1 3 9 9 ^ = ^ . 

1400. y
 X 

χ
2
 - 1 ' 

1401. y{x - 1) (x - 2) (x — 3) = 1 

1402. y = χ*]_ . 1403. y = (χ
2
 - l )

3
. 

1404. y = 32x
2
(x

2
 - l )

3
. 

1405. y = ^ + 4x
2
 (Newton's "trident"). 

1 2r 1 

1406. y = x
2
 + -2 . 1407. y = 2 x

2
 • » (x - 1) 

i m
- y = s ^

2
-

 1 4 0 9
· y - w ^ w • 

1410. y(x - 1) = a:
3
. 1411. t/(#

3
 — 1) = x\ 

1394. Find the asymptotes of the curve 

2e< te< 
x
 = 7—r* y 



IV. INVESTIGATION OF FUNCTIONS A N D CURVES 131 

1414. xy = (x
2
 - l ) ( x - 2). 

1415. {y-x)x
i
 + 8 = 0. 1416. y = % . 

1417. y = x
2
e-*. 1418. y = ^ . 

1419. y = χ - ln (x + 1). 1420. y = ln (x
2
 + 1). 

1421. y = x
2
e-*\ 1422. y = χ*β-

χ
. 

_Ξ! 1 
1423. t/ = χβ

 2
 1424. = ^ — - . 

1425. y = * - f ^ . 1426. y = | l + ^ . 

1427. y = χ + sin χ. 1428. y = χ sin χ. 

1429. y = In cos χ. 1430. y = cos χ — ln cos χ. 
ι 

1431. 2/ = x - 2 arc tan χ. 1432. 2/ = e*
2
~

4
*+

3
 . 

1433. 2/ = e
s i nx

 — sin χ (without seeking the points of 
inflexion). 

3 

1434. y = Yx
2
 - χ. 1435. y* = x

2
(x

2
 - 4)

3
. 

1436. (3y + x )
3
 = 27x. 

3 3 

1437. y = Y(x + l )
2
 - Yx

2
 + 1. 

1438. 2 / = (x - l )
3
 ( « + l )

3
. 

1439. 2/
3
 = 6x

2
 - x

3
. 1440. (2/ - x )

2
 = x

5
. 

1441. (2/ - x
2
)

2
 = x

5
. 1442. 2/

2
 = a

8
 + 1. 

1443. 2/
2
 = x

3
 — x. 1444. 2/

2
 = x(x — l )

2
. 

1445. 2/
2
 = *

2
( * - 1). 1446. y

2
 = . 

1447. x
2
y + xy

2
 = 2. 

1448. y
2
 = χ

2 a X
 (strophoid) 

et — X 
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1+t*' * 1 + ί
3
 ' 

1468. a; = te', ι/ = te-1. 
1469. a; = 2α cos t — a cos 2£, t/ = 2a sin £ — a sin 2£ (car-

dioid). 

Investigate the curves whose equations are given in polar 
coordinates in problems 1470-1477: 

1470. ρ = a sin 3φ (three-petal rose). 

1471. ρ = a tan φ. 1472. ρ = a(l + tan φ). 

1473. ρ = α(1 + cos 99) (cardioid). 

1474. ρ = α(1 + b cos φ) (α > 0, δ > 1) (limaçon). 

2 
1475. ρ = - (litus). 1476. ρ = - arc tan ? . 

φ κ 71 71 
1477. ρ = / I - <

2
, ρ = arc sin t + Y 1 - t

2
. 

1449. 9y
2
 = 4a;

3
 - tf. 1450. 25y

2
 = a;

2
(4 - a;

2
)

3
. 

1451. y
2
 = x

2
 — x*. 1452. x

2
y

2
 = 4(z — 1). 

1453. y
2
(2a — x) = x* (cissoid) 

1454. x
2
y

2
 =(x-l)(x- 2). 

1455. x
2
y

2
 = (a + # )

3
 (a — (conchoid) 

1456. 16i/
2
 = (x

2
 - 4)

2
 (1 - x

2
) 

1457. ι/
2
 = (1 - x

2
f. 1458. y

2
x* = (χ

2
 - l )

3
. 

1459. y
2
 = 2e a**"

2
*. 1460. y = e~* —x. 

1461. y = e
t a n

\ 1462. f(x) = = - ^ , /(0) = 1. 
X 

ΐ 1 
1463. ι/ = 1 — xe 1*1 * for a; + = 0, */ = 1 for χ = 0. 

1464. y = x
2
-4\x\ + 3. 

Investigate the functions given parametrically in problems 
1465-1469 and sketch their graphs: 

1465. χ = i
3
 + 2>t + 1, y = i

3
 — 3* + 1. 

1466. χ = ß — 3π, y = Ρ — 6 arc tan t. 

1467. χ = 1 Γ Τ- ^ 9 y 
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First reduce the equations of the curves of problems 1478-
1481 to polar coordinates, then investigate and plot the 
curves : 

1478. (a;
2
 + y

2
f = 4 a

2
x V . 1479. (x

2
 + y

2
)x = a

2
y. 

1480. & + y* = a
2
(x

2
 + y

2
). 

1481. (x
2
 + y

2
) (x

2
 - y

2
)

2
 = ±x

2
y

2
. 

Solution of Equations 

1482. Prove that the equation 

x* — x
2
 — 8a; + 12 = 0 

has one simple root xx = — 3 and one double root x2 = 2. 

1483. Prove that the equation 

x* + 2a? — 3a;
2
 — 4x + 4 = 0 

has two double roots x1 = 1 and x2 = —2. 

1484. Show that the equation χ arc sin χ = 0 has only one 
real root, this being double. 

1485. Show that the roots of the equation χ sin χ = 0 have 
the form χ = kn (k = 0, + 1 , + 2, . . . ) , where k = 0 corre-
sponds to a double root. What is the multiplicity of the re-
maining roots? 

1486. Show that the equation x? — 3a;
2
 + 6x — 1 = 0 

has a unique real simple root in the interval (0, 1), and find 
the root, by using trial and error, to an accuracy of 0 Ί . 

1487. Show that the equation â  + 3a;
2
 — χ — 2 = 0 has 

two (and only two) real simple roots, lying in the intervals 
(—1, 0) and (0, 1) respectively. Use trial and error to find 
these roots to an accuracy of 0*1. 

1488. Show that the equation f(x) = a -h 0, where f(x) is 
a polynomial with positive coefficients and odd powers only, 
has one and only one real root (which may be multiple). Con-
sider the case when a = 0. Find to an accuracy of 001 the 
root of the equation 

a;
3
 + 3a; — 1 = 0, 

by combining trial and error and the chord method. 
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1489. Prove the theorem: the necessary and sufficient 
condition for the equation x

z
 + px + 1 = 0 to have three 

simple real roots is that coefficients ρ and q satisfy the in-
equality 4p

3
 + 27g

2
 < 0. Find to an accuracy of 001 all the 

roots of the equation 

X3 gx + 2 = 0, 

by combining trial and error and the chord method. 

1490. Prove that the equation 

ζ
4
 + 2a;

2
 — 6x + 2 = 0 

has two (and only two) real simple roots, lying in the intervals 
(0, 1) and (1, 2) respectively. Find these roots to an accuracy 
of 001 by combining the tangent and chord methods. 

1491. Prove that the equation 

x
5
 — 5x + I = 0 

has a unique real simple root lying in the interval (—1, 0), 
and find the root to an accuracy of 001 by combining the 
chord and tangent methods. 

1492. Show that the equation xe
x
 = 2 has only one real 

root, which belongs to the interval (0, 1), and find the root 
to an accuracy of 001. 

1493. Prove that the equation χ ln χ = a has no real roots 

for a < — - , has one real double root for a = — - , two 
e e 

real simple roots for — ^ < a < 0 and one real simple root 

for a ^ 0. Find the root of the equation χ ln χ = 0*8 to an 
accuracy of 001. 

1494. Show that Kepler's equation χ = ε sin χ + α, where 
0 < ε < 1, has one simple real root, and find this root to an 
accuracy of 0001 when ε = 0*538 and a = 1. 

1495. Show that the equation a
x
 = ax always has two 

(and only two) real positive roots for a > 1, one root being 
equal to unity and the other less, greater than or equal to 
unity, depending on whether a is greater than, less than or 
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equal to e. Find the second root of the equation to an accu-
racy of 0001 when a = 3. 

1496. Show that the equation x
2
 arc tan χ = a, where 

a + 0, has one real root. Find the root to an accuracy of 
0*001 when a = 1. 

1497. For what base α of a system of logarithms do num-
bers exist which are equal to their logarithms? How many 
such numbers can there be? What is this number (to an 

accuracy of 001) when α = ^? 

5. Taylor's Formula and its Applications 

Taylor's Formula for Polynomials 

1498. Expand the polynomial oft — 5#
3
 -j- x

2
 — 3x + 4 

in powers of χ — 4. 

1499. Expand the polynomial x
z
 + 3x

2
 — 2x + 4 in po-

wers of χ + 1. 

1500. Expand x
10
 — Sx

5
 + I in powers of χ — 1. 

1501. Expand the function f(x) = (x
2
 — 3x - f I )

3
 in po-

wers of χ by using Taylor's formula. 

1502. f(x) is a fourth-degree polynomial. Knowing that 
/(2) = - 1 , / ' (2) = 0, f"(2) = 2, / " ' (2) = - 1 2 , f"(2) = 24, 
find / ( - l ) , / ' (0) , / " ( l ) . 

Taylor's Formula 

1503. Find Taylor's formula of order η at xô = — 1 for 
1 

y
 = x-

1504. Find Taylor's formula of order η at xQ = 0 (Mac-
laurin's formula) for y — xe

x
. 

1505. Find Taylor's formula of order η at x0 = 4 for 

y = Yx. 
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1506. Find Taylor's formula of order 2n at x0 = 0 for 

e
x
 + e~

x 

y
 = — τ - · 

1507. Find Taylor's formula of order η at x0 = 1 for y = 
= x

z
 ln x. 

1508. Find Taylor's formula of order 2n at x0 = 0 for 
y = sin

2 

1509. Find Taylor's formula of order 3 at x0 = 2 for y = 
χ 

= and draw the graph of the function and of its 
χ — ι 

third-degree Taylor polynomial. 

1510. Find Taylor's formula of order 2 at x0 = 0 for y = 
= tan χ and draw the graph of the function and of its second-
degree Taylor polynomial. 

1511. Find Taylor's formula of order 3 at x0 = 0 for y= 
= arc sin χ and draw the graph of the function and of its 
third-degree Taylor polynomial. 

1512. Find Taylor's formula of order 3 at x0 = 1 for 

y = -^L and draw the graph of the function and of its 
γ χ 

third-degree Taylor polynomial. 

1513*. Prove that the number 0 in the remainder term of 
Taylor's formula of order 1 : 

f(a + h) = f(a) + hf(a) + j f"(a + 0Λ) 

tends to \ as h 0 if f'"{x) is continuous at χ = a and 

f"'(a) *+- 0. Generalize this result. 

Some Applications of Taylor's Formula 

Describe the behaviour of the functions of problems 1514-
1519 at the points mentioned: 

1514. y = 2ofi — x
z
 + 3 at the point χ = 0. 

1515. y = α
11
 + 3s

6
 + 1 at the point χ = 0. 
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1516. y = 2 cos χ - f χ
2
 at the point χ = 0. 

1517. y = 6 ln χ — 2a;
3
 + 9a;

2
 — I8x at the point χ = 1. 

1518. y = 6 sin a; + x
2
 at the point a; = 0. 

1519. y = 24e* — 24a; — 12a;
2
 — 4a? - x

4
 — 20 at the 

point χ = 0. 

1520. /(a;) = a;
10
 — 3a? + a;

2
 + 2. Find the first three 

terms of the Taylor expansion at x0 = 1. Evaluate approxi-
mately /(1Ό3). 

1521. f(x) = x
s
 — 2a;

7
 + 5a? — χ + 3. Find the first three 

terms of the Taylor expansion at x0 = 2. Evaluate approxi-
mately /(2Ό2) and /(197). 

1522. f(x) = X
s0
 - x

40
 + x

20
. Find the first three terms of 

the expansion of f(x) in powers of χ — 1 and find approxi-
mately /(1Ό05). 

1523. f(x) = x
5
 — 5a;

3
 + x. Find the first three terms 

of the expansion in powers of χ — 2. Evaluate approximately 
/ ( 2 Ί ) . Evaluate / ( 2 Ί ) accurately and find the absolute and 
relative errors. 

1524. Show that the error is less than 001 when evaluating 
e

x
 for 0 < χ < 1 from the approximate formula 

e x t t l + x + — + - . 

Using this, find $ correct to three figures. 

1525· By using the approximation formula 

find and estimate the error. 

1526· Show that, if we take χ instead of sin χ 

for angles less than 28°, the error is less than 0*000001. Use 
this to evaluate sin 20° to six correct figures. 
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6. Curvature 

Find the curvatures of the curves of problems 1529-1526: 

1529. The hyperbola xy = 4 at the point (2, 2). 

x
2
 ii

2 

1530. The ellipse — + = 1 at its vertices. 
a

2
 6

2 

1531. y = a;
4
 — 4a;

3
 — 18a;

2
 at the origin. 

1532. y
2
 = Sx at the point 3J . 

1533. y = lux at the point (1, 0). 

1534. y = ln (x + YI + x
2
) at the origin. 

1535. y = sin χ at points corresponding to extremals of 
the function. 

1536. The folium of Descartes x
z
 + y

z
 = 3axy at the 

point | | α , | aj . 

Find the curvatures of the curves of problems 1537-1542 
at an arbitrary point (x, y) : 

2 2 

1537. y = χ*. 1538. -9 - = 1. 
u
 a

2
 b

2 

A A A 
1539. y = ln sec x. 1540. x

3
 y

3
 = a

3
 . 

1541. — + f- = 1. 1542. y = α cosh^ . 

1527. Find cos 10° to an accuracy of 0*001. Show that this 
accuracy can be achieved by taking the second-order Taylor 
formula. 

1528. Use the approximation 

to find In 1*5, and estimate the error. 
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Find the curvatures of the curves of problems 1543-1549: 

1543. χ = 3t
2
, y =3t-t* for t = 1. 

1544. χ = a cos
3
 t, y = a sin

3
 t for t = tv 

1545. χ = a (cos £ + t sin £), y = a (sin £ — £ cos f) for 

- ι -
1546. a; = 2a cos £ — a cos 2£, y — 2a sin £ — α sin 2£ at an 

arbitrary point. 

1547. ρ = α
ψ
 at the point ρ = 1, φ = 0. 

1548. ρ = αφ at an arbitrary point. 

1549. ρ = αφ
κ
 at an arbitrary point. 

1550. Find the radius of curvature of the ellipse ̂  + 
2

 a 

-j- | ^ = 1 at the point where the segment of the tangent 

lying between the coordinate axes is bisected by the point 
of contact. 

1551. Show that the radius of curvature of a parabola is 
equal to twice the segment of the normal lying between its 
points of intersection with the parabola and with the direct-
rix. 

1552. Show that the radius of curvature of the cycloid at 
any point is twice the length of the normal at that point. 

1553. Show that the radius of curvature of the lemniscate 
ρ

2
 = α

2
 cos 2φ is inversely proportional to the corresponding 

radius vector. 

1554. Find the circle of curvature of the parabola y = χ
2 

at the point (1 , 1). 

1555. Find the circle of curvature of the hyperbola xy = 1 
at the point (1 , 1). 

1556. Find the circle of curvature of y = e
x
 at the point 

1557. Find the circle of curvature of y = tan χ at the 

(0, 1). 

point 
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1558. Find the circle of curvature of the cissoid (x
2
 + 

+ y
2
) x — 2ay

2
 = 0 at the point (a, a). 

Find the vertices (the points at which the curvature has an 
extremal value, see Course, sec. 93) of the curves of problems 
1559—1562: 

1559. Yx + Yy = Yâ. 1560. y = ln χ. 

1561. y == e*. 

1562. χ = a (3 cos t - f cos 3J), y = α(3 sin t + sin 3£). 

1563. Find the maximum radius of curvature of the curve 

ρ = a sin
3
 ^ . 

1564. Show that the curvature at a point Ρ of the curve 
y = /(#) is equal to | y" cos

3
 α |, where α is the angle formed 

by the tangent at Ρ with the positive direction of the axis 
of abscissae. 

1565. Show that the curvature of a curve at an arbitrary 

where α has the same meaning as in the previous problem. 

1566. Function f(x) is defined thus: f(x) = x
z
 in the inter-

val — oo < χ ^ 1, f(x) = ax
2
 + bx + c in the interval 

1 < χ < oo. What must be the values of a, 6, c for the curve 
y = f(x) to have a continuous curvature at all points ? 

1567. Given (Fig. 35) arc AM of a circle of radius 5 with 
centre at (0, 5) and segment BC of the straight Une joining 

point can be expressed as k = 
d sin α 

y • C0I.66) 

(0.5Π ι 

M χ 
F I G . 35. 



IV. INVESTIGATION OF FUNCTIONS A N D CURVES 141 

Β (1, 3) and G (11, 66), we require to join M and Β with a 
parabolic arc such that the curve AMBG has continuous 
curvature everywhere. Find the equation of the required 
parabola (take a fifth-order parabola). 

Find the coordinates of the centre of curvature and the 

equation of the evolute for the curves of problems 1568-1574: 

1568. Parabola of nth order y = x
n
. 

1569. Hyperbola ^ - | J = 1. 

2_ 2 2 

1570. Astroid x
3
 + y

3
 = a

3
 . 

1571. Semi-cubical parabola y
z
 = ax

2
. 

1572. Parabola χ = 3*, y = t
2
 — 6. 

χ
3 

1573. Cissoid y
2
 = 

1574. The curve 

2α — χ ' 

x = α (1 + cos
2
1) sin t, 

y = a sin
2
1 cos t. 

1575. Show that the evolute of the tractrix 

χ — —a ^ln tan ^ + cos , y = α sin t 

is a catenary. 

1576. Show that the evolute of the logarithmic spiral 
ρ = α

φ
 is precisely the same spiral except for rotation through 

a certain angle. Is it possible to choose a so that the evolute 
coincides with the spiral? 

1577. Show that any evolute of a circle can be got by 
rotation of one of them through a suitable angle. 

1578. Show that the distance of a point of the cycloid 
from the centre of curvature of the corresponding point of 
the evolute is equal to twice the diameter of the rolling circle. 

1579. The evolute of the parabola y
2
 == 4px is the semi-

cubical parabola 
4 

py
2 =

 2 ϊ (
χ
~

 2
Ρ )

3
· 
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to an accuracy of 0001. 

1586. Find the greatest and least values of the function 

y = x^ + x
2
-\-x+l 

to an accuracy of unity. 

1585. Find the maximum of the function 

y = χ + ln χ — x
3 

y = = # 2 _|_ 3 c os x 

in the interval 

1587. Find the greatest and least values of 

y = χ — e*
2 

in the interval [0*2, 0*5] to an accuracy of 0*001. 

Find the length of arc of the semi-cubical parabola from 
the cusp to the point (x, y). 

1580. Find the total length of the evolute of the ellipse 
with semi-axes a and b. 

1581. Show that the evolute of the astroid χ = a cos
3
1, 

y = a sin
3
 t is an astroid of twice the linear dimensions turned 

through 45°. Use this to find the length of arc of the original 

astroid. 

1582*. Show that the evolute of the cardioid 

x — 2a cos t — a cos 2t; y — 2a sin t — a sin 2t 

is also a cardioid, similar to the first. Use this to find the total 
arc length of the cardioid. 

1583*. Prove the theorem: if the curvature of the arc of 
a given curve is either only increasing or only decreasing, 
the circles of curvature corresponding to different points of 
the arc lie inside each other and do not intersect. 

7. Numerical Problems 

1584. Find the minimum of the function 

to an accuracy of 0 0 1 . 
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1588. Find the coordinates of the point of inflexion of the 
curve 

y = ^ (χ* — βχ
2
 + \9x — 30) 

to an accuracy of 001. 
1589. Find the coordinates of the point of inflexion of the 

curve 
y = 6x

2
 ln χ + 2x* — 9x

2 

to an accuracy of 0·01. 

1590. Find to an accuracy of 0Ό001 the curvature of the 
curve 

1 
y
 = x

2 

at its point of intersection with the straight line y = χ — 1. 

1591. Find to an accuracy of 0001 the coordinates of 
the point on the curve y = ln χ at which the radius of curva-
ture of the curve is three times the abscissa of the point. 



C H A P T E R V 

T H E D E F I N I T E I N T E G R A L 

1. The Definite Integral and its Elementary Properties 

1592. Express with the aid of an integral the area boun-

ded by the following curves: 

(1) the coordinate axes, the straight line χ = 3 and the 
parabola y = χ

2
 + 1 ; 

(2) the axis of abscissae, the straight lines χ = a, χ = b 
and the curve y = e

x
 + 2 (b > a) ; 

(3) the axis of abscissae and the arc of the sine wave 
y = sin χ corresponding to the first half-period; 

(4) the parabolas y = x
2
 and y = 8 — χ

2
 ; 

(5) the parabolas y = x
2
 and y = Yx; 

(6) the curves y = ln χ and y = ln
2
x. 

1593. A figure is bounded by the axis of abscissae and the 
straight lines y = 2χ, χ = 4, χ = 6. By dividing the interval 
[4, 6] into equal parts, finds the areas of the

 4
'inner" and 

"outer" w-step figures. Show that both the expressions ob-
tained tend on indefinite increase of η to the same limit S, 
the area of the figure. Find the absolute and relative errors 
on replacing the given area by the areas of the inner and 
outer η-step figures. 

1594. A curvilinear trapezium with base [2, 3] is bounded 
by the parabola y = χ

2
. Find the absolute and relative error 

on replacing the given area by the "inner" 10-step figure. 

1595. Find the area of the figure bounded by the parabola 

y = ^-, the straight Unes χ = 3, χ = 6, and the axis of 

abscissae. 

1596. Find the area of the segment cut out of the parabola 
y = #2 by the straight line y = 2x + 3. 

144 
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1597. Find the area of the parabolic segment with base 
a = 10 cm and "height" h = 6 cm (the base is the chord 
perpendicular to the parabola axis. Fig. 36). 

F I G . 36. 

1598. Find the area of the figure bounded by the parabola 
y = χ

2
 — 4x + 5, the axis of abscissae and the straight lines 

χ — 3, χ — 5. 

1599. Find the area of the figure bounded by the arcs of 
1 x

2 

parabolas y = - χ
2
 and y = 3 — — . 

4 Δ 

1600. Find the area of the figure bounded by the parabolas 
y = χ

2
 — 6x + 10 and y = 6x — x

2
. 

1601. Find the area contained between the parabola 
y = χ

2
 — 2x + 2, the tangent to it at the point (3, 5), the 

axis of ordinates and the axis of abscissae. 

1602. A particle travels with a speed ν = 2t + 4 cm/sec. 
Find the path traversed in the first 10 sec. 

1603. The velocity of a body falling freely is ν = gt. 
Find the distance traversed in the first 5 sec. 

1604. I f the velocity is proportional to the square of time 
and is equal to 1 cm/sec at the end of the 4th second, what 
is the distance travelled in the first 10 sec? 

1605. We know from physics that the force opposing the 
extension of a spring is proportional to its elongation (Hooke's 
law). The work done on extending a spring 4 cm is 10 kg. 
How much work is done in extending the spring 10 cm? 
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1606. The work required to extend a spring 2 cm is 20 kg. 
How much can the spring be extended on expending work 
of 80 kg? 

1607. The speed ν of radioactive decay is a known function 
of time: ν = v(t). Express the amount ra of radioactive 
material disintegrating between time T0 and time Τλ: (a) 
approximately, by a sum, (b) exactly, by an integral. 

1608. The rate of heating of a body is a known function of 
time ip(t). How many degrees θ is the body heated from time 
T0 to time T1 ? Express the solution : (a) approximately, by 
a sum, (b) exactly, by an integral. 

1609. A variable current / is a known function of time: 
I = I(t). Express (approximately by a sum and exactly by 
an integral) the quantity of electricity Q that has flowed 
through the cross-section of the conductor after time Τ 
from the start of the experiment. 

1610. The voltage Ε of a variable current is a given func-
tion of time Ε = φ(ί) ; the current / is also a given function 
of time / = ip(t). Express the work A done by the current 
between time T0 and time 2\ : (a) approximately, by a sum, 
(b) exactly, by an integral. 

1611. An electrical circuit is supplied from batteries. 
During 10 min the voltage at the terminals falls uniformly 
from E0 = 60 V to Ε = 40 V. The circuit resistance R = 20 
ohm. Find the amount of electricity flowing through the 
circuit in 10 min. 

1612. The voltage drops uniformly in an electrical circuit, 
at 1-5 V per min. The initial voltage E0= 120 V. Find the 
work done by the current in 5 min. The circuit resistance 
R = 60 ohm. Inductance and capacity are neglected. 

1613. The input voltage of a circuit rises uniformly, being 
zero at the start of the experiment. The voltage reaches 
120 V during one minute. The circuit resistance is 100 ohm. 
Inductance and capacity are neglected. Find the work done 
by the current during one minute. 
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1614. The water reaches the top of the rectangular wall of 
an aquarium of base a and height b. Express the pressure of 
the water over the entire wall : (a) approximately, by a sum, 
(b) exactly, by an integral. 

1615. (a) Evaluate the pressure Ρ exerted by the water in 
an aquarium on one of its walls. The wall is rectangular. 
Its length a = 60 cm, and height b = 25 cm. (b) Divide the 
wall by a horizontal line so that the pressure on the two 
parts is the same. 

Evaluation of Integrals by Summation 

1616. Find e
x
 dx by direct summation followed by 

passage to the limit. (Divide the interval of integration into 
η parts.) 

1617. Evaluate x
k
 dx, where k is a positive integer, by 

direct summation followed by passage to the limit (divide 
the interval of integration so that the abscissae of the points 
of subdivision form a geometrical progression) (see Course, 
sec. 87). 

1618. Use the formula obtained in the previous example to 
evaluate the integrals: 

10 a+2 a 2a 

0 

b 

a 

2 

a m 

0 0 

2-5 b 

(7) (2a? + l )
2
 da;; (8) \(x — a)(x — b) dx\ 

a 
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interval of integration into η equal parts. By comparing 
with the previous problem, evaluate: 

1622*. Evaluate lim ( I + ^ + ^ + . . . + ± ) 

(a is an integer). Evaluate approximately 

(îÔÔ
 +
 ÏÔT

 +
 ÎÔ2

 +
 " '

 +
 3Öö) * 

1623*. Use direct summation followed by passage to the 
limit to evaluate: 

a a b 

(1) ^xe
x
dx; (2) J in χ dx; (3) d#. 

0 1 a 

(Divide the interval of integration into equal parts in (1), 
and as in problem 1620 in (2) and (3)). 

1621. Form the integral sum for by dividing the 

sage to the limit. (Divide the interval of integration so that 
the abscissae of the points of subdivision form a geometrical 
progression.) 

by direct summation followed by pas-1620. Find 

luate approximately 

1619*. Find lim Eva-
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Inequalities for Integrals IO 
xdx . , 5 
a , ia is less than - . 

x
3
 + 16 6 J X (JLX 
0 , ,„ is less than 

1629. Show that the integral J e
x 2 _x

 dx lies between 
2

 0 

— and 2e
2
. 

ye 
3-5 2 

1630. (**L . 1631. f Î - ^ d * . 
J χ - 1 J x

2
 + 2 

1-5 0 

5π 5 

4 2 

1632. J(l + sin
2
 a?) d*. 1633. Jfqr^ 

π _1_ 
4 2 
Y3 

1634. \x arc tan χ dx. 1635. jx
2
e~

x%
 dx. 

Ϊ 3 I 
3

 e 

1636. Find out, without evaluating them, which of the 
integrals is the greater: 

1 1 2 2 

(1) Jx
2
dx or jx

3
dx? (2) \x

2
dx or Jx

3
dr? 

0 0 1 1 

2. Fundamental Properties of the Definite Integral 

Geometrical Interpretation of the Definite Integral 

1624. Express with the aid of an integral the area of the 
figure bounded by the arc of the sine wave corresponding to 
the interval 0 ^ χ ^ 2n and by the axis of abscissae. 

1625. Find the area of the figure bounded by the cubical 
parabola y = x

z
 and the straight fine y = χ. 

1626. Find area of the figure bounded by the parabolas 
y = χ

2
 — 2x — 3 and y = —χ

2
 -f- ßx — 3. 

1627. Find the area of the figure bounded by the curves 
y — — x and y = χ

4
 — 1. 
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2 

(1) f 2*' dx or J V da;? (2) J V dx or J V dx*. 
Ô 0 1 1 

2 2 

(3) Jin χ dz or J (Ina;)
2
 dz? 

ι ι 
4 4 

(4) Jin a; da; or J (ln x)
2
 dx ? 

ι 

1638. Prove that J V 1 + a;3 da; < ^ (use Bunyakovskii's 

ο 
inequality). Show that employment of the general rule yields 
a cruder estimate. 

1639. Prove the following propositions by starting from 
geometrical considerations : 

(a) if function f(x) is increasing in the interval [a, b] and 
has a concave graph, then 

(b - a) f(a) < j*/(a;) dx < (b - a) 
f(a) + f(b) 

(a) the fundamental theorem on estimation of an integral, 
(b) the result of problem 1639, 
(c) Bunyakovskii's inequality. 

1637. Find out which of the integrals is the greater: 

1641. Estimate the integral dx, by using: 

1640*. Estimate the integral 

(b) if the function f(x) is increasing in interval [a, 6] and 
has a convex graph, then 
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Mean Values of a Function 

1642. Find the mean value of the linear function y = 
= lex + b in the interval [xv x2]. Find the point at which the 
function takes this value. 

1643. Find the mean value of the quadratic function 
y = ax

2
 in the interval [xv x2]. At how many points of the 

interval does the function assume this value? 

1644. Find the mean value of y = 2x
2
 -f- 3# + 3 in the 

interval [1, 4] . 

1645. Starting from geometrical considerations, find the 
mean value of y = Υ a

2
 — χ

2
 in the interval [—a, a], 

1646. Starting from geometrical considerations, obtain 
the mean value of a continuous odd function in an interval 
symmetric with respect to the origin. 

1647. A gutter section is in the form of a parabolic seg-
ment. Its base a = 1 m, the depth h = Γ 5 m (see Fig. 36). 
Find the mean depth of the gutter. 

1648. The voltage of an electrical circuit increases uni-
formly during one minute from E0 = 100 V to E1 = 120 V . 
Find the average current during this time. The circuit resist-
ance is 10 ohms. 

1649. The voltage of an electrical circuit falls uniformly 
at a rate of 0*4 V per minute. The initial voltage of the circuit 
is 100 V. The circuit resistance is 5 ohm. Find the average 
power of the current during the first hour of working. 

Integral with Variable Limits 

1650. Find the expressions for the following integrals 
with variable upper limit: 

1651. The speed of a moving body is proportional to the 
square of time. Find the relationship between the path trav-
ersed s and time t, if it is known that the body moves 18 cm 

X X X 

0 a 
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in the first 3 sec and that the motion starts at the instant 
t = 0. 

1652. The force acting on a material particle varies uni-
formly with respect to the path traversed. I t is equal to 
100 dynes at the start of the path, and increases to 600 dynes 
when the particle has moved 10 cm. Find the function 
defining the dependence of the work on the path. 

1653. The voltage of an electrical circuit varies uniformly. 
I t is equal to E1&tt = tv and equal to E2 at t = t2. The resist-
ance R is constant, whilst we neglect inductance and capacity. 
Express the work of the current as a function of time t 
after the start of the experiment. 

1654. The specific heat of a body depends on the temper-
ature as follows : c = c0 + οΛ + ßt

2
. Find the function that 

defines the dependence of the quantity of heat, acquired by 
the body on heating from zero to t, on the temperature t. 

1655. A curvilinear trapezium is bounded by the parabola 
y = χ

2
, the axis of abscissae and a movable ordinate. Find 

the value of the increment AS and differential dS of the 
area of the trapezium at χ = 10 when Ax = 0 1 . 

1656. A curvilinear trapezium is bounded by the curve 
y = y #

2
 + 1 6 , the coordinate axes and a movable ordinate. 

Find the value of the differential dS of the area of the tra-
pezium when χ — 3 and Ax = 02. 

1657. A curvilinear trapezium is bounded by the curve 
y = #

3
, the axis of abscissae and a movable ordinate. Find 

the values of the increment AS of the area, its differential dS, 

and the absolute (a) and relative |δ = errors arising on 

replacing the increment by the differential, if χ = 4, and Ax 
takes the values 1; 01 and 0*01. 

1658. Find the numerical values of the derivative of 

X 

1 — t + t
2 

i + t + t
2 dt at χ = 1. 

ο 
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j^e'd* + j cos t dt = 0. 

1666. Find the derivative of y with respect to χ for the 
functions given parametrically : 

; ί 
(1) χ = j sin t dt, y = J cos t dt; 

Υ 

(2) a; = J i ln t dt, y = J i
2
 ln * d*. 

1659. Find the numerical values of the derivative of 

1660. Find the derivative with respect to the lower limit 
of an integral with variable lower and constant upper limit. 

1661. Find the numerical values of the derivative of 

1662. Find the derivative with respect to χ of the function 

and with 

1663. Find the derivative with respect to χ of the functions 

1664*. Find the derivative with respect to χ of the function 

1665. Find the derivative y' with respect to χ of the 
function given implicitly: 
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to ζ of the function ion y = -
J + x* 

for ζ = 1. 

graph of this function. 

1671. Use the graphs of functions illustrated in Fig. 37 
and 38 to find the shape of the graphs of their derivatives. 

F I G . 37. 

Newton-Leibniz Formula 

F I G . 38 . 

1672. Evaluate the following integrals by a suitable choice 
of the primitive function for x

k
: 

1667. Find the value of the second derivative with respect 

dx 

the graph of the function y -- ix. Draw the 

1670. Find the extremal points and points of inflexion of 

have extrema? 

1669. Find the curvature of the curve given by the equation 

1668. For what values of χ does the function 
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(4) J {x + i j d z ; (5) JYi"(l + Yi) dx; 

1 4 

ft 2l 

(9) (a > 0, 6 > 0); (10) U}fi - l)*dz. 

1673. By using the fundamental tables of derivatives, pick 
out the primitive and evaluate the integral: 

η τι 

(1) Jsinada;; (2) Jcos#d# 
ο ο 

(interpret geometrically the result obtained), 

π 

3 Τ 1 

(3) Je* das; (4) jee*zàz; (5) Jy^; 

0 0 0 

(6) L ^ = . 
2 

1674. A function f(x) has equal values at points χ — a 
b 

and χ = 6 and a continuous derivative. What does d# 
equal ?

 α 

1675. The tangent to the graph of the function y = f(x) 
7t 

at the point with abscissa χ — a forms an angle ^ with the 
71 

axis of abscissae, and an angle - at the point with abscissa 

b b 

x = b. Evaluate Jf"(x) dx and Jf{x) f"(x) dx; f\x) is 
a a 

assumed continuous. 

2 9 



C H A P T E R V I 

T H E I N D E F I N I T E I N T E G R A L . 
I N T E G R A L CALCULUS 

1. Elementary Examples of Integration 

Find the integrals of problems 1676-1702 by using the 
basic table of integrals and the theorems on splitting up the 
integrand and on taking outside a constant factor : 

676. j Y x d x . 1677. f px" dr. 

678. . 1679. j*10*dx. 

680. fa*e*dx. 1681. f - = L . J
 J 2fic 

f - ^ L . 1683. f 3-4«-°·" dar 
J Y2gh

 J 
682.

 1 dh 

684. | ( 1 - 2u)du. 1685. jfx + l ) (x - fx + 1) dx. 

686- p ^ - * / ± g dx. 

687. J ( 2 x -
12
 + 3 x - °

8
 — 5χθ

 3 8
) dx. 

688. J f^ 1 ^] 2 1 6 8 9· J ( 1 ^ ) 2 dx-
3 4 

690. f (1
 + ^ dx. 1691. [ >

2
 - ß dx. 

692. ( * - = £ = . 1693. Γ
3

·
2 Χ

-
2

·
3 Χ

 dx. 

r 1 + cos^x ^ Γ 
J X —I— cos 2x J 

694. Ι ,
1
 +

 C O à
\

X
 dx. 1695. f ? °

8 2
* dx. 

cos
2
 a; sin

2
 α 

156 
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1700. 
Γ(1 + * )

2
d s 1 7 0L Γ Ar 

J x(l -+- x
2
) J cos 2x + sin

2
χ 

1702. J (arc sin χ + arc cos x) dx. 

Find the integrals of problems 1703-1780 by using the 
theorem stating that the form of the integration formula is 
independent of the nature of the variable of integration: 

1703. Jsinxd(sinx). 1704. J tan
3
 χ d(tan x). 

1705. r^iL+j l . 1706. f ( x + l ) « > d x . 

ΐ 7 0 7
·
 1 7 0 8

· Ι ( ^ ^ 

1709. j V ( 8 - 3x)« dx. 1710. J*V8 - 2xdx. 

1711. Γ3 dx. 1712. (*2x }/χ
2
 + 1 dx. 

1713. J x / l - x
2
dx. 1714. J x

2
/ x

3
 + 2 dx. 

1715. f 7 ^ = . 1716. f ^ £ £ = . 

J / χ
2
 + 1 J / 4 + χ

5 

f s
3
dx 1 7 18 Γ (6* - 5) dx 

J ^ p r ' * j 2 / 3 x
2
- 5 x + 6 ' 

1717. 

sin a; d# 
cos

2
 a; 

1721. ^ ™
x d x

 m Π22. Jcos
3
 a; sin 2x dx. 

Y sin
2
 χ 

1696. Jtan
2
xdx. 1697. J cot

2
 xdx. 
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1723. dar. 
J x 

1725. 
- ( 

dx 

(arc sin a;)
3
 YI — x

2 

1727. j*cos 3xd(3x). 

1729. Jcos3xdx. 

1731. Jsin (2x — 3) dx. 

1733. J cos J2x - | j 
d (1 + x

2
) 

dx. 

1735. 

1737. 

1739. 

1741. 

1743 

Η 
f (2s-

+ a;
2
 * 

(2x — 3) da; 
3a; + 8 

dx 
cx + m 

Γ a;
2
 da; 

J a;
3
 + 1 ' 

e
2
* da; 

I e
2
* + a

2
 * 

1745. Jcotxdx. 

1747. Jcot (2x+ l )dx; 

1749. f * L . 
J χ In χ 

1751. Je
s i n

*d(sinx). 

1753. Ja
3
* dx. 

1755. j e - ^ + i d x . 

1724. 

1726. 

1728. 

Γ (arc tan x) 
J T T ^ 

J cos
2
 a;/l + tan χ 

d ( l + lna;) 
cos

2
(1 + In x) ' 

1730. J(cos α — cos 2x) dx. 

1732. Joob(1 — 2x)dx. 

1734. JV (sine*) dx. 

1736 

1738 

ί 
d (arc sin x) 
arc sin χ 

dx 

1740 

r dx 

Ç xdx 
J X M H -

1744. Jtana;da;. 

1746. jtan3a;da;. 

J" 1 + °os
2
 χ 

(lna;) 

1748. d*. 

1750 dx. 

1752. j e
s inx

cosa;da;. 

1754. j a~
x
 dx. 

1756. Je*
2
 a; da;. 

^
2
dx 
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1757. |V*
3
x

2
dx. 

1759. 

1761. 

1763. 

1765. 

1767. 

1769. 

1771. 

1773. 

1775. 

1777. 

1779. 

dx 

Yl - 25x
2 

dx 

i / 4 
dx 

9a;
2 

J
x dx 
χ

3
 dx 

X
8 

In 

Γ 
2

X
 dx 

4* 

1 
e

x 

1 + χ 

— χ 
+ x 

In 

m 
ri + x-

J y v r = . 

i 

dx. 

r dX. 

dx. 

dx. 
x

2
f 

2x — Y arc sin χ 

S 

ί 

ί 

1 — 

dx 

+ 9χ
2
 ' 

do; 

1758. 

1760. 

1762. 

1764. 

1766. 

1768. 

1770. , 2 . 2 

Gr + sm
2
 α 

1772. J (e* + l )
3
d ^ . 

3a; — 1 

2a;
2
 + 9 ' 

χ dx 

x* + 1 * 

a;
2
 da; 

a;
6
 + 4 ' 

e
x
 da; 

e
2
* + 4 * 

cos α da 

1774. 

1776, 

1778. 

x
2
 + 9 ί 

J-

da;. 

- a;
2
) 

+ a-
4 

da; 

da;. 

(x + Yx
2
 - l )

2 

τ ^ πόα ι x + (arc cos 3a;)
2
 , 

da;. 1780. — / — da;. 
Γ χ + (arc cos 3a;)

2 

YI — x
2
 J Y 1 - 9a;

2 

Find the integrals of problems 1781-1790 by dividing out 
the integrand fraction: 

1781 

1783. 

+ 4 

4̂ a; 
+ bx 

dx. 

dx. 

1782. 

1784, 

\ 
f 3 J b 

2a; + 1 

3 + x 

dx. 

dx. 
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1786. [£±1 de. 
J 2a; - 1 

fa;
2
 - 1 

1788 
J 

a;
4
 d# 

1790, 
x

2
 + 1 

Find the integrals of problems 1791-1807 by using the 
method of partial fractions and the method of completing 
the square: 

d x

 1 7 9 2 . Γ
 d x 

x(x — 1) J x(x + 1) 

Γ dx
 1794 Γ ^ 

J (x + 1) (2x - 3) ' ' J (a - x) (b - x) ' 

1795. Γ d x . 1796
 Γ

 ^ 
1 J x

2
 - 7x + 10 

1797. Ι - τ — ί " - 1798,
 Γ d

* 

1799. 

1801. 

χ
2
 + 3x — 10 J 4x

2
 — 9 

dx „ „ Λ Λ Γ dx 

I 
·

 1 8 0
° - J ^ ψ + τ · 

Γ — ^ — - 1802 Γ d x 

J x
2
 + 2x + 3 " J χ - x

2
 - 2-5 ' 

TW 
ΐ 8 0 3

· L 2 Λ * , κ ·
 ΐ 8

°
4
· f ,

 dx 

J 4x
2
 + 4x + 5 J y i _ (2x 1805. ™

 Γ

 ^ Γ , 1806. Γ J y4x

 -

 3

 -

 x

2

 J 
y 8 + 6x — 9x

2 

1807. ' ^ 
J Y 2 - 6* - 9z

2 

Find the integrals of problems 1808-1831 by using trigo-
nometric formulae for transforming the integrand: 

1808. [cos
2
a;dz. 1809. § sin

2
 xdx. 

'(2a; — 1) da; 
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+ sin χ J 1 — cos χ J 1 

1812. f d a, 1 8 1 3. [\±™L da, J 1 + cos Λ; J
 1 — sin χ 

Γ -io-iK Γ cos 2α; da; 1814. j (tan2χ + tan*x) dx. 1815. j 1 + e h l x C Q BX • 

1816. J cos χ sin 3a; da;. 1817. Jcos 2a; cos 3a; da;. 

1818. J sin 2a; sin 5x dx. 1819. J cos χ cos 2a; cos 3a; da;. 

1820. f . 1821. Γ dx. 

J COS X J 

1822. 

1824. 

cos χ 

f
S
- ^ d x . 1823. (

C O a 3 x dx 

J cos X J 

f ^ - d a . 1825. f-
J |/cos a J

 1 

da; 

1826. J cos
3
 a; da;. 1827. J tan

4
 a; da;. 

1828. J sin
5
 a; da;. 1829. J sin

4
 a; da;. 

1830. itan
3
a;da;. 1831. ( - î % - . 

j J sin
6
 x 

2. Basic Methods ο! Integration 

Integration by Parts 

Find the integrals of problems 1832-1868: 

1832. Ja; sin 2a; da;. 1833. Ja; cos a; da;. 

1834. Ja;e-*da;. 1835. Ja;3
x
da;. 

1836. Ja;
n
 ln χ dx (n + — 1). 1837. Ja; arc tan χ dx. 

1838. J arc cos a; da;. 1839. J arc tan γχ~dx. 

1840. f da. 1841. fa; tan* a; da;, 
J Yx+l

 J 

dx Γ dx 
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1842. [x cos
2
 χ dx. 1843. dr. 

1844. *
a r c t a n

* d a, 1845 arc s i n — = dx. 
YI + x

1
 J Yl — x 

x
2
 dx r Γ x

2
 dx 

1846. j In (x* + 1) dx. 1847. J ( 1 + a ; 8 )a · 

1848. Γ *
3 d a:

 . 1849. fx
2
 ln (1 + x) dx. 

J / 1 + x
2 J 

1850. j x
2
 e-

x
 dx. 1851. j x

3
e* dx. 

1852. J x
2
a

x
 dx. 1853. | x

3
 sin χ dx. 

1854. fx
2
 cos

2
 χ dx. 1855. j l n

2
x d x . 

1856. f ~
X
 dx. 1857. f d x . 

J *
2
 J fx

5 

1858. J (arc sin x)
2
 dx. 1859. J (arc tan χ )

2
 χ dx. 

1860. Je* sinxdx. 

1861. j e3
* (sin 2x — cos 2x) dx. 

1862. J e
ax
 cos nx dx. 1863. j sin ln χ dx. 

1864. j cos ln χ dx. 1865*. J"^= 
x

2
 dx 

1866*. ] > α
2
 + x

2
 Ax. 1867. J | ^ 2 

1868. J V E * sin a; da:. 

Change of Variable 

Find the integrals of problems 1869-1904: 

da; 
1869, J da; 

r (substitute χ + 1 = ζ
2
), ι + Υχ + ι 
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[ ^ t = . 1873. F *±LDS. 

Γ D
V - 1875. f ^ dx. 

876. ί - ^ ^ · 1877. Γ ^ 

da; 
878. 

J f a x + 6 + m 

880, 

/ s dx 

da; „„„„ r dx 

879. Γ
 ,

" 7 (substitute χ = ζ
6
) . 

J fx —fx 

, { 3 (r , • 1881. Γ 4 

J / x V / x - U J f x + fa 

J 1/ 

882. 1 3 ^ 4 _ d x . 

fx
1
 — f x 

^ (substitute e* + 1 = z
4
) . 

f e * + 1 

884. F,Jg— . 1885. [ t l + h * d x . 
JYl+e* J * Ins 

886. J Y L + cos
2
 s SIN 2x COS 2# D#. 

887. Γ * * » * dx. 1888. f . 
J sin a; COS χ J yaz x$ 

8 8 9· J(X^4) 2
 • 

8 9 0
· F 9 1/f , ο (SUBSTITUTE χ = OR A; = ATAN 2 , OR 

J s
2
 Y #

2
 + a

2 z 

x = a SINH Z). 

891. f
 X

 ^ - (SUBSTITUTE x = a SIN Ζ). 
J y a

2
 — x

2 

dx 
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. f i + ^ d , 1894. f ^ d x . 

1895. f - = £ = · 1896. f dx. 
J V(a

2
 + x

2
)

3
 J 

1897. { r

d X 1898. Γ—-S* 
J χ

2
 / χ

2
 — 9 J x / l + x .2 

1899 '
 dx 

{ , - . 1900. fx
2
 / 4 - x

2
 dx. 

J f ( x
2
- a

2
)

3 J 

imA 1902*. ΓΙ/̂ ΞΙ; ̂ . 
J (#

2
 + 4) ]/4#

2
 + 1 J \ χ + l χ

2 

1903*.

 Γ /

 ^ . 1 9 0 4 * . f
(

* +
1 ) d

* . 

Find the integrals of problems 1905-1909 by first changing 
the variable and then integrating by parts: 

Γ -
 3

 -
1905. J eV* dx. 1906. sin y z dx. 

1907. f ?
Γ
°

8 ί η
* dx. 1908. f dx. 

J f ( l - x
2
)

3
 J 1 + *

2 

Miscellaneous Problems 

Find the integrals of problems 1910-2011: 

1910. J (x + 1) / x
2
 + 2x dx. 1911. J (1 + e

3
*)

2
 e

3
* dx. 

1912. f^J- dx. 1913. f ̂  dx. 

1914. J f l — e*e
x
dx. 1915. Jxcosx

2
dx. 

Γ dx 1 a 
1892. — r (substitute χ = - , or x = , or 

J x^x
2
 — a

2 z c o s
* 

x = a cosh z). 



L916. j (2-Sx
3
 )

5
 x

3
 dz 
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L918 

1920. 

1922. 

1924. 

1926. 

1928. 

L930. 

Y~x dx 
3 

+ X
2 

dx Γ dx 
-2x 

dx. 
r 2x — ] 

J Ϋ9χ
2
 -

R da 

J a / 3 - In
2
 a 

fa
2
 — a + 1 

J V ( *
2
 + l )

3 

J. d y 

fsin
4 

J CO 

da. 

sin
2
 φ cos

2
 φ 

a da 

cos
0
 a 

932. J ( l - tan 3a)
2
 da. 

Ji L936. 
a; dx 

/ l + 2x ' 

1938. J ( / s i n x + cos x )
2
 dx. 

1940. f - = J 

L942. J -

da 

2a + a
2 

da 

V 12a — 9a
2
 — 

(a + 2) da 

L946. 

t
2
 + 2a + 2 ' 

(3a — 1) da 

4a + 17 J 4 a
2
-

917. 

919. 

921. 

IT 
J , 

3a
2 

+ 3a
3 

da 

a
6 da. 

e
x
(3 + e "

x
) * 

2a + 3 Γ 2a 

923, 

+ a
2 

V I 

da. 

925 

927. 

929. 

Γ cos V 

Γ In a 

Γ (arc 

da. 

ln a da 
In

2
 a) " 

(arc tan x)
n 

+ a
2 

cos 2a 

da. 

cos^ a 
da. 

931. Jytan
3
asec

4
ada. 

933. f ̂  . 
J a + 1 

935. Γ ^ = . 

937. J x V a + x d x . 

939. J a
m x

6
n x

d x . 

9 4 1 . Γ . 
J V9x

2
 — 6x + 2 

(8x - 11) dx 
943, 

945 

947 

ί 
Γ ( » -

/ 5 + 2a - a
2 

(a — 3) da 

2a — a
2 

(3a — 1) da 

Va
2
 + 2a + 2 

2x
5 
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948, 

950. 

f (*-

f — 

J 2a
2
 - 3a + 1 

(2 - 5a) dx 

Ίχ + 12 

4tX 
da. 

954, 

y 4a
2
 + 9a + 1 

Yx dx 

Y2x + 3 

956. j arc tan χ dx. 

958. J x
2
 cos ωχ dx. 

ln cos χ dx 
960. 

962, 

964. 

966. 

χ
1
 Αχ 

dx 

sin 3x J 1 - si 

r dx 
Je* + ι ' 

968. |V+*dx. 

970. f - £ ± ^ c L , 
J Y2 + 2x

2 

ηηΛ F S COS S , 
972. ; η dx. 

J sin** χ 

9 U Γ(1 + tan a) da 
* J sin 2a 

d<p 

J" Y% cos φ + sin φ 

•Si 
Λ _ „ , sin

2
 χ cos a; , 

978. dx. 
(1 + sin

2
x) 

949. I — ^ +
 5

 d.r 

951. 

953. 

955. 

J 
f J i 

Jöa
2 

V 9a
2
 + 6a + 2 

— 3a) da 

+ 6a + 18 

a da 

f3a
2
 - 11a + 2 

957. Ja sin a cos a da. 

959. je
2
*a

3
da. 

961. dx. 
J ln sin χ 

cos
3
 3x 

963. 

965. 

967. 

Ç sin 

. da. 
sin 3a 

sin 2a da 
cos

2
 2a " 

da. 
e

x
 + 1 

969. j e
2
*

a
 +

 l n
*da. 

fa arc sin a , 
971. da 

J Vl - a
2 

973. j e * sin
2
 a da. 

tan a 
975. 

977. 

979. 

14 
IT 

+ tan a 

sin a da 

da. 

+ sin a 

J sin a 
cos a da. 

(x — 2) dec 
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X 
ax. 

982. ( V ^ d x . 

x
4
 dx 

L984. 

1986. 

1988. 

1990. 

L992. 

dx 

Γ x*d 

\ 
J: 

dx. 

f x
2
 + 4 

V4 + x
2 

Υ χ dx 

f x
3
 + 1 

dx 

(2 + x ) / l + x 

L994. J ^ + ^ dx. 

1996. J 

L998. J 

2000. f - = 
J Y*\ 

2002. J 

χ 

dx 
(ax + δ) ]/x 

χ dx 

(1 - X
4
)

2
" 

dx 

1) ' 

x
4
 dx 

(1 + x
2
)

3
 " 

2004, 

2006* 

2007 

J 
e*(l + e*) dx 

Y1 — e
2
* 

ln (x + 1) — ln χ 

1981. f x ^ ' d x . 

x
3
 dx 

1983. 

1985. 

1987. 

1989. 

1991. 

1993. 

JVl + 2x
2
 ' 

Y(x
2
 — a

2
)

5 

J 

J 
J 

J 

dx. 

dx 

dx. 

ζ
4
 | /z

2
 - 3 

Υ^ΤΊ + ι 
Yx + 1 — 1 

3 _ 
Yx dx 

dx. 

x(Yx + Yx) 

y i + χ
8 

1997. 

1999. 

2001. 

2003. 

x
5
 dx 

J V x T T I 

J 

J 

d#. 

y ι - χ
3 

Yx 
dx. 

3x
2
 - 1 

2xYx 

2005. JYE* - Idx. 

arc tanz dr. 

z(z + 1) 
dx. 

J. 
dz 

z
6
 + z

4
 " 

2008. arc cos 
x+l 

dx. 

In In χ 
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2009. Jin (x + Yl+ x
2
) dx. 2010. J | / ^ 4 ^ àx. 

dx 
2011. 

J cos
3
 χ /sin 2x 

3. Basic Classes of Integrable Functions 

Rational Fractions 

Find the integrals of problems 2012-2067: 

(1) The denominator has only real distinct roots. 

xdx Λ Λ„ Λ Γ xdx 
2012, c___xdx__ r 

J (x+l)(2x+i) ·
 2 0 1 3

· J 2x
2
 - 3a: — 2 ' 

2 0 1 4
J ( ^ ) ( , + 3 ) ( , - 4 )

 d
* ' 

2015. L . j « . , . 2016. f *
5
 + *

4
-

8
 da:. 

4a: r <** 2 0 16 r *
5
 + ** 

J 6x
3
 - 7x

2
 - 3x ' J x

3
 -

4ar* — χ 

j (2x — 1) (4x
2
 — 16x + 15) 

2018. '
 3 2 χ άχ 

2019 Γ
 x dx

 2020 Γ (
2 χ2

 -
 5

)
d

* J ü i y
' J χ* - 3x

2
 + 2 *

 2 0 2
° - J x* - 5x

2
 + 6 * 

2021. f ~
 2

** + 3*
3
 - 9x

2
 + 4 

* J χ
5
 — 5a;

3
 + 4a; 

(2) The denominator has only real roots; some roots are 
multiple. 

2022. (
{ x

* -
3 x

„
+ 2 ) dX

 . 2023. ( ( * - ± * \ * * ? . 
a; 

2024. 

f (*
2
 - 3x + 2) dx (Y* + 2V> 

J x(x
2
 + 2x + 1) *

 2 0 2 3
· J ( x ^ T i J 

J x 3 + 5 a. 2 + 8x + 4- ^
5

· J ^ T T ^
0
* ' 

J (* - 2)
4 

3 



2027. 
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(X + 2)' (x + 1) 2 e 

(χ
2
 — 2χ + 3) dx 

2032. 
- (χ

2
 - 2 

4χ
2
 + 3χ) * 

(3) The denominator has complex distinct roots. 

2038. 

2040. 

+ χ
3
 " 

x dx O A O ft Γ (2x
2
 - 3x - 3) dx 

( χ — l ) ( x
2
- 2 x + 5 ) ' 

( x
4
+ l ) d x Ο Λ / Ι1 f x

2
d x 

2046. 

f (*
4
 + 1) <to 2 ( U1 Γ *

2
àx 

J χ
3
 - χ

2
 + x - 1 · J 1 - x* ' 

f
 d

* on π f dx 

J (x
2
 + 1) (x

2
 + x) * J (x + l )

2
 (x

2
 + 1) * 

Ç(W + « + 3) dx f^ + 2x
3
 + 4x + 4 

J (x - l )
3
 (x

2
 + 1) " J x

4
 + 2x

3
 + 2x

2 

J x * + 6 x
2
 + 8- * J 1 + x

4
 · 

(4) The denominator has complex multiple roots. 

2050. f < f . 2051. f < * . 
J (a;

2
 — 6a; + 13)

2
 J (a;

2
 + 2a; + 2 )

3 

2052. f — . 2053. Γ — - ^ — . - . 
J (a;

2
 + 9)

3
 J (1 + x)(l + x

2
)

2 

dx Λ Λ ΛΛ Γ x
2
dx 
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• « • J V T W -

(5) Ostrogradskii's method. 

x> + 2 
2056. 

2058. 

2060. 

2062. 

2064. 

2065. 

2066. 

2067. 

J. 

1(5 

da. 

da. 

:
2
 + a + l )

2 

a
2
 + a + 1 

a
5
 — 2a

4
 + a

3 

(a
2
 - l )

2
d a 

+ a) (1 + a
2
)

3 

da 
:

2
 + 2a + 10)

3
 ' 

a
5
 — a

4
 — 26a

2
 — fa

5
 — 24a 

2055. 

2057. 

2059. 

2061. 

2063. 

25 

Γ a
9
 da 

J ^ - i )
2

' 

Γ (4a
2
 — 8a) da 

J ( * - i )
2
 (*

2
 + 1 ; 

f a
6
 + a

4
 — 4a

2
 — ! 

J ^3 /^2 _1_ 1 \2 
a

3
(a

2
 + l )

2 

da 

da. 

Ja
4
(a

3
 + l )

2
 ' 

(a + 2) da 

J (a
2
 + 2a + 2)

3
 " 

+ 4a + 5)
2
 (a

2
 + 4 )

2 

Γ 3 a
4
+ 4 

J a
2
(a

2
 + l )

3 

3a + 6a
2
 + 5a

3
 - a

4 

da. 

a
5
 — a

4
 — 2a

3
 + 2a

2
 + a — 1 

9 da 

da. 

5a
2
(3 — 2a

2
)

3
 * 

Some Irrational Functions 

Find the integrals in problems 2068-2989: 

(1) Functions of the form 

m ρ 

f 

R ( lf^ 
a, — 

aa + b 
x + bx ' 

ax + b 
— \ 

» · · · 

1 J 

2068, ί 
da da 

x{fx + f ä
2
) 

a da 

axa + bx 

2069. f-

J /a + Y x + 2 fx 

2071. f l /IHf Ë? . 
J y 1 + a a 

da 
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2072. (Vl^läaz. 2073. (* +
 Y l + x

äz. 

Yl + x 

2074. feîïî. " " ' ' i * — * J \ 1 + χ χ
 J

 } Y(x— l )
3
 (x + 2)

5 

(2) Binomial differentials «""(α + bx
n
)P dx. 

2076. J y » ( l + YxY dx. 2077. f x'
1
 (1 + x

3
) ~

3
 dx. 

[ - 3 - ^ ·
 2 0 7 9

· J *
5
 V(l + x

3
)

2
 dx. 2078. ' ^ 

x / x
2
 + 1 

dx r dx 
2080. f 3 . 2081. 

J 1̂ 1 + X
3
 / Γ f l + X

3 J
 / l + x * 

2082. J ^ H Z d x . 2 0 8 3 . J ^ i ± f e d x . 

3 
Yx 

2084. Γ ^
1
 dx. 2085. F 3 ^ · 

J
 * J xYl + x

5 

3 ' 

2086. f ^ +
 X

* da. 2087. Γ ß
= . 

2088. J V a ( l - a
2
) da. 2089. J f i + / ^ d a . 

Trigonometrie Functions 

Find the integrals in problems 2090-2131: 

2090. fsin
3
 a cos

2
 a da. 2091. dx. 

a 
Γ sin

3
 a cos

2
 a da. 2091. f 

J J cos
4
 i 

Γ 2093. f ^ d x . 
J cos a sin

3
 a

 J cos
2
 a 

Ί - Α τ - . 2095. F 4 J cos a sin
3
 a J sin

4
 a cos

4
 a 
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Γ tan
5
 a da. 2101. f r ^ - . 

J J tan
8
 a 

J 
2102. I . 2103. f g g * * + ™ ; * d x. 

2104. 

2106. 

2108. 

2110. 

sin
3
 χ J cos

2
 a; — sin

2
 a; 

dx Γ dx 

sin χ + cos χ 

dx Γ dx 

fr—x1—«-· 2105·ί 
J (sin a + cos x)

z
 J 

f . 2107. f 
J α cos a + 6 sm a J 

tan a cos 2a 

cos
2
 a da Λ„ Λ Λ Γ da rcos^xdx 2m Γ 

J sin a cos 3a J 1 + tan a 

Γ 2111. f — 
J 5 — 3 cos a " ' J 5 + 4 sin a 

P -
S i n a;

 dx. 2113. f ^ 
j 2 + cos a J 1 — 

2112. r ; -
s i n a;

 dx. 2113. f J È ^ L . 
tan a 

2114· frx, \ * * · 2115· fr—^ Ν J 4 + tan a + 4 cot a J (sin a + 2 sec a) 

2116.

 1 dx 

4 sin a + 3 cos a 

da 

J 

J 1 + sin
2
 a J 1 

4 — 3 cos
2
 a + 5 sin

2
 a * 

da Λ-* Λ Γ da 

2117. 

2118. 

Γ <** . 2121. Γ . 
J α

2
 sin

2
 a + δ

2
 cos

2
 a " "J sin

2
 a + tan

2
 a * 

2122. '
 C O a x dx 

sin
3
 a — cos

3
 a 

2123. | Y l + s i n a d a . 2124. f 
J

 1
 J sin a cos 

da. 
sin a cos a 

2096. . 2097. . 
J (1 — cos χ)

1
 J (1 — cos x)

z 

2098. J cos
6
 a da. 2099. j* cot

4
 a da. 

2100. f tan
5
 a da. 
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2125*. PSp* d*. 2126. i 
J sin

5
 χ J

 4 

/sin
3
 χ cos

5
 * 

Γ r ^ 2128. | Y l + cosecxda;. 
J / l - s i n

4
* J 

r dx 

2127 ' 

2129. f t
0 0 8 2

* -
3

) * * . a i » . 
J cos

4
 x y 4 — cot

2
 a; 

2131. Jj/tana; da;. 
sin — 1/ cos

3
 ^ 

Δ 

Hyperbolic Functions 

Find the integrals of problems 2132-2150: 

2132. J cosh χ dx. 2133. J sinh a; da;. 

2134 f d * 2135. Γ e X d x 

J cosh
2
 a; * J cosh χ + sinh a; 

2136. J (cosh2 aa; + sinh2 ax) dx. 2137. Jsinh2 a; da;. 

2138. J tanh
2
 a; da;. 2139. j coth

2
 a; da;. 

2140. J sinh
3
 a; dr. 2141. J cosh

3
 a; dr. 

2142. J tanh
4
 a; dr. 2143. J sinh

2
 a; cosh

3
 χ dx. 

2144. ί coth* a; da;. 2145. Γ . , *** , . 
J J sinh a; cosh a; 

2146
 Γ

 ^ . . . . Γ dx r dx 2 1 47 Γ dr 
J sinh a; * * J (1 + cosh a;)

2 

2148. JV tanh a; dr. 2149. J-
a; dr 

cosh
2
 a; 

2150.
 1 e 2 X dx 

sinh
4
 a; ' 

Rational Functions of χ and Υ ax
2
 -\- bx + c 

Find the integrals of problems 2151-2174: 

dr _ Λ Γ dx r dx _Ä r 

dx 
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2153. 

2155 

Γ ,
 d

* . 2154. Γ — 
J x y x

2
 + 2 x - l J aj/2 + χ — χ

2 

Γ)/ 2x + χ
2
 Γ dx _ 

• J ^
 2 1 5 6

· J (x - 1) / i M ^ + T 

2157. f
 dx

 . 2158. (Yx
2
 - 2x - 1 dx. 

J (2x - 3) y 4x - x
2 J 

2159. f y 3x
2
 - 3x + 1 dx. 2160. j y 1 - 4x - x

2
 dx. 

2161. Γ ,
 dx

 - . 2162. f —
 d

f . 
J χ - yx

2
 - χ + 1 J x

2
(x + V 1 + *

2
) 

2163. f r ** . 2164. 
J l + f x

2
 + 2x + 2 j y i - 2x - x

2 

2165. Π2*2 -*χ)άχ . 2166. f ™ ~ 5* dx. 
J f x

2
 - 2x + 5 J f 3 — 2x - x

2 

2167. f . 2 1 6 8. f * ' - * + ! dx. 
J y x

2
 + 4x + 5 J I 

y x
2 

- 2x + 5 

3x
3
dx 

y x
2 

+ 4x + 5 

'3χ
3 

— 8x + 5 

y x
2 

— 4x — 7 

a
3
 — a + 1 

y*
2
 + 2a + 2 

a
4
 da 

2169. I Τ ^ — ̂  da. 2170. Γ , 
J / a

2
 + 4a + 5 

2171. Γ ^ , . 
J (a

3
 + 3a

2
 + 3a + 1) / a

2
 + 2a - 3 

2172. f g ± ? d x . 2173. f - <* ~ <** 
J 2 + x

2 
2
/ 2 x

2
— 2 x + 1 

2174. '
 ( 2

* +
 3) d

* 
(a

2
 + 2a + 3) f a

2
 + 2a + 4 

Various Functions 

Find the integrals of problems 2175-2230 

dx 

f x
3
 dx öl?« Γ . 

3 ρ dx 
F a; y ï T i da;.

 2 1 7 8
· J fer™* * 

2179. J i ^ E g dx. 2180. J ^ - ^ p ^ 

2177. 

dx π** Λ Γ dx 
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In (x + 1) da; 
2183. 

Yx+1 

2185. Ja;
2
 sinh χ dx 

2187. J ^
0 8

^ ^ 

2189. J x e ^ d x . 

2191. J sin fx dx. 

2193 r da; 

J χ - l/x
2
 - 1 

J a* dx 

Γ dx 

J x ^ T U + x )
3
 ' 

Γ χ
4
 dx 

J x ^ l ' 

r dx 
J 1 + cos

2
 χ 

2203. J x l n ( l + x
3
) dx. 

2205. f ,
 a l ng

 dx. 
J V ( x

2
 - l )

3 

2207. Jxe*
a
(x

2
 + 1) dx. 

dx 

2195. 

2197. 

2199. 

2201. 

2209. f
 S 

J sin
5
 a; 

\2 · 

2184. J (x
2
 + 3x+5) cos 2x dx. 

2186. J arc tan (l + γχ) dx. 

2188. J eVx dx. 

2190. J (x
3
 - 2x

2
 + 5) e

3
* dx. 

2192. Γ ^ — ρ . 

J X
3
( X — l )

2 

2 1 9 4 . J ^
T
+ ^ "

5
d x . 

2196. 

2198 

2200 

2202, 

2204 

/·-. I 3 ~ 

1 — fx dx 

dx. 

J sin 2x — 2 sin a; 

Γ da; · 
J α

2
 — δ

2
 cos

2
 a; 

(ln χ — l) dx s In
2
 χ 

2206. Ja;
2
 e* cosa; da;, 

da; 

/sin
3
 a; cos

5
 χ 

2x dx 
cos

5
 χ 

2208. 

2210. 
/

sin 
cos

4
 χ + sin

4
 a; 
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2215. f
 x e X Ax

 2216 Γ 

2 2 1 7< jarctanxdx ^ J ^ a r c t a n x ^ 

2219. f
a r C t a nx

 dx. 2220. f - ^ - j . 
J (1 + x)

3
 J (1 - 2

X
)

4 

Γ (e
3
* + e») dx f dx 

2221. 
j e " -

tan χ dx 

+ e* + e 

2223. J tan χ dx C 
l + t a n x + tan

2
x- 2224. J sin« χ dx. 

r ( 3 + x
2
)

2
x

3
d x f x

2
- 8 x + 7 J (1 + x

2
)

3
 * J (χ

2
 - 3x - 10)

2
 ' 

2227. f ? , · 2228.
 s in X)

 ** 
J sin a; + cos

4
 χ J 1 

fa;
2
 — 1 da: 

J a:
2
 + Γ f T + ^ 

J es i n χ 

+ cos a; 

2229^ ' »
 1 dx 

2230. e
s i nx

 = da;. 
cos

2
 χ 

2 2 1L
 J l + s i n t + c o s x ·

 2 2 1 2
' J / t i 5 « ^ T 2 dx. 

2213. f f ~
ï ) dx

 . 2214. f <** 
J χ f x

4
 + 3x

2
 + 1 J (2x - 3) / 4x - x

2 

xe
x
 dx Λ Λ„ „ Γ #e

x
 dx 



C H A P T E R V I I 

METHODS OF E V A L U A T I N G 
D E F I N I T E I N T E G R A L S . 
IMPROPER I N T E G R A L S 

1. Methods of Exact Evaluation of Integrals 

Direct Application of the Newton-Leibniz Formula 

Evaluate the integrals in problems 2231-2258: 

dx 
2231. J Yl+xdx. 2232. J — 

+ 6xf 

- 2 

-13 ^ 9 

2233. Γ Β 2234. Γ
 V

~
 1

 dy. 
J Y(s-x)* ' Jyy + i 

r 
2 16 

2235. {άηΆ-φλάΙ. 2236. f — = = J ^ - — 

0 0 

1 
2a 

2237. J"(e* - l )
4
 e* dx. 2238. J j - ^ (b>a>0). 

2239. 

ο 
1 e 

xdx Γ dx r ^ d x _ 2240. Γ * 

0 1 

2241. f1+%** dx. 2242. 

(ln xf 
ι 

2 I 

2243. \ * f"-
1
** . 2244. f 

J f o
2
- x

2
" J x / l + ln 

0 1 

177 
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2 

2245. 
x

3
 dx 

(!-)Vi 
0-5 

3 

x
4 

2a:
2
 + 3x — 2 

2246. f, °^L-
J (x - a) (x -
ο 

2a) " 

2248, 
dx 

x
2
 + 4x + 5 * 

2249. J; da; 

a; + a;
3 2250. 

1 dx 

-0 -5 
/ 8 + 2a; - a;

2 

2251. Jr 
π 

" 2 

π 

2 

da; 
+ cos a; " 

2252. ĵ cos
5
 χ sin 2a; da;. 

2253. J /cos χ — cos
3
 a; da;. 2254. Jsin

2
 (ωχ + <p0) da;. 

2255. "3 ί cos
3
 χ dx 

/sin χ 
2256. j cot

4
 φ αφ. 

2257. 

Γ. ι 
S i n -

ai 

ι 
a;* 

da;. 2258. Jcos ί sin J2i — df. 

Definite Integration by Parts 

Find the integrals in problems 2259-2268: 

1 

2259. Ja;e-*da;. 2260. Ja; cos χ dx. 
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π 

2261. Γ 4 ΐ · . 2262. (a;
3
 sin a; da;. 

J sin* a; J 
π 

Τ 
2 e-1 

2263. Ja log2 a da. 2264. [ ln (a + 1) da. 

ι ο 
a a\

f
7 

2265
 r x 3 dx 

f 3 da. 2266. | Y a
2
- a

2
d a . 

π 

Τ e. 
2267. j e

2
* cos a da. 2268. j In

3
 a da. 

π 
Τ 

2269. Form recurrence formulae for j cosn a da and 
π_ 0 
2 

Jsin
n
 a da is a positive integer or zero; see Course, sec. 

ο 
106) and evaluate the integrals: 

71 π 71 

(a) J sin
5
 a da ; (b) J cos

8
 a da ; (c) J sin

11
 a da. 

0 0 0 

2270. Form a recurrence formula for the integral 
71 

2" 

Jsin
m
 a cos

n
 a da (m and w are positive integers or zero ; 

ο 
investigate the particular cases of even and odd values 
of m and η). ο 

2271. Form a recurrence formula for J a
n
e* da (n is a 

positive integer or zero).
 _1 

2272. Obtain the recurrence formula 

J da _ a 

(1 + χψ — 2(τι - 1) (1 + a 2) " " 1 + 

2n — 3 f da 



180 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

(1 + x
2
)

4
 " 

e 

2273. Prove that, if Jm = [ ln
m
 χ dx we have Jm = e — 

î 

— mJ m_ 1 (m is a positive integer or zero). 

2274*. Find ί χΡ(1 — x)Q dx (p and q are positive inte-
b 

gers). 

Change of Variable in a Definite Integral 

Evaluate the integrals in problems 2275-2295: 

9 1 _ 

2275. [ fT
X
 dx. 2276. f & · 

J Vx - 1 J l + x 

2277, 

4
 1

 0 

1 

x dx Γ xdx Γ
 x dx

 2278 f -
J / l + a;' J 1 + / ^ 
3 0 

1 29 3 

2279. . 2280. f l i ^ l ^ 
J ]/e

x
 + e

_ x
 J „ 

3 3 + Y(x — 2)
2 

2281*. ( sin
6
 | da:. 2282*. j cos

7
 2a: da:. 

J ο 
0 

1 V 3 

2283. f_^_ 4 O^+^d* . 0 d
' J ( l + a :

2
)

3
 J a:

2 
(1 + a:

2
)

3 

ο ι 
2 

2285. f ^
1

 fi * Ax. 2286. * 
J a :

6
 J a : 

(n is a positive integer or zero) and evaluate with its aid 
the integral 

dx 

2 
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2
 1 

2287. f 2288. f / ( l - a;
2
)

3
 dx. 

1 -In2 

2289. Jx
2
 j/ 1 — χ

2
 dx. 2290. J yi — e

2
* dx. 

2291. 

0 0 
0 3 

dx r dx f β = - . 2292. f-

1 

HMEZ^d* r3 dx_ 
• J ?

 2 Λ
* * · J (2x

2
 + η y (2x

2
 + l ) / x

2
 + 1 

2-5 0 

2293 

2Γ2 

2295.
 Γ

 ^ 
X f (x

2
 - 2)5 

Miscellaneous Problems 

2296. Find the mean value of the function y = ψχ -\- ^= 
y χ 

in the interval [1, 4] . 

2297. Find the mean value of the function 

f { x) =
 x^+x 

in the interval [1, 15] . 

2298. Find the mean value of the functions f(x) = sin χ 
and f(x) = sin

2
 χ in the interval [0, π], 

2299. Find the mean value of the function 

/(*) 1 

e* + 1 
in the interval [0, 2], 

2300. For what a is the mean value of the function y = 
= ln χ in the interval [I, a] equal to the mean rate of change 
of the function in this interval ? 
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2301. 

2303. 

4 

J. 
da 

\ 2 

X -f- X
2 

x
3
 dx 

x
2
 - 3x + 2 ' 

2305. 
J V x + i 

dx 

2302. 

2304. 

2306. 

Γ2 

x
9
 dx 

+ X
5
)

3
 ' 

x
15
 dx 

+ a 
x

2
 dx 

+ X
2 

2309. I ' dx. 
e

x
 + ο 

2311. J a sin χ 

cos
3
 a; 

da. 

Ks 

ο 
ι 

2307. J^2a + x
2
 da. 2308. J a

5
 f l + a

2
 da. 

ο ο 
ln5 3 

e X
^ -

1
 - 2310. f _ =

 d
* 

J χ yx
2 

2312. 
J 

c
2
 + 5a + 1 

da 
2 cos a + 3 ' 

2313. r dx 1 + - sin
2
 a 

b 

2314. [ (arc sin a )
4
 da. 

2316, 
(3x + 2) dx 

? (x
2
 + 4x + 1)2 

2317 Γ
 s in

 *
 C QS x 

J a
2
 cos

2
 a + b

2 

16 

2315. ( arc tan Vfx — 1 da. 
i 

sin a cos a da 
sin

2
 a 

Evaluate the integrals of problems 2301-2317: 
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2318. Prove that where a and 

b are any real non-zero numbers. 

2319. Solve the equation 

2320. Solve the equation 

2321. Having verified the inequalities In χ for 

prove that the integral is less than unity 

but greater than 0 92. 

2322*. Prove that 

2323*. Prove that 

2324. By using the inequality sin a; valid for 

and Bunyakovskii's inequality, estimate the integral 

2325*. Prove that 
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8 

2329. | ' *
7
-

3 a
* +

 7
*

3
- * d * = 0. 

COS X 
- 1 

2 

2331. I cosa;ln ]
 + X

 dx = 0. 
a; 

Λ 

2332*. (a) Prove that, if f(t) is an odd function, J /(*) dt 
a 

χ —x 

is an even function, i.e. that 
a a 

χ 

(b) Will J f(t) dt be an odd function, if f(t) is an even 
a 

function ? 

2333*. Prove the equality 

1 χ 

dt Γ dt C
 dt Γ dt . 

2326. Find the maximum and minimum of the function 
X 

r 2x + 1 J(x) = \ ä2__2x + 2
 i n t h e i n t e r v a l C " 1 '

 1
] ' 

ο 
2327. Find the extremal points and points of inflexion of 

X 

the graph of the function y = J (χ — 1) (x — 2 )
2
 da;. 

ο 
In problems 2328-2331, prove without evaluating the 

integrals that the equalities hold (see Course, sec. 107): 
π 
8 

2328. Jarsin
9
 a; dz = 0. 

π 

Ρ 
-1 

1 1 

2330. Je
c o s

* da; = 2 Je
c o s

* da;, 
—ι ο 

\_ 

2 

J cos χ ln y-^— 
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2334. Prove the identity 

tan χ cot χ 

Γ J ^ L + Γ * = ι. 

]_ ^ 

e e 

2335. Prove the identity 

sin« χ cos
1
 χ 

J arc sin Ytdt + J arccosyTdi = ^ 

ο ο 

2336. Prove the equality 

ι ι 

J x
m
(l — x)

n
 dx = J x

n
(l — x)

m
 dx. 

0 Ü 

2337. Prove the equality 

b b 

J f(x) dx = J f(a + b - x) dx. 
a a 

2338. Show that 

2 2 
Γ/(cos a;) da; = J / (gin x) dx 

0 0 

(see Course, sec. 107). 
Apply the result obtained to evaluation of the integrals 

η η 
2 2 

J cos
2
 a; da; and J sin

2
 χ dx. 

2339*. Prove that 

Ja;/(sin χ) dx = ^J*/(sin χ) dx = 

0 0 

π η 
2 2 

= ^ Χ 2 J /(sin a;) da; = π J /(sin a?) da;. 
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ι 
χ sin χ ι 

dx. 
1 - f cos

2
 χ 

0
 X 

the aid of the substitution tan - = z. We have : 
Δ 

2n 0 

dx Γ 2dz _ 
5 — 3 cos χ 

ο (1 + β») 

0 

/ 1 — z
2
\ 

I 1 + *2J 
But on the other hand, — 3 < —3 cos χ < + 3 , so that 

2 < 5 — 3 c o s a < 8 and ^ > ^ > ^ . Hence 
2 5 — 3 cos χ 8 

Apply the result obtained to evaluation of the integral 

2343. The integral is easily obtained with 

ger, by two methods: by using JNewton s tormula to expand 
the integrand as a series, and by substituting χ = sin φ. 
By comparing the results, obtain the following summation 
formula (C£ are binomial coefficients) : 

2342. Evaluate 1
 dx, where τι is a positive inte-

that dx is also a periodic function with the same period. 

odd in the interval and has the period T. Show 

2341*. We know in regard to the function f(x) that it is 

dx is independent of a. 

2340*. Show that, if f(x) is a periodic function of period 
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2n 2π 2π 

J 5
D

*
>

J S - S
g

o o B S
>

J ' î
d g

' 
0 0 0 

2π 

da π 
i.e. J da TT 

- > —. Find the mistake in the argument. 
5 — 3 cos a 4 

ο 

2344*. Let In = Jtan
n
 χάχ (n > \ and an integer). Prove 

ο 

that In + = · Show that <
 7

« < 2 ^ 2 ' 

2345*. Prove the equality 

Λ χ» Χ _ 2» 

j V e - «
1
 dz = e

T
 Je

 4
 dz. 

ο ο 

2346*. Prove that 

β*
ω ί χ

' i 0, if χ < b
a
, . Λ 7 Λ , m 

hm = β (ω > 0, h > 0, b > 0). 
ω-̂ οο ρ I oo, if a = b, 

J θ*
ωβχβ

 da 

2. Approximation Methods 

Carry out the working to an accuracy of 0001 in problems 
2347-2349. 

2347. The area of the quadrant of a circle of unit radius 

is equal to - . On the other hand, on taking the unit circle 

with centre at the origin, the equation of which is a
2
 + y

2
 = 1, 

and using integration to evaluate the area of a quadrant of 
this circle, we get: 

ι ι 

0 0 
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ο 
π 
3 

2355. Αχ (η = 10). 

ο 
2356. Evaluate from Simpson's formula the integral 

1 - 3 5 

J f(x) Ax, by using the following table of values of f(x) : 
1 0 5 

By using the rectangle, trapezium and Simpson rules, 
evaluate approximately the number π, the interval of inte-
gration [0, 1] being divided into 10 parts. Compare the results 
with each other and with the tabulated value of the number jr. 

2348. Knowing that evaluate approxi-

mately the number π. Split the interval of integration into 
10 parts and compare the results obtained by the various 
methods with each other and with the results of the previous 
problem. 

2349. Evaluate In 10 : by using Simpson's rule 

with η = 10. Find the modulus of transition from natural to 
common logarithms. Compare with the tabulated value. 

Use Simpson's rule to evaluate approximately the integrals 
given in problems 2350-2355; these integrals cannot be found 
in a finite form with the aid of elementary functions. The 
number (n) of sub-intervals is quoted in brackets. 



VII . METHODS OF EVALUATING DEFINITE INTEGRALS 189 

X 105 110 115 1-20 1-25 1-30 1-35 

m 2 36 2-50 2-74 304 3-46 3-98 4-60 

2357. A straight line touches a river bank at points A 
and B. To measure the area lying between the river and AB, 
11 perpendiculars 5 m apart are drawn to AB from points 
along the river (hence AB has a length of 60 m). The lengths of 
these perpendiculars turn out to be 328; 4*02; 464; 5*26; 
4-98; 362; 382; 4*68; 5*26; 382; 324 m. Work out 
approximately the area in question. 

2358. Work out the cross-section at the widest part of a 
ship (middle rib section) from the following data (Fig. 39): 

ΑΑγ = A1A2 = Α2Α% = A3A^ = A±A5 = A5A$ = Α§ΑΊ = 
= 0-4 m, 

AB = 3 m, ΑλΒλ = 292 m, A2B2 = 2*75 m, A3B3 = 252 m 
A^BA = 2-30 m, A5B5 = 184 m, A6B6 = 092 m. 

F I G . 39. 

2359. The work done by the steam in the cylinder of a 
steam engine is worked out by finding the area of the indi-
cator diagram, representing graphically the relationship 
between the steam pressure in the cylinder and the movement 
of the piston. The indicator diagram of a steam engine is 
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F I G . 40. 

illustrated in Fig. 40. The ordinates of the points of curves 
ABC and ED, corresponding to abscissae x0, x1 x2, . . χ10> 

are given by the following tables : 

Abscissa xx x2 *3 *4 *5 

Ordinate of curve ABC . 60-6 530 322 24-4 19-9 170 
Ordinate of curve ED .. 5-8 12 0-6 0-6 0-7 0-8 

Abscissa χΊ ^10 

Ordinate of curve ABC . 150 133 120 110 6-2 
Ordinate of curve ED .. 0-9 10 13 1-8 5-7 

Evaluate the area ABC DE with the aid of Simpson's 
formula. The ordinates are given in millimetres. Length 
OF = 88-7 mm. 

In problems 2360-2363 it is necessary to use methods of 
approximate solution of equations for finding the limits of 
integration. 

2360. Find the area of the figure bounded by the arcs of 
parabolas y = x

z
 — 7 and y = —2x

2
 + 3x and the axis of 

ordinates. 

2361. Find the area of the figure bounded by the parabola 
y — x? and the straight line y = l(x + 1). 

2362. Find the area of the figure bounded by the parabola 
3 _ 

y = 16 — χ
2
 and the semi-cubical parabola y = —γχ

2
. 
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I
 p 

10 
A Β 

10 
ι _ 

- 1 
1 
1 

— - C 

ID ^ 
0 35 

F I G . 41. 

70 

2365. The indicator diagram of a Diesel engine is shown in 
Fig. 42. Segment AB corresponds to the mixture combustion 
process, adiabat BG to expansion, segment CD to exhaust 
and adiabat DA to compression. The equation of adiabat 
BG is pv

V3
 = const, and of adiabat AD : pv

V35
 = const. 

Starting from the dimensions given in the figure (in mm), 
find the area A BCD. 

ι 
Γ 

I 

Ε 

μ 

\ 
Β 

Κ C 

D 

2 

Η 

—20 

F 

F I G . 42. 

2363. Find the area of the figure bounded by the curves 
3 

y = 4 — χ
4
 and y = Yx. 

2364. A steam engine indicator diagram (simplified) is 
shown in Fig. 41. Starting from the dimensions quoted in the 
figure (in mm), evaluate the area ABC DO, if it is known that 
the equation of curve BG is: pv

y
 = const (curve BG is 

called an adiabat), γ = 1*3, AB being a straight line parallel 
to the Ov axis. 
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2366. | ^ . 2367. j** 

2374 

Yx 

2x dx 
2368. J E -

F L
* dx (a > 0 ) . 2369. 

0 — o o 

2 
2 8 7 2 - J - * * < 4 T > - 2 8 , 8 - j < r T ^ d * -

1 0 

oo c 

dx Λ Λ„ ^ Γ dx 
[ ~ ^ = . 2375. f ™ _ . 

J a; V*
2
 - 1 J x f l + x

2 

1 β
2 

2376. fa; e~*
2
 dx. 2377. Jx

3
 e-*

2
 dx. 

ο ο 

2378. Jx sin χ dx. 2379. je~V* dx. 

oo oo 

2380. jV
x
 S I N χ dx. 2381. Je"

0
* COS bx dx. 

oo oo 

2382 ^
a r c t a n a;

 * —
Λ
 ^ dx 

1 0 

oo oo 

( 1 + x)' 

3. Improper Integrals 

Integrals with Infinite Limits 

E V A L U A T E THE I M P R O P E R INTEGRALS I N P R O B L E M S 2 3 6 6 - 2 3 8 5 

(OR ESTABLISH THEIR D I V E R G E N C E ) : 
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J-^fa 2387. J! 

0 1 

ί , *
1

* ^ dx. 2389. f \ M ± 2 > dx. 
J (χ

5
 + χ

3
 + l )

3
 J χ 

2388. 

ο ι 

2390. jfa-*dz. 2m
.tj

X
*

T0UnX dx. 

2392. 

ο f T + x * 
oo 

do: Λ Λ ΛΛ Γ da: Γ <** 2393. Γ 
J a: l n l n a: J ζ χ ( l n a:)

2 

Integrals of Functions with Infinite Discontinuities 

Evaluate the improper integrals of problems 2394-2411 
(or establish their divergence): 

2394, 
1 2 

da: f da: 
\ ψ Γ ^ ·

 2 3 9 5
· / χ ^ 4 χ + 3 

ο ο 
2
 dx '· 

2396. Γ . 2397. ï x l n x d x . 
JYx-1 ô

1 

ι 

Γ - ^ - . 2399. f-*L 
J a: l n

2
 a: J a: l n a: 

2398. 

ο ι 
e b 

2400· f - ^ = . 2401. f~ (i^ft). 
J a: f i n χ ]γ(Χ-α)φ-χ) 
1 α 

ô 

Λ ι a? da: 
2402

 1 J a; da: 
7 = = = {a<b). 
V(x - a) (b - a:) 

Investigate the convergence of the integrals of problems 
2386-2393: 

oo oo 

2386. I — — j ax. 2387. i^-i-^ ix-
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5 1 

2403
 1

 Λ J Λ J Γ da f . * * * . 2404. f 
J / ( * - 3) (5 - * ) J l - x

2
 + 2 / l -

3 0 

2405. f * ! L _ . 2406. f-?£±A äx 
J (2 - χ) Υΐ - x

2
 J -1 -1 

1 

2407. r^^dx. 2408. Ç%—± dx. 

- , V ? -ι 

1 3 0 1 

2409 J^±^«b . 2410. j ^ . 
-1 

Ji 
- ι Yx 

1 1_ 

2411. | ^ d a 

Investigate the convergence of the integrals of problems 
2412-2417: 

2412, ÜLrd* 2413.
 f r * * - . 

1 1 _ 

2414. f — J ^ — . 2415. f - j g ^ . 
J J χ ι J e

sm x
 — 1 

0
e

" "
1
 0 

ι Τ 
ftj** Γ da fin sin a , 
2416. — . 2417. — — — da. 

J e* - cos a J Yx 
ο ο 

Various Problems 

2418. Function / (a) is continuous in the interval [a, oo) 

and /(a) ~>^4=^0 as a oo. Can j /(a) da be convergent ? 
α 

oo 

J a I sin a 
x

k
 : — da be 

a — sin a 
convergent ?

 1 
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2420. For what values of k will the following integrals be 
convergent : 

oo oo 

dx , Γ dx 
Γα)* 

Γ dx Γ dx ? 

J x
k
 ln χ J χ (ln 

2 
b 

dx 
con-

ο 

2423. For what values of & and t is | Έ 7 * dx con-
vergent ? 0 

π 

J COS X 

2424. For what values of m is | dx conver-
x

m 
gent? 

of ra is J -
ο 

Γ dx 
2425. For what values of k is -r—k— convergent ? 

I sin χ 
ο 

Evaluate the improper integrals in problems 2426-2435: 

2426. ϊ - β = . 2427*. f l n i ± - * * < * * 
Jxfx-l J 1—xYl—x' 
ι - 1 

2428.
 1 a r

°
 t an

 - 1) 

.2 

/ ( * - i )
4 

/
dx 

2 2>- (ft is a positive integer). 
(a -\- χ ) 

ο 
oo 

2430. J x
n
e~

x
 dx (n is a positive integer). 

ο 
oo 

2431. ^ x
2n+1

e~
x2
 dx (n is a positive integer). 

2422. Can a k be found such that 

vergent ? 

2421. For what values of k is 

dx is convergent? 



2441*.Ja
2
e~*

2
 da. 

ο 
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2432. 

2433' 

2434
! 

2435. 

2436' 

2437' 

2438. 

Prove that 

Prove that 

Evaluate the integral 

dx (n is a positive integer). 

for m: (a) even, (b) odd (m > 0). 

dx (n is a positive integer). 

Evaluate the integrals of problems 2439-2448 by using 
the formulae (see Course, sees. I l l , 180, 181) 

Poisson's integral, 

Dirichlet's integral. 

2440 2439. 
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X 

0 

ciA*r Γ s i
n ax

 eos bx , . _ -2445. dx (a > 0, b > 0). 

ο 

2446*. da. 2 4 4 7 * . J
s i l

^ d a . 2448*.J
 S

~ da. 

ο 

2449*. We put 99(a) = — J ln cos y dy. (This is known as 
υ 

Lobachevskii's integral.) Prove the relationship 

φ(χ) = 2φ^ + |j - 2<p ^ - |j - a In 2. 

Evaluate with the aid of this relationship : 

ψ = — J i n cos y dy 

0 

(The quantity 9^?>
π
|
 w as

 first evaluated by Euler.) 

Evaluate the integrals of problems 2450-2454: 

Τ
 π 

2450. j ln sin a da. 2451. j a ln sin a da. 
υ 0 

π 

Τ ι 
2452*. f a cot a da. 2453*. ΐΐΕΪΞ 

υ J ^ 
1 

0 / I K /l , In a da 
2454. 

da. 
a 

Γ In; 

υ 

2442. Ja
2
"e

- x2
 dx (n is a positive integer). 

ο 

2 4 4 3 . / ^ d , 2444. J ~ d x . 

0 



C H A P T E R V I I I 

APPLICATIONS OF T H E 
I N T E G R A L 

1. Some Problems ol Geometry and Statics 

Areas of Figures 

2455. Find the area of the figure bounded by the curves 
whose equations are y

2
 = 2x + 1 and χ — y — 1 = 0. 

2456. Find the area of the figure lying between the para-
bola y = —χ

2
 -f- 4x — 3 and the tangents to it at the points 

(0, - 3 ) and (3, 0) . 

2457. Find the area of the figure bounded by the parabola 
y* _ 2ρχ and the normal to it inclined at 135° to the axis of 
abscissae. 

2458. Find the area of the figure bounded by the para-

bolas y = x
2
 and y = Yx. 

2459. Find the area of the figure bounded by the para-
bolas y

2
 + 8x = 16 and y

2
 — 24z = 48. 

2460. Find the area of the figure bounded by the parabolas 

198 

2461. The circle χ
2
 + y

2
 = 8 is divided into two parts by 

the parabola y Find the area of each part. 

2462. Find the areas of the figures into which the parabola 
yt = 6χ divides the circle x

2
 + y

2
 = 16. 

2463. An ellipse is cut out from a circular disc of radius a 
such that its major axis coincides with a diameter of the 
circle and its minor axis is equal to 2b. 

Prove that the area of the remaining part is equal to the 
area of the ellipse with semi-axes a and a — b. 
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2468. Find the area of the figure bounded by the curve 
y = χ(χ — l )

2
 and the axis of abscissae. 

2469. Find the area of the figure bounded by the axis of 
ordinates and the curve χ = y

2
(y — 1). 

2470. Find the area of the piece of the figure bounded by 
the curves y

m
 = x

n
 and y

n
 = x

m
, where m and η are positive 

integers, lying in the first quadrant. Consider the area of the 
whole figure from the point of view of the property of num-
bers m and η of being even or odd. 

2471. (a) Find the area of the curvilinear trapezium boun-
ded by the axis of abscissae and the curve y = χ — χ

2
 fx. 

(b) Work out the area of the figure bounded by the two 
branches of the curve (y — x)

2
 = x

5
 and the straight line 

χ = 4. 

2472. Find the area of the figure bounded by the curve 
(y — χ — 2)

2
 = 9x and the coordinate axes. 

2473. Find the area of the loop of the curve y
2
 = x(x — l )

2
. 

2474. Find the area of the figure bounded by the closed 
curve y

2
= (1 — #

2
)

3
. 

2475. Find the area of the figure bounded by the closed 
curve y

2
 = χ

2
 — a

4
. 

2467. Find the area of the figure lying between the curve 

and the parabola 

bola 

the intersection of the ellipse 1 and the hyper-

2466. Find the areas of the curvilinear figures formed by 

hyperbola Find the areas of these parts. 

2464. Find the area of the figure bounded by the arc of a 
hyperbola and a chord passing through a focus perpendi-
cularly to the transverse axis. 

2465. The circle x
2
 + y

2
 = a

2
 is cut into three parts by the 
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y — tan χ and y = - cos x. 

2476. Find the area of the figure bounded by the closed 
curve xt — ax

z
 + a

2
y

2
 = 0. 

2477. Find the area of the finite part of the figure bounded 
by the curve x

2
y

2
 = 4(# — 1) and the straight line passing 

through its points of inflexion. 

2478. Find the area of the figure bounded by the curves 
y = e

x
, y = e~

x
 and the straight line χ = 1. 

2479. Find the area of the curvilinear trapezium bounded 
by the curve y — (χ

2
 + 2x) e~

x
 and the axis of abscissae. 

2480. Find the area of the curvilinear trapezium bounded 
by the curve y = e~

x
 (x

2
 + 3x + 1) + β

2
, axis Ox and the 

two straight lines parallel to Oy passing through the extremal 
points of function y. 

2481. Find the area of the finite part of the figure bounded 
by the curves y = 2x

2
e

x
 and y = — x* e

x
. 

2482. (a) Work out the area of the curvilinear trapezium 

with base [a, b] bounded by curve y = ln x. 

(b) Work out the area of the figure bounded by the curve 
y = ln x, the axis of ordinates and the straight lines y = ln a 
and y = ln b. 

2483. Work out the area of the figure bounded by the cur-
ves y = ln χ and y = In

2
 x. 

2484. Find the area of the figure bounded by the curves 

y = and y = χ ln χ. 
QX 

2485. Find the area of one of the curvilinear triangles 
bounded by the axis of abscissae and the curves 

y = sin χ and y = cos x. 

2486. Find the area of the curvilinear triangle bounded by 
the axis of ordinates and the curves 
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2487. Find the area of the figure bounded by the curve 
y = sin

3
 χ + cos

3
 χ and the segment of the axis of abscissae 

joining two successive points of intersection of the curve 
with the axis of abscissae. 

2488. Work out the area of the figure bounded by the 
axis of abscissae and the curves 

y = arc sin χ and y = arc cos x. 

2489. Find the area of the figure bounded by the closed 
curve (y — arc sin χ)

2
 = χ — χ

2
. 

2490. Find the area of the figure bounded by one arc of 
the cycloid χ = a(t — sin t), y = a(l — cos t) and the axis 
of abscissae. 

2491. Work out the area of the figure bounded by the 
astroid χ = a cos

3
 t, y = a sin

3
 t. 

2492. Find the area of the figure bounded by the cardioid 
χ = 2a cos t — a cos 2t, y = 2a sin t — a sin 2t. 

2493. Find the area of the figure bounded: (1) by the 
epicycloid 

R + r 
x =z (R - f r) cos t — r cos — - — t, 

y = [R -f- r) sin t — r sin 

(2) by the hypocycloid 

χ = (R — r) cos t + r cos 

y = (R — r) sin t — r sin t, 

where R = nr (n is an integer). Here R is the radius of the 
fixed, and r the radius of the moving circle ; the centre of the 
fixed circle coincides with the origin, whilst t denotes the 
angle of rotation of the radius from the centre of the fixed 
circle to the point of contact (see Course, sec. 83). 

2494. Find the area of the loop of the curve : 

(1) χ = 3t
2
, y = 3ί — t

3
; (2) χ = t

2
 — 1, y = *

3
 — t. 

R + r 
r 

R - r 
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ρ = γ 1 — t
2
, φ = aresin* + Y I — t

2
. 

2495. (a) Find the area swept out by the radius vector of 
the spiral of Archimedes ρ = αφ during one rotation, if the 
start of the motion corresponds to φ = 0. 

(b) Find the area of the figure bounded by the second 
and third turns of the spiral and the segment of the polar 
axis. 

2496. Find the area of the figure bounded by the curve 
ρ = a sin 2φ. 

2497. Find the area of the figure bounded by the curve 
ρ = a cos 5φ. 

2498. Find the area of the figure bounded by the limaçon 
of Pascal ρ = 2α(2 + cos φ). 

2499. Find the area of the figure bounded by the curve 
71 

ρ = a tan φ(α > 0) and the straight Une φ = - . 

2500. Find the area of the common part of the figures 
bounded by the curves ρ = 3 + °os 4<p and ρ = 2 — cos 4<p. 

2501. Find the area of the piece of the figure bounded by 
the curve ρ = 2 + cos 2φ lying outside the curve ρ = 2 + 
+ sin φ. 

2502. Find the area of the figure bounded by the curve 
ρ2 = a

2
 cos ηφ (η is a positive integer). 

2503. Prove that the area of the figure bounded by any two 
radius vectors of the hyperbolic spiral ρφ = a and its arc is 
proportional to the difference between these radius vectors. 

2504. Prove that the area of the figure bounded by any 
two radius vectors of the logarithmic spiral ρ = ae

m(p
 and 

its arc is proportional to the difference between the squares of 
these radius vectors. 

2505*. Find the area of the figure lying between the exte-

rior and interior parts of the curve ρ = a sin
3
 ^ . 

2506. Find the area of the figure bounded by the curve 
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I t is convenient to pass first to polar coordinates in 

problems 2507-2511. 

2507. Find the area of the figure bounded by the lemniscate 

of Bernoulli (x
2
 + y

2
)

2
 = a

2
(x

2
 — y

2
). 

2508. Find the area of the part of the figure bounded by 

the lemniscate of Bernoulli (see problem 2507) lying inside 
a

2 

the circle x
2
 y

2
 = — . 

Δ 

2509. Find the area of figure bounded by the curve 
(x

2
 + y

2
)

2
 — a

2
x

2
 - b

2
y

2
 = 0 ("pedal of ellipse"). 

2510. Find the area of the figure bounded by the curve 

(x
2
 - j - y

2
)* = éa

2
xy(x

2
 — y

2
). 

2511. Find the area of the figure bounded by the curve 
+ y* = x

2
 + y

2
. 

2512. Find the area of the figure lying between the curve 

y = ^ 2 ^
 a n (

i its asymptote. 

2513. Find the area of the figure lying between the curve 

y = xe
 2

 and its asymptote. 

2514. Find the area of the figure contained between the 
x

3 

cissoid y
2
 = — and its asymptote. 

\Δ& — X) 

2515. Find the area of the figure lying between the curve 
xy

2
 = 8 — 4tx and its asymptote. 

2516*. (1) Find the area of the figure bounded by the curve 
y = x

2
e~*

2
 and its asymptote. 

(2) Find the area of the figure bounded by the curve 
y

2
 = χ e~

2 x
. 

2517. Find the area of the figure lying between the tractrix 

x = a |cos t + ln tan^j, y = a sin t and the axis of abscissae. 

2518. For the curve ρ =
 c os

 ^ g n (j the area of the 
cos φ 

loop and the area of the figure lying between the curve and 
its asymptote. 
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y = ln (1 — x
2
) jVrom x1 = 0 to x2 = 

2523. Find the length of arc of the curve 

ex _L 1 
y = ln (from xl = a to x0 = b). 

e
x
 — 1 

2524. Find the length of arc of the semi-cubical parabola 
2 χ 

y* = - (χ — l )
3
 lying inside the parabola y

2
 = - . 

O O 

2525. Find the length of arc of the semi-cubical parabola 
5y* = χ

2
 lying inside the circle x

2
 + y

2
 = 6. 

2526. Find the length of the loop of the curve 

Qay
2
 = x(x — 3a)

2
. 

2527. Find the perimeter of one of the curvilinear trapezia 
bounded by the axis of abscissae and the curves y = ln cos χ 
and y = ln sin x. 

x
2
 ln χ 

2528. Find the length of arc of the curve y = — — 

lying between its lowest point and the vertex (the point of 
the curve of extremal curvature). 

t In the problems on evaluating the length of arc, the interval 

of variation of the independent variable corresponding to the rectified 

arc is indicated where necessary. 

Length of Artf 

2519· Find the length of arc of the catenary 

y — I |e~ö" _|_ e~ r j (from χλ = 0 to x2 = b). 

2520. Find the length of arc of the parabola y
2
 = 2px 

from the vertex to its point M (x, y). (Take y as the indepen-
dent variable.) 

2521. Find the length of arc of the curve 

y = ln χ (from xl = γΊ$ to x2 = / 8 ) . 

2522. Find the length of arc of the curve 
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2529. Find the length of the curve y = Μ χ — χ
2
 + 

+ arc sin ψχ. 

2530. Find the length of the curve (y — arc sin x)
2
 = 

= 1 - x
2
. 

2531· Find the point that divides the length of the first 
arc of the cycloid χ = a(t — sin t), y = a(l — cos t) in the 
ratio 1 : 3. 

2532. Given the astroid χ = R cos
3
1, y = R sin

3
 t and the 

points A (R, 0), Β (0, R) on it, find the point M on arc 

AB such that the length of arc AM amounts to a quarter 

of the length of arc AB. 

2533*. Find the length of the curve 

2534. Find the length of the curve 

x = a cos
5
1, y = a sin

5
 t. 

2535. Find the length of arc of the tractrix 

x = a^cos t + ln tan j , y = a sin t 

from the point (0, a) to the point (x, y). 

2536. Find the length of arc of the involute of the circle 

x = i2(cos t + t sin t), y = i?(sin t — £ cos t) 

(from ^ = 0 to £2 = π). 

2537. Find the length of arc of the curve 

x = (J2 _ 2) sin t + 2t cos t, y = (2 — ί
2
) cos £ + 2t sin * 

(from ^ = 0 to t2 = π). 

2538. Find the length of the loop of the curve χ = t
2
, 
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2539. Two circles of radii equal to b roll without slipping 
with the same angular velocity on the inside and outside of a 
circle of radius a. A t the instant t = 0 they touch the point 
M of the fixed circle with their points M± and M2. Show that 
the ratio of the paths traversed by points M1 and M2 after 

a —j— b 
an arbitrary interval of time t is a constant equal to - ^ (see 

problem 2493). 

2540. Show that the length of arc of the curve 

x = f"(t) cos t + f'(t) sin t, y = —f"(t) sin t + f'(t) cos t, 

corresponding to the interval (tv t2) is equal to 

I [/(<) + /"(<) J IS-
2541. Apply the result of the previous problem to evaluat-

ing the length of arc of the curve χ = ë (cos t + sin t), 
y = e* (cos t — sin t) (from tx = 0 to t2 = t). 

2542. Show that the arcs of the curves 

χ = f(t) - <p'(t), y = cp(t) + f'(t) 
and 

x = f(t) sin t — (p'(t) cos t, y = f'(t) cos £ + <p'(£) sin t, 

corresponding to the same interval of variation of parameter 
t, have equal lengths. 

2543. Find the length of arc of the spiral of Archimedes 
ρ = αφ from the origin to the end of the first turn. 

x
2 

2544. Show that the arc of the parabola y = — corre-

sponding to the interval 0 ^ χ ^ a has the same length as 

the arc of the spiral ρ = ρφ corresponding to the interval 

0 ^ ρ ^ a. 
2545. Find the length of arc of the hyperbolic spiral 

2546. Find the length of the cardioid ρ = a(l + cos φ). 

2547. Find the length of the curve ρ = a sin
3 

(see 

problem 2505). 
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2548. Show that the length of the curve ρ = a sin
m
 — 

m 
(m is an integer) is commensurate with a when m is even and 
commensurate with the circumference of a circle of radius 
a when m is odd. 

2549. For what values of the exponent k (k + 0) is the 
length of arc of the curve y = ax

k
 expressed in elementary 

functions ? (Take as basis Chebyshev's theorem on the condi-
tions for integrability in a finite form of the differential 
binomial; see Course, sec. 102.) 

2550. Find the length of the curve given by the equation 
X 

2 

2551. Find the length of arc of the curve 
* t 

Jcos ζ _ f sin ζ , 
— dz, y = J — d * 

1 1 

from the origin to the nearest point with vertical tangent. 
2552. Show that the length of arc of the sine wave y = sin χ 

corresponding to one period is equal to the length of the 

ellipse whose semi-axes are equal to Y~2 and 1. 

2553. Show that the length of arc of the curtate or prolate 
cycloid χ = mt — η sin t, y = m — η cos t (m and n are 
positive numbers) in the interval from tx = 0 to t2 = 2π 
is equal to the length of the ellipse with semi-axes a = m + η, 
b = J m — η I. 

2554*. Show that the length of the ellipse with semi-axes 
a and b satisfies the inequality n(a + b) < L < π Y 2 χ 
χ γ a

2
 - f b

2
 (Bernoulli's problem). 

Volume of a Solid 

2555. Find the volume of the solid, bounded by the surface 
which is formed by revolution of the parabola y

2
 = 4x about 

its axis (paraboloid of revolution), and by the plane perpendi-
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cular to the axis and at a distance equal to unity from the 
vertex. 

2556. An ellipse with major axis equal to 2a and minor 
axis 2b revolves (1) about the major axis, (2) about the 
minor axis. Find the volumes of the ellipsoids of revolution 
thus obtained. Obtain the volume of a sphere as a partic-
ular case. 

2557. A symmetric parabolic segment of base a and height 
h revolves about the base. Find the volume of the solid of 
revolution thus obtained. (Cavalieri's "lemon".) 

2558. The figure bounded by the hyperbola x
2
 — y

2
 = a

2 

and the straight line χ = a + h(h > 0) revolves about the 
axis of abscissae. Find the volume of the solid of revolution. 

2559. The curvilinear trapezium bounded by the curve 
y = xe

x
 and the straight lines χ = 1 and y = 0 revolves 

about the axis of abscissae. Find the volume of the solid 
thus obtained. 

e
x
 + e

—x 

2560. The catenary y = revolves about the axis 

of abscissae. The surface thus obtained is called a cate-
noid. Find the volume of the solid bounded by the catenoid 
and two planes at distances of a and b units from the origin 
and perpendicular to the axis of abscissae. 

2561. The figure bounded by the arcs of parabolas y = χ
2 

and y
2
 = χ revolves about the axis of abscissae. Find the 

volume of the solid thus obtained. 

2562. Find the volume of the solid obtained by revolution 
about the axis of abscissae of the trapezium lying above 
Ox and bounded by the curve (x — 4) y

2
 = χ (χ — 3). 

2563. Find the volume of the solid obtained by revolution 
of the curvilinear trapezium bounded by the curve y = 
= arcsin x, and with base [0, 1], about the Ox axis. 

2564. Find the volume of the solid obtained by revolution 
of the figure, bounded by the parabola y = 2x — x

2
 and the 

axis of abscissae, about the axis of ordinates. 
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2565. Find the volume of the body which is obtained on 
revolution about the axis of ordinates of the curvilinear trap-
ezium bounded by the arc of the sine wave y = sin χ corre-
sponding to a half period. 

2566. The lemniscate (x
2
 -f- y

2
)

2
 = a

2
(x

2
 — y

2
) revolves 

about the axis of abscissae. Find the volume of the solid 
of revolution thus formed. 

2567. Find the volume of the solid formed by revolution 
about the axis of abscissae of the figure bounded by the 
curve: (1) a

4
 + y* = a

2
x

2
\ (2) a

4
 + y* = a

3
. 

2568. One arc of the cycloid χ = a(t — sin t), y = 
= α(1 — cos*) revolves about its base. Find the volume of 
the solid bounded by the surface obtained. 

2569. The figure, bounded by an arc of the cycloid (see 
previous problem) and its base, revolves about the perpendi-
cular bisector of the base (the axis of symmetry). Find the 
volume of the solid thus obtained. 

2570. Find the volume of the solid obtained on revolution 
Ά iL iL 

of the astroid x
3
 + y

3
 = α

3
 about its axis of symmetry. 

2571. The figure bounded by the arc of the curve χ = 
c

2
 c

2 

= — cos
3
1, y — — sin31 (evolute of the ellipse), lying in the 

Ci 0 

first quadrant, and by the coordinate axes, revolves about 
the axis of abscissae. Find the volume of the solid thus ob-
tained. 

2572. Find the volume of the solid bounded by the surface 
of the infinite "spindle", formed by revolution of the curve 

y = t *—27 about its asymptote. 

2573. The curve y
2
 = 2e#e

- 2x
 revolves about its asymptote. 

Find the volume of the solid bounded by the resulting surface. 

2574*. (1) The figure bounded by the curve y = e~
x
* and 

its asymptote revolves about the axis of ordinates. Find the 
volume of the resulting solid. 
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the axis of abscissae revolves about the axis of abscissae. 
Find the volume of the resulting solid. 

2577*· Find the volume of the solid bounded by the surface 

produced by revolution of the cissoid y
2
 =

 X
—- (a > a) 

y£CL — X) 

about its asymptote. 

2578. Find the volume of the solid whose boundary 
surface is obtained by revolution of the tractrix χ = 

a |cos t -f- In tan , y = a sin t about its asymptote. 

2579*. Find the volume of the solid bounded by the ellip-
φ2 ^y2 2j2 

soid -5 + f ô + - 2 = 1. 
a

2
 o

2
 c

2 

2580. (1) Find the volume of the solid bounded by the 
/j»2 | / 2 

elliptic paraboloid ζ = — + | - and the plane ζ = 1. 

(2) Find the volume of the solid bounded by the hyper-
x

2
 y

2 

boloid of one sheet — + ^- — z2
 = 1 and the planes 

ζ = — 1 and ζ = 2. 

2581. Find the volumes of the solids bounded by the para-
boloid ζ = χ

2
 + 2y

2
 and by the ellipsoid x

2
 + 2y

2
 + z

2
 = 6. 

2582. Find the volumes of the solids formed by intersection 
φ2 | / 2 

of the hyperboloid of two sheets — — ^ — — = 1 and 
2*2 <2#2 <2j2 

the ellipsoid — + + ττ = 1. 
6 4 9 

2583. Find the volume of the solid bounded by the conical 
Χ

2
 ΊΙ

2 

surface (z — 2)
2
 = — + ^- and the plane ζ = 0. 

Ο Δ 

2576*. The figure bounded by the curve y and 

(2) The same figure revolves about the axis of abscissae. 
Find the volume of the resulting solid. 

2575*. Find the volume of the solid formed by revolution 
of the curve y = #

2
e

- x2
 about its asymptote. 
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2584. Find the volume of the solid bounded by the para-

boloid 2z = — + 7 - and the cone — + ^- = z
2
. 

4 9 4 9 

2585*. Find the volume of the solid cut out from a circular 
cylinder by a plane through a base diameter ( ' 'special ungula 
of cylinder", Fig. 43). In particular, put R = 10 cm, H = 
= 6 cm. 

F I G . 43. F I G . 44. 

2586. A parabolic cylinder is cut by two planes, one of 
which is perpendicular to the generators. The resulting solid 
is illustrated in Fig. 44. The common base of the parabolic 
segments is a = 10 cm, the height of the parabolic segment 
lying in the base is H = 8 cm, and the height of the solid 
is h = 6 cm. Find the volume of the solid. 

2587. A cylinder, whose base is an ellipse, is cut by an 
inclined plane through the major axis of the ellipse. Find the 

F I G . 45. 
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volume of the resulting solid. The linear dimensions are 
given in Fig. 45. 

2588*. Symmetrical parabolic segments, of constant height 
H, are constructed on all the chords of a circle of radius R 
parallel to a single direction. The planes of the segments are 
perpendicular to the plane of the circle. Find the volume of 
the solid thus obtained. 

2589*. A right circular cone of radius R and height Η is 
cut into two pieces by a plane through the centre of the base 
parallel to a generator (Fig. 46). Find the volumes of the two 
pieces. (The sections of a cone by planes parallel to a generator 
are parabolic segments.) 

s 

A A' 

F I G . 46 . 

2590. The centre of a square moves along a diameter of a 
circle of radius a, the plane of the square remains perpendi-
cular to the plane of the circle, whilst two opposite vertices 
of the square move round the circumference. Find the volume 
of the solid formed by this moving square. 

2591. A circle of variable radius moves in such a way that 
a point of its circumference remains on the axis of abscissae, 
whilst the centre moves along the circle x

2
 + y

2
 = r

2
, and 

the plane of the circle is perpendicular to the axis of abscissae. 
Find the volume of the solid thus obtained. 

2592. The axes of two equal cylinders intersect at right 
angles. Find the volume of the solid consisting of the common 
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part of the cylinders (Y8 of the solid is illustrated in Fig. 47). 
(Consider the sections formed by planes parallel to the axes 
of the two cylinders.) 

R 

F I G . 47. 

2593. Two circular cylinders have the same height H and 
a common upper base of radius R, whilst the lower bases touch 
(Fig. 48). Find the volume of the common part of the cylin-
ders. 

F I G . 48 . 

Area of a Surface of Revolution 

2594. Find the area of the surface formed by revolution 
of the parabola y

2
 = 4α# about the axis of abscissae from 

the vertex to the point with abscissa χ = 3α. 

2595. Find the area of the surface formed by revolution 
of the cubical parabola 3y — a

3
 = 0 about the axis of abscis-

sae (from x1 = 0 to x2 = a). 
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2596. Find the area of the catenoid — the surface formed 
by revolution of the catenary 

about the axis of abscissae (from xx = 0 to x2 = 2). 

2597. When the ellipse 

revolves about its major axis a surface is obtained which is 
called a prolate ellipsoid of revolution, whilst when it revolves 
about the minor axis the surface is an oblate ellipsoid of 
revolution. Find the surface areas of the prolate and oblate 
ellipsoids of revolution. 

2598. Find the area of the spindle-shaped surface formed by 
revolution of one arc of the sine wave y = sin χ about the 
axis of abscissae. 

2599. The arc of the tangent curve y = tan χ from the 

point (0, 0) to the point - , 1 revolves about the axis of 

abscissae. Find the area of the surface thus obtained. 

2600. Find the area of the surface formed by revolution 
about the axis of abscissae of the loop of the curve 9ay

2
 = 

= χ(3α — a )
2
. 

2601. The arc of the circle x
2
 + y

2
 = a

2
 lying in the first 

quadrant revolves about the chord subtending it. Find the 
area of the resulting surface. 

2602. Find the area of the surface formed by revolution 
about the axis of abscissae of the arc of the curve 

χ = e
l
 sin t, y = e* cos t ^from £A = 0 to t2 = . 

2603. Find the area of the surface formed by revolution 
of the astroid χ = a cos

3
 t, y = a sin

3
 t about the axis of 

abscissae. 
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2604. An arc of the cycloid revolves about its axis of 
symmetry. Find the area of the surface thus obtained. (See 
problem 2568.) 

2605. Find the area of the surface formed by revolution 
about the polar axis of the cardioid ρ = a(l + cos φ). 

2606. The circle ρ = 2r sin φ revolves about the polar 
axis. Find the area of the surface thus formed. 

2607. The lemniscate ρ
2
 = α

2
 cos 2φ revolves about the 

polar axis. Find the area of the resulting surface. 

2608. The infinite arc of the curve y = e~
x
, corresponding 

to positive values of x, revolves about the axis of abscissae. 
Find the area of the surface thus obtained. 

2609. The tractrix χ = a cos ί -j- ln tan - , y = a sin t 

revolves about the axis of abscissae. Find the area of the 
resulting infinite surface. 

Moments and Centres of Gravity* 

2610. Find the statical moment of a rectangle of base a 
and height h about its base. 

2611. Find the statical moment of a right-angled isosceles 
triangle, whose adjacent sides are equal to a, with respect to 
each of its sides. 

2612. Prove that the following formula holds: 

where ξ is the abscissa of the centre of gravity of the curvi-
linear trapezium with base [a, 6], bounded by the curve 
y = f(x). (Vereshchagin's rule.) 

2613. Find the centre of gravity of the symmetrical 
parabolic segment with base equal to a and height A. 

b b 

J (ax + b) f(x) dx = (αξ + b) J f(x) dx, 

a a 

t The density is taken as equal to unity in all the problems of 
this section (2610-2662). 
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τ 
b 

F I G . 49, 

2615. Find the coordinates of the centre of gravity of the 
semi-circular arc 

y = Yr
2
 — x

2
. 

2616. Find the coordinates of the centre of gravity of the 
semi-circular area bounded by the axis of abscissae and 

y = γτ
2
 — χ

2
. 

2617. Find the centre of gravity of the circular arc of 
radius R subtending an angle α at the centre. 

2618. Find the coordinates of the centre of gravity of the 

figure bounded by the coordinate axes and the parabola 

Yx + Yy = Y~a. 

2619. Find the coordinates of the centre of gravity of the 
figure bounded by the coordinate axes and the arc of the 

ellipse + | ^ = 1* tying i*
1
 the first quadrant, with re-

α ο 
spect to the axis of abscissae. 

2620. Find the statical moment of the arc of the ellipse 

2614. A rectangle of sides a and b is divided into two parts 
by the arc of the parabola whose vertex coincides with one 
corner of the rectangle and which passes through the opposite 
corner (Fig. 49). Find the centres of gravity of the two parts 
£x and 82 of the rectangle. 

1, lying in the first quadrant, with respect to 

the axis of abscissae. 
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2621. Find the coordinates of the centre of gravity of the 
figure bounded by the arc of the sine wave y = sin χ and the 
segment of the axis of abscissae (from x1 = 0 to x2 = π). 

2622. Find the statical moment of the figure bounded by 

axis of abscissae. 

2623. The same for the curves y = sin χ and V = \ 
Δ 

(one segment) with respect to the axis of abscissae. 

2624. The same for the curves y = x
2
 and y = ψχ with 

respect to the axis of abscissae. 

2625. Find the coordinates of the centre of gravity of the 
figure bounded by the closed curve y

2
 = ax

3
 — xt. 

2626. Find the coordinates of the centre of gravity of the 

arc of the catenary y = -ye
a
 + ©

 a
j, lying between the 

points with abscissae xx = —a and x2 = a. 

2627. Prove the theorem: the statical moment of an 
arbitrary arc of a parabola with respect to the parabola axis 
is proportional to the difference between the radii of curvature 
at the ends of the arc. The coefficient of proportionality is 

equal to ^ , where ρ is the parameter of the parabola. 
ό 

2628. Find the coordinates of the centre of gravity of the 
first arc of the cycloid 

2629. Find the coordinates of the centre of gravity of the 
figure bounded by the first arc of the cycloid and the axis 
of abscissae. 

2630. Find the coordinates of the centre of gravity of the 
arc of the astroid χ = a cos

3
 t, y = a sin

3
 t, lying in the 

first quadrant. 

2631. Find the coordinates of the centre of gravity of the 
figure bounded by the coordinate axes and the arc of the 
astroid (in the first quadrant). 

the curves y = 
2 

and y = x
2
 with respect to the 

(1 + x
2
) 

x = a(t — sin t), y = α(1 — cos t). 
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2632. Prove that the abscissa and ordinate of the centre of 

gravity of the sector bounded by two radius vectors and the 

curve whose equation is given in polar coordinates ρ = 

= ρ(φ), is given by 

j ρ3
 cos φ άφ J ρ

3
 sin φ άφ 

2 Ψι 2 φ* 

^ρ
2
 άφ | ρ

2
 άφ 

Ψ\ <Ρι 

2633. Find the Cartesian coordinates of the centre of 

gravity of the sector bounded by one half turn of the spiral 

of Archimedes ρ = αφ (from φ1 = 0 to φ2 = π). 

2634. Find the centre of gravity of the circular sector 

of radius R subtending an angle 2a at the centre. 

2635. Find the Cartesian coordinates of the centre of 

gravity of the figure bounded by the cardioid ρ == α(1 + 

-f cos φ). 

2636. Find the Cartesian coordinates of the centre of 

gravity of the figure bounded by the right-hand loop of the 

lemniscate of Bernoulli 

2637. Prove that the Cartesian coordinates of the centre 

of gravity of the arc of the curve whose equation is given in 

polar coordinates as ρ = ρ(φ) is given by 

J ρ COS φ Υρ' 
ψ» 

2
 + ρ

2
 άφ J ρ sin φ Υ ρ

2
 + ρ'

2
 άφ 

χ
 — ψ2 > y — 

\Υρ
2
+ρ'

2
άφ \ Υ ρ

2
 + ρ'

2
 άφ 

2638. Find the Cartesian coordinates of the centre of 

gravity of the arc of the logarithmic spiral ρ = ae* (from 

<Pi = f toç>2 = 7rj . 
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2639. Find the Cartesian coordinates of the centre of 
gravity of the arc of the cardioid ρ = a(l + cos φ) (from 
φ1 = 0 to φ2 = η). 

2640. At what distance from the geometrical centre is the 
centre of gravity of a solid hemisphere of radius R ? 

2641. Find the centre of gravity of the surface of a hemis-
phere. 

2642. The base radius of a right circular cone is R, its 
height is H. Find the distance from the base of the centre of 
gravity of its lateral surface, of its total surface and of its 
volume. 

2643. How far from the base is the centre of gravity of the 
solid bounded by a paraboloid of revolution and a plane 
perpendicular to its axis ? The height of the solid is h. 

2644. Find the moment of inertia of the segment AB = I 
with respect to an axis lying in the same plane, given that 
the distance of end A of the segment from the axis is a 
units and the distance of end Β from the axis is b units. 

2645. Find the moment of inertia of the semi-circular arc 
of radius R with respect to the diameter. 

2646. Find the moment of inertia of the arc of the curve 

y = e
x
 ^0 ^ χ ^ i j with respect to the axis of abscissae. 

2647. Find the moment of inertia with respect to both 
coordinate axes of an arc of the cycloid χ = a(t — sin t), 
y = a(l — cos t). 

2648. Find the moment of inertia of a rectangle with sides 
a and b with respect to side a. 

2649. Find the moment of inertia of a triangle of base a 
and height h with respect to : 

(1) the base; 

(2) a straight line parallel to the base through the vertex; 

(3) a straight line parallel to the base through the centre 
of gravity of the triangle. 
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2650. Find the moment of inertia of a semi-circular area of 
radius R with respect to its diameter. 

2651. Find the moment of inertia of a circular disc of 
radius R with respect to the centre. 

2652. Find the moment of inertia of the ellipse with semi-
axes a and b with respect to both its axes. 

2653. Find the moment of inertia of a cylinder of base 
radius R and height H with respect to its axis. 

2654. Find the moment of inertia of the cone of base 
radius R and height H with respect to its axis. 

2655. Find the moment of inertia of a sphere of radius 
R with respect to a diameter. 

2656. An ellipse revolves about one of its axes. Find the 
moment of inertia of the resulting solid (ellipsoid of revolution) 
with respect to the axis of revolution. 

2657. Find the moment of inertia with respect to the axis 
of revolution of the paraboloid of revolution, the base radius 
of which is R, and the height H. 

2658. Find the moment of inertia with respect to Oz of 
the solid bounded by the hyperboloid of one sheet 

2 ^ 2 
and the planes 

ζ = 0 and 2 = 1 . 

2659. The curvilinear trapezium bounded by the curves 

y = e
x
, y = 0, χ = 0 and χ = 1, 

revolves (1) about Ox, (2) about Oy. 
Find the moment of inertia of the resulting solid with 

respect to the axis of revolution. 

2660. Find the moment of inertia of the lateral surface of 
a cylinder (base radius R, height H) with respect to its 
axis. 

2661. Find the moment of inertia of the lateral surface of a 
cone (base radius R, height H) with respect to its axis. 
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2662. Find the moment of inertia of the spherical surface 
of radius R with respect to a diameter. 

Guldin's Theorem 

2663. A regular hexagon of side a revolves about one of the 
sides. Find the volume of the solid thus obtained. 

2664. An ellipse with axes AA1 = 2a, BB1 = 2b, revolves 
about a straight line parallel to axis AAX and at a distance 36 
from it. Find the volume of the solid thus obtained. 

2665. An astroid revolves about an axis through two 
neighbouring cusps. Find the volume and surface of the body 
thus formed (see problem 2630). 

2666. The figure formed by the first arcs of the cycloids 

revolves about the axis of ordinates. Find the volume and 
surface of the solid thus obtained. 

2667. A square revolves about an axis, lying in its plane 
and passing through one of its corners. For what position of 
the axis with respect to the square is the volume of the solid 
thus obtained a maximum ? The same problem for a triangle. 

2. Some Problems of Physics 

2668. The speed of a body is given by ν = γΐ + t m/sec. 
Find the path traversed by the body during the first 10 sec. 
from the start of the motion. 

x — a(t — sin t), y — a(l — cos t) 
and 

x = a(t — sin t), y = —α(1 — cos t), 

2669. The speed for a harmonic vibration along the 

axis of abscissae about the origin is given by 



222 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

(t is time, Τ the period of vibration, φ0 the initial phase). 
Find the position of the point at the instant t2, if it is known 
that it was at the point χ — xl at the instant tv 

The force / of interaction of two material particles is given 
TYIM 

by the formula f = k , where m and M are the masses of 

the particles, r is the distance between them, and k is a 
coefficient of proportionality, equal in the CGS system to 
6*66xl0~

8
 (Newton's law). Use this in solving problems 

2670-2678. (The density is assumed constant.) 

2670. A rod AB of length I and mass M attracts a particle 
C of mass m which lies on the continuation of the rod at 
a distance a from its nearest end B. Find the force of interac-
tion of the rod and particle. What material particle must be 
located at A in order for it to act on C with the same force as 
rod AB\ How much work is done by the force of attraction 
when the particle, situated at a distance rx from the rod, appro-
aches along the straight line forming the prolongation of the 
rod until its distance from the rod is r2 ? 

2671. With what force does a half-ring of radius r and mass 
M act on a material particle of mass m situated at its centre ? 

2672. With what force does a wire ring of mass M and 
radius R act on a material particle G of mass m, located on the 
straight line through the centre of the ring perpendicular 
to its plane ? The distance from the particle to the ring centre 
is equal to a. What work is done by the attraction force 
when the particle moves from infinity to the ring centre? 

2673. Using the result of the previous problem, find the 
force that a plane disc of radius R and mass M exerts on a 
material particle of mass m, which lies on its axis at a distance 
a from the centre. 

2674. Using the result of the previous problem, find the 
force exerted on a material particle of mass m by an infinite 
plane on which mass is uniformly distributed with surface 
density σ. The distance from the particle to the plane is equal 
to a. 
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2675. The base radii of the frustum of a right circular 
cone are equal to R and r, its height is h and density γ. 
What force does it exert on a material particle of mass m 
located at its vertex? 

2676. With what force does the material step-line y = 
= I χ I + 1 attract a material particle of mass m, located at 
the origin? (The linear density is equal to γ.) 

2677. Prove that the material step-line y = a \ χ | + 1 
(a ^ 0) attracts a material particle, situated at the origin, 
with a force independent of a, i.e. independent of the angle 
between the sides of the step-line. 

2678*. Two equal rods (each of length I and mass M) he 
on the same straight line at a distance I from each other. Work 
out the force of mutual attraction. 

2679. A drop with initial mass M falls under the action 
of gravity and evaporates uniformly, losing mass m per second. 
What is the work done by gravity from the start of the motion 
to the complete evaporation of the drop ? (The air resistance 
is neglected.) 

2680. How much work must be done in producing a conical 
heap of sand of base radius 1*2 m and height 1 m ? The specific 
weight of sand is 2 g/cm

3
 (the sand is taken from the surface 

of the earth). 

2681. The dimensions of the pyramid of Cheops are roughly 
as follows: height 140 m, side of the (square) base 200 m. 
The specific weight of the stone of which it is made is approxi-
mately 2*5 g/cm

3
. Find the work done during its construction 

in overcoming the force of gravity. 

2682. Find the work required when pumping out the water 
from a cylindrical reservoir of height H = 5 m, having a 
circular base of radius R = 3 m. 

2683. Find the work that must be expended in pumping 
out liquid of specific weight d from a reservoir, having the 
shape of an inverted cone with vertex downwards, the height 
of which is H and base radius R. How is the result affected if 
the one has ite vsertx upwards ? 
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F I G . 50 . 

2686. Find the work which must be expended to pump out 

the water from a trough which has the following dimensions 

(Fig. 51): a = 075 m, b = 1-2 m, H = 1 m. The surface 

bounding the trough is a parabolic cylinder. 

F I G . 5 1 . 

The kinetic energy of a body rotating about a fixed axis is 

equal to ^ Jco
2
, where ω is the angular velocity and J is the 

moment of inertia with respect to the axis of rotation. Know-

ing this, solve problems 2687-2692. 

2684. Find the work that must be expended to pump 

out the water filling a hemispherical vessel of radius R = 

= 0-6 m. 

2685. A boiler has the shape of a paraboloid of revolution 

(Fig. 50). The base radius R = 2 m, the depth of the boiler 

H = 4 m. I t is filled with liquid of specific weight d = 0*8 

g/cm
3
. Find the work which must be done to pump the liquid 

out of the boiler. 
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2687· A rod AB (Fig. 52) rotates in a horizontal plane about 
axis 00' with angular velocity ω = 10π rad/sec. The cross-
section of the rod 8 = 4 cm

2
, its length I = 20 cm, the density 

of the material of which it is made is γ = 7*8 g/cm
3
. Find the 

kinetic energy of the rod. 

F I G . 52 . 

2688. A rectangular plate with sides a = 50 cm and b = 40 
cm rotates with constant angular velocity ω, equal to in sec

- 1
, 

about the side a. Find the kinetic energy of the plate. The 
plate thickness d is equal to 0*3 cm, the density of its material 
γ is equal to 8 g/cm

3
. 

2689. A triangular plate, whose base a = 40 cm and height 
h = 30 cm, rotates about its base with constant angular 
velocity ω = 5π sec

- 1
. Find the kinetic energy of the plate, 

if its thickness d = 02 cm, and the density of its material 
γ = 2-2 g/cm

3
. 

2690. A plate in the shape of a parabolic segment (Fig. 53) 
rotates about the parabola axis with constant angular veloc-
ity ω = 4π sec

- 1
. The base of the segment a = 20 cm, the 

height h = 30 cm, the thickness of the plate d = 0-3 cm, 
the density of the material γ = 7*8 g/cm

3
. Find the kinetic 

energy of the plate. 

of 
F I G . 5 3 . 
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2691. A circular cylinder of base radius R and height H 
rotates about its axis with constant angular velocity ω. 
The density of the material of which the cylinder is made is 
equal to y. Find the kinetic energy of the cylinder. 

2692. A thin wire of mass M is bent to form a semi-circle 
of radius R and rotates about an axis passing through the 
ends of the semi-circle, performing η revolutions per minute. 
Find its kinetic energy. 

Work out the kinetic energy if the axis of rotation is the 
tangent at the mid-point of the semi-circle. 

2693. A plate of triangular shape is submerged vertically 
in water so that its base lies at the surface of the water. 
The plate base is a, its height A. 

(a) Find the force of the water pressure on each side of the 
plate. 

(b) How many times is the force increased if the plate 
is turned over so that the vertex is at the water surface and 
the base is parallel to the water surface ? 

2694. A square plate is submerged vertically in water so 
that one corner lies at the water surface and a diagonal is 
parallel to the surface. The side of the square is a. What is the 
water pressure on each side of the plate ? 

2695. Calculate the water pressure on a dam having the 
shape of an isosceles trapezoid, whose upper base a = 6*4 m, 
lower base 6 = 42 m, and height Η = 3 m. 

2696. A plate in the form of an ellipse is half submerged in 
liquid (vertically), so that one of its axes (of length 26) lies 
at the surface of the liquid. How great is the fluid pressure on 
each of the sides of the plate if the length of the submerged 
semi-axis of the ellipse is equal to a, whilst the specific weight 
of the fluid is d ? 

2697. A rectangular plate with sides a and 6 (a > 6) is 
submerged in fluid at an angle α to the fluid surface. The 
longer side is parallel to the surface and lies at a depth A. 
Calculate the fluid pressure on each of the plate sides, if the 
specific weight of the fluid is d. 
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2698. A rectangular vessel is filled with equal parts by-
volume of water and oil, the oil being twice as light as water. 
Show that the pressure on each wall of the vessel is diminished 
by a fifth if oil only is taken instead of the mixture. (Take 
into account the fact that all the oil is on top.) 

The solutions of problems 2699-2700 must be based on 
Archimedes' law: the buoyancy force acting on a solid body 
immersed in a fluid is equal to the weight of displaced fluid. 

2699. A wooden float of cylindrical shape, the base area of 
which S = 4000 cm

2
, and height H = 50 cm, floats on water. 

The specific gravity of wood d = 0*8 g/cm
3
. (a) What work 

must be done in order to pull the float out of the water ? 
(b) Find how much work must be expended to submerge the 
float completely. 

2700. A sphere of radius R with specific weight 1 is sub-
merged in water so that it touches the surface. How much 
work must be done in order to pull the sphere from the 
water ? 

Problems 2701-2706 are connected with the flow of a 
fluid from a small orifice. The velocity of flow of the fluid is 
defined by Torricelli's law: ν = ^2gh, where A is the height 
of the column of fluid above the orifice, g is the acceleration 
due to gravity

1
" (see Course, sec. 116). 

2701. There is an orifice at the bottom of a cylindrical 
vessel, the base area of which is 100 cm, and the height 30 cm. 
Find the area of the orifice if it is known that water filling 
the vessel flows out in the course of 2 min. 

2702. Water fills a conical funnel of height H = 20 cm. 
The radius of the upper orifice R = 12 cm. The lower orifice, 
through which the water flows from the funnel, has radius 
r = 0-3 cm. (a) How long does it take the level of water in 
the funnel to fall by 5 cm ? (b) When will the funnel be empty ? 

t Torricelli's law in the form given here is only applicable to 
an ideal fluid. The answers to the problems are given for this ideal 
fluid. (In practice, the formula ν = μ \2gh is used, where μ is a 
coefficient depending on the fluid viscosity and the nature of the 
orifice. For water in the simplest case, μ = 0*6. 
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2703. A hole of area S = 0*2 cm
2
 has formed in the bottom 

of a boiler, of hemispherical shape with radius R = 43 cm. 
I f the boiler is filled with water, how long will it take the 
water to flow out? 

2704. A boiler has the form of an elliptic cylinder with 
horizontal axis. The semi-axes of the elliptic section (per-
pendicular to the cylinder axis) are b (horizontal) and a (ver-
tical); the cylinder generator is of length I (Fig. 54). The boiler 

is half filled with water. How long does it take the water to 
flow from the boiler through an orifice of area S at the 
bottom ? 

2705. A rectangular vertical slit, of height h and width δ, 
is made in the vertical wall of a prismatic vessel filled with 
water. The upper edge of the slit, parallel to the water surface, 
is at a distance Η from the surface. What amount of water 
flows from the vessel in 1 sec, if the water level is assumed 
always to be maintained at the same height ? Take the case 
Η = 0 (problem of a spill-way). 

2706. A vessel filled to the brim with water has the shape 
of a parallelepiped with base area 100 cm

2
. There is a narrow 

L 

F I G . 54. 

F I G . 55. 
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slit in the side wall, of height 20 cm and width 01 cm (Fig. 
55). How long does it take the water level in the vessel to 
fall by (a) 5 cm? (b) 10 cm? (c) 19 cm? (d) 20 cm? (The 
result of the previous problem should be used.) 

The equation of state of an ideal gas has the form pv = RT, 

where ρ is the pressure, ν the volume, Τ the absolute tempe-
rature, and R a constant for a given mass of gas. Solve 
problems 2707-2709 on the assumption that the gases are 
ideal. 

2707. Atmospheric air is contained in a cylindrical vessel 
of base area 10 cm

2
 and height 30 cm. What work must be 

expended in order to drive in a piston 20 cm, i.e. so that the 
piston is 10 cm from the cylinder bottom (Fig. 56) ? Atmosphe-

- 30cm -

r r h 

I I 
I I 
I I 
LJ 

h 20cm ^ 

F I G . 56 . 

ric pressure is Γ033 kg/cm
2
. The process is carried out iso-

thermically, i.e. at constant temperature. (To find the work 
in kgm, the pressure must be taken in kg/m

2
 and the volume 

in m
3
. ) 

2708. Air at atmospheric pressure is contained in a cylind-
rical vessel of cross-section 100 cm

2
. There is a piston in the 

vessel. Its initial distance from the vessel bottom is 01 m. 
The vessel is placed in a vacuum, as a result of which the air 
in it expands and pushes out the piston. (1) Find the work 
done by the air in the cylinder when it raises the piston a 
height (a) 0*2 m, (b) 0*5 m, (c) 1 m. (2) Can this work increase 
indefinitely on indefinite expansion of the gas ? (The process 
is isothermal, as in the previous example.) 
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2709. Atmospheric air is contained in a cylindrical vessel 
of volume v0 = 01 m

3
 and is subjected to compression by 

rapidly driving in a piston (it is assumed here that the pro-
cess is carried out without the influx or transmission of heat, 
i.e. adiabatically). What work must be expended to compress 
the air in the vessel to a volume ν = 0*03 m

3
? (Atmospheric 

pressure is 1 033 kg/cm
2
.) In the case of an adiabatic process 

the pressure and volume of the gas are connected by the rela-
tionship ρυ

γ
 = P0VQ (Poisson's equation). For diatomic gases 

(as also for air) γ Γ 40. 
By Newton's law of cooling, the rate of cooling of a body is 

proportional to the difference in temperature between the 
body and the surrounding medium. Solve problems 2710-2711 
on the basis of this law. 

2710. A body whose temperature is 25° is placed in a ther-
mostat (the temperature of which is maintained at 0°). How 
long does it take the body to cool to 10°, if it has cooled to 
20° after 20 min.? 

2711. A body whose temperature is 30° reaches a tem-
perature of 22*5° after being placed for 30 min in a ther-
mostat whose temperature is 0°. What will the temperature 
of the body be 3 hours after the start of the experiment ? 

β β 
The force of interaction of two electric charges is — | 

er
2 

dynes, where e1 and e2 are the charges in electrostatic units, 
r is the separation in cm, and ε is the dielectric constant 
(Coulomb's law). Solve problems 2712-2714 on the basis of 
this law. 

2712. An infinite straight line is uniformly charged with 
positive electricity (the linear density of electricity is σ). 
What force does this straight line exert on a unit charge 
located at a point A distant a from it ? The dielectric constant 
of the medium is equal to unity (see Course, sec. 116). 

2713. Two electric charges: e1 = 20 electrostatic units and 
e2 = 30 electrostatic units, are separated by a distance of 
10 cm. The medium between them is air. Both charges are 
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first held fixed, then charge e2 is freed. Under the action of the 
force of repulsion, charge e2 starts to move away from charge 
ev How much work is done by the repulsion force when the 
charge (a) moves away to a distance of 30 cm? (b) moves 
away to infinity? 

2714. Two electric charges: eî = 100 electrostatic units 
and e2 = 120 electrostatic units, are at a distance of 20 cm 
from each other. What will the distance be between the char-
ges if we bring the second closer to the first whilst expending 
1800 ergs of work? (Air is the separating medium.) 

2715. The voltage is ν = 120 V at the terminals of an 
electrical circuit. Resistance is introduced into the circuit 
at a uniform rate of 0 Ί ohm per sec. Furthermore, a constant 
resistance of r = 10 ohm is included in the circuit. How many 
Coulombs of electricity pass through the circuit during two 
minutes ? 

2716. The voltage at the terminals of an electrical circuit, 
initially equal to 120 V, falls uniformly, decreasing by 001 V 
in a second. Simultaneously with this, resistance is introduced 
into the circuit, also at a uniform rate, viz. 0 Ί ohm per sec. 
Moreover, constant resistance equal to 12 ohm is present in 
the circuit. How many Coulombs of electricity flow through 
the circuit during 3 min? 

2717. When the temperature changes, the resistance of 
a metallic conductor varies (at normal temperatures) in 
accordance with the law J2 = i?0 (1 - f 0 004 Θ), where i?0 

is the resistance at 0° C and θ is the temperature in centi-
grade. (This law holds for the majority of pure metals.) 
A conductor whose resistance at 0° C is equal to 10 ohm is 
uniformly heated from 0Χ = 20° to 02 = 200° in the course 
of 10 min. A current flows along it in this time at a voltage 
of 120 V. How many Coulombs of electricity flow through 
the conductor during this time? 

2718. The law of variation of the voltage of ordinary 
alternating (urban) current, of 50 cycles per sec, is 
given by the formula: Ε = E0 sin 100 nt, where E0 is the 
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maximum voltage and t is time. Find the mean value of the 

square of the voltage during 1 period (002 sec). Show that, 

when the resistance is constant, alternating current produces 

as much heat during 1 cycle as a constant current having 

a voltage equal to Y(E
2
)aV. (In view of this, expression 

Y(E
2
)aV is termed the effective voltage of the alternating 

current.) 

2719. The voltage of a sinusoidal electric current is given by 

where E0 and I0 are constant quantities (the peak values of 
the voltage and current), Τ is the period, and φ0 the phase 
difference. Find the work done by the current during the 
time from tx = 0 to t2 = Τ and show that the peak value of 
this work will be obtained when the phase difference φ0 is 
zero. 

2720. Find the time required to heat 1 kg of water electri-
cally from 20 to 100° C, if the voltage is 120 V, the spiral 
resistance is 14*4 ohm, the air temperature in the room is 
20° C and it is known that 1 kg of water cools from 40° C to 
30° C in 10 min. (By the Joule-Lenz law, Q = 0 2tf

2
Rt, where 

Q is the amount of heat in small calories, / is the current in 
amperes, R is the resistance in ohms, and t is the time in 
seconds. In addition, use is made of Newton's law of cooling 
(see problem 2710). 

2721. Air filling a vessel of capacity 3 1., contains 20 per 
cent oxygen. The vessel has two pipes. Pure oxygen is now 
pumped into the vessel through one of them, whilst air 
passes out through the other, the amount of air leaving being 
the same as the amount of oxygen flowing in. How much 
oxygen will the vessel contain after 10 1. of gas have flowed 

Ε = En sin 

whilst the current is given by 
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through it ? The concentration of oxygen is kept the same in 

the vessel at each instant with the aid of a mixer. 

2722. Air contains a per cent ( = 8 per cent) C0 2; it is 
filtered through a cylindrical vessel with an absorbent 
medium. A thin layer of the medium absorbs an amount of 
gas proportional to its concentration and the layer thickness, 
(a) I f air that has passed through a layer H cm ( = 10 cm) 
thick contains 6 per cent ( = 2 per cent) C0 2, what thickness 
H1 must the layer have for the air leaving the filter to contain 
only c per cent ( = 1 per cent) carbon dioxide? (b) How 
much carbon dioxide (in per cent) remains in the air after 
passing through the filter if the thickness of the absorbent 
layer is 30 cm? 

2723. I f half the initial quantity of light is absorbed on 
passing through a layer of water 3 m thick, what part of this 
quantity remains at a depth of 30 m ? The quantity of light 
absorbed on passing through a thin layer of water is propor-
tional to the layer thickness and the quantity of light incident 
on its surface. 

2724. I f an initial quantity of ferment equal to 1 g becomes 
1*2 g after an hour, what will it be 5 hours after the start of 
the fermentation, if the rate of growth of the ferment is 
assumed proportional to the initial quantity? 

2725. I f the quantity of ferment present is 2 g two hours 
after the start of the fermentation, and is 3 g after 3 hours, 
what was the initial quantity of ferment? (See previous 
problem.) 

2726. Two kilogrammes of salt are dissolved in 30 1. water. 
One kilogramme of salt passes into solution after 5 min. 
How long will it take 99 per cent of the initial quantity of 
salt to pass into solution ? (The rate of solution is proportional 
to the amount of undissolved salt and the difference between 
the concentration of a saturated solution, which is equal to 
1 kg per 3 1., and the concentration at the given instant.) 



C H A P T E R I X 

S E R I E S 

1. Numerical Series 

Convergence of Numerical Series 

For each series of problems 2727-2736: (1) find the sum 
(Sn) of the first η terms of the series, (2) show directly from 
the definition that the series is convergent and (3) find the 
sum (S) of the series. 

1 
2727*. ^ + J _ + . . . + 

2728. 

2729. 

2730. 

2731. 

. 2 ' 2 . 3 

3 + 3
1
5 + · · · + 

n(n+ 1) 

1 

+ · · · 

+ 1 - ^ + · . · + 4 ' 4 . 7 

(2n - 1) (2n + 1) 

1 

(Zn — 2) (3n + 1) 

1 

+ . . . 

+ . . . 

4 ' 2 . 5 n(n + 3) 

1 

+ . . . 

1.7 ' 3 . 9 

2 7 3 2
· Ϊ Τ ^ 3 + 2 4 π + · · · + 

(2n — 1) (2Λ + 5) 

1 

+ 

n(n + ! ) ( » + 2) + 

2 7 33 . | + g + . . . + ^ + Z + . . . 

2 7 3 5
' 9

 +
 225

 +
 * * *

 +
 (2n - l )

2
 (2n + l )

2 + ... 

2736. arc tan ^ - f
 a rc

 tan 3 + . . . + arc tan
 1

 + . . . 

234 
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2743.1 + 1 + . . . + ^ + 

2744.1 + 1 + .. . + ^ 4 - . · . 
2 7 4 5 · ά + 0+···+ίη1^1+Τ) + ··· 
2 7 4 6

· 2 - ι—ί—τπϊ ·
 2 7 4 7

· 2* τΐΛ „ri »
2
 - 4 » + 5 £x \ \ + n

3
J 

2748. V , . 2749. y ™ . 

in" 

2750. Y - y i T T l ) . 2751. "S ) " ΐ Τ Τ · 
71 

Series with Positive Terms 

Solve the question of the convergence of the series of 
problems 2737-2753 with the aid of the theorems on compa-
rison of series : 

2 7 3 7 ' ΓΤ2 + + · · · + (2n - 1) . 2 2 "- 1 + ' * * 

2738· s i n | + sin I + . . . + sin ^ + . . . 

1 + 2 l+n 
2739.1 + ^ + . . . + ^ + . . . 

2 7 4
° - 2

1
5 + 3

i
6 + - - - + ( , + l)V + 4) + - - -

A ~ j * 2 , 3 , , η + 1 , 
2741.3 + 3 + . . . + ^ ^ + . . . 

2742. tan % + tan J + . . . + tan + . . . 
4 8 4» 
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2 . 5 . . . . (3n - 1) 
1 . 5 . . . . (4n — 3) 

+ • 

1 . 3 . . . . (2n — 1) 
3" . » ! 

(1)' , Γ 4 - Τ 
2 7 6 6 . | + l ^ - + . . . + ^ - 3 ^ + . . . 

Prove the convergence of the series of problems 2754-

2762 with the aid of d'Alembert's test: 

2 7 5 6 . 1 + * + . . . + £ + . . . 

2756. tan | + 2 tan | + . . . + » tan + · · · 

2 7 5 7
· f + T r i + · · · + r :

1
" ) : : + · 

2758.1 + ^ + . . . + 

2 7 5 9̂ + ^ + . , . + - · " · - - " + . . . 

2760. sin | + 4 sin J + . . . + n* sin | , + . . . 

2 7 6 1
· 2 ΐ + 3 Ί + · · · + { ^ Τ Τ ) ! + · · · 

2 2 . 3 (η + 1)! 
2 7 6 2

· 2 + 2 Τ 4 + · · · + ν ^ Γ + · · · 
Prove the convergence of the series of problems 2763-2766 

with the aid of Cauchy's test: 

2 7 6 3,
 ΕΓ2 + d3 + · * · + ln«(» + 1)

 +
 ' ' ' 

2765· arc sin 1 + arc sin
2
 ^ + · · · + arc sin" - + . . . 
2 η 
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Solve the question of the convergence of the series of 
problems 2767-2770 with the aid of the integral test for 
convergence : 

2 7 6 7e
 2Tn2~2

 +
 3hr2T + · · · + ( Λ + i ) l n

2
 ( n + i ) + · · · 

2 7 6 8
' 2 H 2

 +
 8 H S + · · ' +

 +
 · ' * 

-»-pj
+
(Hi)i+-+(̂ F+-

Examine the series of problems 2771-2784 for convergence 
or divergence: 

2771. + - î = + · · · +
 1

 . + . . . 
2f2 3 fi (η + 1) YrT+Ί 

2772. 1 + 5 + . . . + _ + . . . 

« n . y ï + y| + . . . + y » ± i + . . . 

2,74. 1 +j L + . . . + î ! + . . . 

2776. 2 + | + . . . + ï i + i + . . . 

2 7 7 6
* ÏÔÔT

 +
 2ÖÖT + · · · + 1000« + 1

 +
 ' · ' 

2777. l + p + ! + g
2
 + · · · + ι + n2 + • · · 

« « . · + » + . . . + 5 ^ 1 + . . . 

2779· arc tan 1 + arc tan
2
 ^ - f . . . + arc tan

n
 - + . . . 

2780.2 + ± + . . . + 5 + . . . 
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2 7 8 1
· T~3

 +
 6~~7 + · · · + ( 6n _ 4) (4» - 1)

 +
 · · · 

2 7 8 2
· ! + Ι + · · · + Α + · · · 

2783. i + y + + ^ + 

2784*. sin ^ + sin j + . . . + sin + . . . 
Δ 4 Δη 

Prove each of the relationships of problems 2785-2789 
with the aid of the series whose general term is the given 
function : 

2785. lim ζ . = 0. 2786. lim = 0 (α > 1). 

2787. lim = 0. 2788. lim = 0. 

π
 + ~ (2?l)! η^ο

ο
 (τι!) 2 

2789. lim ^ f - = 0. 
η * - η"

2 

Series with Arbitrary Terms. Absolute Convergence 

Examine the series of problems 2790-2799 for absolute 
convergence, non-absolute convergence, or divergence: 

2790. 1 - 1 + . · • + + 

2791. 1 - 1 + + + 

2 7 9 2
· ϊ ^ - è i + · · · + ^ ^ ε ο γ τ ϊ )

 +
 · · · 

0 7 Q, sin α , sin 2a sin 2793.
 —

 + + . . . +
 - ρ -

 + . . . 

2 7 9 4
· 1 - 1 · ^ + · · · + ( -

ι
^

ι
^ · ^ + · · · 

2795. 2 - I + . . . + ( _ l ) » + i ! L ± J -j- . . . 
2 » 
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n+1 

2800. Prove that, if the series £ a\ and Κ
 a re

 conver-

gent, the series ]?anbn is absolutely convergent. 
n = l n = oo 

2801. Prove that, if the series £ an is absolutely conver-
t i 

gent, the series an is also absolutely convergent. 
π = 1 

2. Functional Series 

Convergence of Functional Series 

Find the domains of convergence of the series of problems 
2802-2816: 

2802. l + a + . . . + a
n
 + . . . 

2803. ln χ + In
2
 χ + . . . + ln

n
 χ + . . . 

2804. χ + a
4
 + . . . + x

n2
 + . . . 

rr
2
 x

n 

2805.* + ^ + . . . + _ , + . . . 

rr
2
 a

n 

2 8 0 6 . * + ^ + . . . + ^ + . . . 

2808. 2a + 6a
2
 + . . . + n(n + 1) x

n
 + . . . 

ff cr
2
 x^ 

2809. ί + - ^ - = + . . . + = + . . . 

2 2 + V2 TO + Υ η 
χ χ

2
 χ" 2 8 1 0 . Γ Τ̂  + Γ Τ̂ + . . · + Τ Τ^ Γ + . · · 

2 7 9 6. _ 1 + _ L _ . . . + (_ i r _ L + . . . 

1 8 
2 7 9 7

' 2 - ï + - - -
 + (

-
1 ) n + 1

F + - - -

2798. Τ
 v

 V ·
 2 7 9 9

· Έ -i 
^-i n — ln m. - , τι ! ' 
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2811. sin^ + sin ^ + . . . + s i n ^ + . . 

2812. χ t a n | + x
2
 t a n | + . . . + x

n
 t a n ^ + 

2813. B i n » + - ψ - + - . . + - ^ 2 - + - . . 

O Q 1. cos» cos 2» cosna: 

2815. e~* + e~
4x
 + . . . + e-

n
*

x
 + 

Uniform Convergence 

Verify that the series of problems 2817-2820 are uniformly 
convergent throughout the Ox axis: 

2817. l +
S

- ^ + . . . + " + . . . 

2 8 1 8· " 5 ° , r , ,
1
, « Ί ·

 2 8 1 9
· " ψ

8
^ . 

2820. Τ 

2821. Show that the series . , Γ , Χ Ί9 + , , Γ / \ i g + · · · 

. . . + ^ 2 _ | _ [ - y ^ - j 2 + · · ·
 1S u n

i f °
r m

l y convergent in any 

interval in which the function φ(χ) is defined. 

2822. Show that the series ,
 1

 Η r

 1
 + . . . 

Yl+x 2 / 1 + 2» 

+ . . . ^ i - j _ + . . . is uniformly convergent through-

out the positive semi-axis (0 ^ a; < oo). Given any non-
negative x} how many terms of the series must be taken 

for the sum to be calculable to an accuracy of 0*001? 
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τ*. 1 + (χ — ηω)
2 χ

 ' 

Show that f(x) is defined and continuous for any x. Establish 
that f(x) is a periodic function with period ω. 

Integration and Differentiation of Series 

2827. Show that the series x
2
 + x* + . . . + a

4
""

2
 + . . . is 

uniformly convergent in any interval —Ι+ω^χ^Ι—ω, 
where ω is any positive number less than unity. By integ-

2823*. Show that the series
 I n (1 +

 *
}
 +

 ln (1
 +

 2 x)
 + 

χ ^ 2x
2
 ^ 

. l n ( l + nx) . 
+ . . . H 1- . . . is uniformly convergent in any 

nx 
interval 1 - f ω ^ χ < oo, where ω is any positive number. 
Verify that, for any χ of the interval (2 ^ χ ^ 100), it is 
sufficient to take eight terms in order to obtain the sum of 
the series to an accuracy of 001. 

n=oo 

2824. Prove that the series £
 χη

(1 —
 χΤΧ

) ™ non-uniformly 

convergent in the interval [0, 1]. (See Course, sec. 127). 

2825. The function f(x) is given by the series 

n — \ 

Show that f(x) is defined and continuous for any x. Find 

/(0), / , and / . Verify that it is necessary to take 

three terms of the series in order to compute the approximate 
values of f(x) for any χ to an accuracy of 0*001. Find to this 
accuracy / ( l ) and /(—0*2). 

2826. The function f(x) is defined by the series 

1 1 
=
 ϊ~+ΊΡ + 2j 1 + (χ + ηω)

2 + 



242 PROBLEMS ON A COURSE OF MATHEMATICAL A N A L Y S I S 

V.n + 1 

• + ··· + ( - υ
η + ι

Γ 7 Γ - Γ τ - , + - · . 1.2 2 . 3 ' '
 v

 ' n(n+l) 

2830. The function f(x) is defined by the series 

f(x) = e"
x
 + 2e~

2x
 + . . . + ne~

nx
 + . . . 

Show that f(x) is continuous throughout the positive half 
IN 3 

of the Ox axis. Evaluate f f(x) dx. 
In 2 

2831. Function f(x) is defined by the series 

f(x) = 1 + 2 . 3x + . . . + nW-W-
1
 + . . 

Show that f(x) is continuous in the interval 

0-125 

Evaluate f f(x) dx. 

2832*. Function f(x) is defined by the series 

f(x) = i t a n | + i t a n | + . . . + - 1 t a n ^ + 

Evaluate J f(x) dx, having first established that f(x) is 
π 
"6 

continuous in the interval of integration. 

rating this series, find the sum in the interval (—1, 1) of 
the series 

,y3 r/1 ryAn — 1 

- + - + . . . + — + . . . 

2828. Find the sum of the series 

~5 ~4n—3 

2829. Find the sum of the series 
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n+ 1 ' 

find the sum of the series : 

2 

2 2rc(2rc — 2) . . . 4 . 2, 
ο 

find the sum of the series 

2 2 . 4 ^ ^
 v

 ' 2 . 4 . . . 2 τ ι ^ 

2837. Show that the series 

sin 2πχ sin 4πχ sin 2
n
 π» 

2 ' 4 r · · · Η 2^ 

is uniformly convergent throughout the real axis. Prove that 
this series cannot be differentiated term by term in any inter-
val. 

2835. Starting from the relationship 

the sum of the series 

2836. Starting from the relationship 

2834. Starting from the relationship 

the real axis. Evaluate 

Show that f(x) is continuous throughout 

2833*. Function f(x) is defined by the series f(x) = 

find 
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1 + χ
 1

 1 + x
2 1

 · ' · ' 1 + a
211
"

1
 ^ " ' 1 - a 

holds for — 1 < a < 1. 

2840. Verify that the function y = /(a) defined by the 

series a + a
2
 + ^- + . . . + - —

X
 + . . . satisfies the rela-

tionship xy' = y(x + 1 ) . 

3. Power Series 

Expansion of Functions in Power Series 

2841. Expand the function y = ln a in a Taylor series in 
the neighbourhood of the point a = 1 (with a0 = 1) (see 
Course, sec. 130). 

2842. Expand the function y = / ä
3
 in a Taylor series in 

the neighbourhood of the point a = 1. 

2843. Expand the function y = - in a Taylor series in the 
a 

neighbourhood of the point a = 3. 

TtX 
2844. Expand the function y = sin — in a Taylor series 

in the neighbourhood of the point a = 2. 
Expand the functions of problems 2845-2849 in Taylor 

series in the neighbourhood of the point a = 0 (Maclaurin 
series) : 

2838. Starting from the progression 1 -f- a + a
2
 + . . . = 

= —-— (Ι χ I < 1), sum the series 1 + 2x -f- 3a
2
 + . . . 

1 — χ 

. . . + nx
n
~

l
 + . . . and the series 1 + 3a + . . . + 

N / N J_ η 
Η——ö ^

n -1
 + . . . and show that the series 1 + 2x - f 

Δ 
+ . . . + nxn~1 + . . . is uniformly convergent in the inter-
val [ — ρ, ρ I, where | ρ | < 1. 

2839. Show that the equality 

1 2x ^ - i^n-I - i ι 

Ι ~2 Ι · · · Τ" ι Ι _2*-I ~r · · · 
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2864. y = g ln (1 + x). 2865. y = y i + *
2
. 

3 
2866. y = y8 - Λ 2867. y 

1 

yr+~ä3 

2845. y = ^ +
 β
~

χ
 . 2846. y = x*e

x
. 

Δ 
2847. y = cos {χ + α). 2848. y = e* sin χ. 

2849. y = cos χ cosh 

Find the first five terms of the Taylor series of the functions 
of problems 2850-2854 in the neighbourhood of the point 
χ = 0. 

2850. y = ln (1 + e*). 2851. y = e
c o s

*. 

2852. y = cos" x. 2853. y = —ln cos x. 

2854. y = (1 + 

By using the formulae for the Taylor expansions of func-
tions e

x
, sin x, cos ln (1 - f x) and (1 + x)

m
, expand the 

functions of problems 2855-2868 as Taylor series in the 
neighbourhood of the point χ — 0 : 

2855. y = e
2
*. 2856. y = e"*

a 

ex ι 
OQK1 1

 f
°

r X
 +

 0
> 

2857. y = { x 
1 for x = 0. 

2 8 5 8 . y H ? L
^

f o r a !
*

0 , 

1 for a? = 0. 

2859. y = s i n | . 2860. y = cos
2
 x. 

sin a; 
2861. y = \ — f°r * + °« 

1 for a; = 0. 

2862. y = (a — tan cos x. 2863. y = ln (10 + x). 
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2868. y
 χ2 

VT Χ ,2 

1 + Χ 
2869. Expand the function y = — in a Taylor 

series in the neighbourhood of the point χ = 0. Use this 
4 

expansion to find the sum of the series 1 + - + · · · 

• · · + 2n-l + · · · 

2870. By using the Taylor expansion of the function, 

find the values of: 
χ 

(1) the seventh derivative of the function y = ———^ χ ~f— χ 
at χ = 0, 

(2) the fifth derivative of the function y = χ
2
 γΐ -f x at 

χ = 0, 

(3) the tenth derivative of the function y = x
6
e

x
 at χ = 0, 

3 
(4) the curvature of the curve y = x[Y(l - f a ; )

4
 — 1] at the 

origin. 

In problems 2871-2877, use the Taylor expansions of the 

functions to evaluate the limits: 

2871. l i m * + * i V M ^ - x ) 
x-0 & 

2(tan χ — sin x) — x
3 

x-0 
2872. lim 

2873. Hm
 l n (1 +

 *
 +
 ^ +

 l n
 d - * + « * ) 

2874. lim 
χ - * ο ο 

x-o ί φ
χ
 — 1) 

- x M n ( l + I ) ] . 

2875. lim - cot
2
 x) . 2876. Hm ( \ - — ) 

2877. hm —{-. -Λ . 

χ̂ ο y x
d
 sin # χ*) 
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/v.3 r2 n —1 

2 8 8 3 . , - 3 - 3 Γ + . . . + ( - 1 ) ^ ( 2 μ_ 1 ) + 

2884. 1 + 3» + . . . + ( » — 1) W-W-
1
 + . . . 

2886. χ + + . . . + + . . . (In studying the 

convergence at the right-hand end of the interval, use the 
fact that the factorials of large numbers can be approximately 
expressed in accordance with Stirling's formula: 

2πη. n\ ̂ ^Jy^rn 

2887. χ + 4 »
2
 + . . . + (nx)

n
 + . . . 

2888. ^ »
2
 + ^ » 3 + m m m+ I n ( » + D xn + 1 + . 

Δ ο η - j— 1 

2889. 2χ + ^xj + . . . + *]" + · · . 

2890. Expand the function y = ln (χ + f l + »
2
) in a 

Taylor series in the neighbourhood of the point χ = 0, starting 

Interval of Convergence 

Find the intervals of convergence of the power series of 
problems 2878-2889: 

2878. 1 0 » + 1 0 0 »
2
 + . . . + 1 0

N
»

N
 + . . . 

2879. * _ ^ + . . . + ( _ ΐ ) π + ι ^ + . . . 

2880.» + g+. . . + ^ - ^ + . . . 

2881. 1 + » + . . . + n\x
n
 + . . . 

2882. 1 + 2 »
2
 + . . . + 2

n
"

1
»

2
(

n
-

1
> + . . . 
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0 

dx 
2 

0 

and find the interval of convergence of the series obtained. 

2892. Expand the function y = ln [(1 + z)*+*] + 
+ l n [ ( l — a )

1
"

x
] in a Taylor series in the neighbourhood 

of the point χ = 0 and find the interval of convergence of 
the series obtained. 

2893. Expand the function y = (1 + x) e~
x
 — (1 — x) e

x 

in a Taylor series in the neighbourhood of the point χ = 0 
and find the interval of convergence of the series obtained. 
Use the expansion to find the sum of the series. 

3 I -r 5! -r . τ φη + j ) , τ 

4. Some Applications οϊ Taylor's Series 

Finding Approximate Values of Functions 
3 

2894. Find the approximate value of Ye by taking three 
terms of the Taylor expansion of f(x) = e

x
, and estimate the 

error. 

2895. Find the approximate value of sin 18° by taking 
three terms of the Taylor expansion of f(x) = sin x, and es-
timate the error. 

from the relationship 

r x Γ dx 

and find the interval of convergence of the series obtained. 

2891. Expand the function y = ln in a Taylor 

series in the neighbourhood of the point χ = 0, by starting 
from the relationship 
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3 

2896· Find the approximate value of ^TÖ by taking four 
terms of the Taylor expansion of the function f(x) = (1 -f- x)

m
, 

and estimate the error. 

In problems 2897-2904, use the formulae for the Taylor 
expansions of the functions e

x
, sin χ and cos χ to find : 

2897. e
2
 to an accuracy of 0001. 

2898. Ve^to an accuracy of 0Ό01. 

2899. i to an accuracy of 00001. 

2900. ^ - to an accuracy of 0*0001. 

2901. sin 1° to an accuracy of 0*0001. 

2902. cos 1° to an accuracy of 0*001. 

2903. sin 10° to an accuracy of 0*00001. 

2904. cos 10° to an accuracy of 0*0001. 

In problems 2905-2911, use the formula for the Taylor 
expansion of the function (1 + x)

m
 to find to an accuracy of 

0*001: 
3 3 

2905. f3Ö. 2906. /70. 
3 3 

2907. föÖÖ. 2908. Vl*015. 
5 3 

2909. ^250. 2910. / Î 29 . 
ίο 

2911. /1027. 
In problems 2912-2914, use the formula for the Taylor 

(1 + x) 
expansion of the function Inf- - to find: 

(l-x) 

2912. ln 3 to an accuracy of 0*0001. 

2913. log e = to an accuracy of 0*000001. 

2914. log 5 to an accuracy of 0*0001. 
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The Solution of Equations 

2915. Given the equation xy + e
x
 = y, use the method of 

undetermined coefficients to find the expansion of function 
y in a Taylor series in powers of x. Solve the problem by finding 
the coefficients of the Taylor series by successive differenti-
ation. 

2916. Given the equation y = ln (1 + x) — xy, use the 
method of undetermined coefficients to find the expansion 
of function y in a Taylor series in powers of x. Solve the 
problem by finding the coefficients of the Taylor series by 
successive differentiation. 

Solve the equations of problems 2917-2919 with respect 
to y (find an explicit expression for y) with the aid of Taylor 
series by two methods: the method of undetermined coeffi-
cients and successive differentiation: 

2917. y
3
 -f- xy = 1 (find three terms of the expansion). 

2918. 2 sin χ -\- sin y = χ — y (find two terms of the 
expansion). 

2919. e
x
 — ey = xy (find three terms of the expansion). 

Integration of Functions 

Express the integrals of problems 2920-2929 in the form 
of a series by using the expansions of the integrands into 
series; indicate the domains of convergence of the series 
obtained. 

2920. 

2922. 

2924. 

2926. 

ι 

2921. 

2923. 

2925. 

2927. 
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χ 4 

2928. Ι — . 2929. Ι ^ + f -dx. 

ο ο 

Obtain approximate values for the definite integrals of 
problems 2930-2934 by taking the indicated number of 
terms of the expansion of the integrand; indicate the error: 

Π 1_ 
4 4 

2930. àx (3 terms). 2931. JV*' dx (3 terms). 

6 

2 

da: 
2932. Γ r (2 terms). 2933. f - dz (6 terms), 

j y I + a*
4
 J

 x 

ο 

u 
3 2934. J* a*

3
 arc tan xdx (2 terms). 

Evaluate the integrals of problems 2935-2938 to an accu-
racy of 0*001 : 

2935. Ihdx. 2936. {™
ct
™

X
 dx. 

χ 
p£d*. 2936. J* 

H 0 

0-8
 01 

2937. J a:
10
 sin χ dx. 2938. + ^ 

0-5 
dx 

ο 
χ 

2939. Show that the functions J e
-
*

2
 da; and arc tan χ — — 

ο 
differ by not more than 0*0000001 in the interval (—0*1, 
0 1). 

2940. By taking into account the identity 

— = 4 arc tan - — arc tan — - , 

evaluate π correct to 10 figures. 
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5. Numerical Problems 

0;5 

2943. Evaluate j e
s i n x

d » to an accuracy of 0 0001. 

η 
6 

2944. Evaluate ^cosxdx to an accuracy of 0Ό01. 
ο 

2945. Evaluate the area bounded by the curve y2 = xz + 

+ 1, the axis of ordinates and the straight line χ = ]- to an 
Δ 

accuracy of 0*001. 

2946*. Evaluate the area of the oval x
4
 + y

4
 = 1 to an 

accuracy of 0*01. 

2947. Evaluate the length of arc of the curve 25y
2
 = 4 »

5 

from the cusp to the point of intersection with the parabola 
5y = #

2
 to an accuracy of 0*0001. 

2948. Evaluate the length of one half wave of the sine 
wave y = sin χ to an accuracy of 0*001. 

2949. The figure bounded by the curve y = arc tan x, 

the axis of abscissae and the straight line χ = ^ revolves 
Δ 

about the axis of abscissae. Find the volume of the solid 
of revolution to an accuracy of 0*001. 

2950. The figure bounded by the curves yz — xz = 1, 

4=y -f- x* = 0, the straight line y = \ and the axis of ordinates, 

2941. Expand in a Taylor series the function y — 
X 

= e*
2
 f e~*

2
 dx by using two methods : direct evaluation of the 

b 
successive derivatives at χ = 0 and cross-multiplication of 
the series. 

ι 

2942*. Evaluate the integral [ x
x
 dx. 
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revolves about the axis of ordinates. Find the volume of the 
solid of revolution to an accuracy of 0-001. 

2951. Find the coordinates of the centre of gravity of the 

arc of the hyperbola y = - , bounded by the points with 
χ 

abscissae x1 = ^ and a;2 = ^ , to an accuracy of 0.001. 

2952. Find the coordinates of the centre of gravity of the 

curvilinear trapezium, bounded by the curve y = 

the straight lines χ = 1*5 and χ = 2 and the axis of abscissae, 
to an accuracy of 0*01. 



C H A P T E R Χ 

FUNCTIONS OF S E V E R A L 
V A R I A B L E S . 

D I F F E R E N T I A L CALCULUS 

1. Functions of Several Variables 

2953. Express the volume ζ of a cone as a function of its 
generator χ and height y. 

2954. Express the area S of a triangle as a function of its 
three sides x, y, z. 

2955. Form a table of the values of function ζ = 2x — 
— Zy -f- 1 by giving the independent variables integral 
values from 0 to 5. 

2956. Form a table of values of the function 

z = Yx
2
 + y

1
, 

by giving the independent variables values spaced 0* 1 apart 
from 0 to 1. Calculate the values of the function to an accu-
racy of 001. 

2957. Find the particular value of the function: 

fare tan (x - f y)\ 
\arc tan (x — y)) 

2
 1 + V 3 1— /3 

π (2) ζ = e
s ln

<* + f o r χ = y = £ ; 

(3) ζ = y*
2
-

1
 + xy

2
-

1
 for x = 2, y = 2; # = 1, y = 2; 

a: = 2, y = 1. 

2958. Given the function 

F ( p Ci y) = yi
x
) v(y) - ψ(

χ
) <p(y) 

<p(xy) y{xy) 

2 5 4 



X. FUNCTIONS OF S E V E R A L V A R I A B L E S 255 

have the same rate of change, which function increases the 
more rapidly for χ = 3, y = 2 : the function obtained from 
F with fixed y (χ only varies), or that obtained with fixed 
χ (y only varies) ? 

2960. Given the function 
y+z 

φ(χ, y, ζ) = y
2
 — (y cos ζ + z cos y) χ + xy~

z
, 

let variables y and z preserve fixed values y0 and z0, where 
2/0 = 3z0. What is the graph of the function ν = φ(χ, y0, z0) ? 
Is φ(χ, y, ζ) : (1) a rational function of of z? (2) an in-
tegral function of χ ? 

2961*. A function ζ = f(x, y), satisfying identically the 
relationship 

f(mx, my) = m
k
f(x, y) for any m, 

is called a homogeneous function of the &th degree. Show that 
the homogeneous function of the &th degree ζ = f(x, y) can 
always be written as 

* - ·*$ · 
2962. The homogeneity of a function of any number of 

independent variables is defined in the same way as for a 
function of two variables : for instance, f(x, y, z) is a homo-
geneous function of the kth degree if 

f(mx, my, mz) = m
k
f(x, y, z) for any m. 

The property 

/ ( * , * , , 2) = x ^ ^ , î j 

also holds. Prove this. 

2959. Given the function Fix, y) = y
x 

; if χ and y 

In particular, put cp(u) = v?, ip(u) = u
2
 and find F 

work out 
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2964. Prove that the function ζ = F(x, y) = ln x ln y 
satisfies the functional equation 

2965. Find ζ as an explicit function of χ and y from the 
X

2
 II

2
 ζ

2 

equation - τ + τ ^ Η — « = 1. Is this function single-valued? 
a

2
 b

2
 c

2 

2966. Given the function of a function ζ = u
v
, where 

u = χ -\- y, ν = χ — y, find the particular value of the func-
tion: (1) when χ = 0, y = 1; (2) when χ = 1, y = 1; 
(3) when # = 2, y = 3; (4) when # = 0, y = 0; (5) when 
χ = —1, y = —1. 

2967. ζ = ü d l ^ j u = w
f
\ ν = w~

l
\ w = Yx + y; 

UV 

i = 2(x — y). Express ζ directly as a function of χ and y. 
Is ζ a rational function of u and ν ? of w and ί ? of a; and y ? 

2968. Given the function of a function ζ = u
w
 + w

u+v
, 

where u = χ + y, ν = χ — y, w = xy, express z directly as 
a function of x and y. 

press u directly as a function of x, y and z. Is u an integral 
rational function of | and 77 ? of ω and φΊ of y, ζ ? 

2970. Write the function of a function 

+ adF(x, v) + bdF(u, v). 

F(xy, uv) = F(x, u) + F(x, v) + F(y, u) + F(y, v) 

(x, y, u, ν are positive). 

by means of a two-link chain of relationships. 

2963. Prove that the function ζ = F(x, y) = xy satisfies 
the functional equation 

F(ax + bu, cy + dv) = acF(x, y) + bcF(u, y) + 
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2971. Investigate by the method of sections the "graph" of 

the function ζ = \(x
2
 — y

2
). What are the sections by the 

Δ 

planes χ = const ? y = const ? ζ = const ? 

2972. Investigate by the method of sections the "graph" 
of the function ζ = xy. What are the sections by the planes 
x = const ? y = const ? ζ = const ? 

2973. Investigate by the method of sections the "graph" 
of the function ζ = y

2
 — x

z
. 

2974. Investigate by the method of sections the "graph" 
of the function 

z* = ax
2
 + by

2
 (a > 0, b > 0). 

2. Elementary Investigation of a Function 

Domain of Definition 

2975. A domain is bounded by the parallelogram with sides 

y = 0, y = 2, y =^-x, y = ^-χ — 1 ; the boundary itself is 
Δ Δ 

excluded. Give this domain by means of inequalities. 

2976. A domain consists of the figure bounded by the 
parabolas y = x

2
 and χ = y

2
 (including the boundary). 

Specify this domain by inequalities. 

2977. Write with the aid of inequalities the open domain 
consisting of the equilateral triangle with a vertex at the 
origin and side a, one of the sides being in the direction of 
positive x. 

2978. A domain is bounded by an infinite circular cylinder 
of radius R (excluding the boundary) with axis parallel to Oz 
and passing through the point (a, b} c). Specify this domain 
with the aid of inequalities. 

2979. Write with the aid of inequalities the domain bound-
ed by the sphere of radius R with centre at the point (a, b, c) 
(the boundary included). 
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F I G . 57. 

them is equal to unit length. We take the rectangle whose 
sides χ and y are parallel to the sides of the board and one of 
the corners of which coincides with a black corner. The area of 
the black part of this rectangle will be a function of χ and y. 
What is the domain of definition of this function ? Express this 
function analytically. 

2980. The vertices of a right-angled triangle lie inside 
a circle of radius R. The area S of the triangle is a function 
of its adjacent sides χ and y: S = φ(χ, y), (a) What is the 
domain of definition of function 99? (b) What is the 
domain of definiteness of the corresponding analytic 
expression ? 

2981. A pyramid with a rectangular base, the vertex of 
which projects orthogonally into the point of intersection of 
the base diagonals, is inscribed in a sphere of radius R. The 
volume V of the pyramid is a function of sides χ and y of its 
base. Is this function single-valued ? Form the analytic 
expression for it. Find the domain of definition of the function 
and the domain of definiteness of the corresponding analytic 
expression. 

2982. A square board consists of four square chequers, two 
black and two white, as shown in Fig. 57 ; the side of each of 
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Find the domains of definition of the functions of problems 

2983-3002 : 

2983. ζ 

2985. ζ 

2987. ζ 

2984. ζ = ln (y
2
 - 4x + 8). 

b
2 

1 
R

2
 — x

2
 — y

2 

1 1 
+ 

2988. ζ = arc sin 

Yx + y Υ χ —y 

X 

2986. ζ = Yx + y + ] / » - y. 

2989. ζ = ln »ι / . 

2990. ζ 

2991. 2 = aresin 

Vx-Yy. 
. »

2
 + Î/

2 

2992. 2 = 

4 

/4a; — y
2 

ln (1— a;
2
 — y

2
) " 

2994. ζ = » y + 

+ arc sec (a*
2
 + y

2
) 

2993. ζ = 
χ

2
 + 2x + t/

2 

»
2
 — 2» + ι/

2 

ln-
j ß

2 

+ /a;
2
 + y

2
 - i?

2
. 

x
2
 + 2/

2 

2995. 2 = cot n(x + 2/) . 2996. ζ = /sin π ( »
2
 + y

2
) 

2997. 2 = Yx~8Ïrïy. 2998. 2 = ln χ — ln sin 1 / . 

2999. ζ = l n [ » l n ( y — » ) ] . 

3000. 2 = arc sin [2y(l + χ
2
) — 1]. 

3001. u = + 4 + -
/* Yy Y~z 

3002. 1* = YR
2
 — x

2
 — y

2
 — z

2
 + 

Limits. Continuity of a Function 

Υ χ
2 + y

2 + ζ
2
 — r

2 
(R>r). 

Work out the limits of the functions of problems 3003-3008 
on the assumption that the independent variables approach 
their limiting values in an arbitrary manner: 

3003. lim 
χ

2
 + y

2 

χ -ο Υ χ
2
 + y

2
 + 1 — 1 
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. VxY + 1 - 1 Ο Λ ΛΡ ,. sin (x
3
 + y

a
) 

y-0 

Ο Λ ήί .. 1 - cos (x
2
 + y

2
) Ο Λ Λ_ v e **+y

2 

1 

3009. Verify that the function u can tend to 

any limit as χ —• 0, y —• 0 (depending on how χ and y tend 
to zero). Give examples of variations of χ and y such that: 
(a) lim u = 1, (b) lim u = 2. 

3010. Find the point of discontinuity of the function 

How does the function behave in the neigh-

bourhood of the point of discontinuity ? 

3011. Find the point of discontinuity of the function 

3012. Where is the function ζ discontinuous ? 

3013. Where is the function ζ discon-

tinuous ? 

3014. Where is the function ζ = discontinuous ? 

3015*. Investigate the continuity of the functions at χ = 0, 
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WK
x
>y) = ^-yï> / (0 ,0) = 0. 

(5) Κχ>ν) = ̂ γ·> / (0 ,0) = 0. 

(ß) /(*» y) = JXyi > /(°.°) = 0· 
ieveZ Lines and Surfaces 

3016. Given the function ζ = /(a, v) = —^——con-
σ
 χ

2
 + y

2 

struct a uniform net of curves of it for ζ = 1, 2, 3, 4. 

3017. The function ζ = f(x, y) is given as follows: at the 
point P(x, y) its value is equal to the angle subtended at this 
point by a segment AB given in the xOy plane. Find the 
level lines of function f(x, y). 

Trace the level Unes of the functions of problems 3018-3021 
by assigning to ζ values 1 apart from —5 to + 5 : 

3018. ζ = xy. 3019. (2762). ζ = x
2
y + x. 

3020. ζ = y(x
2
 + 1). 3021. (2764). ζ = °°

y
 ~

 1
 . 

X" 

3022. Draw the level lines of the function ζ = (χ
2
 + y

2
)

2
 — 

1 3 
— 2(x

2
 — y

2
), by assigning to ζ values every - from — 1 to - . 

3023. Draw the level lines of the function ζ given implicitly 

by the equation [(x - 5)
2
 + y

2
] - [(x + 5)

2
 + y

2
\ 

by giving ζ values unity apart from —4 to 4. 

3024. Draw the level lines of the function ζ given implicitly 

by the equation y
2
 = 2~

z
(x — z), by giving ζ values \ apart 

Δ 
from —3 to 3. 

3025. Find the level lines of the function ζ given implicitly 
by the equation z + # l n z + t/ = 0. 

3026. A point A is given in space. The distance of a vari-
able point M from point A is a function of the coordinates 
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of M. Find the level surfaces of this function, correspond-
ing to distances equal to 1, 2, 3, 4. 

3027. A function u = f{x, y, z) is specified as follows : its 
value at the point P{x, y, z) is equal to the sum of the distan-
ces of this point from two given points : A(xv yv z x) , B(x2, y2, z2). 
Find the level surfaces of function f{x, y, z). 

3028. Find the level surfaces of the function 

u = ln 1 + Yx
2
 + y

2 +Ύ2 ̂  
1 — Yx

2
 + y

2
 + z

2
 ' 

3029. Find the level surfaces of the function 

x
2
 + y

2 

ζ 

3030. Find the level surfaces of the functions : 

(1) u = 5
2
*+2y-z, (2) u = tan (x

2
 + y

2
 — 2z

2
). 

3031. Figure 58 illustrates the level lines of a function 
ζ = f(xy y). Construct the graph of the functions: 

( l ) z = / ( x , 0 ) ; (2) * = / ( * , 4) ; ( 3 ) * = / ( l , y ) ; 

(4) z = f(-5,y); ( 5 ) 2 = / ( * , 3*); (6) ζ = f(x, χ*). 

1 0 I I 2 4816 

F I G . 58. 



X. FUNCTIONS OF SEVERAL VARIABLES 263 

3. Derivatives and Differentials of Functions of Several Variables 

Partial Derivatives 

3032. The volume ν of a gas is a function of its temperature 
and pressure: ν = f(p, T). The mean coefficient of expansion 
of the gas at constant pressure, for a temperature variation 

from ΤΛ to J
7
?, is defined as — j £ \=-κ . How should we de-

vx(T2 - TJ 
fine the coefficient of expansion at constant pressure at a 
given temperature T0 ? 

3033. The temperature of a given point A of & rod Ox is 
a function of the abscissa χ of A and time t: θ = f(x, t). 
What are the physical significances of partial derivatives 
80 , 80 0 — and —? 
dt dx 

3034. The area S of a rectangle is given in terms of the 
BS dS 

base b and height h by the formula S — bh. Find -^=-, 7̂ 
orb 00 

and explain the geometrical meaning of the results. 

3035. Given the two functions u = Ya
2
 — x

2
 (a is constant) 

dw Ί dz 
and ζ = Y y

2
 — x

2
, find and — . Compare the results. 

CLX ÖX 

Find the partial derivatives with respect to each of the 
independent variables of the functions of problems 3036-3084 
(x, y, z, u, v, t, φ and ψ are variables) : 

3036. ζ = χ — y. 3037. ζ = x
z
y — y*x. 

3038. θ = axe~
{
 + bt (a, b constants). 

3039. * = - + - . 3040. ζ -
 X

* +
 y

* 
v u χ

2 + y
2 

3041. ζ = (5x
2
y - y* + 7)

3
. 3042. z=xY^ + ^-. 

Y~x 
3043. ζ = ln (χ + Y x

2
 + y

2
). 

3044. ζ = arc tan - . 3045. ζ = •
 1 

^ arc tan — 
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3046. ζ = xy. 3047. z = ln (x
2
 -f- y

2
) . 

3048. , _ l nV *
2
 + 2 /

2
- * 

V #
2
 + y

2
 + χ 

3049. z 
. Vx

2
 — y

2 

= arc sin — — . 
f*

2
 + y

2 

3050. 
X 

ζ = ln tan ~ . 3051. z 
X 

3052. ζ = ln (x -f- ln y). 3053. 
v 4- w 

— arc tan . 
ν — 10 

3054. 
. x y 

ζ — sm - cos - . 
y χ 

3055. z 

3056. z = ( l + xy)y. 3057. z = a;y ln (a; + 2/)· 

3058. ζ = χ
χν
. 3059. = a*yz. 

3060. u= xy + yz + za;. 3061. = f^
2
 + y

2
 + z

2
. 

3062. Î Î = a;
3
 + Î / 2

2
 -f 3ya; — x + z. 

3063. w = a*yz + yzv -f zra + ν#2Λ 

3064. ^ = ex(x*+y*+z*). 3065. = sin (χ
2
 + 2/

2
 + ζ

2
) · 

3066. M = ln (x + 2/ +
 Z

) ' 3067. 
y. 

= x
z
 . 

3068. u = xy\ 

3069. / ( * , y) = x + y - Y x
2
 + y

2
. 

3071. z 3070. 2 = m (* + | ; ] . 

3072. z = (1 + logyx)
3
. 

3074. z = (x
2
 + y

2
) 

1 

3073. z 

(2x + î/p+y. 

xye*
nnx

y. 

1 + Yx* + y* 

3075. z = arc tan Y~&. 3076. z 

3077. z = ln [a*y
2
 + yx

2
 + f l + (xy

2
 + ya;

2
)

2
] . 

a; + y 
3078. z = 

3079. z = arc tan 

+ arc sin γ + y] 
) xy j 

fare t a n — i 

a*y 
.y 

arc t a n - — 1 
x 

V arc t a n - + 1 
x 

— arc tan -



3080. u = 
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(x
2
 + y

2
 + z

2
)

2 3081. u = arc tan (x — y)
z
. 

3082. u= x
z 

3083. u = In 

1 

1 — / s
2
 + y

2
 + ζ

2 

ι + Y*
2
 + y

2
 - M

2
 ' 

3084. w = - tan
2
 (x

2
y

2
 + z

2
v

2
 — xyzv) -f- In cos (x

2
y

2
 -f-

Δ 

+ zV* — xyvz). 

cos (φ — 2t/>) 
3085. u = 

cos (99 + 2ψ) 
. Find 

4 
y}=7i 

3086. w = faz
3
 — ft*

3
. Find — and — at ζ = δ, * = α. 

dz ot 

(\s\s-\mm χ cos y — y cos a; , dz , dz A 3087. ζ = ——? γ—, . Find— and — Sùtx = y = 0. 
1 + sm a; + sin y dx oy 

3088. u = Y sin
2
 a; + sin

2
 y + sin

2
 z. Find — 

π 

3089. -a = ln (1 + χ + y
2
 + ζ

3
) . Find u'x + u\ at 

a; = y = ζ = 1. 

3090. f(x, y) = a;
3
i/ — y*x. Find 

8a; ^ By 

y=2 \ dx dy J] 

3091. What angle does the tangent to the curve 

x
2
 4 - y

2 

y = 4 

at the point (2, 4, 5) form with the positive direction of the 
axis of abscissae ? 

3092. What angle does the tangent to the curve 

k 

file:///s/s-/mm
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3095. ζ = Yx
2
 + y

2
. 

3096. ζ = -^—2 . 

x
l + y

l 

3097. u = ln (a;3 + 2i/3 - z 3) . 
3 

3098. ζ = γχ + y
2
. Find dyz for χ = 2, y = 5, zfy = 0Ό1. 

3099. ζ = /In ay. Find dxz for χ = 1, y = 1*2, zte = 0*016. 

3100. u = p - ^ + Vp + q + r. Find dpu for ρ = 1, 

g = 3, r = 5, Ap = 0-01. 

Find the total differentials of the functions of problems 
3101-3109: 

3101. ζ = xY - χψ + x*y
2
. 3102. ζ = 1 ln (a

2
 + 2/

2
) . 

3103. ζ = . 3104. ζ = arc sin - . 
χ — y y 

3105. ζ = sin (aw). 3106. ζ = arc tan f * . 
v w/

 1 — xy 
2 ι 2 3107. ζ = y

9 .
 3108. ζ = arc tan (ay). 

x
2

 — y
2 

3109. w = a:*
2
. 

at the point ( l , 1, γ%) form with the positive direction of the 
axis of ordinates ? 

3093. What is the angle of intersection of the plane curves 
obtained as a result of the intersection of the surfaces 

» = + $ and « = * + * 

with the plane y = 2 ? 

Differentials. Approximations 

Find the partial differentials with respect to each of the 
independent variables of the functions of problems 3094-
3097: 

3094. z = xy* - 3x
2
y

2
 + 2y*. 



X. FUNCTIONS OF SEVERAL VARIABLES 267 

Applications to Computations 

3110. Find the value of the total differential of the function 

ζ = χ + y — γχ
2
 + y

2
 for χ = 3, y = 4, Δχ = 0*1, Ay = 0*2. 

3111. Find the value of the total differential of the function 
ζ = e*y for χ = 1, y = 1, Ax = 0*15, Ay = 0*1. 

3112. Find the value of the total differential of the function 

ζ = 0

X y
 _ for χ = 2, y = 1, ζίζ = 0*01, Ar = 0*03. 

χ
2
 — y

2 

3113. Work out approximately the variation of the function 

ζ = when a varies from ^ = 2 to x9 = 2*5 and 
2/ — 3x

 1 2
 ^ 

from y1 = 4t to y2= 3*5. 

3114. Evaluate approximately 

3 4 

In ( /FÖ3 + VO-98 - l ) . 

3115. Work out approximately 1*04
2 0 2

. 

3116. Find the length of the segment of the straight line 
x = 2, y = 3 lying between the surface ζ = χ

2
 + y

2
 and its 

tangent plane at the point (1, 1, 2). 

3117. A body weighs (4*1 + 0*1) g in air and (1-8 + 0*2) g 
in water. Find the specific weight of the body and indicate 
the error in the working. 

3118. The base radius of a cone is equal to 10*2 + 0*1 cm, 
the generator is equal to 44*6 + 0*1 cm. Find the volume of 
the cone and indicate the error in the working. 

3119. The formula 

Q 1 2 sin Β sin C 
2

a
 sin (B + C) 

is used for calculating the area 8 of a triangle with side a 
and angles B, C. Find the relative error o's in calculating 8 
if the relative errors of the given elements are respectively 
K, à'B, ö'c. 

3120. One side of a triangle has a length of 2*4 m and 
increases at a rate of 10 cm/sec; the second side, of length 
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1*5 m, diminishes at a rate of 5 cm/sec. The angle included 
between these sides is equal to 60° and increases at a rate of 
2° per sec. How, and at what rate, does the area of the tri-
angle vary? 

3121. The frustum of a cone has base radii R = 30 cm, 
r = 20 cm, and height h = 40 cm. How does the volume of 
the frustum vary if R increases by 3 mm, r by 4 mm, h 
by 2 mm? 

3122. Show that, when calculating the period Τ of vibra-
tion of a pendulum in accordance with the formula Τ = 

Τ 
- (I is the length of the pendulum, g the acceleration 

due to gravity), the relative error is equal to half the sum of 
the relative errors in the determination of I and g (all the 
errors are assumed sufficiently small). 

3123. Express the maximum error when evaluating the 
radius r of arc AB (Fig. 59) of a circle in terms of the errors 
ds and dp in measuring chord 2s and length p. Work out dr 
when 2s = 19*45 cm +0*5 mm, ρ = 3*62 cm +0*3 mm. 

4. Differentiation of Functions 

Functions of a Function* 

3124. u = e
x
~

2
y, where χ = sin t, y = fi; 

du 
dt 
du 

3125. u = ζ
2
 + y

2
 + zy, z = sin t, y = e

f
; — = ? 

t The numbering of the problems in this edition differs from that 
of the previous editions as from this article to the end of Chap. X . 
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x dw 
3131. u = aresin-, where ζ = V »

2
 + 1: - 7 -

z
 r

 cue 

dz 
3126. ζ = arc sin (x — y), χ = 3£, y = 4£

3
; = ? 

8z 
3127. ζ = »

2
2 / — ι /

2
» , where x = u cos v, y = u sin — = ? 

oz 

9z = ? 

3128. ζ = a» In y, » = - , y = Su - 2v; / = ? — = ? 

3129. it = In (e* + e*); ^ = ? Find ^ , if y = x\ 

dz 
3130. ζ = arc tan ( » 2 / ) ; find if y = e x. 

3132 

3133 

3134 

3135 

3136 

3137 Verify that the function ζ = arc tan where 

- v, satisfies the relationship 

3138. Verify that the function ζ = φ(χ
2
 + y

2
), where φ 

is a differentiable function, satisfies the relationship 

3139. u = sin χ + JP(sin y — sin x) ; verify that 

cos y = cos χ cos y, whatever the differentiable function F. 



270 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

3140. ζ -
 y 

w=w
 verify that (ï) (S)+(J) (I)= 

whatever the differentiable function / . 

3141. Show that a homogeneous differentiable function of 

zero degree ζ = (
s ee

 problem 2961) satisfies the rela-

t i o n s h i p ( a ; S ) + ( ^ | ) = o -
3142. Show that the homogeneous function of the k t h 

degree u = x
k
F\-, - | , where F is a differentiable function, 

ι χ χ j 
satisfies the relationship 

du , du , du , 
Xw- + y -χ- + ζ— = ku. 
dx dy dz 

3143. Verify the proposition of problem 3142 for the 
function 

* . z
2
 + y

2 

= r sin . 
x

2 

3144. Given the differentiable function f(x, y), prove that, 
if variables x, y are replaced by linear homogeneous functions 
of X, Y, the function F(X, Y) obtained is connected with 
the given function by the relationship 

Functions Given Implicitly and Parametrically 

In problems 3145-3155, find the derivative 

functions given implicitly by the equations indicated: 

of the 

3151. xy — In y = α. 
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Y I - a*
4
 ' y 1 - y

4 

3160. Show that it follows from a + b(x + y) + cxy = 
— m(a; — y) that 

da; _ dy 
α + 26a; + cx

2
~~ a + 2by + cy

2
 ' 

a
2 +

 6
2 +

 c
2
 ' 8a; ' 8y " 

8z 8z 
3162. x

2
 - 2y

2
 + z

2
 - 4a; + 2z - 5 = 0; — = ? — = ? 

da; dy 

3163. z
3
 + 3a;yz = a

3
; = ? f - = ? 

' * 8a; dy 

3164. e
2
 - xyz = 0; ^ = ? ^ = ? 

* 8a; 8y 
3165. Show that, whatever the differentiable function φ, 

it follows from q>(cx — az, cy —- bz) = 0 that 

3152· arc tan ̂ t - ^ -
 y

- = 0. 3153. yx
2
 = e>\ 

3154. ye
x
 + = 0. 3155. y

x
 = a?. 

3156. jF(a;, y) = F(y, x). Show that the derivative of y 
with respect to χ can be expressed with the aid of a fraction 
whose numerator is obtained from the denominator by inter-
changing the letters y and x. 

3157. x
2
 + y

2
 — 4a; — lOy + 4 = 0; find ^ for a; = 6, 

y = 2 and for a; = 6, y = 8. Give a geometrical interpretation 
of the results. 

dy 
3158. x*y + a;y4 — ax2y2 = a5; find ^ for χ = y = a. 

3159. Show that it foUows from x
2
y

2
 + a;

2
 + y

2
 - 1 = 0 

that 
da; + dy = Q 
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(see Course, sec. 151). 

3167. Find the total differential of the function ζ defined by 
the equation cos

2
 χ -f- cos

2
 y -f- cos

2
 ζ = 1. 

3168. The function ζ is given parametrically : χ = u + v, 
y == u — ν, ζ = uv. Express ζ as an explicit function of χ 
and y. 

3169. χ = u -f- y = %
2
 + ν

2
, ζ = -f- v

3
. Express ζ 

as an explicit function of χ and y. 

3170. a; = w cos v, y = u sin ν, ζ = Express ζ as an 
explicit function of χ and ?/. 

3172. χ = ]Aä(sin w -f
 c os v

)> V =γα (cos u — sin v) , 

ζ = 1 + sin (u — #). 

3173. # = w + v, y = u — ν, ζ = Μ
2

Λ 

3174. a; = e" cos y = e" sin ν, ζ = w . 

3175. The relationships u = f(x, y), ν = F(x, y)y where / 
and F are differentiable functions of χ and y, define χ and y 
as differentiable functions of u and v. Show that 

Find the total differentials of the functions of problems 
3176-3177: 

3176. χ = u cos v, y = u sin ν, ζ = u
2
. 

3177. χ = ν cos u — u cos u + sin u, y = ν sin u — 
— u sin w — cos u, ζ = (u — v)

2
. 

dx dy _ dy dz dx 
dy'dx~ ' dz' dx' dy 

1 

Find — , — and dz for the functions of problems 3171-
dx dy

 r 

3174: 

3166. F(x, y, z) = 0. Prove that 
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3178. u and υ are functions of x, y, ζ satisfying the rela-

tionships uv = 3x — 2y - f z, v
2
 = x

2
 + y

2
 + z

2
. Show that 

du , du , du 
χ -—Y y-—[- z — = 0. 

dx
 r u

 dy
 r

 8z 

3179. Let y = f{x, t), F(x, y} t) = 0. Show that 

d[_ dF_ d[ dF 

dy _ dx' dt dt"dx 

dx " d[ d_F_ dF ' 

dt' dy
 +
 dt 

3180. Let f(x, y, z) = 0, F(x, y, z) = 0. Show that 

8/ dF _ dF d[ 

dy _ dx dz dx dz 

dx
 =
 ~~ df_ dF dF df ' 

dy ' dz dy' dz 

5. Repeated Differentiation 

3181. ζ = χ
2
 + xy

2
 — 5xy* + y

5
. Verify that 

d
2
z d

2
z 

dx dy dy dx 

d
2
z d

2
z 

3182. ζ = xy. Verify that „ ^ ^ ^ . 
J
 dxdy dydx 

3183. ζ = e
x
 (cos y + α; sin ?/). Verify that 

Θ
2
Ζ _ d

2
Z 

dxdy ~~ dydx ' 

y d
z
z d

z
z 

3184. z = arc t a n - . Verify that _ = — . 

d
2
z d

2
z d

2
z 

Find — - ζ , 7—7— and — ^ for the functions of problems 
dx

2
 dzdy dy

2 r 

3185-3192: 

3185. z = \ Y(x
2
 + y

2
)*. 3186. z = ln(x + Yx

2
 + y

2
). 

0 
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3193. u = Yx
2
 + y

2
 + z

2
 — 2xz; 

8
3
z 

3194. z - e ^
2
; = « 

8y8z = ? 

8x
2
8y 

8
3
z 0 

3195. z = ln (*
2
 + y

3
) ; =

 ? 

8
3
z 9 

3196. z ^ s i n x i / ; — 2 = ? 

8197.i* = e*3*; ä ^ z = ? 

3198. « = W ä ^ 0 8 ^
=
 ? 

3199. ζ = ln (e* + e*) ; verify that g + j | = 1 and that 

3
2
zLd

2
z_ ί 8

2
z \

2
 _ 

8Ö
2
 Sy

2
 \dxdy J ~~ ' 

8
2
w 8

2
w 

3200. u = e
x
(# cos y — y sin y) . Show that —5- + —~ = 0. 

ox dy 

3201. u = ln ,
 1

 ; show that ^ + = 0. 
jfc2 + y2 8z

2
 ^ 8y

2 

3202. « = ,
 1

 — ; show that ^ + + ^ | = 0. 
YA;2_|_y2_|_32 8a;

2
 8y

2
 8z

2 

(see Course, sec. 153). 

3203. r = Yx
2
 + y

2
 + z

2
; show that 

d
2
r | 8

2
r | 8

2
r _ 2 8

2
(ln r) 8

2
(lnr) 8

2
(lnr) _ _1_ 

8Ö
2 +

 ~dy
2 +

 dz
2
 ~ r

 9
 dx

2 +
 dy

2 H
 8z

2
"" ~~ r

2
 * 

3187. ζ = arc t a r i f
 + y

 . 3188. ζ = sin
2
 (ax + by). 

1 — xy \ ι 

3189. ζ = e*
e
*. 3190. ζ = . 

x + y 

3191. ζ = y
]nx
. 3192. ζ = arc sin (xy). 

d
2
u 

file:///dxdy
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3204. For what value of the constant a does the function 
ν = a;

3
 -f- axy

2
 satisfy the equation 

dx
2 T

 dy
2 

3 2 0 5
·

2 =
 ^ Ί ^

: s h o w t h a t = a V · 
3206. ν = — - 1 1 — ; show that 

x — y y — ζ ζ — χ 

? ! ^ _ _ L — 4- — 4- 2 ί - ^ - 4 -
 8

^ 4- ^ ϊ — 0 
ä ä

2
"

 +
 8^2" + 8^2" + ^ 9 a. 9 y + q^ÖZ

 +
 dzdx) ~~ ' 

3207. ζ = f(x, y), ξ = ζ + y, η = χ — y. Verify that 

8
2
ζ _ 8

2
ζ _ 8

2
ζ 

3208· ν = χ 1η (χ + τ) — r, where r
2
 = χ

2
 + y

2
. Show that 

3209. Find the expression for the second derivative 

of the function y given implicitly by the equation 

3210. y = φ(χ — at) - f ψ(χ + at). Show that 

whatever the twice differentiable functions φ and ψ. 

3211. u = 99(0;) + y)(y) + (x — y) y)'(y). Show that 

(φ and y are twice differentiable functions). 

3212. ζ = y(p(x
2
 — y

2
) . Show that 

(φ is a differentiable function). 
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3213. r = χφ(χ + y) + yyi
x
 + 2/) · Show that 

8V 8
2
r 8V _ 

8a;
2
 8a; 8y

 +
 8*/

2
 ~~ 

(95 and y are twice differentiable functions). 

3214.
 u =

 ~ [<p(
ax
 + y) + — 2 / ) ] · Show that 

3215. η = χ
η
φ(^) + x^ipfe). Show that 

2 8
2
^ 8

2
^ , 28

2
^ , ιχ 

# ^ - 7 7 + 2a;?/ - — k ψ —— = — 1) u. 
dx

2 u
 dxdy ^

 u
 dy

2 v 1 

3216. ^ = xey + î/e
x
. Show that 

d*u , 8
3
w 8

3
w , 8

3
^ 

8a;
3 +

 dy*
 X

 dx dy
2 + V

 dx
2
 dy 

3217. u = e*y
z
. Show that 

8% 
8a; 8i/ dz 

e
x
y

z
(x

2
y

2
z

2
 + 3xyz + 1). 

3218. u = ln — ^ . Show that 
a;?/ 

8·% 8% 8
3
^ 8

3
^ _ f 1 η 

8Î
3
"

 +
 8a;

2
 dy dx dy

2
 dy* ~~ [y* x*) ' 

Find the second-order differentials of the functions of 
problems 3219-3223: 

3219. z = xy
2
 — x

2
y. 3220. ζ = ln (x — 2/) . 

3221. ζ = — — r r - . 3222. ζ = a? sin
2 

2(a;
2
 + y

2
) 

3223. ζ = e*y. 3224. u = xyz\ d
2
u = ? 

3225. ζ = sin (2a; + y). Find d
3
z at the points (0, n)\ 
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3226. u = sin (x + y + z ) ; d
2
u = ? 

3227Λ + ^ + ^ = 1 ; d*z = ? 
α

1
 o

z
 c

2, 

3228. ζ
3
 - 3xyz = α

3
; d

2
z = ? 

3229. + 2z
2
a;y — 2zz

3
 + 4zy* - 4 = 0. Find d

2
z at 

the point (2, 1, 2). 

Change of Variables 

3230. Transform the differential expression 

dx
2 1

 dx
 1

 * 

to a new independent variable by putting χ = j . 

3231. Transform the differential expression 

a y — 4xy' + ι/ 

to a new independent variable by putting χ = e
2
. 

3232. Transform the differential expression 

( 1 X
 ' dx

2 X
dx

 + a y
' 

by putting a; = sin t. 

3233. Transform the differential expression 

£ + ». 
by regarding y as the independent variable and χ as a function 
of y. 

3234. Transform the expression 

2/2/ — oy , 

by taking 2/ as the independent variable. 

3235. Transform the expression 

yy" = 2(y
2
 + y'

2
) 

to a new function ν by putting y = ^ . 
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to polar coordinates ρ, φ, bearing in mind that χ — ρ cos φ, 

y = ρ sin φ. 

3238. The function ζ depends on x, y. Carry out a change 

of independent variables in the expression 

dz dz 
y - χ — u
 dx dy 

with the aid of the formulae χ = u cos v, y = u sin v. 

3239. Transform Laplace's operator 

d
2
u d

2
u 

dx
2 +

 dy
2 

to polar coordinates. 

3240. Transform the expression 

d
2
z ,d

2
z 

dtf
 +

 dt 

to a new function w on condition that ζ = w(Yx
2
 + y

2
) or 

ζ = w(r), where r = γχ
2
 + y

2
. 

3241. In the expression 

— 4-2
 d

*
Z
 4 - — 

dx
2 +

 dxdy
 +

 dy
2 

replace the independent variables χ and y by variables u 
and v, and the function ζ by the variable w, taking these 

U I 1) 

variables to be connected by the relationships χ = —-— , 
u — V u

2
 — V

2 

y = -—->
 z

= — i —
w

-

3236. Transform to polar coordinates the equation 

dy = x + y 
dx χ — y ' 

3237. Transform the expression 



C H A P T E R X I 

APPLICATIONS OF T H E 
D I F F E R E N T I A L CALCULUS 

FOR FUNCTIONS OF S E V E R A L 
V A R I A B L E S 

1. Taylor's Formula. Extrema of Functions of Several 
Variables 

Taylor's Formula 

3242. f(x, y) = x
z
 + 2i/

3
 — xy; expand the function f(x + 

+ A, y + k) in powers of h and k. 

3243. f(x, y) = x* + y* — 6xy - 39z + 1 8 ^ + 4; find the 
increment received by the function when the independent 
variables change from the values χ = 5, y = 6 to the values 
χ = 5 + A, 2 / = 6 + &. 

increment taken by the function when the independent 
variables pass from the values χ = 1, y = 2 to the values 
# = 1 + A , s/ = 2 + &. Evaluate /(10'2, 2*03), taking into 
account terms up to and including the second order. 

3245. f(x, y, z) = Ax
2
 + By

2
 + Cz

2
 + Dxy + Eyz + Fzx; 

expand f(x + h, y + k, ζ - f I) in powers of h, k and I. 

y — - J. Find the terms of the first and second order and 

i?2 (the second-order remainder term). 

3247. Expand the function ζ = xy in powers of (χ — 1) 
and (y — 1), finding the terms up to and including the third 
order. Use the result to evaluate (without tables!) l ' l

1
'

0 2
. 

3244. f(x, y) = ^ - - yx* + - 2x + 3y - 4; find the 
4 Δ 

3246. Expand ζ = sin χ sin y in powers 

279 
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l — χ — y + xy' ' ~ ι + xy 

3253. z = l n ( l -x)ln(l - y). 

3254. ζ = In
 1
 ~ * ~

 V
 +

 Xy
 . 

I — χ — y 
3255. ζ = sin (χ

2
 + y

2
). 

3256. ζ = e
x
 cos y. 

3257. Find the first few terms of the expansion on powers of 
χ — 1, y — 1 of the function z, given implicitly by the equa-
tion 

z
3
 + yz — xy

2
 — x

z
 = 0 

and equal to unity for χ = l, y = 1. 

3258. Obtain the approximation 

cos χ 1 2X 
Y~<Z> 

cos 2/ 2 

for sufficiently small values of \x\, \y\. 

Extremals 

Find the stationary points of the functions of problems 
3259-3267 : 

3259. ζ = 2a;
3
 + xy

2
 + 5x

2
 + y

2
. 

3260. ζ = e
2x
(x + y

2
 + 2y). 3261. ζ = xy(a — χ — y). 

3248. f(x, y) = e
x
 sin y\ expand f(x + h, y + k) in powers 

of h and k, taking terms up to and including the third order 
in h and k. Use the result to evaluate e

0 1
 sin 0*497Τ. 

3249. Find the first few terms of the expansion of the 
function e

x
 sin y in a Taylor series in the neighbourhood of 

of the point (0, 0). 

3250. Find the first few terms of the expansion of the 
function e

x
 ln(l + y) in a Taylor series in the neighbourhood 

of the point (0, 0). 

Expand the functions of problems 3251-3256 in Taylor 
series for x0 = 0, y0 = 0 : 

3251. ζ =
 1

 • . 3252*. ζ = arc tan
 x

 ~
 V 
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F I G . 60. 

3270. A function ζ is given implicitly: 

5x
2
 + 6y

2
 + 5z

2
 — 2xy — 2xz — 2yz — 72 = 0. 

3262. ζ = {2ax - x
2
) (2by - y

2
). 

3263. ζ = sin χ + sin y + cos (x + y) |θ ^ χ ^ ^ , 0 ^ 

3 2 6 4 . , = « + + * . = ^ 4 ) · 

y i + ^

2

 + 2/

2 

3265. 2 = y yr+^ + # yi + y. 

3266. w = 2x
2
 + y

2
 + 2z — xy — xz. 

3267. u = 3 ln χ + 2 ln y + 5 ln ζ + ln (22 — χ — y — ζ). 

3268. Figure 60 illustrates the level lines of the function 
ζ = f(x, y). What special features has the function at the 
points A, B, C, D and on the curve Ε Ft 

3269. A function ζ is given implicitly: 

2x
2
 + 2y

2
 + z

2
 + Sxz — ζ + 8 = 0. 

Find its stationary points. 
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Find its stationary points. 

3271*. Find the extremal points of the function 

ζ = 2xy — 3x
2
 — 2y

2
 + 10. 

3272. Find the extremal points of the function 

ζ = 4 (χ — y) — χ
2
 — y

2
. 

3273. Find the extremal points of the function 

ζ = χ
2
 + xy + y

2
 + χ — y + 1. 

3274. Show that the function ζ = χ
2
 + xy + y

2
 -{ 1 

x y 
has a minimum at the point χ = y = ^- . 

3275. Show that the function ζ = χ
4
 + t/

4
 — 2x

2
 — éxy — 

— 2y
2
 has a minimum for χ = γ2, y = γ2 and for χ = — ]A2, 

y= -γ2. 

3276. Show that the function ζ = χ* + y
2
 — ßxy — 39# + 

+ I8y + 20 has a minimum for χ = 5, y = 6. 

3277. Find the stationary points of the function 

ζ = x
z
y

2
(\2 — χ — y), 

satisfying the condition χ > 0, y > 0, and examine their 
nature. 

3278. Find the stationary points of the function 

ζ — x
z
 -f- y

3
 — Zxy 

and examine their nature. 

Greatest and Least Values 

3279. Find the greatest and least values of the function 
ζ = χ

2
 — y

2
 in the circular domain x

2
 + y

2
 = 4. 

3280. Find the greatest and least values of the function 
ζ = χ

2
 + 2xy — 4x + 8y in the rectangle bounded by the 

straight lines 

χ = 0, y = 0, χ = 1, y = 2. 
3281. Find the greatest value of the function 

ζ = x
2
y(4: — x — y) 
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in the triangle bounded by the straight lines χ = 0, y = 0, 

x + y = 6. 

3282· Find the greatest and least values of the function 

ζ = e-*
2
 -y

2
 (2x

2
 + 3y

2
) 

in the circle x
2
 + y

2
 ^ 4. 

3283. Find the greatest and least values of the function 

ζ = sin x -f- sin y -f- sin (x -f- y) 

in the rectangle 0 ^ χ ; 0 ^ y . 
Δ Δ 

3284. Write the positive number a as the sum of three 
positive terms such that their product is a maximum. 

3285. Express the positive number a as the product of 
four positive factors such that their sum is a minimum. 

3286. Find the point of the xOy plane such that the sum 
of the squares of its distances from the straight lines χ = 0, 
y = 0, χ + 2y — 16 = 0 is a minimum. 

3287. Draw the plane through the point (a, 6, c) such that 
the volume of the tetrahedron, cut out by it from the co-
ordinate trihedral, is a minimum. 

3288. Given the η points Ax(xv yv zY), . . ., An(xn, yn, zn), 
find the point of the xOy plane such that the sum of the 
squares of its distances from all the given points is a minimum. 

3289. Given the three points A(0, 0, 12), B(0, 0, 4) and 
(7(8, 0, 8), find the point D on the xOy plane such that the 
sphere passing through A, B,C, and D has minimum radius. 

3290. Inscribe the rectangular parallelepiped of maximum 
volume in a given sphere of diameter 22?. 

Conditional Extrema 

Investigate the extrema of the functions of problems 3291-
3296: 

3291. ζ = x
m
 + y

m
 (m > 1) for χ + y = 2(x ^ 0, y ^ 0). 

3292. ζ = xy for x
2
 + y

2
 = 2a

2
. 
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3293. ζ = - + - for \ + \ = \ . 
x y χ

2
 y

L
 Gr 

71 
3294. ζ = a cos2 χ + b cos2 y for y — a = -

3295. ^ = a; + ι/ + z fo r - + - + - = L 
1
 *

 1
 x y z 

*2<)<>.u = xyzfov\
{l)x + y + Z = 5

> 
( (2) # 1 / + zz + ι/ζ = 8. 

3297*. Establish the relationship 

x\ + + · · · +
 x

l ^ (xi + X2 + · · · +
 Xn 

η 

3298. f(x, y) = x
3
 — Zxy

2
 + 18y, where 3x

2
y — y* — 6x = 

= 0. Prove that f(x, y) has extrema at the points x = y = 

= ± f3. 

3299. Find the minimum of the function αχ
2
 + by

2
 + cz

2
, 

where a, b, c are positive constants, and x, y, ζ are connected 
by the relationship 

χ + y + z = 1. 

3300. Find the extrema of the function 

^ = y
2
 + 4z

2
 — 4yz — 2xz — 2xy 

on condition that 

2x
2
 + 3y

2
 + 6z

2
 = 1. 

3301. Find the point on the plane 3# — 2z = 0 such that 
the sum of the squares of its distances from the points 
.4(1, 1, 1) and B(2, 3, 4) is a minimum. 

3302. Find the point on the plane χ + y — 2z = 0 such 
that the sum of the squares of its distances from the planes 
x -j- 3z = 6 and y + 3z = 2 is a minimum. 

3303. Given the points 4(4, 0, 4), 5(4, 4, 4), (7(4, 4, 0), 
find the point S on the surface of the sphere x

2
 + y

2
 + z

2
 = 4 

such that the volume of pyramid 8ABC is (a) a maximum, 
(b) a minimum. Check the answer by elementary geometry. 
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3304. Find the rectangular parallelepiped of given volume 
V having the least surface area. 

3305. Find the rectangular parallelepiped of given surface 
area S having the maximum volume. 

3306. Find the volume of the greatest rectangular paral-
lelepiped that can be inscribed in an ellipsoid with semi-axes 
a, b and c. 

3307. A marquee is in the form of a cylinder with a conical 
top over it. What are the relationships between the linear 
dimensions of the marquee for the manufacture of it to require 
the least amount of material for a given volume ? 

3308. The section of a channel is an isosceles trapezoid 
of given area. How must its dimensions be chosen for the 
wetted area of the channel to be a minimum (Fig. 61) ? 

b 
F I G . 61. 

3309. Of all the rectangular parallelepipeds having a 
given diagonal, find the one whose volume is a maximum. 

3310. Find the external dimensions of an open box (without 
a lid) in the form of a rectangular parallelepiped with given 
wall-thickness α and volume V, such that the least amount of 
material goes into it. 

3311. Find the maximum volume of a parallelepiped, given 
that the sum of all its ribs is equal to 12a. 

3312. Circumscribe about a given ellipse the triangle with 
base parallel to the major axis of the ellipse, such that the 
area of the triangle is a minimum. 

X
2
 Î /

2 

3313. Find the points on the ellipse — + ^- = 1 nearest 

to and furthest away from the straight line 
3x — y — 9 = 0. 
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3314. Find the point on the parabola x
2
 - f 2xy - f y

2
 -f-

-{ - 4t/ = 0 closest to the straight line 3x — 6y + 4 = 0. 

3315. Find the point on the parabola 2x
2
 — 4xy - f 2y

2
 — 

— x — = 0 closest to the straight line 9x — ly + 16 = 0. 

3316. Find the greatest distance of points of the surface 

from the plane ζ = 0. 

3317. Find the sides of the right-angled triangle having the 
least perimeter for a given area 8. 

3318. A prism with a rectangular base is inscribed in a 
right elliptic cone of height H cm, the semi-axes of the base 
of which are a and b cm ; the prism is such that the sides of 
its base are parallel to the axes, whilst the intersection of 
the base diagonals lies at the centre of the ellipse. What must 
be the sides of the base and the height of the prism for its 
volume to be a maximum ? What is this maximum volume ? 

3319. Find the equilateral triangular pyramid of given 
volume such that the sum of its ribs is a minimum. 

3320. Given two points on an ellipse, find the third point 
on the ellipse such that the triangle, the vertices of which 
are at the given points, has the maximum area. 

3321. Draw the normal to the ellipse 1 which 

is furthest from the origin. 

3322. Find the points on the ellipsoid of revolution 

= 1 closest to and furthest away from the plane 
12z = 288. 

3323. Given the plane curves f(x, y) = 0 and φ(χ, y) = 0, 
show that the distance between points (α, β) and (ξ, η), lying 
on the respective curves, has an extremum when the follow-
ing condition is fulfilled: 
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Use this to find the shortest distance between the ellipse 
x

2
 + 2xy + by

2
 — 16y = 0 and the straight line χ + y — 

- 8 = 0. 

2. Plane Curves 

Tangents and Normals 

Write down the equations of the tangent and normal at 
the point indicated to the curves of problems 3324-3327: 

3324. x*y + yH = 3 — x
2
y

2
 at the point (1, 1). 

3325. a
2
(x* + y*) — x

z
y* = 9a

6
 at the point (a, 2a). 

3326. cos xy = χ + %y at the point (1, 0). 

3327. 2x* — x
2
y + 3x

2
 + 4xy — 5x — Zy - f 6 = 0 at its 

point of intersection with the Oy axis. 

Singular Points 

Find the singular points of the curves of problems 3328-
3340: 

3328. y
2
 = x

2
(x - 1). 3329. a

2
x

2
 = (x

2
 + y

2
)y

2
. 

3330. y
2
 = ax

2
 + bx*. 3331. y

2
 = x(x - α )

2
. 

A A A 

3332. χ
3
 + y

3
 = α

3
 . 

3333. + ι/
4
 - 8χ

2
 - lOy

2
 + 16 = 0. 

3334. ζ
4
 + \2χ? — 6y

3
 + 36z

2
 + 21y

2
 — 81 = 0. 

3335. χ* + y* + Zaxy == 0. 3336. χ
2
 + y

2
 = χ* + y*. 

3337. y = x ln χ. 3338. y
2
 = sin

3
 χ. 

3339. y
2
 = (x- α )

3
. 3340. χ

5
 = (y - χ

2
)

2
. 

Envelopes 

3341. Find the equation of the envelope of the family of 
straight lines y = ax + / ( « ) . In particular, put /(a) = cos a. 

3342. Find the envelope of the family of straight lines 
y = 2mx + m

4
. 
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3343. A pencil of straight lines is drawn through the point 
A (a, 0). Find the envelope of the family of normals to the 
lines of the pencil, drawn at the points of intersection of the 
lines with Oy (see Course, sec. 45). 

3344. Find the envelope of the family of parabolas y
2
 = 

= a(x — a). 

3345. Find the envelope of the family of parabolas 

ax
2
 + Q?y = 1. 

3346. Find the envelope of the family of parabolas 

y = a
2
 (x — a)

2
. 

3347. Find the envelope of the family of semicubical para-
bolas 

(y — a)
2
 = (χ — a)

3
. 

3348. Find the envelope of the family of curves 

x
2
 + ay

2
 = a

3
. 

3349. Find the envelope of the family of ellipses 

a
2
^~b

2 

with the condition that the sum of the semi-axes of each 
ellipse is equal to d. 

3350. The radii of a circle are projected on to two mutually 
perpendicular diameters of the circle, and ellipses are con-
structed with the projections as semi-axes. Find the envelope 
of this family of ellipses. 

3351. Find the envelope of the family of circles having 
their centres on the parabola y = bx

2
 and passing through 

its vertex. 

3352. A straight line moves so that the sum of the lengths 
of the segments that it cuts out on the coordinate axes 
remains constant and equal to a. Find the envelope of the 
family of straight lines thus obtained. 

3353. Find the envelope of the diameters of a circle rolling 
without slip on a given straight line (radius of circle = R). 
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3354. Circles are drawn by taking as diameters the chords 
of a circle (of radius R) parallel to a given direction. Find the 
envelope of this family of circles. 

3355. A straight line moves so that the product of the 
segments that it cuts off on the coordinate axes is equal to 
a constant a. Find the envelope of these straight lines. 

3356. Show that every curve is the envelope of its tangents. 

3357. Show that the evolute of a curve is the envelope of 
the family of its normals. Find the evolute of the parabola 
2/

2
 = 2px as the locus of the centres of curvature and as the 

envelope of the family of normals. Compare the results. 

3358. Prove the theorem: if curve (A) is the envelope of 
the family of straight lines χ cos t + y sin t — f(l) = 0, the 
evolute of curve (A) is the envelope of the family of straight 
lines — χ sin t + y cos t — f'{t) = 0. 

3359. The radius vector OM of an arbitrary point M 
of the rectangular hyperbola xy = 1 is projected on to the 
asymptotes of the hyperbola. Find the envelope of the family 
of ellipses constructed by taking the projections of OM as 
semi-axes. 

3. Vector Functions of a Scalar Argument. Curves in Space. 
Surfaces 

Vector Functions of a Scalar Argument 

3360. Prove the differentiation formulae 

d , x dv , du d , x dv , du 
à î

{ u v )
=

u
à t

+ v
d f ü

{ u x v) = u x
ü

+
l ü

 x v
-

Here, u and ν are vector functions of the scalar argument t. 

3361. Given r = r(t), find the derivatives: 
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dr 
3362. Given that vectors r(t) and are collinear for 

d
2

f» d*v d
n

r 
all values of t, prove that vectors - ^ , , . . ., -τ— are also 

at* at
6
 at

n 

collinear with r(t). 

3363. Show that, if the modulus \ r\ of function r(t) remains 
dr 

constant for all values of t, than ^ - l r . (What is the 

geometrical meaning of this fact?) Does the converse theorem 
hold? 

3364. Given: r = a cosœt -f & sinco£, where ω, α, b are 
constants, prove that 

dr d
2
r 

( l ) r x ^ = ( o a X6 and(2) ^ + ω*τ = 0. 

3365. Prove that, if eis the unit vector in the direction of 

χι xi. J ExdE vector E, then e x d e = — ^ — . 

3366. Prove that, if r = αβ
ωί
 + be-

(0t
, where a and ö 

are constant vectors, then ^-^ — a>
2
r = 0. 

3367. μ = α(α, y, ζ, ί) i + ß(a;, y, z,t) j + γ(χ, y, z, t) fc, 
where x, y, ζ are functions of t. Prove that 

du _ 9M du dx du dy du dz 
~dt~di

+
dx dt

+
dy dt

+
~3z dt ' 

3368. Given: r = r(u), u = <p(a;). Express the derivatives 

dr d
2
r d

3
r ^ ^ . e r mg Qf dr d

2
r d

3
r 

da: ' da;
2
 ' da;

3
 du

9
 du

2
 ' du* * 

dv 
3369. Show that, if the relationship = ar, where 

a = const, holds for the vector function r = r(t)} the hodo-
graph of the function r(u) is a straight line through the pole. 

3370. Let the function r(t) be defined, continuous and 
differentiable in the interval (tv t2), whilst r ( ^ ) = r(t2). Apply 
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Rolle's theorem to the function a · r, where a is an arbitrary-
constant vector. Explain the result geometrically. 

3371. Given the radius vector r{a sin t, —a cos t, bt
2
} (t is 

time, a and b are constants) of a particle moving in space, 
find the hodographs of the velocity and acceleration. 

3372. Find the trajectory of the motion for which the 
radius vector of a moving point satisfies the condition 

dr 
di =

 a x r
' 

where a is a constant vector. 

3373. A material particle moves in accordance with the 
law 

r = v0t + lgt* 

(r is the radius vector of the particle at the instant t, v0 and 
g are given vectors). Show that (1) the momentum of the 
particle is a quadratic function of time; (2) v0 is the initial 
velocity (i.e. the value of the velocity vector at the instant 
t = 0); (3) the motion proceeds with constant acceleration, 
equal to the vector g\ (4) the motion proceeds along a para-
bola (provided that vectors v0 and g are not collinear), the 
axis of which is parallel to vector g. 

3374. The law of motion of a material particle is given by 

r = a cos t + b sin t + c, 

where vectors a and ö are perpendicular to each other. Find 
the trajectory of the motion. At what instants is the velocity 
extremal? At what instants is the acceleration extremal? 

3375. The formulae for transforming from Cartesian to 
spherical coordinates are χ = ρ sin θ cos φ, y = ρ sin θ sin φ, 
ζ = ρ cos 0, where ρ is the distance of the given point from 
the pole, θ is its latitude, and φ its azimuth or longitude (see 
Course, sec. 152). Find the components of the velocity of a 
moving particle in the directions of the orthogonal unit vec-
tors e e, eQ, e9. 
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3379. χ = t — sin t, y = 1 — cos t, ζ = 4 sin ^ at the point 

3380. y
2
 + z

2
 = 25, x

2
 + y

2
 = 10 at the point (1, 3, 4). 

3381. 2x
2
 + Zy

2
 + z

2
 = 47, x

2
 + 2y

2
 = ζ at the point 

( - 2 , 1, 6). 

3382. x
2
 + y

2
 = ζ

2
, χ = y at the point (x0, y0, z0). 

3383. x
3
 - f ζ

3
 = a

3
, y

3
 + ζ

3
 = δ

3
 at an arbitrary point. 

3384. Find the point of the curve r {cos t, sin t, e'} at 
which the tangent is parallel to the plane 

"βχ + y — é = 0. 

Form the equations of the osculating plane, the principal 
normal and the binormal to the curves of problems 3385-
3387 at the points indicated: 

3385. y
2
 = χ, χ

2
 = ζ at the point (1, 1, 1). 

3386. x
2
 = 2az, y

2
 = 2bz at an arbitrary point. 

3387. r \e
f
, e-', t γ2\ at the point (e, e - \ Y2). 

3378. χ = at, y = at the point (6α, 18a, 

the curve forms the same angle with Oz (see Course, sec. 
164). 

Prove that the tangent at every point of 

3377. χ = a cos φ, y = a sin φ, ζ at the point 

arbitrary point. 

Form the equations of the tangent line and normal plane 
to the curves of problems 3376-3383 at the points indi-
cated : 

Curves in Space 

at an i.e. χ -
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3388. Prove that the tangents, principal normals and 
binormals of the curve r{e ' cos t, e

f
 sin t, e'} form constant 

angles with Oz. 

Form the equations of the tangent Une, normal plane, 
binormal, osculating plane, principal normal and rectifying 
plane to the curves of problems 3389-3392 at the points 
indicated : 

3389. χ = t
2
, y = 1 - t, ζ = t

z
 at the point (1, 0, 1). 

3390. X
2
 + y

2
 + z

2
 = 3, x

2
 + y

2
 = 2 at the point (1, 1, 1). 

3391. r{sin£, cos t, tan i) at the point 1^-, —, l l . 

3392. r{t* — t
2
 — 5, 2>t

2
 + 1, 2t* — 16} at the point corre-

sponding to the value of the parameter t = 2. 

3393. Prove that the curve 

r {2t + 3, 3ί — 1, t
2
} 

has the same osculating plane at every point. Interpret this 
fact geometricaUy. 

3394. Prove that the curve 

r { a ^
2
 + bxt + cv a2t

2
 + b2t + c2, aj,

2
 + 63i + c 3} 

is plane, and form the equation of the plane in which it is 
situated. 

3395. Find the radius of torsion of the curve r{cos t, sin t, 
cosh t}. 

3396. Find the radius of curvature of the curve r{ln cos t, 

ln sin t, Y2 t}. Prove that the torsion at any point of it is 

equal to the curvature at that point. 

3397. Prove that the ratio of curvature to torsion remains 
constant at every point of the curve r{e* cos t, e' sin t, e'} 
(see problem 3388). 

3398. How can we express the curvature of a spatial curve 
given by the equations y = φ(χ), ζ = ψ(χ) ? 

3399. Express the vectors rv vv ß± in terms of the deriv-
atives of the radius vector of a point on the curve r = r(t). 
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to the point 
(α απ αΛ Λ 

Surfaces 

Find the equations of the tangent planes and normals to 
the surfaces of problems 3410-3419 at the points indicated: 

3410. ζ = 2x
2
 — 4y

2
 at the point (2, 1, 4). 

3411. ζ = xy at the point (1, 1, 1). 

3400. Express each of the vectors r v vv ß1 in terms of the 
other two. 

3401. Find the vector a)(s) (Darboux vector) satisfying the 
conditions 

dr. dv, dßr 

_ ι = ωχ τ ι ; ^ = ω Χ ν ι ;^ = ω Χ / 3 ι. 

Length of Arc of a Spatial Curve 

Find the length of arc of the curves of problems 3402-3409 : 

3402. r{2t, ln t, t
2
}, from t = 1 to t = 10. 

3403. r{a cos t, a sin t} a ln cos t) from the point (a, 0, 0) 

. . , (αγ2 af2 α ) 
to the point I - ~ , ~ - , — - ln 2 I 

3404. r{e* cos t, e
f
 sin t, e'} from the point (1, 0, 1) to the 

point corresponding to the parameter t. 

3405. x
2
 = 3y, 2xy = 9z from the point (0, 0, 0) to the 

point (3, 3, 2). 

3406. z2 = 2ax} 9y2 = I6xz from the point (0, 0, 0) to the 

point ^2a, 2aj . 

3407. 4ax = (y -[- z)
2
, \x

2
 + 3y

2
 = 3z

2
 from the origin to 

the point (x, y, z). 
2a 

3408. y = ~γ2αχ — χ
2
, ζ = a ln from the origin 

Δα — χ 
to the point (x, y, z). 

χ 1 a I · χ 
3409. y = a arc sin - , ζ = - a ln from the origin 

α ο. a — χ 
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3412. ζ =
 X

 ~ ^
a Xy y

 at the point (a, a, —a). 

3413. ζ = Yx
2
 + y

2
 — xy at the point (3, 4, - 7 ) . 

3414. ζ = arc tan ^ at the point ^1, . 
χ 

9-2 

3425. Write the equations of the tangent plane and nor-

mal to the sphere r}u cos ν, usmv at the point 

intersect in a single point. 

3423. Prove that the surfaces χ 2y — In 2 + 4 = 0 a nd 
x

2
 — xy — 8x + ζ + 5 = 0 touch each other (i.e. have a 

common tangent plane) at the point (2, —3, 1). 

3424. Prove that all the planes tangential to the surface 

positive coordinate semi-axes. 

1 such that it cuts off equal segments on the 

3422. Draw the tangent plane to the ellipsoid 

3421. Draw the tangent plane to the ellipsoid 
+ z

2
 = 1 parallel to the plane 

any point M0(x0, y0, z0) of the ellipsoid 

the form 

1 has 

3420. Prove that the equation of the tangent plane at 

5 at the point (1 , 1, 2). 

f ζ at the point (2, 3, 6). 

at the point 

at the point < 

at the point 
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3426. Write the equations of the tangent plane and nor-
mal to the hyperbolic paraboloid r{a(u + v), b(u — v), uv) 
at the arbitrary point r0{x0, y0, z 0} . 

3427. Prove that the surfaces x
2
 + y

l
 -\- z

2
 = ax and 

x2 _|_ y2 _j_ z2 — fry a re orthogonal ί,ο each other. 

3428. Prove that the tangent plane to the surface xyz = a
3 

at any point of it forms a tetrahedron of constant volume 
with the coordinate planes. Find this volume. 

3429. Prove that the tangent planes to the surface fx + 

+ VU + Y
z
 — V® cut off segments on the coordinate axes 

such that the sum of the segments is equal to a. 

3430. Write the equation of the tangent plane to the sur-
face ζ = xy which is perpendicular to the straight line 

χ + 2 _y + 2 _z — 1 
2 ~ 1 ~~ - 1 ' 

3431. Prove that, for the surface x
2
 + y

2
 + z

2
 = y> the 

length of the segment of normal between the surface and the 
xOy plane is equal to the distance from the origin to the trace 
of the normal on this plane. 

3432. Prove that the normal to the surface of the ellipsoid 
of revolution 

x
2
 + z

2
 y

2

 = 

9 25 

at any point of it P(x, y, z) forms equal angles with the straight 
lines OA and OB, if 4(0, —4, 0) and B(0, 4, 0). 

3433. Prove that all the normals to the surface of revo-
lution 

ζ = / ( l^TP) 
cut the axis of revolution. 

3434. Draw the tangent plane to the surface x
2
 — y

2
 — 

_ 3z = 0 that passes through the point A(0, 0, —1) and is 
X 11 ζ 

parallel to the straight line - = γ = - . 
Δ 1 Δ 
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3435. Find the points on the surface x
2
 + y

2
 +

 z2
 — + 

+ 4z = 12 at which the tangent planes are parallel to the 
coordinate planes. 

3436. Find the tangent plane to the surface 

χ = u + v, y = u
2
 -f- ν

2
, ζ = + ^

3 

at an arbitrary point: 
(a) by taking the equation of the surface in the parametric 

form; 
(b) by writing the equation of the surface in the form 

* = f(x, y). 

3437. Find the locus of the feet of the perpendiculars drop-
ped from the origin on to the tangent planes to the para-
boloid of revolution 2pz = x

2
 + y

2
-

3438. Find the locus of the feet of the perpendiculars 
dropped from the origin on to the tangent planes to the 
surface xyz = a

3
. 

4. Scalar Field. Gradient. Directional Derivative 

Gradient 

3439. (1) ip(z, y) = x
2
 — 2xy + 3y — 1. Find the compo-

nents of the gradient at the point (1, 2). 
(2) u = 5x

2
y — ?>xy* + i/

4
. Find the components of the 

gradient at an arbitrary point. 

3440. (1) z = x
2
 + y

2
. Find gradz at the point (3 ,2) . 

(2) ζ = Yé + χ
2
 + y

2
. Find gradz at the point (2, 1). 

(3) ζ = arc tan - . Find grad ζ at the point (x0, yQ). 
χ 

3441. (1) Find the maximum steepness of ascent of the 
surface ζ = ln (x

2
 + 4=y

2
) at the point (6, 4, ln 100). 

(2) Find the maximum steepness of ascent of the surface 
ζ = xy at the point (2, 2, 4). 

3442. What is the direction of maximum variation of the 
function φ(χ, y,z) = x sin ζ — y cos ζ at the origin ? 
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3443. (1) ζ = arc sin —-—. Find the angle between the 
x+y 

gradients of this function at the points (1,1) and (3, 4). 

3445. Jfrove the following relationships (99 and ψ are 
differentiable functions, c is a constant): 

grad (99 + ψ) = grad 9? + grad ψ; grad (c + 99) = grad 99; 

grad (οφ) = c grad 99 ; grad (99^) = 99 grad φ + 

+ ψ grad 99; 

grad (<p
n
) = ηφ*

1
"

1
 grad 99; grad [φ(ψ)] = φ'(ψ) grad ψ 

3446. ζ = cp(u, ν), u = ψ(χ, y), ν = ζ)(χ, y). Prove that 

grad z = ^ grad u + 1 | grad v. 

3447. (1) ι/, 2 ) = x
z
y

2
z. Find the components of grad u 

at the point (x0, y0, z0). 

(2) u(x, y t z) = Υ χ
2
 + 2/

2
 + z

2
. Find grad 

3448. Show that the function u = ln (a:
2
 + « /

2
 + z

2
) satis-

fies the relationship u — 2 ln 2 — ln (grad w)
2
. 

3449. Prove that, if y, z are functions of t, then 

i / ( W ) = g r a d / . g , 

where 
r = xi + 2/j - f zfe. 

of the function z = is equal to 2. 

(2) Find the points at which the modulus of the gradient 

function z = In is equal to 

3444. (1) Find the point at which the gradient of the 

(2) Given the functions z = 

find the angle between the gradients of these func-
tions at the point (3, 4) . 
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3451. (1) Find the derivative of the function ζ = x
z
 — 

— 3x
2
y + 3xy

2
 + 1 at the point M(3, 1) in the direction from 

this point to the point (6, 5). 

(2) Find the derivative of the function ζ = arc tan xy 
at the point (1,1) with respect to the direction of the bisector 
of the first quadrant. 

(3) Find the derivative of the function ζ = x
2
y

2
 — xy* — 

— 3y — 1 at the point (2, 1) in the direction from this point 
to the origin. 

(4) Find the derivative of the function ζ = In (e
x
 + e^) at 

the origin in the direction a. 

3452. Find the derivative of the function ζ = In (x + y) 
at the point (1, 2) of the parabola y

2
 = 4x with respect to 

the direction of this parabola. 

3453. Find the derivative of ζ = arc tan at the point 

of the circle x
2 

• 0 with respect to the 

direction of this circle. 

3454. Show that the derivative of at any point 

of the ellipse 2a;
2 

the ellipse is zero. 
1 with respect to the normal to 

3455. (1) Find the derivative of u = xy
2
 + z

3
 — xyz at 

the point M (I, 1, 2) in the direction forming angles of 60°, 45°, 
60° respectively with the coordinate axes. 

(2) Find the derivative of w = xyz at the point ^4(5, 1, 2) 
in the direction from this point to the point Β(9, 4, 14). 

Directional Derivatives 

where a and b are constant vectors. 

3450. Use the relationship proved in the previous problem 
for finding the gradient of the function : 
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ö4öö. rrove tnat tne derivative 01 u = f(x, y, z) in tne 
direction of its gradient is equal to the modulus of the gradient 
(see Course, sec. 161). 

3459. Find the derivative of the function 

u = ^ , where r
2
 = x

2
 - f y

2
 + z

2
, 

in the direction of its gradient. 

any point M(x, y, z) in the direction from this point to the 

origin is equal tc where r = 

3457. Show that the derivative of 

3456. Find the derivative of u = x
2
y

2
z

2
 at the point 

-4(1, —1, 3) in the direction from this point to the point 
B(0, 1, 1). 



C H A P T E R X I I 

M U L T I P L E I N T E G R A L S AND 
I T E R A T E D I N T E G R A T I O N 

1. Double and Triple Integrals 

3460. A thin lamina (its thickness is neglected) lies in 
the xOy plane, occupying a domain D. The density of the 
lamina is a function of a point: γ = γ(Ρ) = γ (x, y). Find the 
mass of the lamina. 

3461. An electric charge with a surface density of a = 
= σ(Ρ) = a(x, y) is distributed over the lamina of problem 
360. Form the expression for the total charge on the lamina. 

3462. The lamina of problem 3460 revolves about the Ox 
axis with angular velocity co. Form the expression for the 
kinetic energy of the lamina. 

3463. The specific heat of the lamina of problem 3460 
varies according to the law c = c(P) = c(x, y). Find the amount 
of heat absorbed by the lamina when it is heated from a 
temperature t± to a temperature t2. 

3464. A body occupies a spatial domain Ω; its density is 
a function of a point: γ = γ(Ρ) = γ (x, y, ζ). Find the mass 
of the body. 

3465. Electric charge is distributed non-uniformly in the 
body of problem 3464; the charge density is a function of a 
point: δ = δ(χ, y, ζ). Find the total charge of the body. 

Estimate the integrals of problems 3466-3476: 

3466. \(x + y + 10) der, where D is the circular domain 

3467. J J (x
2
 + 4y

2
 + 9) da, where D is the circular do-

D 

main x
2
 + y

2
 ^ 4. 

D 
x

2
 + y

2
 ^ 4. 

301 
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3468. J j (x + y + 1) da, where D is the rectangle 0 ^ 
D 

^ x ^ l , 0 ^ ?/ =
 2

· 

3469. J J (x + xy — x
2
 — 2/

2
) do*, where D is the rectangle 

D 

0 ^1, O^y ^2. 

3470. |J #2/(a; + y) der, where Ζ) is the square 0 ^ a; ^ 2, 

0 ^ 2 / ^ 2 . 

3471. J { (a + l )
y
 da, where 2) is the square 0 ^ χ ^ 2, 

0 ^ 2 / ^ 2 . 

3472. j j (a;
2
 + 2/

2
 - 2 + 2) da, where Z> is the 

D 

square 0 ^ χ ^ 2, 0 ^y ^ 2. 

3473. J J (χ
2
 + y

2
 — 4a; — ±y + 10) da, where Z) is the 

D 

domain bounded by the ellipse x
2
 + ày

2
 — 2x — 16y + 

-f- 13 = 0 (including the boundary). 

3474. J J J (a;2 -j- y2 + z 2) dv, where Ω is the sphere a;2 + 

+ y
2
 + z

2
%R

2
. 

3475. J j J (a; + 2/ + z) dv, where Ω is the cube χ ^ 1, 
b 

2/ ^ 1, 2 ^ 1, a; ^ 3, y ^ 3, ζ ^ 3. 

3476. J [J (x + y — ζ + 10) dv, where Ω is the sphere 
Ω 

x
2
 ~\~ y

2
 ~\~ ζ

2
 ~ 3. 

2. Iterated Integration 

The Double Integral. Rectangular Domain 

Evaluate the double integrals of problems 3477-3484, over 
the rectangular domains specified by the inequalities in 
brackets : 

3477. J J xy dx dy (0 ^ χ ^ 1, 0 ^ y ^ 2) ; 
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3478. JjV+y dxdy (0 ^ χ ^ 1, 0 ^ y ^ 1). 
D 

3479. J J r ^ d x d y ( O S a î S l , O ^ y ^ l ) . 

D 

3481. Γ Γ
 y d x dy

 3 ( O S . S I J S M D . 
JJ (1 + X

2
 + y

2
)2 

3482. J j" χ sin (x + y) dx dy |θ ^ χ ^ π, 0 ^ y ^ | j . 

3483. JJx
2
ye

x
y dx dy (Ο ^ χ ^ 1, 0 ^ y ^ 2). 

3484. JJx
2
y cos (xy

2
) dxdy 0̂ ̂  χ ^ | , 0 ^ y ^ 2 j . 

The Double Integral. Arbitrary Domain 

Find the limits of the iterated integral J J /(x, y) dx dy 
D 

for the given (finite) domains of integration D. 

3485. The parallelogram with sides 

x = 3, χ = 5, 3x — 2y + 4 = 0, 3x — 2y + 1 = 0. 

3486. The triangle with sides χ = 0, y = 0, χ + y = 2. 

3487. χ
2
 + y

2
 ^ 1, χ ^ 0, y ^ 0. 

3488. x + y ^ l , x — y ^ l , x ^ 0 . 

3489. y ^ x
2
, y ^ 4 - x

2
. 

3490. ^ + 3491. ( x - 2 )
2
 + ( y - 3 )

2
^ 4 . 

4 9 

3492. D is bounded by the parabolas y = χ
2
 and y = Yx. 

3493. The triangle with sides 

y = x, y = 2x and χ + y = 6. 
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3494. The parallelogram with sides 

y = x, y = x + 3, y = — 2 + 1, y = —2x + 5. 

3495. y — 2x ^ 0, 2y — χ ^ 0, xy ^ 2. 

3496. ?/
2
 ^ 8&, 2/ = 2x, y + 4x — 24 ^ 0. 

3497. D is bounded by the hyperbola y
2
 — x

2
 = 1 and 

the circle #
2
 + Î /

2
 = 9 (the domain we have in mind contains 

the origin). 

Change the order of integration in the integrals of problems 
3498-3503: 

3504. By changing the order of integration, write each 
expression as one iterated integral: 

is the domain indicated in Fig. 62, 63, 64 and 65, as a sum of 
iterated integrals (with the least number of terms). The 
shapes shown in Fig. 64 and 65 are composed of straight 
lines and arcs of circles. 

3505. Write the double integral f(x, y) ax ay, where D 

3499. 

3501. 

3503. 

3498. 

3500. 

3502. 
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B(5,4) 

305 

F I G . 63. 

F I G . 64. 

Evaluate the integrals of problems 3506-3512: 
a Y~x 4 2x 2 lny 

3506. (1) J d a j d y ; (2) J d a ; J | d y ; (3) Jdy JV dx. 

0 0 2 χ 1 0 

3507. j ^ x
2
y

2
 dx dy, where D is the circle x

2
 + y

2
 ^R

2
. 

D 

3508. J J (x
2
 + y) da dy, D is the domain bounded by 

D 

the parabolas y = x
2
 and y

2
 = 

3509. ^j~2 ^x dy> D * s ̂ e domain bounded by the straight 

D 
lines χ = 2, y = χ and the hyperbola xy = 1. 

3510. J J cos (a + 2/) da; dy, .D is the domain bounded by 
D 

the straight lines χ = 0, y = π and y = χ. 

3511. JJYl — a
2
 — y

2
 da; dy, D is the portion of the 

D 

circle χ
2
 + y

2
 ^ 1 lying in the first quadrant. 
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3512. J jx
2
y

2
 γΐ — a;

3
 — y

z
 àx dy, D is the domain bound-

D 
ed by the curve a;

3
 + y* = 1 and the coordinate axes. 

3513. Find the mean value of the function ζ = 12 — 2x — 
— 3y in the domain bounded by the straight lines 12 — 2x — 
- 3y = 0, x = 0, y = 0. 

3514. Find the mean value of the function ζ = 2x + y 
in the triangle bounded by the axes and the straight line 
x + y =3. 

3515. Find the mean value of the function ζ = x - f 6y in 
the triangle bounded by the straight lines y = x, y = 5x 
and χ = 1. 

3516. Find the mean value of the function 

in the circular domain 

Triple Integrals 

Evaluate the thrice iterated integrals of problems 3517-

3518. 

3520. 

3517. 

3519. 

3521. 

3522. 

by the planes χ = 0, y = 0, ζ = 0, χ + y + ζ = 1. 

\xy àx d « dz, Ω is the domain bounded by the 

hyperbolic paraboloid ζ = xy and the planes χ + y = 1 and 
2 = 0 (ζ ^ 0). 
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3524. y cos (ζ -\- x) dx dy dz, Ω is the domain bounded 
Ω 

by the cylinder y = Υ χ and the planes y = 0, ζ = 0 and 

3. Integrals in Polar, Cylindrical and Spherical Coordinates 

Double Integrals 

In problems 3525-3531, transform the double integral 

f(x, y) dx dy to polar coordinates ρ and φ(χ = ρ cos φ, 

y = ρ sin φ), and fix the limits of integration. 

3525. D is a circular domain: (1) a
2
 + y

2
 ^ R

2
\ (2) x

2
 + 

+ y
2
 ^ ax; (3) x

2
 + y

2
 ^ 6y. 

3526. D is the domain bounded by the circles x
2
 + y

2
 = 

= 4a, a
2
 + y

2
 = 8a and the straight lines y = a and y = 2a. 

3527. D is the domain consisting of the common part of 
the two circular regions a

2
 + y

2
 ^ aa and a

2
 + y

2
 ^= 6y. 

3528. D is the domain bounded by the straight lines 

3529. D is the segment cut from the circle a
2
 + y

2
 = 4 by 

the straight line a + 3/ = 2. 

3530. D is the interior of the right-hand loop of the Ber-

noulli lemniscate (a
2
 + V

2
)

2
 = #

2
 ( #

2
 — 2 /

2
) · 

3531. J) is the domain given by the inequalities a ^ 0, 

y ^ 0, (a
2
 + y

2
)

3
 ^ 4a

2
a

2
y

2
. 

Transform the double integrals of problems 3532-3535 to 
polar coordinates: 

R f i ?
2
- x

2
 2R V'2Ry-y* 

3532. da /(a, y) dy. 3533. dy /(a, y) da. 

D 

y = a, y = 0 and a = 1. 

ο ο 

3534. da 
ο ο 
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3535. J àxjf^jdy+ j dx j f^j dy. 

μ+R
2 

Evaluate the double integrals of problems 3536-3540 by 
transforming to polar coordinates: 

R y/?
2
-x* 

3536. j dx J ln (1 + x
2
 + y

2
) dy. 

ο ο 

ÇÇ λ[ΐ — χ
2
 — y

2 

3537. / — — 0 , 0 dx dy, where the domain D is 
JJ (/ 1 + x

2
 + y

2 

3541. By starting from geometrical considerations, show 
that, if Cartesian coordinates are transformed in accordance 
with the formulae χ = α ρ cos φ, y = δ ρ sin φ (a and 6 are 
constants), the elementary area becomes 

der = abq dg αφ. 

By using the result of this last problem and choosing a 
and b in the best way, transform the double integrals of 
problems 3542-3544: 

given by the inequalities x
2
 + y

2
 ^ 1, χ ^ 0, y ^ 0. 

where D is the circular 

? dy, where D is the circular 

c dy, where D is part of an annular 

region given by 

domain c 

3539. 

domain 

3538. 

3540. 
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3542. j J f(x, y) dx dy, where domain D is bounded by the 

eUipse _ + | - = 1. 

3543. J J f(x, y) dx dy, where domain D is bounded by the 

( « V
2
\

2 

curve | #
2
 + y = #

2
y 

3544. 4 — ^2 — ρ j d^ dy, where domain D is part 
D 

χ
2
 ν

2 

of the eUiptic ring bounded by the ellipses — -f ^ = 

4Ö
2
 ^~ 4P

 =
 *

 a n (
^ ^ ^

e
 ^

r s
^

 (
l

u a
d

r a n
^ « 

3545. Evaluate ^jxydxdy, where D is the domain 
D 

bounded by the ellipse — ^ = 1 and lying in the first 
Cb 0 

quadrant. 

3546. Evaluate ^fxy dx dy, where D is the domain 
D 

~2 + 3~j —
 a n

d lyhig in the 

first quadrant. 

Triple Integrals 

In problems 3547-3551, pass to cylindrical coordinates 
ρ, φ, ζ (χ = ρ cos φ, y = ρ sin φ, ζ = ζ) or spherical coordi-
nates ρ, φ, Θ (Χ = ρ cos φ sin θ, y = ρ sin φ sin θ, ζ = ρ cos θ) 

in the triple integral y, z)da;dydz, and fix the limits 
Ω 

of integration. 

3547. Ω is the domain lying in the first octant and bounded 
by the cylinder x

2
 + y

2
 = R

2
 and the planes ζ = 0, ζ = 1, 

y = x and y = χ /ST. 
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3548· Ω is the domain bounded by the cylinder x
2
 + y

2
 = 

= 2x, the plane ζ = 0 and the paraboloid ζ = χ
2
 + y

2
. 

3549. Ω is the part of the sphere x
2
 + y

2
 + z

2
 ^ R

2
 lying 

in the first octant. 

3550· Ω is the part of the sphere x
2
 -f- y

2
 + z

2
 = ^2

2
 lying 

inside the cylinder (a
2
 + y

2
)

2
 = i?

2
(a

2
 — y

2
) (χ ^ 0). 

3551. ß is the common part of the two spheres 

x
2
 + y

2
 + z

2
 ^ R

2
 and a

2
 + y

2
 + (z - JB)

2
 ^ JS

2
. 

Evaluate the integrals of problems 3552-3556 by passing 

to cylindrical or spherical coordinates: 

ι y r ^ a 

3552. Jda j d y j d z . 
ο _ y t — 2 ο 

2 Κ 2 χ Γχ 2 α 

3553. j da j dy$zYx
2
 + y

2
 dz. 

0 0 0 

+ /? V/?
2
-X

2
 y / ?

2
- X

2
- y

2 

3554. j d a J dy f (a2 + y 2) dz. 

ι yr=x"
2

 y i - x
2

- ^
2 

3555. J da j dy J* f a
2
 + y

2
 + z

2
 dz. 

0 0 0 

3556. J J j (a2 + y 2) da dy dz, where the domain Ω is 

u 
given by the inequalities ζ ^ 0, r2

 ^ a2 + 2/2 + 2 :2
 = ^

2
· 

3557. Γ Γ Γ 9 ,
 d

^
d

^ ^
g

— where the domain Ω is the 
JJ J *

2
 + 2/

2
 + (« -

 2
)

2 

sphere a
2
 + y

2
 + z

2
 ^ 1. 

3558. Γ Γ Γ dadydz— where the domain Ω is 
J J J *

2
 + 2 /

2
+ ( z - 2 )

2 

Ω 

the cylinder a
2
 + 2/

2
 = ^ —1 = ζ ^ 1. 
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4. Applications of Double and Triple Integrals 

The Volume of a Solid. I 

In problems 3559-3596, find by double integration the 
volumes of the solids bounded by the surfaces indicated (the 
parameters that appear in the conditions of the problems are 
assumed positive): 

3559. By the coordinate planes, the planes χ = 4 and 
y = 4 and the paraboloid of revolution ζ = χ

2
 + y

2
 + 1. 

3560. By the coordinate planes, the planes χ = a, y = b 

and the elliptic paraboloid ζ = — + |^ . 

X 11 ζ 
3561. By the plane - + — + - = 1, and the coordinate 

a b c 

planes (pyramid). 

3562. By the planes y = 0, ζ = 0, 3a; + y = 6, 3a; - f 2y = 
= 12 and χ + y + ζ = 6. 

3563. By the paraboloid of revolution ζ = χ
2
 + y

2
, the 

coordinate planes and the plane x -f- y = 1. 

3564. By the paraboloid of revolution ζ = x
2
 + y

2
 and 

the planes ζ = 0, y = 1, y = 2x and y = 6 — χ. 

3565. By the cylinder y = y^x, y = 2 ŷ Ê and the planes 
ζ = 0 and a; + ζ = 0. 

3566. By the coordinate planes, the plane 2x + Zy — 

— 12 = 0 and the cylinder ζ = \y
2
. 

3567. By the cylinder ζ = 9 — y
2
, the coordinate planes 

and the plane 3x + 4y = 12 (y ^ 0). 

3568. By the cylinder ζ = 4 — χ
2
, the coordinate planes 

and the plane 2a; + y = 4 (χ ^ 0). 

3569. By the cylinder 2y
2
 = a;, the planes | + | + | = 1 

and z = 0. 
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3572. By the cylinders x
2
 + y

2
 = E

2
 and x

2
 + z

2
 = E

2
. 

x
2 

3573. By the cylinders ζ = 4 — y
2
, y = — and the plane 

Δ 

ζ = 0. 

3574. By the cylinders x
2
 + y

2
 = B

2
, ζ = ^ and the 

plane ζ = 0 (χ ^ 0). 

3575. By the hyperbolic paraboloid ζ = x
2
 — y

2
 and the 

planes ζ = 0, χ = 3. 

3576. By the hyperbolic paraboloid ζ = the cylinder 

y = Υχ and the planes χ + y = 2, y = 0 and ζ = 0. 

3577. By the paraboloid ζ = x
2
 + y

2
, the cylinder y = x

2 

and the planes y = 1 and ζ = 0. 
a;

2
 z

2 

3578. By the elliptic cylinder — -f- — = 1 and the planes 
d c 

y — ^-x, y = 0 and ζ ~ 0 (χ ^ 0). 

Q% φ2 4ί/
2 

3579. By the paraboloid ζ = — and the 

plane ζ = 0. 

3580. By the cylinders y = e
x
, y = e

_ x
, ζ = e

2
 — y

2
 and 

the plane ζ = 0. 

3581. By the cylinders y = In χ and y = In
2
 χ and the 

planes ζ = 0 and y + ζ = 1. 

3582*. By the cylinders ζ = In χ and ζ = In y and the 
planes ζ = 0 and χ + y = 2e (χ ^ 1). 

3583. By the cylinders y = χ + sin ι/ = χ — sin a; and 

ζ = - — ^
 y /

 (the parabolic cylinder whose generators are 

ζ = 12 — Zx — 4y and ζ = 1. 

3571. By the elliptic cylinder = 1, the planes 

3570. By the circular cylinder of radius r whose axis is 
the axis of ordinates, the coordinate planes and the plane 
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F I G . 66 . 

3585. By the conical surface 4y
2
 = x(2 — z) (the para-

bolic cone, Fig. 67) and the planes ζ = 0 and χ + ζ = 2. 

F I G . 67. 

3586. By the surface ζ = cos χ cos y and the planes χ = 0, 

y = 0, ζ = 0 and χ + y = -

parallel to the straight line χ — y — 0, ζ = 0) and the plane 

ζ = 0 (0 ^ χ ^ π, y ^ 0). 

3584. By the conical surface z
2
 = xy (Fig. 66), the cylinder 

fx + Yy = l and the plane ζ = 0. 

ζ 



314 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

#2 _j_ y2 _ αΛ; an(j ^he piane ̂  = ο (χ ̂  Ο, y ̂  0). 
3593. By the cylinders x

2

 y
2

 = χ and #
2

 + y
2

 = 2#, the 
paraboloid ζ = x

2
 -\- y

2
 and the planes a; + y = Ο, χ — y = 0 

and 2: = 0. 

3594. By the cylinders x
2

 + 2/
2

 = 2#, a;
2

 + 2/
2

 = %y and 
the planes ζ = χ -\- 2y and 2 = 0. 

3595. B y the conical surface z

2 =
 xy and the cylinder 

(a;

2

 +

 y

2

)

2

 =

 2xy (χ

 ^

 0,

 y
 ^

 0

, ζ
 ^

 0)

. 

3596. By the helicoid ζ = h arc tan - , the cylinder 
χ 

#2 ^2 _ jj2
 a n

d 
n̂e
 pl

anes χ = 0 and ζ = 0 (χ ̂  0, ι/ ̂  0). 
Area of a Plane Figure 

Find by double integration the areas of problems 3597-
3608: 

3597. The domain bounded by the straight lines 

χ = 0, y = 0, χ + y = 1. 

3598. The domain bounded by the straight lines y = χ, 
y = 5χ, χ = 1. 

/̂ ·2 #̂2 

3599. The domain bounded by the ellipse + ~ = 1. 

3592. By the hyperbolic paraboloid ζ = the cylinder 

3591. By the sphere x
l
 + y

2
 + ζ

2
 = a

2
 and the cylinder 

a;
2
 + t/

2
 = ax. (Viviani's problem. See Course, sec. 174). 

and the plane ζ = 0. 

3590. By the cylinder x
2
 -\- y

2
 = 2ax, the paraboloid 

3587. By the cylinder x
2
 + y

2
 = 4, the planes ζ = 0 and 

Z = £ + 2/ + 

3588. By the cylinder χ
2
 + ?/

2
 = 2#, the planes 2# — ζ = 0 

and 4# — ζ = 0. 

3589. By the cylinder ζ
2
 + y

2
 = R

2
, the paraboloid 

Rz = 2Ä
2
 + a;

2
 + */

2
 and the plane ζ = 0. 
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3600. The domain lying between the parabola y
2
 = — χ 

b
 a 

and the straight line y = - χ. 

3601. The domain bounded by the parabolas y = Yx, 

y = 2 Yx and the straight line χ = 4. 

3602*. The domain bounded by the curve (x
2
 + y

2
)

2
 = 

= 2ax*. 

3603. The domain bounded by the curve (x
2
 + y

2
)

z
 = 

= x* + yK 

3604. The domain bounded by the curve (x
2
 + y

2
)

2
 = 

= 2a
2
(x

2
 — y

2
) (Bernoulli's lemniscate). 

3605. The domain bounded by the curve x
z
 + y

z
 = 2xy, 

lying in the first quadrant (loop). 

3606. The domain bounded by the curve (x + y)
z
 = xy, 

lying in the first quadrant (loop). 

3607. The domain bounded by the curve (x -f- y)
5
 = x

2
y

2
, 

lying in the first quadrant (loop). 

3608*. The domain bounded by the curve : 

Volume of a Solid. II 

Evaluate by triple integration the volumes of the solids 
bounded by the surfaces given in problems 3509-3625 (the 
parameters appearing in the conditions of the problems are 
assumed positive): 

3609. By the cylinders ζ = 4 — y
2
 and ζ = y

2
 + 2 and 

the planes χ = — 1 and χ = 2. 

3610. By the paraboloid ζ = χ
2
 + y

2
 and ζ = χ

2
 + 2y

2
 and 

the planes y = x, y = 2x and χ = 1. 

3611. By the paraboloids ζ = χ
2
 + y

2
 and ζ = 2x

2
 + 2y

2
, 

the cylinder y = χ
2
 and the plane y = x. 

3612. By the cylinders ζ = ln (x + 2) and ζ = ln (6 — x) 
and the planes χ = 0, χ -\- y = 2 and χ — y = 2. 
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3623. (x
2
 + y

2
 + z

2
)

3
 = a

2
(x

2
 + y

2
)

2
. 

3624. (x
2
 + y

2
)

2
 + ζ

4
 = a

3
z. 

3625. a;
2
 + ι/

2
 + z

2
 = 1, a;

2
 + y

2
 + z

2
 = 16, z

2
 = a:

2
 + j /

2
, 

a; = 0, y = 0, ζ = 0 (χ ^ 0, y ^ 0, ζ ^ 0). 

Surface Areas 

3626. Find the area of the part of the plane ßx + Sy + 
+ 2z = 12 lying in the first octant. 

3627. Find the area of the part of the surface z
2
 = 2a;y, 

which is situated above the rectangle lying in the plane 
ζ = 0 and bounded by the straight lines χ = 0, y = 0, χ = 3, 

3628. Find the area of the part of the cone z
2
 = a;

2
 + y

2
, 

lying above the xOy plane and cut out by the plane ζ = 

3622. (χ
2
 + y

2
 + ζ

2
)

3
 = 

x
2
 + y

2
' 

3613*. By the paraboloid (χ — l )
2
 + y

2
 = ζ and the plane 

2x + ζ = 2. 

3614*. By the paraboloid ζ = χ
2
 + y

2
 and the plane 

ζ = χ + y. 

3615*. By the sphere x
2
 + y

2
 + z

2
 = 4 and the paraboloid 

x
2
 + y

2
 = 3z. 

3616. By the sphere x
2
 + y

2
 + z

2
 = R

2
 and the para-

boloid x
2
 + y

2
 = R(R — 2z) (ζ ^ 0). 

3617. By the paraboloid ζ = χ
2
 + y

2
 and the cone z

2
 = xy. 

3618. By the sphere x
2
 + y

2
 + z

2
 = 4JSz — 3R

2
 and the 

cone z
2
 = 4(#

2
 + y

2
) (we have in mind the part of the sphere 

lying inside the cone). 

3619*. (x
2
 + y

2
 + z

2
)

2
 = a*x. 

3620. (x
2
 + y

2
 + z

2
)

2
 = axyz. 

3621. (x
2
 + y

2
 + ζ

2
)

3
 = a

2
z

4
. 
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Find the areas of the indicated parts of the surfaces of 
problems 3629-3639. 

3629. z
2
 = x

2
 + y

2
, cut out by the cylinder z

2
 = 2py. 

3630*. y
2
 -f z

2
 = x

2
, lying inside the cylinder x

2
 + y

2
 = 

= R
2
. 

3631. y
2
 + z

2
 = x

2
, cut out by the cylinder x

2
 — y

2
 == a

2 

and the planes y = b and y = —b. 

3632. z
2
 = 4x, cut out by the cylinder y

2
 = 4x and the 

plane χ = 1. 

3633. ζ = xy, cut out by the cylinder x
2
 -{ - y

2
 = i î

2
. 

3634. 2z = x
2
 + y

2
, cut out by the cylinder #

2
 + y

2
 = 1. 

3635. x
2
 + y

2
 + z

2
 = a

2
, cut out by the cylinder x

2
 + 

+ y
2
 = R

2
 (R ^ a). 

3636. x
2
 + y

2
 + z

2
 = j?

2
, cut out by the cylinder x

2
 + 

+ y
2
 = Rx. 

3637. x
2
 + y

2
 + z

2
 = R

2
, cut out by the surface 

(z
2
 + y

2
)

2
 = R

2
(x

2
 - y

2
) . 

3638. ζ = ^ 2 _^ ^ 2 , cut out by the surfaces x
2
 + y

2
 = 1, 

χ2 _|_ y2 _ 4 a n (j lying in the first octant. 

3639. (x cos α + y sin α )
2
 + ζ

2
 = α

2
, lying in the first 

3640*. Find the area of the part of the earth's surface 
(assuming it to be spherical, with a radius R 6400 km), 
lying between the meridians φ = 30°, φ = 60° and the paral-
lels Θ = 45° and θ = 60°. 

3641. Find the total surface area of the body bounded by 
the sphere x

2
 + y

2
 -f ζ

2
 = 3a

2
 and the paraboloid x

2
 + y

2
 = 

= 2az (ζ ^ 0). 

3642. The axes of two equal cylinders of radius R intersect 
at right angles. Find the area of the part of the surface of 
one of the cylinders, lying in the other. 

octant 
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Moments and Centres of Gravity 

Find by double integration the statical moments of the 
homogeneous plane figures (density γ = 1) of problems 
3643-3646: 

3643. The rectangle with sides a and b with respect to 
side a. 

3644. A semi-circle with respect to its diameter. 

3645. A circle with respect to a tangent. 

3646. A regular hexagon with respect to one side. 

3647. Prove that the statical moment of a triangle with 
base a with respect to this base depends only on the height 
of the triangle. 

Find by double integration the centres of gravity of the 
homogeneous plane figures of problems 3648-3652: 

3648. The figure bounded by the upper half of an ellipse, 
based on the major axis. 

3649. The figure bounded by the sine wave y = sin x, the 

axis and the straight line χ = - . 

3650. The circular sector corresponding to an angle α at 
the centre (radius of circle R). 

3651. The circular segment corresponding to angle α at 
the centre (radius of circle R). 

3652. The figure bounded by the closed curve y
2
 = x

2
 — 

— χ* (χ ^ 0). 

Find the moments of inertia of the homogeneous plane 
figures (density γ = 1) of problems 3653-3659. 

3653. The circle of radius R with respect to a tangent. 

3654. The square with side a with respect to one corner. 

3655. The ellipse with respect to its centre. 

3656. The rectangle of sides a and b with respect to the 
point of intersection of the diagonals. 

3657. The isosceles triangle with base a and height h 
with respect to the vertex. 
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3658. The circle of radius R with respect to a point lying 
on the circumference. 

3659. The segment of the parabola bounded by a chord 
perpendicular to the axis, with respect to the vertex of the 
parabola (length of chord = a, "height" = A). 

3660. Prove that the moment of inertia of a circular annulus 
with respect to the centre is twice the moment of inertia 
with respect to any axis passing through the centre (lying in 
the plane of the annulus). 

3661. Prove that the sum of the moments of inertia of a 
plane figure F with respect to any pair of mutually perpendi-
cular axes, lying in the plane of the figure and passing through 
a fixed point 0, is a constant. 

3662*. Prove that the moment of inertia of a plane figure 
with respect to any axis is equal to Md

2
 + ICi where M is 

the mass distributed over the figure, d is the distance from 
the axis to the centre of gravity of the figure, and Ic is the 
moment of inertia with respect to an axis parallel to the 
given axis and passing through the centre of gravity (Steiner's 
theorem). 

Find the statical moments of the homogeneous bodies of 
problems 3663-3665 (density γ = 1): 

3663. The rectangular parallelepiped with ribs a, b and c 
with respect to its faces. 

3664. The right circular cone (base radius R, height H) 
with respect to a plane through the vertex parallel to the 
base. 

3665. The body bounded by the eUipsoid ^ + fä + 
ζ

2 

+ -2 = 1 and the xOy plane with respect to this plane, 
c 
Find the centres of gravity of the homogeneous bodies 

bounded by the surfaces indicated in problems 3666-3672: 

3666. By the planes χ = 0, y = 0, ζ = 0, χ = 2, y = 4 
and χ + y + ζ = 8 (truncated parallelepiped). 
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3667. By the eUipsoid 1 and the coor-

dinate planes (we have in mind the body located in the first 
octant). 

3668. Bv the cvlinder ζ and the planes χ 

z = 0 and 2x — 3y — 12 = 0. 

3669. By the cylinders y = 

ζ = 0 and χ + ζ = 6. 

and the planes 

3670. By the paraboloid ζ = and the sphere x
2
 + 

3671. By the sphere x
2
 + y

2
 + z

2
 = R

2
 and the cone 

ζ tan α (spherical sector). 

Find the centres of gravity of the homogeneous surfaces of 
problems 3673-3674: 

3673. The part of the sphere lying in the first octant. 

3674. The part of the paraboloid x
2
 + y

2
 = 2z, cut off 

by the plane ζ = 1. 
In problems 3675-3680, find the moments of inertia of the 

homogeneous bodies with mass equal to M. 

3675. The rectangular parallelepiped with ribs a, b and c 
with respect to each of the ribs and with respect to the centre 
of gravity. 

3676. A sphere with respect to a tangent line. 

3677. The eUipsoid 1 with respect to each 

of its three axes. 
3678. The right circular cylinder (base radius R, height 

H) with respect to a base diameter and with respect to a 
diameter of its central section. 

3679. The hollow sphere of external radius R, internal 
radius r, with respect to a diameter. 

3680. The paraboloid of revolution (base radius R, height 
H) with respect to the axis through its centre of gravity and 
perpendicular to the axis of revolution (equatorial moment). 
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Find the moments of inertia of the parts indicated of the 
homogeneous surfaces of problems 3681-3683 (the mass of 
each part = M) : 

3681. The lateral surface of a cylinder (base radius R, 
height H) with respect to the axis through its centre of gravity 
and perpendicular to the cylinder axis. 

3682. The part of the paraboloid x
2
 - f y

2
 = 2cx, cut off 

by the plane ζ = c, with respect to the Oz axis. 

3683. The lateral surface of the frustrum of a cone (base 
radii R and r, height H) with respect to its axis. 

Miscellaneous Problems 

3684. Find the mass of a square lamina of side 2a, if the 
density of the material of the lamina is proportional to the 
square of the distance from the point of intersection of the 
diagonals and is equal to unity at the corners. 

3685. A plane annular ring is bounded by two concentric 
circles of radii R and r (R > r). Find the mass of the ring, 
given that the density is inversely proportional to the distance 
from its centre. The density on the inner circumference is 
equal to unity. 

3686. Mass is distributed over the area bounded by an 
ellipse with semi-axes a and b in such a way that its density 
is proportional to the distance from the major axis, the density 
at unit distance from this axis being y. Find the total mass. 

3687. A body is bounded by two concentric spherical 
surfaces, the radii of which are r and R (R > r). Knowing 
that the density of the material is inversely proportional to 
the distance from the centre of the sphere and is equal to γ 
at unit distance, find the total mass of the body. 

3688. Find the mass of the body bounded by a right cir-
cular cylinder of radius R and height H, if the density at 
any point is numerically equal to the square of the distance of 
the point from the centre of the cylinder base. 

3689*. Find the mass of a body bounded by a circular 
cone, the height of which is equal to A, and the angle between 
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the axis and generator of which is equal to α ; the density is 
proportional to the nth power of the distance from the plane 
through the vertex of the cone parallel to the base, the den-
sity at unit distance being y (η > 0). 

3690. Find the mass of a sphere of radius R, if the density 
is proportional to the cube of the distance from the centre 
and is equal to γ at unit distance. 

3691. Find the mass of a body bounded by the paraboloid 
x

2
 -J- y

2
 = 2az and the sphere x

2
 + y

2
 + ζ

2
 = 3a

2
 (z > 0), 

if the density at any given point is equal to the square of 
the sum of the coordinates of the point. 

3692*. The density at any point of the sphere x
2
 + y

2
 + 

+ z
2
 ^ 2JBZ is numerically equal to the square of the distance 

of the point from the origin. Find the coordinates of the 
centre of gravity of the sphere. 

3693*. Find the statical moment of the common part of 
the spheres x

2
 + y

2
 + z

2
 ^ R

2
 and x

2
 -f- y

2
 - f ζ

2
 ^ 2Rz with 

respect to the xOy plane. The density at any point of the body 
is numerically equal to the distance of the point from the 
xOy plane. 

3694*. Prove that the moment of inertia of a body with 
respect to any axis is equal to Mi

2
 + IC) where M is the mass 

of the body, d is the distance from the axis to the centre of 
gravity of the body, and Ic is the moment of inertia with res-
pect to the axis parallel to the given axis and passing through 
the centre of gravity (Steiner's theorem; cf. problem 3662). 

Solve problems 3695-3698 on the basis of Newton's law 
of universal gravitation (see the remark on problem 2670) : 

3695. Given a homogeneous sphere of radius R and density 
γ, find the force with which it attracts a material particle of 
mass m at a distance a from its centre (a > R). Show that the 
force of interaction is the same as when the total mass of 
the sphere is concentrated at its centre. 

3696*. Prove that the Newton force of interaction between 
two homogeneous spheres is the same as when the masses of 
the spheres are concentrated at their centres. 
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3697. Given the non-homogeneous continuous sphere 
x

2
 + y

2
 + z

2
 = R

2
 with density varying in accordance with 

the law γ = λζ
2
, find the force with which it attracts a 

material particle of mass m, located on the ζ axis at a distance 
2R from the centre of the sphere. 

3698. Given a homogeneous body bounded by two con-
centric spheres (spherical layer), prove that the force of attrac-
tion by the layer on a point situated in the interior cavity is 
equal to zero. 

The centre of pressure is defined as the point of application 
of the resultant of all the pressures on the given plane figure 
(all the pressure forces are perpendicular to the plane of 
the figure). When determining the coordinates of the centre 
of pressure, we start from the fact that the statical moment 
of the resultant (i.e. the pressure on the entire area) with 
respect to any axis is equal to the sum of the statical moments 
of the separate forces with respect to the same axis. On the 
basis of this, solve problems 3699-3701. 

3699. Find the centre of pressure of a rectangle with sides 
a and b(a > b), a greater side of which is located along the 
free surface of the fluid, whilst the plane of the rectangle is 
perpendicular to this surface. 

Show that the position of the centre of pressure does not 
vary if the plane of the rectangle is inclined at an angle 
α(α =h 0) to the surface of the fluid. How are the above results 
affected if the greater side α is at a depth A (remaining paral-
lel to the surface) instead of lying on the surface ? 

3700. A triangle of height A is in a plane inclined at an 
angle α to the free surface of a fluid. What is the depth of 
the centre of pressure of the triangle, if: 

(a) its base lies on the fluid surface? 
(b) its vertex lies on the surface, whilst its base is parallel 

to the surface? 
3701. Find the centre of pressure of the figure bounded 

by an ellipse with semi-axes a and b (a > 6), given that the 
major axis is perpendicular to the fluid surface and the upper 
end of this axis lies at a distance h from the surface. 
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3702*. Prove that the fluid pressure on a plane area, arbi-
trarily submerged in fluid, is equal to the weight of a cylindri-
cal column of the fluid, situated above the area, when the 
area lies horizontally at the depth of its centre of pressure. 

5. Improper Integrals. Integrals Depending on a Parameter 

Improper Double and Triple Integrals 

Evaluate or establish the divergence of the improper in-
tegrals of problems 3703-3711: 

3703. Γ Γ Q ™ . C F
 d x d

V f fn^ß- , . 3704. f Γ J J 1 + x
2
 + y

2 J J 
- l - o o ( l + *

2
 + y

2
)

2 

0 0 

3707. J J (x + y) e-fr+rtda? dy. 
ο ο 

3708. j jxye"*
2
->

2
dxdy . 

ο υ 
oo oo 

3709*. j j e-l*
t+2
*y

 c o s a
+ >

ï
) dx dy. 

ο ο 
oo oo 

3710*.JdbJe-3'
A
 dy. 

υ Χ 

oo oo 

3711*. J dx J xe-3> dy. 

0 2x Discover which of the improper integrals of problems 
3712-3715 over the circular domain of radius R with centre 
at the origin is convergent: 

3712. J J l n V x
2
 + y

2
 dx dy (see Course, sec. 179) 
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3713. f dx dy. 3714. f f f + ^ dy. 
D D 

f f cos te

2

 + y

2

) , , 3715. JJ J+y^dy. 
D 

3716. Can a number m be chosen such that the improper 

dx dv 
-,, taken over the whole of the plane, 

Γ Γ 
integral 

J J } 
V(x* + y

2
)

m 

is convergent? 

Evaluate the improper integrals of problems 3717-3719: 

3 7 17 ι ι ι dxdydz 

3718. 

χ + y + ζ)
1 

0 0 0 
oo oo oo m xy dx dy dz 

(1 + x
2
 + y

2
 + ζ ψ * 

0 0 0 
oo oo 

3719*. J J J β-**-*·-*· dx dy dz. 
— o o — o o — o o 

Examine the convergence of the improper integrals of 
problems 3720-3722, taken over the sphere Ω of radius R 
with centre at the origin: 

3720. J J J todydz 
ο Y(x

2
 + y

2
 + z

2
)

3
 ln fa;

2
 + y

2
 + z

2 

3721. {(M**\y* +
 z2

 dxdydz. 
JJJ x

2
 + y

2
 + z

2 

Ω 

3723. Evaluate j JJln ( ζ
2
 + i/

2
 + z

2
) dxdydz, where the 

domain Ω is the sphere of radius R with centre at the origin. 

3724*. Find the volume of the body bounded by the sur-

face ζ = (χ
2
 + y

2
) e-W+y*) and the plane ζ = 0. 
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3725. Evaluate the volume of the body bounded by the 
surface ζ = x

2
y

2
e~(

x
*

+
y') and the plane ζ = 0. 

3726. Find the volume of the body bounded by the plane 
ζ = 0 and the part of the surface ζ = xe~(

x2+
y*) lying above 

this plane. 

3727. Given a homogeneous body bounded by the right 
circular cylinder of base radius R (height H, density γ), find 
the force acting on a particle of mass m situated at the centre 
of the base. 

3728. Given a homogeneous body bounded by the right 
circular cone of base radius R and height H (density γ), 
find the force with which the body attracts a particle of 
mass m located at the vertex of the cone. 

3729. Given a non-homogeneous continuous sphere of 
radius R, the density γ of which is connected with the distance 
from the centre r by the relationship γ = a — br (a > 0, 

(a) find the constants a and 6, if it is known that the density 
at the centre of the sphere is equal to yc, whilst the density 
on the surface of the sphere is equal to γ0. 

(b) Find the force of attraction by the sphere on a particle 
of mass m, located on the surface of the sphere. 

Integrals Depending on a Parameter. Leibniz's Rule 

3730. Find the domain of definition of the function 

6 > 0 ) : 

ο 

3731. Find the curvature of the curve y = 

2n 

Γ sin OLX 
at 

π 
the point with abscissa χ = 1. 

b 

3732. Using the equation 
dx 1 

= - ln (1 + ab), obtain 
1 + ax a 

ο 
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by differentiation with respect to the parameter the formula : 

3733. Starting from the equation 

evaluate 

3734. Starting from the equation , evaluate 

(n is a positive integer). 

3735. Evaluate the integral dx (n is a positive 

integer) with a > 0, by finding as a preliminary 

3736*. By starting from the equation (see problem 2318): 

find 

Evaluate the integrals of problems 3737-3749 with the 
aid of differentiation with respect to a parameter : 

arc tan 
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Ï — d x (a > — 1). 
xe* 

3739. 

3740. 

1 

J
arc tan 

ax dx. 

fin (1 — a?x
2
) 

J x
2
YT^ 

dx (a
2
 < 1). 

Ç arc tan ax , 
3741. — — — κ - dx. 

J * ( ! 

3742. 

3743. 

ι 

J 
0 

ί 

In (1 — a
2
x

2
) 

Yl — x
2 dx (a

2
 < I). 

ln (1 + a cos x) 

cos χ 
dx (a

2
 < 1). 

OP? J J Γ, f l + a s i n a A dx /9 3744. ln — :— - , (a
2
 < 1). 

J ^ 1 — a sin xj sin χ 

J l e""
axl 

^ 2 dx (a > 0) knowing that 

J V
f l

* ' dx = -i 

ο 
oo 

•I e 

^ (a > 0) (see problem 2439). 

• p —ax* p—bx* 
3746*. j ° dx (a > 0, b > 0). 

Λ „ . _ ψ Γ _ sin 6x — sin cx , , ΛΧ 3747*. e~
ax
 dx (a > 0). 

3738. 
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0 _ . 0 Γ Λ ν. cos ox — cos cx , , 
3748. e~

ûx
 dx (a > 0). 

ο 

3749*. J ln (a
2
 cos

2
 χ + 6

2
 sin

2
 x) dx. 

2 2 
"arctan(atanx) T T - ι j . j fare tan (a tan χ) Λ „ . Γ χ _ 

3750. Having evaluated — dx, find dx. 
J tan χ J tan χ 

ο ο 

1 

3751*. By using the equation x n dx = , evaluate 

ο 
1 

Ç x& — Χ
α
 , . — 

J - î n ^ - ^ ( « > - l . ^ > - l ) . 
ο 

3752. By using the equation 2a J e~
a
'
x ,
dx = Υπ, (see 

υ 

problem 2439), evaluate J I e *
2
 — e *'J dx. 

ο 

Γ Υπ 
3753. By starting from the relationship J e~

2
' dz = — 

ο 
oo 

1 2 Γ 
(Poisson's integral), deduce the equation — = — e

_ 2
*

x
 dz 

Y x y π J 
ο (χ > 0), and use this to evaluate the integrals (Fresnel 

or diffraction integrals) : 

oo oo 

, . Γ cos χ dx x f sin χ dx 
( s )J-7ï^ ! ( b , J - ^ -

cos bx — COS CX 
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ί 
/ Μ - Λ Μ ^ = [ / ( ο ο ) _ / ( 0 ) ] 1 η . 

Evaluate the integrals of problems 3755-3756 by using the 
results of problem 3754: 

K Ç arc tan ax — arc tan bx , 
3755. dx. 

ο 

,756. J 

3762*. Ι '^ Î^dtf . 

Miscellaneous Problems 

3754. Let /(a) be continuous for χ ^ 0 and tend to a 
oo 

finite limit / ( o o ) as χ -+ oo. Further, let J/'(aa) da be uni-
o 

formly convergent for 0 < a ^ a ^ δ. Prove that, with 
these conditions, 

3757*. Let f(x) be continuous for χ ^ 0 and let 
be convergent for any A > 0. 

Prove that, with these conditions, if a > 0 and 

have (cf. problem 3754). 

Evaluate the integrals of problems 3758-3762 by using 
the result of problem 3757 (a > 0, b > 0): 

3759. 

3761. 

3758. 

3760. 
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1 
Φ(χ)] dz = — . 

γ π 

2 /· 

π
 J 

is termed the Bessel function of zero order. Prove that: 

oo 

1 
(1) ί e "

ax
 Ja(x) ax = 

V 1 + a
2 (a > 0 ) ; 

(2) | ^ J e ( x ) d x - j 

0 

- , if a ^ 1 ; 

arc sin a, if | a | ^ 1 ; 

- - , i f a = g - l . 

3763*· The Laplace function Φ(χ) is defined thus: Φ(χ) = 
X 

2 r 
= — e

_ /
* dt (this function plays a large part in the 

ο 

theory of probability). Prove the relationships: 
X 

J p - a
8
* » l 

Φ(αζ) dz = - — — + χΦ(αχ) ; 
α γ π 

ο 

3764*. Functions si(#) and ci(x) are usually defined thus: 

("integral cosine"). Prove that 

3765*. The function J0(x), defined as 

sin χ si(#) dx cos χ ci(x) dx = 

["integral sine") and ci(x) = -
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J
q—xz 

0 satisfies the differential equation 

y" + y = l 
3767*. Prove that the function 

y = j (z
2
 — l ) " -

1
 e

xz
 dz 

satisfies the differential equation 

xy'
1
 + 2ny' — xy = 0. 

3768*. Prove that the function 

3766. Prove that the function 

satisfies the differential equation 

3769*. Prove that the zero order Bessel function J0{x) = 

cos (x sin 0) do satisfies the differential equation 



C H A P T E R X I I I 

L I N E AND S U R F A C E 
I N T E G R A L S 

1. Line Integrals 

Evaluation of Integrals 

Evaluate the line integrals of problems 3770-3775: 

J ds 
- , where L is the segment of the straight 

L 

line y — ^ χ — 2 lying between the points ^4(0, —2) and 

£(4, 0). 

$771.jxyds, where L is the rectangular contour with 
L 

corners A(0, 0), 5(4, 0), (7(4, 2) and D(0, 2). 

3772. §y ds, where L is the arc of the parabola y
2
 = 2px 

L 

cut off by the parabola x
2
 = 2py. 

3773. J (a;
2
 + y

2
)

n
 ds, where L is the circle χ = a cos t, 

L 

y = a sin t. 

J x
2 

xy ds, where L is the quarter of the ellipse ^ + 

L 

V
2 

+ ^2 = 1 l y ^ g i 11 ^ e firs^ quadrant. 

3775. JV% ds, where L is the first arc of the cycloid 
L 

x == a(t — sin t), y = a(l — cos t). 

3776. Obtain a formula for evaluating J F(x, y) ds, if 
L 

333 
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curve L is given by the equation ρ = ρ(φ) (φχ ^ φ ^ φ2) 
in polar coordinates. 

3777*. Evaluate y) ds, where L is the circle 

3778. Evaluate where L is the curve 

given by the equation (x
2
 + y

2
)

2
 = a

2
(x

2
 — y

2
) (χ ̂  0) (half a 

lemniscate). 

3779. Evaluate arc tan
: 

is, where L is the part of the 

spiral of Archimedes ρ = 2φ lying inside the circle of radius 
R with centre at the origin (pole). 

3780. Evaluate taken along the first turn of the 

helix χ = a cos t, y = a sin t, ζ = at. 

3781. Evaluate xyz ds, where L is the quadrant of the 

circle 

octant. 

3782. Evaluate ds, where L is the first 

turn of the conical helix 

3783. Evaluate ) ds, where L is the quadrant of 

the circle x
2
 + y

2
 + z

2
 = R

2
, y = χ, lying in the first octant. 

Applications of Integrals 

3784. Find the mass of the portion of the curve y = In χ 
between the points with abscissae x1 and x2, if the density at 
any point of the curve is equal to the square of the abscissa 
of that point. 

lying in the first 
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3785. Find the mass of the portion of the catenary 

between the points with abscissae x1 = 0, x2 = a, if the den-
sity at any point of the curve is inversely proportional to the 
ordinate of the point, the density at the point (0, a) being 
equal to δ. 

3786. Find the mass of the quarter of the ellipse χ = 
= a cos t, y = bsint, situated in the first quadrant, if the 
density at any point is equal to the ordinate of the point. 

3787. Find the mass of the first turn of the helix χ = 
= a cos t, y = a sin t, ζ — bt, the density at any point of 
which is equal to the square of the radius vector of the 
point. 

3788. Find the mass of the arc of the curve χ = e* cos t, 
y = e* sin t, ζ = e' from the point corresponding to t = 0 to 
an arbitrary point, if the density at any point of the arc is 
inversely proportional to the square of the radius vector of 
the point and is equal to unity at the point (1, 0, 1). 

3789. Find the coordinates of the centre of gravity of the 
first half-turn of the helix χ = a cos t, y = a sin t, ζ = bt, 
the density being assumed constant. 

3790. Find the statical moment of the first turn of the 
conical helix χ = t cos t, y = t sin t, ζ = t with respect to 
the xOy plane, the density being assumed proportional to 
the square of the distance from this plane : ρ = kz

2
. 

3791. Find the moment of inertia with respect to the 
coordinate axes of the first turn of the helix χ = a cos t, 

y = a sin t, ζ = -^-t. 

Find the areas of the parts of the cylindrical surfaces 
of problems 3792-3797 lying between the xOy plane and the 
surfaces indicated: 
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3792. x
2
 -\- y

2
 — R

2
, ζ = R + ^ . 

3793. y
2
 = 2px, ζ — f2px — <tx

2
. 

3794. ?/
2
 = ί (χ - l )

3
, ζ = 2 - V « . 

y 

3795. χ
2
 + y

2
 = R

2
, 2Rz = xy. 

2 2 

3796. ^ + ρ =
 l

>
 z

 =
 kx a nd z

 =
 0

 (
z
 = ° ) ("cylindri-

cal horse-shoe"). 

3797. y = yifyâr, z = y and x = - p. 
y 

3798. Find the area of the surface, which is cut out from 
a circular cylinder of radius R by an equal cylinder, when 
their axes intersect at right angles (cf. the solution of pro-
blem 3642). 

3799. Find the area of the part of the surface of the cylinder 
x

2
 -f- y

2
 = Rx lying inside the sphere x

2
 + y

2
 + z

2
 = R

2
. 

According to the Biot-Savart law, the force acting on a 
magnetic dipole of pole-strength m due to a current flowing 

, . .. j . ml sin α ds , T . 
m a wire is equal in magmtude to , where I is 

the current, ds an element of length of the wire, r the 
distance from the element to the magnetic dipole, α the angle 
between the straight line joining the magnetic dipole and the 
element and the direction of the element. This force is directed 
along the normal to the plane containing the element and 
the point at which the magnetic dipole is located; the direc-
tion of the force is established by the "screw" rule. On the 
basis of this law, solve problems 3800-3805. 

3800. Find the force with which a current I in an infinite 
straight wire acts on a magnetic dipole m, situated at a 
distance a from the wire. 

3801. A current / flows along a circuit in the form of a 
square of side a. What is the force exerted by the current on 
a magnetic dipole m at the centre of the square ? 
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situated at the pole. 

3803. What is the force exerted by a current / flowing in 
a closed elliptic circuit on a magnetic dipole m situated at a 
focus of the ellipse ? 

3804. What is the force exerted by the current / flowing 
in an infinite parabolic circuit on a magnetic dipole m 
located at the focus of the parabola ? The distance from the 

V 
vertex to the focus is equal to j - . 

Δ 

3805. What is the force exerted by a current / flowing in 
a circular circuit of radius R on a magnetic dipole m 
located at a point P, lying on the perpendicular to the plane 
of the circle through its centre and distant h from the centre ? 

Given a fixed h, for what value of R is this force a 
maximum ? 

2. Coordinate Line Integrals 

Evaluation of Integrals 

Evaluate the line integrals of problems 3806-3821: 

3806. jxdy, where L is the triangle formed by the co-
L 

X 1/ 
ordinate axes and the straight line - + ^ = 1, taken in 

Δ ο 

a positive direction (i.e. anticlockwise). 

3807. J χ ay, where L is the segment of the straight line 
L 

X II 
—\- j - = 1 from its point of intersection with the axis 
a ο 
of abscissae to its point of intersection with the axis of 
ordinates. 

ρ = ρ(<ρ), exerts a force / = ml on a magnetic dipole 

3802. Prove that the current I flowing along the arc of a 
curve whose equation is given in polar coordinates by 
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3808. j (x2 — y2) dx, where L is the arc of the parabola 

L 

y = x
2
 from the point (0, 0) to the point (2, 4). 

3809. J (x
2
 -f y

2
) dy, where L is the rectangle with corners 

L 

(given in order of the circuit round them) at ^4(0, 0), B(2, 0), 

(7(4, 4) and D(0, 4). 
{71, 271) 

3810. ( —x cos y dx + y sin χ dy along the segment join-
(οΓο) 

ing the points (0, 0) and (π, 2π). 

3811. J xy dx + (y — x) dy along the curves (1) y = χ, 

(0 .0 ) 

(2) y = χ2, (3) y2
 = χ, (4) y = χ\ 

Ο.,ΐ) 

3812. J 2xy dx -f- x
2
 dy along the curve (1) y = χ, 

(0,0) 

(2) y = χ
2
, (3) y = x\ (4) y

2
 = x. 

3813. j y dx + x dy, where L is the quadrant of the 
L 

71 
circle χ = R cos t, y = R sin t, from t± = 0 to £2 = — . 

3814. j 2/ d# — a; dy, where L is the ellipse χ = α cos t, 
L 

y = b sin £, taken in the positive direction. 

Γ (v
2
 dx x

2
 dî/) 

3815. , » . — > where Ζ, is the semi-circle χ = α 
J (*

2
 + y

2
) 

L 

cos t, y = α sin t from tx = 0 to £2 = π. 

3816. J (2α — y) dx — (α — y) dy, where L is the first 
L 

(from the origin) arc of the cycloid χ = α (t — sin t), y = 

= α(1 — cos £). 

3817. Γ
 d

^ ~~ da) ^ wb e re £ j s tk e quadrant of the 

J x* + ys 

astroid χ = R cos
3
 t, y = R sin

3
 £, from the point (R, 0) to 

the point (0, R). 
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3818. Jx dx + y dy - f (x + y — 1) dz, where L is the 
L 

segment of a straight line from the point (1, 1, 1) to the 
point (2, 3, 4). 

3819. J yzdx - f ζ ^R
2
 — y

2
 dy + xy dz, where L is the 

L 

arc of the helix χ = R cos t, y = R sin t, ζ = —, from the 

point of intersection of the curve with the plane ζ = 0 to 
its point of intersection with the plane ζ = a. 

(4.4,4) 
« ο Λ Λ Γ

 x
 dx + y dy + ζ dz , ^ . , Λ , . 

3820. -τ ν υ τ a l o ng a s t r a i g nt ι ι η θ> 

J y χ
2
 + y

2
 + z

2
 — x — y + 2z 

3821. Jy
2
 dx + z

2
 dy + x

2
 dz, where Z is the curve of 

L 

intersection of the sphere x
2
 + y

2
 + z

2
 = R

2
 and the cylinder 

#2 ^2 _ jfo (i? > 0, ζ ^ 0), the integration circuit being 
anticlockwise as seen from the origin. 

Green's Formula 

In problems 3822-3823, transform the line integrals over a 
closed contour L, taken in the positive direction, to double 
integrals over the domain bounded by the contour: 

3822. J (1 — x
2
) y dx + χ (1 + y

2
) dy. 

L 

3823. J (e*y + 2x cos y) dx + (e*y — x
2
 sin y) dy. 

L 

3824. I f the contour of integration L is the circle x
2
 + y

2
 =. 

= R
2
, evaluate the integral of problem 3822 by the following 

two methods: 
(1) directly, 
(2) by using Green's formula. 

3825. Evaluate J (xy + x + y) dx + (xy + χ — y) dy, where 
L 

L is: (1) the ellipse — + j-= 1 ; (2) the circle x
2
 + y

2
 = αχ. 
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The integration is carried out in a positive direction. (Carry 
out the evaluation by two methods: (1) directly, (2) with 
the aid of Green's formula). 

3826. Prove that the integral 

J (yx
z
 + ey) dx + (%y

z
 + %e

y
 — 2y) dy 

L 

is equal to zero, if L is a closed curve, symmetrical with 
respect to the origin or to both coordinate axes. 

3827. Evaluate with the aid of Green's formula the diffe-
rence between the integrals 

h = j {% + y)
2
dx — (x — y)

2
 dy 

AmB 

and 

h = \ {x + y)
2
 dx — {x — y)

2
 dy, 

AnB 

where AmB is the straight segment joining points ^4(0, 0) and 
JS(1, 1), whilst AnB is the arc of the parabola y = χ

2
. 

3828. Prove that the integral 

J { # cos (N, x) + y sin (N, x)} dS, 
L 

where (N, x) is the angle between the outward normal to 
the curve and the positive direction of the axis of abscissae, 
taken over the closed contour L in the positive direction, is 
equal to twice the area of the figure bounded by contour L. 

3829. Prove that the value of J (2xy — y) dx + x
2
 dy, 

L 

where L is a closed contour, expresses the area of the domain 
bounded by the contour. 

3830. Show that J q>(y) dx + [%<p'(y) + 3
S
] dy is equal to 

L 

three times the moment of inertia of the homogeneous plane 
figure bounded by contour L, with respect to the axis of 
ordinates. 
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3833. 

L 

Γ f(y)
xd
y -

J W χ
2 

L 

3834. J" [f(x + y) + f(x - y)} dx + [f(x +y)- f(x - y)] dy. 
L 

3835. j f(x
2
 + y

2
 + z

2
) (x dx + y dy - f ζ dz). 

L 

3836*. Prove that ί
 X
—%—t—taken in the positive 

J x
2
 + y

2 

L 

direction round any closed contour, which contains the 
origin, is equal to 2π (see Course, sec. 186). 

' xdy — ydx 
3837. Evaluate J X

 ] ! , — T ^ r - round the circle x
2
 + y

2
 = 1 

x
2
 + ±y

2
 ^

u 

L 

in the positive direction. 

In problems 3838-3844, evaluate the line integrals of 
total differentials: 

(2 ,3 ) (2 1) 

3838. J y dx + χ dy. 3839. J 2xy dx + x
2
 dy. 

3840. 

( - 1 . 2 ) (0 ,0) 

(5. 12) 

xdx + ydy J X
- — ^ y (the origin does not he on the 
x

2
 + y

2 

(3 .4) 
contour of integration). 

( P 2) 

/

x dx I u du 
— , where points P± and P 2 are situated 

V χ 2 + y2 

(Pi) 
on concentric circles with centres at the origin and radii R1 

Independence of the Integral on the Contour of Integration. 
Determination of the Primitive 

In problems 3831-3835, show that the integrals, taken 
over a closed contour, vanish independently of the form of 
the functions appearing in the integrand: 

3831. \ ψ(χ) dx + y)(y) dy. 3832. J" f(xy) (y dx + χ dy). 
L L 

(y\xdy — ydx 
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and i?2 respectively (the origin does not lie on the contour 

of integration). 

(2.1,3) 

3842. J a da — y
2
 dy + ζ dz. 

0 . - 1 . 2 ) 

(3, 2, 1) 

3843. J yz dx -f zx dy + xy dz. 

3844, 

(1 .2 .3 ) 

(5, 3. 1) 

zx dy + xy dz — yz dx 
(x — yz)

2 (the contour of integra-

(7, 2. 3) 

tion does not cut the surface ζ = 

Find the functions having total differentials as given in 

problems 3845-3852: 

3845. du = χ
2
 dx + y

2
 dy. 

3846. du + 4(a
2
 - y

2
) (x dx - y dy). 

*c,*m ι (

x
 + 2y) dx + y dy 

3847. du =
 v

 , ,—Ζ · 
(χ + y)

2 

3848. du = 

3849. d^ = 

yYx
2
 + y

2 

x — 2y 

\ y2 + y2 ) 
(y — x)

2 + x dx + y 
(y — x)

2 y
2
 dy. 

3850. du = (2a cosy — y
2
 sin a) da + (2y cos a — a

2
 sin y) dy. 

3851. d^ 

3852. du 

2a(l - ey) 
(1 + z

2
)

2 c u ?
"

1
"^i + a

2 

(3y — a) da + (y - 3a) dy 

f ey \ 1 

(a
2
 + y

2
) " 

corresponding function. 

(a + y )
3 

r n 

is a total differential; find the 

3853. Chose a number n such that the expression 
(a — y) da + (a + y) dy 
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3855. d^ 

3856. du 

3857. du 

3858. du 

χ + y + ζ 

x dx + y dy + ζ dz 
ΥΧ2 _|_ y2 _|_ Z2 

y z dx + xz dy + xy dz 
1 + x

2
y

2
z

2 

2 (zx dy -\- xy dz — yzdx 
(x — yz)

2 

ΟΟΚΛ ι dx — Sdy , 3y — # + ζ
3
 , 

3859. dw = + — — dz. 

3860. du = e^ dx + p j ^ ± i ) + ^ j dy + 

+ ( -
e

% ^ + ^ + e - 2)dz . 

Applications of Integrals 

Find with the aid of the line integral the areas of the figures 

bounded by the closed curves of problems 3861-3868: 

3861. The ellipse χ = a cos t, y = b sin t. 

3862. The astroid χ = a cos
3
 t, y = a sin

3
 t. 

3863. The cardioid χ = 2a cos ί — α cos 2£, y = 2α sin ί — 
— α sin 2ί. 

3864*. The loop of the folium of Descartes x
z
 + y

z
 — 

— 3axy = 0. 

3865. The loop of the curve (x + y)
z
 = xy. 

3866. The loop of the curve (x + yf = x
2
y. 

ential; find the corresponding function. 

In problems 3855-3860, find the function, given its total 
differential: 

3854. Select constants a and b such that the expression 

is a total differ-
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3867*. The lemniscate of Bernoulli (x
2
 + y

2
)

2
 = 2a

2
{x

2
 - y

2
). 

3868*. The loop of the curve (Yx + Yy)
12
 = xy. 

Work 

3869. A force acts at every point of a plane, having a 
constant magnitude F and in the direction of the positive 
axis of abscissae. Find the work done by the force when a 
particle of mass m moves along the arc of the circle x

2
 + 

-\- y
2
 = R

2
 lying in the first quadrant. 

3870. A force F, the projections of which on the axes are 
X = xy, Y = χ + y, acts at every point of the plane. Find 
the work done by the force F when a particle of mass m moves 
from the origin to the point (1, 1) : 

(1) along the straight line y = χ; (2) along the parabola 
y == x

2
'9 (3) along the two-link step line, the sides of which 

are parallel to the axes (two cases). 

3871. A force F acts at every point M of the ellipse χ = 
= a cos t, y = b sin t, equal in magnitude to the distance of 
M from the centre of the ellipse and directed towards the 
centre, (a) Find the work done by force F when a material 
particle Ρ of mass m is displaced along the arc of the ellipse 
lying in the first quadrant; (b) find the work done, if the 
point Ρ circuits the entire ellipse. 

3872. The projections of a force on the coordinate axes are 
given by X = 2xy and Υ = χ

2
. Show that the work done by 

the force when a particle of mass m is displaced depends only 
on its initial and final positions, and not on the form of the 
path. Calculate the work done when the particle moves from 
the point (1, 0) to the point (0, 3). 

3873. A force has a magnitude inversely proportional to 
the distance of its point of application from the xOy plane, 
whilst it is directed towards the origin. Find the work done 
when a particle of mass m moves under the action of the force 
along the straight Une χ = at, y = bt, ζ = et from the point 
M (a, b, c) to the point Ν (2a, 2b, 2c). 
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3874. A force has a magnitude inversely proportional to 
the perpendicular distance of its point of application from 
Oz, whilst it is directed perpendicularly towards this axis. 
Find the work done by the force when a particle of mass m 
is displaced along the circle χ = cos t, y = 1, ζ = sin t 
from the point M(\, 1, 0) to the point N(0, 1, 1). 

3875. Prove that the work done by the force of attraction 
between two particles when one of them moves is independent 
of the form of the path. The magnitude of the force of at-

knt rrt 
traction F is given by Newton's law F = —^—^, where r 

is the distance between the particles of masses m1 and ra2, 
and k is the gravitational constant. 

3. Surface Integrals 

Integrals over a Surface Area 

Evaluate the integrals of problems 3876-3884 : 

3876. J J ^z + 2x + I yj dq, where S is the part of the 

s 

X XI ζ 
plane - + | + - = 1 lying in the first octant. 

Δ ό 

3877. xyz dq, where S is the part of the plane χ + y + 
s 

+ ζ = 1 lying in the first octant. 

3878. J J χ dq, where S is the part of the sphere x
2
 + 

s 
+ y

2
 -f ζ

2
 = R

2
 lying in the first octant. 

3879. J Jy dq, where S is the hemisphere ζ = fR
2
 — x

2
 — y

2
. 

s 

3880. \\fR
2
 — x

2
 — y

2
dq, where S is the hemisphere 
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3881. J J #
2
2 /

2
 dq, where S is the hemisphere z = 

s 

= YR
2
 — X

2
 — y

2
. 

3882. J"J"̂ r* where S is the cylinder x
2
 + y

2
 = bounded 

s 
by the planes ζ = 0 and ζ = H, whilst r is the distance of 
a point of the surface from the origin. 

3883. J J ^ r > w h e re s is t he sphere x2 + y2 + z2 = Ä 2, 

s 
and r is the distance of a point of the sphere from the fixed 
point P(0, 0, c) (c > JB). 

3884. JJ* ^ , where $ is the part of the surface of the 

s 
hyperbolic paraboloid ζ = xy cut off by the cylinder x

2
 + 

-f- y* = B
2

} and r is the distance of a point of the surface 
from Oz. 

3885*. Find the mass of a sphere, if the surface density 
at any given point is equal to the distance of the point from 
some fixed diameter of the sphere. 

3886. Find the mass of a sphere, if the surface density at 
any given point is equal to the square of the distance of the 
point from some fixed diameter of the sphere. 

Coordinate Surface Integrals 

Evaluate the surface integrals of problems 3887-3893: 

3887. J J χ dy dz + y dx dz + ζ dx dy, where S is the 
s 

positive side of the cube made up of the planes χ = 0, y = 0, 

ζ = 0, χ = 1, y = 1, ζ = 1. 

3888. jjx
2
y

2
z dx dy, where S is the positive side of the 

lower half of the sphere x
2
 + y

2
 + z

2
 = R

2
. 
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3889. J J ζ da dy, where S is the outside of the ellipsoid 

1. I Ï /
2
 ! 

a
2 t

6
2 t

 c
2 

3890. J Jz
2
dady , where S is the outside of the ellipsoid 

X
l ± t - J L

 Z
l- 1 

a
2
^ b

2
^ c

2 

3891. ^ xz dx dy -\- xy dy dz -\- yz dx dz, where S is the 
s 

outside of the pyramid composed of the planes χ = 0, y = 0, 
ζ = 0 and a + y + ζ = 1. 

3892. [ J yz d# dy + #z dy dz + xy dx dz, where S is the 
* s 

outside of the surface lying in the first octant and consisting 
of the cylinder x

2
 + y

2
 = B

2
 and the planes χ = 0, y = 0, 

ζ = 0 and ζ = Η. 

3893. J J y
2
z da dy + xz dy dz + x

2
y dx dz, where S is the 

s 
outside of the surface lying in the first octant and consisting 
of the paraboloid of revolution ζ = χ

2
 + y

2
> the cylinder 

a
2
 + y

2
 = 1 and the coordinate planes (Fig. 68). 

F I G . 68 . 

Stokes's Formula 

3894. Transform J (y
2
 + z

2
) da + (a

2
 + z

2
) dy + (a

2
 + y

2
) dz, 

L 

taken over a closed contour, to an integral over the sur-
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face ''stretched' ' over this contour with the aid of Stokes' 
formula. 

3895. Evaluate J x
2
y

z
 dx + dy + ζ dz, where the contour 

L 

L is the circle x
2
 -f- y

2
 = R

2
, ζ = 0 : (a) directly, and (b) by 

using Stokes' formula, taking as the surface the hemisphere 

ζ = + YR
2
 — x

2
 — y

2
. The integration is in a positive direc-

tion round the circle in the xOy plane. 

Ostrogradskii's Formula 

3896. With the aid of Ostrogradskii's formula, transform 

the following surface integral over a closed surface to a triple 

integral over the volume of the body bounded by the sur-

face : J J x
2
 dy dz + y

2
 dx dz + z

2
 dx dy. The integration is 

carried out over the outside of surface S. 

3897. With the aid of Ostrogradskii's formula, transform 
the following surface integral over a closed surface to a triple 
integral over the volume of the body bounded by this surface : 

J J Yx
2
 + y

2
 + z

2
 {cos (N, x) + cos (N, y) + cos (N, z)} da, 

where Ν is the outward normal to surface 8. 

3898. Evaluate the integral of problem 3897, if 8 is the 
sphere of radius R with centre at the origin. 

3899. Evaluate the integral 

j J[a;
3
 cos (N, x) + y

z
 cos (N, y) + z

3
 cos (N, z)] der, 

s 

where S is the sphere of radius R with centre at the origin, 
and Ν is the outward normal. 

3900. Evaluate the integrals of problems 3891-3893 by 
using Ostrogradskii's formula. 



C H A P T E R X I V 

D I F F E R E N T I A L EQUATIONS 

1. Equations of the First Order 

Equations with Separable Variables 

Find the general solutions of the differential equations 
of problems 3901-3910: 

3901. (xy
2
 + x) dx + (y — x

2
y) dy = 0. 

1 - 2x 
3902. xyy

r
 = I - x

2
. 3903. yy' = 

3904. y' ta 

3906. y' + 

y 
3904. y' tan χ — y = α. 3905. xy' + y = y

2
. 

1 — y
2 

* = 0. 1 — x
2 

3907. Vi — y
2
 dx + y γΐ — x

2
 dy = 0. 

3908. e - ^ 1 + = 1. 3909. y' = 10*+*. 

3910. y' + sin
 X-^JL = s i ri *Lzl . 

3911. The relationship between the velocity υ and the 
path traversed I in the bore of the gun is given in ballistics 

al
n
 dl 

by the following: ν — ^ ^ ^n , where ν = ^ and η < 1. 

Find the relationship between the time t of motion of the 
projectile and the distance I travelled along the bore. 

3912. I f χ is the amount of hydriodic acid HI, decomposed 
dx\ 

at the instant t, the speed of the decomposition ĵ̂ j h 

given by the differential equation — = kx I — - — J — k2 j - J 

349 
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where kv k2 and ν are constants. Integrate this equation. 
In problems 3913-3916, find the particular solutions of 

the differential equations satisfying the given initial condi-
tions : 

3913. y' sin χ = y ln y\ y \ n = e. 

3914. » ' = ^ g ; y|x-o = l. 

3915. sin y cos χ dy = cos y sin χ dy; y | x =o = — . 

3916. y~xy' = 6(1 + x
2
y'); y |*=i = 1. 

3917. Find the curve passing through the point (2, 3) 
and having the property that the segment of any tangent 
to it, lying between the coordinate axes, is bisected by the 
point of contact. 

3918. Find the curve passing through the point (2, 0) and 
having the property that the segment of any tangent, between 
the point of contact and the axis of ordinates, has a constant 
length equal to 2. 

3919. Find all the curves such that the segment of any 
tangent, lying between the point of contact and the axis of 
abscissae, is bisected at its point of intersection with the axis 
of ordinates. 

3920. Find all the curves, for which the subtangent is 
proportional to the abscissa of the point of contact (the coeffi-
cient of proportionality is equal to k). 

3921. Find the curve passing through the point (α, 1) 
and having constant sub tangent ( = a). 

3922. Find the curve for which the length of the normal 
(measured from the point on the curve to its intersection 
with the axis of abscissae) is a constant a. 

3923. Find the curve, for which the sum of the lengths of 
the tangent and subtangent at any point is proportional to 
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the product of the coordinates of the point of contact (co-
efficient of proportionality Jc). 

3924. Find the curve y = f(x) (f(x) =- 0, /(0) = 0), bound-
ing the curvilinear trapezium with base [0, x], the area of 
which is proportional to the (n + l)th power of f(x). We 
are given that / ( l ) = 1. 

3925. A material particle weighing 1 g moves along a 
straight line, under the action of a force which is directly 
proportional to time, measured from the instant t = 0, and 
inversely proportional to the velocity of the particle. The 
velocity is 50 cm/sec at t = 10 sec, whilst the force is 4 dynes. 
What is the velocity a minute after the start of the motion ? 

3926. A material particle moves along a straight line, its 
kinetic energy at an instant t being directly proportional to 
its average speed in the interval of time from zero to t. Given 
that the path s = 0 at t = 0, prove that the motion is uni-
form. 

3927. A motor-boat moves in quiet water at a speed ν = 10 
km/hr. Its motor is switched off at full speed, and its speed 
reduces to νλ = 6 km/hr after time t = 20 sec. Assuming 
that the resistance of the water to the boat is proportional to 
its speed, find the speed 2 min after stopping the motor; 
find also the distance travelled by the boat during 1 min 
after stopping the motor. 

3928. The bottom of a cylindrical vessel with a cross-
section S cm

2
 and a vertical axis contains a small circular 

hole of area q cm
2
, which can be closed by a diaphragm (as in 

a camera lens). Fluid is poured into the vessel to a height h. 
The diaphragm starts to open at time t = 0, the area of the 
opening being proportional to time and the aperture being 
completely open after Τ sec. What is the height Η of the 
fluid in the vessel Τ sec after the start of the experiment ? 
(See problems 2701-2706; also Course, sec. 116). 

3929. The rate of cooling of a body is proportional to the 
difference in temperature between the body and the environ-
ment. We assumed that the coefficient of proportionality is 
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constant in problems 2710-2711. I t is assumed in certain 
calculations to be linearly dependent on time: lc = k0(l + οΛ). 
On this assumption, find the relationship between the body 
temperature 0 and time t, putting θ = θ0 at t = 0, the 
temperature of the environment being θν 

3930*. The rate of growth of the area of a young leaf of 
Queen Victoria, which is well-known to have a circular shape, 
is proportional to the circumference of the leafand the amount 
of sunlight incident on it. The latter is in turn proportional 
to the area of the leaf and the cosine of the angle between the 
incident ray and the vertical. Find the relationship between 
the area 8 of the leaf and time t, if we know that the area is 
1600 cm

2
 at 6 a.m. and is 2500 cm

2
 at 6 p.m. on the same day. 

(Assume that the observation is carried out at the equator 
on the day of the equinox, when the angle between the inci-
dent sunlight and the vertical can be taken as 90° at 6 a.m. 
and at 6 p.m. and 0° at noon.) 

By substituting for the required function, reduce the 
equations of problems 3931-3933 to equations with separable 
variables, and solve them: 

3931. y' = cos (x — y) (put u = χ — y). 

3932. y' = 3x — 2y + 5. 

3933. y' Yl +x + y = x + y - I-

Homogeneous Equations 

Find the general solutions of the equations of problems 
3934-3944: 

3934. y' = ζ - 2. 3935. y' = . 
* χ

2 u
 χ — y 

3936. χ dy - y dx = y dy. 3937. y' = *
Xy

 2 . 
x y 

3938. y' = - +
y

- . 3939. xy' - y = fx* + y\ 
y χ 

Ι- y 
3940. y

2
 + x

2
y' = xyy'. 3941. y'= + 

x 
3942. xy' = yln^-

x 
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3943. (3Î/
2
 + 3xy + χ

2
) dz = (χ

2
 + 2xy) dy. 

3944. y' =
 y
- + 

' 4) 
In problems 3945-3948, find the particular solutions of 

the differential equations, satisfying the given initial condi-
tions : 

3945. (xy' — y) arc tan -= x; y \x=\ = 0 
χ 

3946. (y
2
 - 3x

2
) dy + 2xy dx = 0; y \ x =0 = 1. 

y
2
 — 2xy — x

2 

y
2
 + 2xy — x

2 

3 9 4 8
·

y
 (al)2 + 2 * % - y = 0 ; «Ί*-° = ^ · 

3949. Reduce the equation y' = ^ + φ to a quadrature. 

What must be the function 9^~j f °
r
 ^

e
 g

e n e r a
l solution 

χ 

of the equation to be y = , ,? 

3950. Find the curve, such that the square of the length of 
the segment, cut off by any tangent from the axis of ordinates, 
is equal to the product of the coordinates of the point of 
contact. 

3951. Find the curve, such that the initial ordinate of any 
tangent is equal to the corresponding subnormal. 

3952. Find the curve for which the length of the radius 
vector of any point M is equal to the distance between the 
origin and the point of intersection of the tangent at M with 
Oy. 

3953*. What surface of revolution is represented by the 
mirror of a projector, if light rays starting from a point source 
are directed in a parallel pencil after reflexion ? 



354 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

Linear Equations 

Find the general solutions of the equations of problems 
3954-3964: 

3954. y' + 2y = 4x. 3955. y' + 2xy = xe~
x
\ 

ι Or 

3956. y r + — p - y = l . 

3957. (1 + x
2
) y' - 2xy = (1 + x

2
)

2
. 

3958. y' + y = cos x. 3959. y' + ay = e
mx
. 

3960. 2y dx + (y
2
 — 6x) dy = 0. 

3961. y' = a

 1

 9 . 3962. y' = —, ^ . 
* 2x — y

2 υ
 2ylny + y — χ 

3963. *(*/ ' - y) = (1 + a;
2
) e*. 

3964. t/' + 2/Φ'(#) — Φ(χ) Φ'(χ) = 0, where Φ(χ) is a given 
function. 

In problems 3965-3968, find the particular solutions of 
the equations satisfying the indicated initial conditions: 

3965. y' — y tan χ = sec x; y\x=o = 0. 

3966. xy* + y - e
x
 = 0; y\x=a = b. 

8967 . 3» ' TTT = S ; y|x-i = o. 

3968. *(1 + t
2
) dx = (x + xt

2
 — t

2
) dt; x\t=x = ~ . 

3969. Let yx and y2 be two distinct solutions of the equa-
tion 

y' + Ρ(χ) y = Q(x). 

(a) Prove that y = y1-\- C(y2 — y±) is the general solution 
of the equation (C is a constant). 

(b) For what ratio of constants α and β is the linear 
combination + ßy2 a solution of the equation ? 

(c) Prove that, if y3 is a third particular solution, different 
qj ΛΙ 

from 2/Χ and y2, the ratio — — is constant. 
y3 yi 

X 

3970. Prove the identity (see problem 2345): \&
x
~

zt
dz = 
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χ 

χ* Γ _ζ*_ 
= e

4
J e

 4
 dz, by composing a differential equation for the 

ο 
χ 

function I(x) = ^ e
2 X - 2 Î

d z and solving it. 
ô 

3971. Find the curve for which the initial ordinate of any 
tangent is less than the abscissa of the point of contact by 
two units of scale. 

3972*. Find the curve for which the area of the rectangle, 
constructed on the abscissa of any point and the initial 
ordinate of the tangent at this point, is constant ( = a

2
) . 

3973*. Find the curve for which the area of the triangle, 

formed by the axis of abscissae, the tangent and the radius 

vector of the point of contact, is constant ( = a
2
). 

3974. A particle of mass m moves along a straight line ; a 
force acts on it, proportional to time (coefficient of propor-
tionality k±) measured from the instant when the velocity is 
zero. In addition, the particle is subject to the resistance of 
the medium, proportional to the velocity (coefficient of pro-
portionality k). Find the relationship between velocity and 
time. 

3975. A particle of mass m moves along a straight line; 
a force acts on it, proportional to the cube of time, measured 
from the instant when the velocity is v0 (coefficient of pro-
portionality 1c). In addition, the particle is subject to the 
resistance of the medium, proportional to the product 
of velocity and time (coefficient of proportionality kx). Find 
the relationship between velocity and time. 

3976. The initial temperature 0° C of a body is equal to the 
temperature of the environment. The body receives heat 
from a heating device (the rate of heat supply is a given 
function of time: ccp{t), where c is the constant specific heat 
of the body). In addition, the body loses heat to the environ-
ment (the rate of cooling is proportional to the temperature 
difference between the body and the surrounding medium). 
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Find the relationship between the temperature of the body and 
time, measured from the start of the experiment. 

Solve problems 3977-3978, by assuming that, if a variable 
electric current J = I(t) flows along a conductor with self-
inductance L and resistance R, the voltage drop along the 

conductor is equal to L + RI (see Course, sec. 194). 

3977. The potential difference across the terminals of a 
coil falls uniformly from E0 = 2V to E± = I V in the course 
of 10 sec What is the current at the end of the tenth second, 
if it is 16f amp at the start of the experiment? The coil re-
sistance is 0*12 ohm, its inductance 0*1 Henry. 

3978. Find the current in a coil at the instant t, if its 
resistance is R, inductance L, initial current I0 = 0, and the 
electromotive force varies in accordance with the law Ε = 
= E0 sin œt. 

Miscellaneous Problems (Equations with Separable Variables, 
Homogeneous and Linear Equations) 

Find the general solutions of the equations of problems 
3979-3997; 

3979. y> = *
2
 + *y + y* . 

3980. x
2
 dy + (3 — 2xy) dx = 0. 

3981. χ(χ* + 1) y' + y = x( l + χ
2
)

2
. 

y+ 1 
χ 

ι + y
2 

3982. y' 

3983. y' = . . . ,. . 
xy (1 + χ

2
) 

3984. (8y + ΙΟχ) dx + (5y + 7x) dy = 0. 

3985. x y = y(y* + x
2
) . 

3986. ^ z y . = t a ny . 
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X 
3987. ^x — y cos | j dx + χ cos ̂  dy = 0. 

3988. y' = e
2x
 - e*y. 

dx dy 
x

2
 — xy + 2/

2
 2y

2
 — xy 

3990. J =
 1 

dx χ cos y + sin 2y 

3991. (x — 2xy — y
2
) dy + y

2
 dx = 0. 

3992. y' + y cos χ = sin χ cos x. 

3993. (x + 1) y' — ny = e
x
(x + l)

n
+K 

3994. y dx = (y
3
 - x) dy. 

3995. (g) 2 -(* + , ) | + ^ - 0 . 

3996*. yy' sin χ = cos x(sin χ — y
2
) . 

3997. y' = (χ + y )
2
. 

3998. Show that the integral curves of the equation 
(1 — x

2
) y' + xy = ax are ellipses and hyperbolas with 

centres at the point (0, a) and axes parallel to the coordinate 
axes, each curve having one constant axis equal to the 
number 2. 

In problems 3999-4002, find the particular solutions of 
the equations satisfying the given initial conditions: 

3 9 9 9 . ^ ^ = 2; y\XmmX = l. 
χ + yy 

4000. y ' _ T - ^ _ 2 =l + x ; y | x = 0= l . 

4001. (1 + e*) yy' = e » ; y | x =0 = 0. 

4002. y' = 3x
2
y + x* + x

2
; y\x=0 = 1. 

4003. Show that the following property is possessed only 
by the straight lines y = kx and the hyperbolas xy = m: 
the length of the radius vector of any point of the curve is 
equal to the length of the tangent drawn at that point. 
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4004. Find the curve for which the length of the normal is 
proportional to the square of the ordinate. The coefficient 
of proportionality is equal to h. 

4005. Find the curve, for which any tangent cuts the axis 
of ordinates at a point equidistant from the origin and the 
point of contact. 

4006. Find the equation of the curve cutting the axis of 
abscissae at the point χ = 1 and having this property: the 
length of the subnormal at any point of the curve is equal to 
the arithmetic mean of the coordinates of the point. 

4007. Find the curve for which the area of the trapezium, 
formed by the coordinate axes, the ordinate of any given 
point of the curve and the tangent at this point, is equal to 
half the square of the abscissa. 

4008. Find the curve, for which the area, included be-
tween the axis of abscissae, the curve and two ordinates, one 
of which is constant whilst the other is variable, is equal to 
the ratio of the cube of the variable ordinate to the variable 
abscissa. 

4009. Find the curve for which the area of the figure, 
bounded by the axis of abscissae, two ordinates and the arc 
MM' of the curve, is proportional to arc MM' for any choice 
of points M, M'. 

4010. Find the curve for which the abscissa of the centre 
of gravity of the curvilinear trapezium, formed by the co-
ordinate axes, the straight line χ = α and the curve, is equal 
, 3a . 
to -^-ior any a. 

4011*. Find the curve, all the tangents to which pass 
through a given point (x0, y0). 

4012. Find the curve through the origin, all the normals 
to which pass through a given point (x0, y0). 

4013. What curve has the following property: the angle 
formed by the tangent at any point with Ox is twice the angle 
which the radius vector of the point of contact forms with Oxl 
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4016. The braking action due to friction on a disc rotating 
in a fluid is proportional to the angular velocity: 

(1) The disc starts to rotate with an angular velocity of 3 
revolutions per sec, its angular velocity after 1 min being 
2 revolutions per sec. What is its angular velocity 3 min after 
the start of the rotation ? 

(2) The disc starts to revolve with an angular velocity of 5 
revolutions per sec, its angular velocity after 2 min being 
3 revolutions per sec. A t what instant, measured from the 
start of the rotation, will its angular velocity be 1 revolution 
per sec? 

4017. A bullet enters a board of thickness h = 10 cm with 
a speed v0 = 200 m/sec, and leaves after penetrating the 
board with a speed v1 = 80 m/sec. I f the resistance of the 
board to the motion of the bullet is proportional to the square 
of the latter's velocity, find how long it takes the bullet to 
pass through the board. 

4018*. A drop of water, of initial mass MQ g and 
evaporating uniformly at a rate of m g/sec, moves under the 
action of inertia with an initial velocity v0 cm/sec. The re-
sistance of the medium is proportional to the velocity of 
the drop and to its radius. The initial resistance (at t = 0) is 
/ 0 dynes. Find the velocity of the drop as a function of time. 

4019*. A drop of water, with an initial mass M0 g and 
evaporating uniformly at a rate of m g/sec, falls freely in air. 

equation and show that ν tends to 

4014. A force acts on a body, proportional to time. More-
over, the body is subject to the resistance of the medium, 
proportional to its velocity. Find the law of motion of the 
body (the path as a function of time). 

4015. A particle falls in a medium, of which the resistance 
is proportional to the square of the particle velocity. Show that 

the equation of motion ii - kv
2
, where k is a con-

stant, g is the acceleration due to gravity. Integrate this 
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The air resistance is proportional to the speed of the drop 
(coefficient of proportionality Jc). 

Find the speed of the drop as a function of time, as measu-
red from the initial instant, at which the speed of the drop is 
given as zero. Assume that k φ 2m. 

4020*. Solve the previous problem for a drop of spherical 
shape, assuming that the air resistance is proportional to 
the product of the speed and surface area of the drop. The 
density of the fluid is γ. (Reduce to quadratures.) 

4021. The natural growth in the population of a large town 
is proportional to the present number of inhabitants and the 
interval of time. Furthermore, the town population increases 
due to immigration: the rate of growth of the population by 
this means is proportional to time, measured from the instant 
when the population was equal to A0. Find the number of 
inhabitants as a function of time (assuming that the process is 
continuous). 

4022. A pickle, containing 10 kg of dissolved salt, is placed 
in a reservoir whose volume is 100 1. Water flows into the 
reservoir at a rate of 3 l./min, whilst the mixture is pumped 
at the same rate into a second reservoir whose capacity is 
also 100 1.; the second reservoir is originally filled with pure 
water, and the excess fluid pours out. How much salt will 
the second reservoir contain after an hour? What is the 
maximum amount of salt in the second reservoir ? When is 
the maximum amount reached? (The salt concentration in 
each of the reservoirs is kept uniform by mixing.) (See Course, 
sec 192). 

4023. The voltage and resistance in a circuit vary uniformly 
during 1 min, from zero to 120 V, and from zero to 120 ohms, 
respectively (see problems 3977-3978). The inductance is 
constant (1 Henry). The initial current is I0. Find the current 
as a function of time during the first minute. 

4024*. Gas is contained in a narrow horizontal cylindrical 
tube AB, which is hermetically sealed. The tube revolves 
uniformly about a vertical axis ΟΟλ (Fig. 69), passing through 



X I V . DIFFERENTIAL EQUATIONS 361 

one end, with an angular velocity ω. The length of the tube is 
1 cm, its cross-sectional area S cm

2
, the mass of the enclosed 

gas M g, the pressure p0 when the tube is at rest (constant 
throughout the tube). Find the pressure distribution along the 
tube, i.e. ρ as a function of x, when the tube is revolving. 

3, 
C D 

- — X - dX 

- 1 

- — X - dX 

- 1 

Γιο. 69. 

Further Examples of First-Order Equations 

Use substitution of the variables to reduce the equations of 
problems 4025-4037 to linear or homogeneous equations: 

4025. y' -
2y — χ — 5 

4026. y' = 
2* - y + l 

2x — y + 4 " χ 

4027. (χ + y + 1.) dx = (2x + 2y - 1) dy. 

2{y + 2)2 
4028. y' = 

4030. y' = 

(x + y - i )
2 

y
3 

4029. y' -

2y+ 1 

y
2
 — χ 

2y(x + 1) 

4031. (1 + y
2
) dx = χ dy. 

0. 

2(xy
2
 - x

2
) 

4032. (x
2
y

2
 —l)y' + 2xy

3 

4033. yy' + x = l^^J.
 4 0 3 4

·
 X

V' +
 1

 =
 ey

-

4035. (a;
2
 - f y

2
 + 1) dy + xy dx = 0. 

4036. # dx î/ dy -\- χ (x dy — y dx) = 0. 

4037. (x
2
 + y

2
 + y) dx = χ dy. 

Solve the Bernoulli equations of problems 4038-4047 
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4038. y' + 2xy = 2x3y3. 4039. y' -\ 1— + y* = 0. 

4040. y
n
-\ay' + y) = x. 4041. χ dx = — y

3
j dy. 

4042. xy' -\- y = y
2
 In χ. 

4043. y' — y tan χ + y
2
 cos a; = 0. 

4044. y' + ^ = Aî^L . 4045. xy' - 4 y - χ
2
 ^ = 0. 

X COS X 

4 0 4 6 . 2 / % - ^ ^ = ^ . 

4047. y' = ' , where œ(x) is a given function. 9
 <p(x)

 rw 0 

4048. Find the curve, such that the segment cut off the 
axis of ordinates (or of abscissae) by the tangent at any point 
is: 

(1) proportional to the square of the ordinate (or abscissa) 
of the point of contact ; 

(2) proportional to the cube of the ordinate (or abscissa) 
of the point of contact. 

4049. Find the curves, specified by equations of the form 
ρ = /(c)), for which the area of the sector, bounded by the 
curve and the radius vectors of a fixed point (ρ 0, φ0) and of 
a variable point (ρ, φ), is proportional to the product of the 
polar coordinates ρ and ψ of the variable point. The coefficient 
of proportionality is k. 

Exact Differential Equations 

Find the general solutions of the equations of problems 
4050-4057 : 

4050. (2x
3
 — xy

2
) dx + (2y

3
 — x

2
y) dy = 0. 

4051
 x

&y _ ( y i\dx 
" x

2
 + y

2
 1 χ

2
 + y

2
 J 

4052. ey dx + (xe* — 2y) dy = 0. 

4053. yxy-
1
 dx + χ̂  ln χ dy = 0. 
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4054. 
x dx + y dy y dx — x dy 

4055. 
γχ2 _|_ y2 X* 

y + sin x cos
2
 (xy) ^ 

cos
2
 (xy) 

cos
2
 (xy) 
x dy + sin y dy = 0. 

4056. ( l + χ γχ
2
 + y

2
) dx + ( - 1 + f a

2
 + y

2
) y dy = 0, 

Integrating Factors 

Find the integrating factor and general solution of the 
equations of problems 4058-4062 : 

4058. (x
2
 + y) dx - χ dy = 0. 

4059*. y (I + xy) dx — χ dy = 0. 

4060. (a
2
 + y

2
 + 2x) dx + 2y dy = 0. 

4061.
 y

- dx + (y
3
 - ln x) dy = 0. 

χ 
4062. (x cos y — y sin y) dy + (% sin y + y cos y) da = 0. 

[p(x)dx 

4063. Show that e J is the integrating factor of the 
dy 

linear equation ^ + -P(#)2/ = 

4064. Find the integrating factor of Bernoulli's equation 

4065. Find the conditions for which the equation 

admits of an integrating factor of the form M = F (χ + y ) . 

4066. Find the conditions for which the equation 

admits of an integrating factor of the form M = F(xy). 

y' + P(x) y = y«Q(x). 

X(x, y)dx+ Y(x, y) dy = 0 

X(x, y)dx+ Y(x, y) dy = 0 
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4067. y' = ax + by + c. 

x + y - 2 
4069. y' = 

4071. y' 

-lOHS. ay' + by + cy
m
 = 0. 

y
2
 -\- xy — x

2 

y — χ — 4 
a

2 

(* + y)
2
 ' 

4070. y' 
y

1 

4072. y' {y
2
 - x) = y. 

4073. 
2x dx y 

y* + 
3x

2 

dy = 0. 

4074. (2y + xy*) dx + (x + x
2
y

2
) dy = 0. 

4075. 12xy + x
2
y + Çj dx + (x

2
 + y

2
) dy = 0. 

4076. • = , ( 1+Γ , ' 
a; (Î/ + 1) — x

2 

4077. 3 + y dx + 2 /
2
( # dy — y dx) = 0. 

4078. 
(* - y) 

- f - \dy = 0. 

4079. y' = 3 Yy + 
xy 

1 

- y)
2
 y\ 

4080. y sin χ - f y' cos a; = 1. 

4081. y' — y + y
2
 cos 3 = 0. 

cos x sin y + tan
2
 χ 

4082. y' 
sin 3 cos y 

4083. xy' cos - = y cos - — 3. 
* 3 * 3 

4084. (3 cos - + y sin ^ | y dx + 
\ X X J 

+ 13 cos - — y sin - j χ dy = 0. 
I 3 3 J 

4085. y' = 
cos y 

tan y 

4086. y — y' cos χ = y
2
 cos 3 (1 — sin 3). 

3
2
 + y

2 

4087. 2yy' = e * + — — - 23. 

Various Problems 

Find the general solutions of the equations of problems 
4067-4088: 
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4 0 8 8 . + eyjdx + e ^ l - -J dy = 0. 

4089. Find the curve, such that the ratio of the subnormal 
at any point to the sum of the abscissa and ordinate of the 
point is equal to the ratio of the ordinate to the abscissa of 
the point. 

4090. Find the curve with the property, that the segment 
of the tangent at any point, contained between Ox and the 
straight line y = ax + b, is bisected by the point contact. 

4091. Find the curve for which the ratio between the 
distance from the normal at any point to the origin, and the 
distance from the same normal to the point (a, 6), is equal 
to a constant k. 

4092. Find the curve for which the distance from the origin 
to the tangent at any point is equal to the distance from the 
origin to the normal at that point. 

4093*. Find the curve with the following property: the 
ordinate of any point of it is the mean proportional between 
the abscissa and the sum of abscissa and subnormal drawn to 
the curve at that point. 

4094. A voltage is introduced uniformly (from zero to 
120 V ) during the course of two minutes into an electrical 

3 
circuit with a resistance R = - ohms. In addition, induct-

Δ 

ance is automatically introduced, so that the number of 
Henries in the circuit is equal to the current expressed in 
Amperes. Find the current as a function of time during the 
first two minutes of the experiment. 

2. Equations of the First Order (Continued) 

Tangent Field. Isoclines 
χ 

4095. Given the differential equation y' = — - , (a) draw 

the tangent field determined by the equation, (b) examine the 
disposition of a field vector with respect to the radius vector 
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of any given point of the field, (c) examine on the basis of 
the tangent field the form of the integral curves of the equa-
tion, (d) find the integral curves by solving the equation 
by the usual method (separation of the variables), (e) obtain 
the family of isoclines of the equation (see Course, sec. 196). 

4096. Write down the differential equations whose isoclines 
are: 

(1) rectangular hyperbolas xy = a; 
(2) parabolas y

2
 = 2px; 

(3) circles x
2
 + y

2
 = R

2
-

4097. Find the isoclines of the differential equation of the 
family of parabolas y = ax

2
. Draw a figure. Interpret the 

result geometrically. 

4098. Show that the isoclines of a homogeneous equation 
(and only of a homogeneous equation) are straight lines 
through the origin. 

4099. Indicate the linear equations whose isoclines are 
straight lines. 

4100. Let yv yv y3 be the ordinates of any three isoclines 
of a linear equation, corresponding to the same abscissa. 

Show that the ratio — — retains the same value, whatever 
2 / 3 - 2 / 1 

this abscissa. 

The Approximate Integration of Differential Equations 

Χ
2
 Ι ι/

2 

4101. Given the equation y' = ÏQ~' draw approxi-

mately the integral curve through the point M(1, 1) correspon-

ding to the interval 1 ^ χ ^ 5. 

4102. Given the equation y' = ν-7Γ-ι—— draw approxi-
(x

2
 + y

2
) 

mately the integral curve through the point (0*5, 0*5) corre-
sponding to the interval 05 ^ χ ^ 3*5. 

4103. Given the equation y' = xy* + x
2
, use Eider's 

method to evaluate y for χ = 1, if y is the particular solution 
satisfying the initial condition y\x=v = 0. Evaluate y to two 
decimal places. 
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4104. Given the equation y' = Yxy
2
 + 1, use Euler's 

method to evaluate y for χ = 2, if y is the particular solution 

satisfying the initial condition y | x=o = 0. Evaluate y to two 

decimal places. 

4105. Given the equation 

y
 2 

and the initial condition y \ x =0 = 1, solve the equation exactly, 

and find the value of y for χ = 0-9. Furthermore, find the 

value with the aid of an approximate method, by dividing 

the interval [0, 0*9] into 9 parts. Indicate the relative error 

in the latter result. 

4106. Given the equation 

y
 ~ χ* + y + ι 

and the initial condition y \Xss\ = 0, solve the equation exactly, 

and, by using any of the approximate methods of integration 

of equations, find the value of χ for y = 1 (compare with the 

value of χ obtained from the strict solution). 

4107. y' = y
2
 + xy + x

2
. Find by the method of successive 

approximations the second approximation for the solution, 

satisfying the initial condition y\x=o = 1. 

4108. y' = xy
z
 — 1. Find the value at χ = 1 of the solution 

of the equation that satisfies the initial condition y\x=o = 0. 

Go as far as the third approximation in the method of suc-

cessive approximations. 

Work to two decimal places. 

Find the first few terms of the expansions in power series of 

the solutions of the equations of problems 4109-4116, with 

the indicated initial conditions : 

4109. y' = y*- x; y \ x =0 = I. 

4110. y' = x
2
y

2
-l; y \ x =0 = 1. 

4111. y' = x
2
- y

2
; y \ x =0 = 0. 

4 1 1 2 . ^ = 1 ^ + 1 ; y | x . 0 = l . 
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3 dy 
4129. y = px + α y 1 — p*, where ρ = ^ . 

4130. x = y[-jL — - 1 , where ρ = ^ . 

Find the singular solutions of the equations of problems 
4131-4133, by employing the same method as is used in the 
case of Lagrange and Clairaut equations (see Course, sec. 
197): 

4131. y'
2
 - yy' + e* = 0. 

4132. x
2
y'

2
 — 2(xy — 2) - y' + y

2
 = 0. 

4133. y\y' - 2x) = 2(y - x
2
). 

4134. Prove the theorem : if a linear differential equation 
is of Clairaut's type, the family of its integral curves consists 
of a pencil of straight lines. 

4114. y' = ey + xy; y\x=0 = 0. 

4115. y' = sin y — sin x; y\x=o = 0. 

4116. y' = 1 + χ + x
2
 - 2?/

2
; 2 / | X =1 = 1. 

Singular Solutions. Clairaut's Equation and Lagrange's 
Equation 

Find the general and singular solutions of the Clairaut and 
Lagrange equations of problems 4117-4130: 

4117. y = xy' + y'
2
. 4118. y = xy' — 3y'

3
. 

4119. y = x y ' + y . 4120. y = xy' + γΐ + y'
2
. 

4121. y = xy' + sin y'. 4122. y = 2xy' + y
2
y'

s
. 

4123. y = y'
2
(x + 1). 4124. 2yy' = x(y'

2
 + 4). 

4125. y = yy'
2
 + 2xy'. 4126. y = x ( l + y') + y'

2
. 

4127. y = y' + y . 4128. y = y'(x + 1) + y'
2
. 
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4135. The area of a triangle formed by the tangent to a 
curve and the coordinate axes is constant. Find the curve. 

4136. Find the curve, the tangents to which cut out seg-
ments on the coordinate axes such that the sum of the seg-
ments is 2a. 

4137. Find the curve, such that the product of the dis-
tances of any tangent from two given points is constant. 

4138. Find the curve, for which the area of the rectangle, 
whose sides are the tangent and normal at any given point, 
is equal to the area of the rectangle, whose sides are equal in 
length to the abscissa and ordinate of the point. 

4139. Find the curve, for which the sum of the normal 
and subnormal is proportional to the abscissa. 

4140*. Find the curve, for which the segment of the nor-
mal lying between the coordinate axes is of constant length a. 

4141. The velocity of a material particle at any instant 
differs from the average velocity (from the initial to the 
present instant) by an amount, proportional to the kinetic 
energy of the particle, and inversely proportional to the 
time, measured from the initial instant. Find the path as a 
function of time. 

Orthogonal and Isogonal Trajectories; Involutes 

Find the trajectories orthogonal to those given in problems 
4142-4147: 

4142. The ellipses with a common major axis equal 
to 2a. 

4143. The parabolas y
2
 = 4(3 — a). 

4144. The circles χ
2
 + V

2
 = 2aa\ 

4145. The cissoids (2a — x) y
2
 = x

z
. 

4146. The equal parabolas touching a given straight line, 
the point of contact of each parabola being its vertex. 

4147. The circles of equal radius whose centres lie on a 
given straight line. 
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3. Equations oî the Second and Higher Orders 

Particular Cases of Second-Order Equations 

Find the general solutions of the equations of problems 
4155-4182: 

4155. y" = χ + sin x. 4156. y" = arc tan x. 

4157. y" = ln x. 4158. xy" = y'. 

4159. y" = y' + x. 4160. y" = ^- + x. 
χ 

4161. (1 + x
2
) y" + (y'f + 1 = 0. 

4162. xy" = y ' l n ^ . 4163. {y"f = y'. 
X 

4164. 2xy'y" = (y')
2
 + 1. 4165. — 2 cot x y' = sin

3
 a;. 

4166. 1 + {y'f = 2yy". 4167. ( ι / ' )
2
 + 2yy" = 0. 

4148. Find the family of trajectories intersecting at an 
angle α = 60° the curves x

2
 = 2a(y — x flï) (a is a para-

meter). 

4149. Find the isogonal trajectories of the family of para-
bolas y

2
 = éax, the angle of intersection being α = 45°. 

4150*. Find the plane sound distribution curves from a 
fixed acoustic source in the plane, if a wind blows with constant 
velocity α in a direction parallel to a given straight line pass-
ing through the source. 

Find the involutes of the curves of problems 4151-4154 
(see Course, sec. 82): 

4151. The circle x
2
 + y

2
 = R

2
. 

χ 
4152. The catenary y — a cosh - . 

4153. The involute of the circle 

x == a(cos t + t sin t), y = a(sin t — t cos t). 

4154. The semicubical parabola y = 3t
2
, χ = — 2ί

3
. 
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4168. α Υ ' - y = 0. 4169. y" = - ί -
é\y 

4170. y" + - | - (yy = 0. 4171. yy" + (y')* = 1. 

4172. yy" = (ί/ ')
2
· 4173. 2yy"- 3 ( 2 / ' )

2
 = 4i/

2
. 

4174. y(l - ln y) 2/" + (1 + ln y) ( Î / ' )
2
 = 0. 

4175. y" = 22/2/'. 
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4177. 2/2/" - (y')
2
 = t/V- 4178.yy" - yy'lay = (y'f. 

4179. 2/" = 2 / ' ( y - 2 ] /
r

| - 4 J . 

4180. + a) y" + x{y')* = j , ' . 

4181*. 2/2/'2/" = ( 2 / ' )
3
 + (y'T-

4182. a ^ ' - j ( 2 / " ) 
1
 ' - y' = 0. 

Solve the equations of problems 4183-4188 with the aid 
of the appropriate substitution : yy' = p, (y')

z
 = p, xy' = p, 

y' — = p, etc. 
y 

4183. xyy" + x{y'f = Syy'. 4184. xy" = y'(ev- 1). 

4185. yy" + (y'f = x. 4186. y" + \ y' - ^ = 0. 

4188. yy" = y'(2YyJ' - y'). 

Find the particular solutions of the equations of problems 
4189-4199 with the stated initial conditions: 

4189. y"(x* + 1) = 2xy'; y\x=0 = 1, y'\x=o = 3. 

4190. xy" + x(y'f - y' = 0; y | » _ 2 = 2, y ' | » - 3 = 1. 

4191. 2/" = ^ + | ί ; 2/U=2 = 0, 2/'U=2 = 4. 
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4192. 2y" = 3z/
2
; y|x 2 = 1. y ' l * - 2 = — 1. 

4193. yy" = {y'f - {y'f; y\x=\ = 1. y ' l « - i = — 1. 

4194. y
3
y" = - 1 ; y | * - i = 1. y'\*=i = 0. 

4195. y* - y*y" = 1 ; y|*-o = Y*. y'\x-o = 2 

4196. y" = e
2
>"; y | « - o = o, y'U-o = 1. 

4197. 2{y'f = y"{y- 1); = 2, î , ' | * - i = — 1. 

4198*. x y = - xy')
3
 ; 1. 1. 

4199. y" = * j , ' + y + 1; 2/U=o = 1. » ' | « - o = 0. 

4200*. What curve has the property that the radius of 

curvature at any point is proportional to the length of the 

normal? Take as the coefficient of proportionality k = —1, 

+ 1, - 2 , + 2 . 

4201. Find the curve, for which the projection of the 

radius of curvature on Oy is constant, equal to a. 

4202. Find the curve through the origin such that the 

area of the triangle MTP (Fig. 70), formed by the tangent at 

any given point M of the curve, the ordinate MP of M and 

the axis of abscissae, is proportional to the area OMP of 

the curvilinear triangle. 

0 

.y 

u 

• Τ P 

F I G . 70. 

4203. Find the curve, the length of arc of which, measured 

from a given point, is proportional to the slope of the tangent 

at the final point of the arc. 

4204. A particle of mass m is thrown vertically upwards 

with initial velocity v0. The air resistance is equal to kv
2
. 



X I V . DIFFERENTIAL EQUATIONS 373 

Thus, if we take the vertical as Oy, we have for the move-
ment upwards: 

m -^φ = —mg — kv
2
, 

and during the fall: 

m ^ = —mg + kv
2
, 

dy 
where ν = . Find the velocity of the particle at the 

instant when it reaches the ground. 

4205. A thin, flexible, inextensible cord is suspended from 
both ends. What is the equilibrium shape of the cord under 
the action of a load, uniformly distributed along the projection 
of the cord on the horizontal plane ? (The weight of the cord 
is neglected.) (See Course, sec. 200). 

4206. Find the law of rectilinear motion if it is known 
that the work done by the force is proportional to the time 
measured from the initial instant of the motion. 

4207*. A light ray from air (refractive index m 0) is inci-
dent at an angle a0 from the vertical on a liquid with variable 
refractive index. The latter depends linearly on the depth 
and is constant in a plane parallel to the horizontal; it is 
equal to mx on the surface of the liquid, and equal to m2 

at a depth h. Find the shape of the light ray in the liquid. 
(The refractive index of a medium is inversely proportional 
to the velocity of propagation of the light.) (See Course, 
sec. 70.) 

Particular Cases of Higher Order Equations 

Find the general solutions of the equations of problems 
4208-4217: 

4208. y'" = - . 4209. y'" = cos 2x. 

χ 
4210. 2/<x> = ea*. 4211. x2y"' = (y")z. 

4212. xy™ = ydv). 4213. y'" = {y"f. 

4214. y'y'" = 3(ΐ/")
2
· 4215. yy'" - y'y" = 0. 
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4216. y"'[l + ( y ' )
2
] = WW'?-

4217. (y")
2
 - y'y'" = 

Approximate Solutions 

4218. A differential equation of the form y" = fx(x) + 
+ fziy) 4-/3(2/') is encountered when investigating the vibra-
tions of a material system with one degree of freedom. 

Solve this equation graphically, if: 

(1) m = ο, h(y) = - Yy, W ) = ^y
r
 and' 

y\x±o = y'\x±o = 0; 

(2) fx(x) = -xf f2(y) = 0, / s(y ' j = - O ' l y ' - 0-lj,'» a nd 

2/|x=o = y'|x«o = 1. 

4219. y" = yy' - » μ 0 = 1, Y |*~o = 1. 

(1) Solve the given equation graphically. 

(?) Find the first few terms of the expansion of the solution 
in a power series. 

4220» Find the first six terms of the expansion in a series 

v' 1 
of the solution of ' the differential equation y" =- , 

y χ 
satisfying the initial conditions y\x±\ = 1, y'\x=i = 0. 

4221. Obtain in the form of a power series the particular 
solution of the equation y" = χ sin y', satisfying the initial 

conditions y\x=\ — 0, y'\x=\ = r̂ . (Take the first six terms.) 

4222. Find in the fortn of a power series the particular 
solution y = f(x) of the equation y'

f
 = xyy

f
, satisfying the 

initial conditions /(0) = 1, / ' (0) = 1. I f we confine ourselves 
to the first five terms, will this be sufficient to evaluate 
/(—0*5) to an accuracy of 0Ό01 ? 

4223. Find the first seven terms of the series expansion of 
the solution of the differential equation yy" + y' + y — 0, 
satisfying the initial conditions 2/|x=o = 1, 2/'|x=o = 0. Of 
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what order of smallness is the difference y — (2 — χ — e~
x
) 

as χ -+ 0? 

4224. Find the first 12 terms of the series expansion of the 

solution of the differential equation y" - f yy
1
 — 2 = 0, 

satisfying the initial conditions 2/|x=o = 0, y'|x=o = 0. Evalu-
1 

ate j y dx to an accuracy of 0*001. Evaluate y'\x=o-5 to an 

accuracy of 0*00001. 

4225*· An electrieal circuit is made up of an inductance 

L = 0*4 Henry in series with an electrolytic bath. The bath 

contains a litre of water, acidified with â small quantity of 

sulphuric acid. The water is decomposed by a current, with 

the result that the concentration, and hence the resistance of 

the solution in the bath is variable. The voltage is held 

constant (20 V ) at the terminals. The amount of substance 

decomposed by electrolysis is proportional to the current, 

the time and the electrochemical equivalent of the substance 

(Faraday's law). The electrochemical equivalent of water is 

equal to 0*000187 g/coulomb. The resistance of the solution 

at the start of the experiment is R0 = 2 ohm, and the initial 

current is 10 amp. Find the volume of water in the vessel as 

a function of time (in the form of a power series). 

4226*· An electrical circuit is made up of an inductance 

L = 0*4 Henry in series with an electrolytic bath, the initial 

resistance of which is 2 ohm. The bath contains a litre of 

water in which 10 g of hydrogen chloride are dissolved. The 

acid is decomposed by a current, with the result that the 

concentration of the solution varies (cf. the previous problem, 

where the amount of dissolved substance does not vary, but 

the volume of the solution varies). The voltage at the termi-

nals of the circuit is 20 V, the electrochemical equivalent k 

of hydrogen chloride is equal to 0*000381 g/coulomb, the 

initial current is 10 amp. Find the amount of hydrochloric 

acid in the solution as a function of time (in the form of a 

power series). 
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is also a solution. Prove this by three methods: 
(1) by direct verification, (2) by substituting y = yxz, 

(3) by using Ostrogradskii's formula (see Course, sec. 202). 

4233. By using the formula of problem 4232, find the 
general solution of the equation (1 —- x

2
) y" — 2xy* + 2y = 0, 

knowing its particular solution yx = x. 
2 

4234. Solve the equation y" + - y' + y = 0, knowing its 

particular solution y1 =
 S m X

 . 
χ 

4235. The equation (2x — x2) y" + (x2 — 2) y' + 
+ 2(1 — x) y = 0 has a solution y = e

x
. Find the solution 

satisfying the initial conditions y\x=\ = 0, y'\x=\ = 1. 

y" + y'P(x) + yQ(x) = 0, 
then 

4. Linear Equations 

4227. The functions a
3
 and a

4
 satisfy a certain homogeneous 

linear differential equation of the second order. Show that 
they form a fundamental system, and form the equation. 

4228. The same for the functions e
x
 and x

2
e

x
. 

4229. The functions x, a
3
, e

x
 form a fundamental system 

of solutions of a third order linear homogeneous equation. 
Form this equation. 

4230. The functions x
2
 and a

3
 form a fundamental system 

of solutions of a second order linear homogeneous equation. 
Find the solution of this equation satisfying the initial condi-
tions y\x==i = 1, y'\x=\ = 0. 

4231. The functions cos
2
 χ and sin

2
 χ satisfy a certain 

linear homogeneous equation of the second order : 
(a) prove that they form a fundamental system of solutions ; 
(b) form the equation; 
(c) show that the functions 1 and cos 2x form another 

fundamental system for this equation. 

4232*. I f y1 is a particular solution of the equation 
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4236*. Find the necessary and sufficient condition for the 
equation y" + y'P{

x
) — yQ(

x
) = 0 to have two linearly 

independent solutions y± and y2, satisfying the condition 

4237*. Find the general solution of the equation 

(1 - x
2
) y" - xy' + 9y = 0, 

if its particular solution is a third-degree polynomial. 
I t is easy to pick out a particular solution of the equations 

of problems 4238-4240 (excluding the trivial solution y = 0). 
Find the general solutions of these equations : 

4238. y" — (tan x) y' + 2y = 0. 

4239. y" - y' +
 y
- = 0. 
χ 

4241. Find the general solution of the equation 

x*y'" — 3x
2
y" + 6xy' - 6y = 0, 

knowing the particular solutions yx = χ and y2 = x
2
. 

Find the general solutions of the non-homogeneous equa-
tions of problems 4242-4244 : 

4242. x
2
y" — xy' + y = 4x

3
. 

4243. y" - ^ y' + ^ y = ζ - 1. 

4244. (3a? + 2x
2
) y" - 6(1 + x) y' + ßy = 6. 

4245. The equation (1 + x
2
) y" + 2xy' — 2y = 4x

2
 + 2 

has the particular solution y = χ
2
. Find the solution satisfy-

ing the conditions y\x=-\ = 0, y'\x=-\ — 0. 
4246. Find the first six terms of the expansion in a power 

series of the solution of the differential equation y" — 
•— (1 + x

2
) y — 0, satisfying the initial conditions y | x =o = — 2 , 

2 / V o = 2. 
4247. Find the first nine terms of the expansion in a power 

series of the solution of the differential equation y" = x
2
y — 

— y', satisfying the initial conditions y|*=o = 1> 2/'|χ=ο
 =
 0· 
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4248· Write as a power series the particular solution of the 

equation y" — xy' + y — 1 = 0; y\x=0 = 0, 2/'|*=o = 0. 

4249. Write as a power series the general solution of the 
equation y" = ye

x
. (Take the first six terms.) 

4250. Write as a power series the general solution of the 
equation y" + xy' — x

2
y = 0. (Take the first six terms.) 

Equations with Constant Coefficients 

Find the general solutions of the equations of problems 
4251-4261: 

4251. y" + y' - 2y = 0. 4252. y" - 9y = 0. 

4253. y" - 4y' = 0. 4254. y" - 2y' - y = 0. 

4255. Zy" - 2y' - Sy = 0. 4256. y" + y = 0. 

4257. y" + 6y' + IZy = 0. 4258. 4y" - 8y' + 5y = 0. 

4259. y" — 2y' + y = 0. 

4260. 4 ^ - 2 0 ^ + 2 5 3 - 0 . 
d£

2
 d£ 

4261. 2y" + 2/' + 2 sin
2
 15° cos

2
 15°y = 0. 

Find the solutions of the equations of problems 4262-4264 
satisfying the stated initial conditions: 

4262. y"-4y'+ 3y = 0; 2/|x=o = 6, y'\x=0=\0. 

4263. y" + ±y' + 29y = 0; y|*-o = 0, 2 / ' | *=o=15. 

4264. 4 2 / " + 4^ + 2/ = 0; y|*-o = 2, j / ' |*-o = 0. 

4265. Given that 2/1 = c
mx

 is a particular solution of a 
certain linear homogeneous equation of the second order 
with constant coefficients, and that the discriminant of the 
corresponding characteristic equation vanishes, find the 
particular solution of the equation which, together with its 
derivative, becomes unity for 3 = 0. 

4266. Find the integral curve of the equation y" + dy = 0, 
passing through the point Μ (π, — 1) and touching the straight 
line 2 / + l = 3 — π at this point. 

4267. Find the integral curve of the equation y" + Icy = 0, 

passing through the point M(x0, y0) and touching the straight 

lin© y — 2/0 = °K
X
 # 0 )

 a
^ ^

s
 point. 
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Form the general solutions of the non-homogeneous equa-
tions of rjroblems 4268-4Î282, by finding their particular 
solutions either by inspection (see Course, sec. 205), or by 
the method of variation of the arbitrary constants (see 
Course, sec. 203), or by using the general formula (see Course, 
sec. 206): 

4268. 2y" + y
f
 — y = 2e

x
. 4269. y" + a

2
y = e

x
. 

4270. y" — 7y' + % = sin x. 

4271. y" + 2y' + 5y = — ^ c o s 2x. 

Δ 
4272. y" — Qy' + 9y = 2a;2 - χ + 3. 

4273. y" — 2y' + 2y = 2x. 4274. y" + éy' — 5y = 1. 

4275. y" — 3«/' + 2y = f(x), if f(x) is equal to: 

(1) 10e-*; (2) 3e
2

*; (3) 2 sin a;; (4) 2a;
3

—30; (5 )2e*cos | ; 

(6) a; - e "
2x
 + 1 ; (7) e

x
 (3 — 4a;); (8) 3a; + 5 sin 2a;; 

(9) 2e
x
 — e~

2 x
; (10) sin χ sin 2x\ (11) sinh a;. 

4276. 2y" + 5y' = f(x), if /(a;) is equal to: 

(1) 5a;
2
 — 2x — 1; (2) e

x
; (3) 29 cos a;; (4) cos

2
 a;; 

(5) O-le"
2 5x

 — 25 sin 25a;; (θ) 29a; sin x\ 

(7) 100a;e
_x
 cos x; (8) 3 cosh ^ x. 

Δ 

4277. y" — 4y' + 4y = /(a;), if /(a;) equal to: 

(1) 1; (2) e-*; (3) Se^; (4) 2(sin2a; + z ) ; 

(5) sin χ cos 2a;; (6) sin
3
 a;; (7) 8 (x

2
 + e

2x
 + sin 2a;); 

(8) sinh 2a;; (9) sinh χ + sin x; (10) e
x
 — sinh (χ — 1). 

4278. y" + y = f(x), if /(a;) is equal to: 

( I ) 2a;
3
 — χ + 2; (2) —8 cos 3a;; (3) cos x\ 

(4) sin χ — 2e~
x
; (5) cos ai cos 2a;; (6) 24 sin

4
 x\ (7) cosh x. 

4279. 5*/" — 6y' + 5y = /(a;), if /(a;) equal to: 

- 4 
(1) 5e

5
 * ; (2) sin - x; (3) e

2x
 + 2a;

3
 - χ + 2; 
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x
2
 + 1 " 

4282*. y" — y' = f(x), if f(x) is equal to: 

e
x 

(1) l e X| (2) e
2 x

] / l — e
2 x

; (3) e
2x
 cos e

x
. 

Find the particular solutions of the equations of problems 
4283-4287, satisfying the stated initial conditions : 

_ 
4283. 4y" + 16*/' + 15y = 4e

 2
 * ; y | X e0 = 3, 

y ' | x=o = —5*5. 

4284. y" - 2y' + lOy = I0x
2
 + ISx + 6; y | x =0 = 1, 

2/'U=o = 3-2. 
4285. y" - y' = 2(1 - a ) ; y | x =0 = 1, 2/' |x=o = 1. 

4286. y" - 2y' = e
x
(a

2
 + χ - 3); y | x =0 = 2, y ' | x =0 = 2. 

4287. y" + y + sin 2a = 0; y | x = ?t = y ' | x =* = 1. 
4288*. Show that the particular solution y of the second-

order equation with constant coefficients and right-hand side 
AeP* (p and A are real or complex numbers) has the form 
_ A 
y = - e^x, if ρ is not a root of the characteristic equation 

ALX 
φ(τ) == a0r

2
 + axr + a2 = 0 ; y =

 e PX
 if ρ is a simple 

root of the characteristic equation ; y = v e^
x
 if ρ is a 

?> (P) 
double root of the characteristic equation. 

Find the general solution of the Euler equations of prob-
lems 4289-4292 (see Course, sec. 208) : 

4289. x
2
y

n
 — 9ay' + 21y = 0. 4290. x

2
y" + xy' + y = χ 

4291. y" -
 V

- + \ = - . 
9
 a a

2
 a 

4292. a
2
y" — 2ay' + 2y + a — 2a

3
 = 0. 

3 3 A 
— χ — χ 4 

(4) e
5
 cosa; (5) e

5
 s i n - a ; (6) 13e

x
 cosh a. 

Ö 

4280. y" + y + cot
2
 χ = 0. 

4281. y" -2y' + y
 e

* 
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4293. I f the axis of a turbine shaft is arranged horizontally, 
and if the centre of gravity of a disc fastened to the shaft 
does not He on the axis, the bending y (Fig. 71) of the shaft 
axis satisfies on rotation the equation 

where m is the mass of the disc, α is constant number, depend-
ing on the type of clamping of the ends A and JB, ω is the 
angular velocity of rotation, and β is the eccentricity of the 
centre of gravity of the disc. Find the general integral of 

4294. A material particle of mass 1 g is repelled along 
a straight line from a certain centre with a force, proportional 
to its distance from this centre (coefficient of proportionality 
4). The resistance of the medium is proportional to the velo-
city (coefficient of proportionality 3). A t the initial instant the 
distance from the centre is 1 cm, and the velocity is zero. 
Find the law of motion. 

4295. A particle of mass 1 g moves along a straight 
line towards a point A under the action of a force of attraction 
proportional to its distance from point A. A t a distance of 
1 cm, the force acting is 0-1 dynes. The resistance of the me-
dium is proportional to the velocity and is equal to 0*4 dynes 
at a velocity of 1 cm/sec. A t the instant t = 0 the par-
ticle is situated 10 cm to the right of point A and its 
velocity is zero. Find the distance as a function of time 
and work out this distance for t = 3 sec (to an accuracy 
of 0-01 cm). 

F I G . 7 1 . 

this equation. 
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4296. A material particle of mass m moves along a straight 
line from A to Β under the action of a constant force F. The 
resistance of the medium is proportional to the distance of the 
particle from Β and is equal to / ( / < F) at the initial instant 
(at point ^4). The initial velocity is zero. How long does it 
take the particle to move from A to ΒΊ (AB = α). 

4297. A body of mass 200 g is suspended from a spring and 
moved from its position of rest by pulling out the spring 2 cm, 
after which it is let go (without initial velocity). Find the 
equation of motion of the body, assuming that the resistance 
of the medium is proportional to the velocity. I f the body 
moves with a velocity of 1 cm/sec, the medium displays a 
resistance of 0*1 g; the spring tension when it is extended 
2 cm is equal to 10 kg. 

The weight of the spring is neglected. 

4298. A small cylindrical block of wood (8 = 100 cm
2
, 

h = 20 cm, γ = 0*5 g/cm
3
) is completely submerged in water 

and let go without initial velocity. Assuming that the friction 
force is proportional to the height of the submerged part, 
find what the coefficient of proportionality k must be for 
precisely half the block to appear above the water surface 
as a result of its first rise. 

How long (tx) does the first rise last ? 

What is the equation of motion during the first rise ? 

4299*. A long thin pipe rotates with constant angular 
velocity ω about a vertical axis perpendicular to it. A small 
sphere of mass m is situated inside the pipe at a distance aQ 

from the axis at the initial instant. Assuming that the velocity 
of the sphere relative to the pipe is zero at the initial instant, 
find the law of relative motion of the sphere. 

4300. Solve the previous problem on the assumption that 
the sphere is fixed to a point Ο via a spring. The spring force 
acting on the sphere is proportional to the spring deformation, 
and a force of k dynes produces a 1 cm change in length of 
the spring. The length of the spring in the free state is a0. 
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Equations of Higher Orders 

Find the general solutions of the equations of problems 
4301-4311: 

4301. y'" + 9y' = 0. 

4302. 2 /
( I V)

 — lty" + 36j/ = 0. 

4303. y(™) = 8y" - I6y. 4304. 2 /
( I V)

 = I6y. 

4305. y'" - Uy' - I2y = 0. 

4306. y'" - ?>y" + Zy' - y = 0. 

4307. 2 / <
I V

> + 2y" + y'" = 0. 4308. 2 /
( N)
 = y(

n
~

2
\ 

4309. 2 /
( I V

> + y = 0. 

4310. 64ι/<
νΙΙΙ

> + 48Î/<
vi
> + 12j/<

IV
> + y" = 0. 

4311. î,(") + \yC-« + ^ - ^ -
)
 î,(»-»> + . . . + \y' + 

+ 2/ = 0 
4312. y"' = - 2 / ' ; î , | x -O = 2, Y'U=o = 0, y " | X . O = - l . 

4313. J , ( V ) = 2/'; J , | X_ 0 = 0, Y ' | x =0 = 1. Y " | , - O = 0, 

î , " ' | x - O = L 2 /
( I V )

U = O = 2 . 
Obtain the general solutions of the non-homogeneous 

equations of problems 4314-4320, by finding their particular 
solutions, either by inspection (see Course, sec. 205), or by the 
method of variation of the arbitrary constants (see Course, 
sec. 203), or by using general formula (see Course, sec. 206) : 

4314. y'" — 4y" + 5y' — 2y = 2x + 3. 

4315. y'" - 3Î/' + 2y = e~
x
(4x

2
 + 4x - 10). 

4316. ?/<
IV
> + 8y" + 16y = coax. 

4217. 2 /<
I V

> + 2a
2
y" + ah) = cos ax. 

4318. 2/<
V
> + y'" = x

2
 - 1. 

4319. j /
( I V)

 — y = ass* + cos x. 

4320. t /
I V

> — 2t/" + y = 8(e* + e~*) + 4(sin χ + cos a;). 

4321. y'" + 2y" + y' + 2e~
2
* = 0; y | x . 0 = 2, 

2/'|*=o = 1, «/"|*=o = I-

4322. Y ' " - 2/' = 3(2 - x
2
); y\x=0 = Y ' | X. O = Y " U - O = 1. 

4323. Solve Euler's equation a;
3
2/"' + xy' — 2/ = 0. 
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4324. < 

dx 

~dt 

dy 

dt 

= y — 7x, 

+ 2x + 5y = 0. 
4325. < 

dx 

4326. < 

4328. { 

(dx Λ . 
— = 2y — 5x + e', 

dt 

y = 

= χ — 6y + e
- 2

' . 

x + y 
ζ ' 

x — y 

y 
2xy 

4330. 

2 = 

χ
2
 — y

2
 — z

2 

2X2 

4327. 

4329. 

4331. 

f = x + e' + e-' . 

I = y, 

IX22' + x2 + y2 = 0. 

ι ζ = y' (ζ - y)
2 

' 2/ = z'(z - t /)
2
 ' 

4332. < 

a;2 J/
2
 — 2

2 

(. dx dy , „ . , 

da; 

4333. 

4335. 

dt 

\dt
2 

| &
2 

da: 

+ y = cos 

4334.{ 

= y-

(tfx.dy 

dt* ^ dt 

àx d
2
y _ 

d* ^ d *
2
 ~~ 

dy 

z — y x — z y — x 

Find the particular solutions of the systems of differential 

equations of problems 4336-4339, satisfying the stated initial 

conditions : 

(dy y
2
 — yz 

4336. < 
da; x

2
 — yz 

dz Φ + y) 
[dx χ

Δ
 — yz > 

> y|x=o = i; 

z|x=o = —l. 

5. Systems of Differential Equations 
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4337. { 

4338. 

4339. 

dx 

dt 

dy 
dt 

dx 
dt 

dt 

dz 

dt
 : 

(dx 

dt' 

dy 

dz 

dt '' 

1
 t

 9 x\t=\ = 3' 

ι .
 2

* I
 1 

= 2 + Y — S , 

= ζ + χ — y, x\t=o = ί; 
2/1 ί=ο = ζ|/=ο = 0. 

x + y + ζ, 

y + z, x\t=o = —ι, 

+ y | i-o = ί; 

z + y z\t=zQ = o. 

4340. Find the pair of curves with the following property: 

(a) tangents at points with the same abscissae intersect on 

the axis of ordinates; (b) normals at points with the same 

absissae intersect on the axis of abscissae; (c) one of the 

curves passes through the point (1, 1), the other through 

(1. 2). 

4341. Given two curves: y = f(x), through the point 
X 

(0, 1), and y =jf(
x
) dx, through the point

 8 U
° k *^

a
* 

—oo 

the tangents to both curves at points with the same abscissae 
intersect on the axis of abscissae, find y = f(x). 

4342. Find the spatial curve through the point (0, 1, 1) 
with the following properties: (a) when the point of contact 
moves along the curve, the trace of the tangent on the yOx 
plane describes the bisector of the angle between the positive 
directions οΐΟχ and Oy; (b) the distance of this trace from 
the origin is equal to the ζ coordinate of the point of contact. 
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4343. Two small spheres, each of mass m, are joined by a 
very light spring (the extension of which is proportional to 
the extending force). The length of the unextended spring is 
l0. The spring is extended to a length l v then at the instant 
t = 0 both spheres, situated one above the other, start to 
fall (the resistance of the medium is neglected). After Τ 
sec the length of the spring is shortened to Z0. Find the law 
of motion of each sphere. 

4344. A horizontal pipe revolves about a vertical axis with 
angular velocity 2 radians per sec. Two small spheres of 
mass 300 g and 200 g are situated in the pipe, and joined 
by a very light spring of length 10 cm, the heavier of the 
spheres being the further from the axis of rotation. A force of 
24000 dynes extends the spring 1 cm, whilst the centre of 
gravity of the system of spheres is 10 cm from the axis of 
rotation. The spheres are maintained in position by a certain 
mechanism. At the instant, which we take as the initial ins-
tant, the mechanism is put out of action, and the spheres 
start to move. Find the law of motion of each sphere relative 
to the pipe. (Friction is neglected.) 

4345. The rate of growth of a culture of micro-organisms 
is proportional to the quantity of them and the amount of 
nutrient (coefficient of proportionality k). The rate of decrease 
of the nutrient is proportional to the initial quantity of micro-
organisms and time (coefficient of proportionality kx). At the 
start of the experiment there are A0 g of micro-organisms 
and B0 g of nutrient in the vessel. Find the amount A of 
micro-organisms and the amount Β of nutrient as functions 
of time. 

4346*. Suppose that bacteria multiply at a rate proportio-
nal to the initial amount (coefficient of proportionality a), 
but that poisons are at work at the same time, destroying 
them at a rate proportional to the amount of poison and the 
amount of bacteria (coefficient of proportionality 6). Further, 
suppose that the rate of working of the poisons is proportional 
to the initial amount of bacteria (coefficient of proportional-
ity c). The number of bacteria increases at first up to a 
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certain maximum value, then decreases, tending to zero. 
Show that, for any instant t, the number Ν of bacteria is 
given by 

N == ±
M 

( e « + e -
w
)

2
 ' 

where M is the greatest number of bacteria and time t is 
measured from the instant when Ν = M, k being a constant. 

4347. Two cylinders, the bases of which lie in the same 
plane, are joined at the bottoms by a capillary tube, and are 
filled with liquid to different heights (H1 and H2). The volume 
of liquid flowing through the tube in unit time is proportional 
to the difference in the heights, i.e. is equal to α ( \ — h2), 
where α is a coefficient of proportionality. Find the law of 
variation of the heights of the fluid in the vessels above the 
capillary tube. The cross-sectional areas of the vessels are 
S1 and S2. 

6. Numerical Problems 

4348. One kilogramme of water, the specific heat of 
which is reckoned constant (1 cal/deg), and the initial temper-
ature of which is 0O, is heated by an electrical device sub-
merged in the water, the resistance R of which depends line-
arly on the temperature 0: R = R0(l + 0*0040), where R0 

is the resistance at 0° C (the law holds for the majority of 
pure metals). The heat insulation of the vessel is so good that 
heat transmission may be neglected. Find the temperature 
0 as a function of time t in the interval 0 ^ t ^ T, if : 

(1) The voltage Ε is introduced uniformly from Ε = 0 
to Ε = E1 in the course of Τ sec. Calculate to an accuracy 
of 1° the number of degrees by which the temperature is raised 
at the end of the 10th minute, if 0O = 0°, E1 = 110 V, R0 = 10 
ohms and Τ = 10 min. 

(2) The current is alternating and the voltage varies in 
accordance with the law Ε = E0 sin 100π£. Calculate to an 
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accuracy of 1° the number of degrees by which the tempera-
ture of the water is raised at the end of the 10th minute, 
if 0O = 0°, E0 = 110 V and R = 10 ohms. 

4349. A litre of water is heated by a spiral with a resistance 
of 24 ohms. The water gives out heat to the surrounding me-
dium, which has a temperature of 20° C (the rate of cooling is 
proportional to the temperature difference between body and 
medium). We also know that, if the current is switched off, 
the water temperature drops from 40° to 30° in 10 min. The 
initial water temperature is 20° C. To what temperature is the 
water heated after 10 min, if: 

(1) The voltage is introduced uniformly from E0 = 0 to 
E1 = 120 V during 10 min? Accuracy: 0-1°. 

(2) The current is alternating, and the voltage variation is 
given by Ε = 110 sin 100πί? Accuracy: 0-1°. 

χ 
4350. Given the equation y' = x2, form a table of 

y 
the values of the solution which satisfies the initial condition 
y\x=\ = 1, by giving χ values from 1 to 1*5 every 0Ό5. 
Carry out the working to three decimal places. 

4351. Calculate the value at χ = 1 of the particular 
solution of the differential equation y' = y + χ, satisfying 
the initial condition j/|X a=o = 1. Then calculate the first five 
approximations yv yv ys, yif y5 (to four decimal places) by 
the method of successive approximations. Compare the 
results. 

4352. We know that Je-~*' da; cannot be expressed explicitly 

in terms of elementary functions. Using the fact that the function 
X 

y = e
x
' J e""

x
* da; is a solution of the equation y' = 2xy + 1, 

0-5 

evaluate e~
x
" da;. Use the method of successive approxima-

tions taking the first five approximations. Compare the result 

with the approximate value calculated from Simpson's rule. 
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4353. y = f(x) is a solution of the differential equation 
y' = y

2
 — χ with the initial condition y\x=o = 1. Find by the 

method of successive approximations the fourth approxi-
mation ( y 4) , the number of terms being limited to that required 
for evaluating y 4 (0*3) to three decimal places. Then find the 
first few terms of the expansion of f(x) in a power series; 
evaluate /(0-3) also to three figures after the point and, 
assuming /(0*3) to be the more accurate result, estimate the 
error in the value of y 4 (0*3). 

4354. y = f(x) is a solution of the differential equation 

v' 1 y" = ---with the initial conditions y | χ = ι = l , y ' | x- i — 0· 
y x 

Find / ( Γ 6 ) to an accuracy of 0001. 

4355*· y = f(x) is a solution of the differential equation 
y" = y' — y + x with the initial conditions y\x=\ = 1, 

2/' | x « i = 0. Find /(1'21) to an accuracy of 0000001. 

4356*· y = f(x) is a solution of the differential equation 

y" = xy
9
 — y + e

x
 with the initial conditions y | x=o = 1, 

2/' |x=o = 0. Find f(^\ to an accuracy of 0*0001. 

4357· A curve is given by the equation y = f(x). Find the 
series expansion of f(x), knowing that it satisfies the differ-
ential equation y" = xy and the initial conditions y | x=o = 0, 
y'|x=o = 1. Evaluate the curvature of the curve at the point 
with abscissa 1 to an accuracy of 0*0001. 



C H A P T E R X V 

TRIGONOMETRIC S E R I E S 

(1) cos φ + cos 3φ + . . . + cos (2n — l) φ = 
2 sin φ

 9 

. w . η + 1 
sin —φ s in—— φ 

(2) sin 99 + sin 2φ + . . . + sin = 
• φ 

s m -

390 

4360· Prove that every nth order trigonometric polynomial 
consisting of cosines only can be written as P(cos φ), where 
P(x) is an nth degree polynomial in x. 

4361. Prove with the aid of Euler's formulae (see problem 
4358) the relationship 

1. Trigonometric Polynomials 

4358. By using Euler's formulae cos χ = and 

sin χ = show that the functions sin" χ and cos
n
 χ 

can be written as nth order trigonometric polynomials. 

4359. Prove that the relationships hold: 

if m > n (m and η are integers). 

cos
n
 χ sin mx dx = 0, 

sin" χ sin mx dx = 

4362. Prove the relationships: 

COS φ + COS 2φ + . . . + COS ηφ = 
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η + 1 ' 
TT 7t 

3 — — , . . ., (2q — 1) — — and a minimum at the points 
η + 1 η + 1

 r 

— , 2 · — , . . ., (q — 1) — , where q = ^ if η is even, and 
η η η 2 

η + I . 
g = —-— it η is odd. 

Δ 

4365*. Prove that a trigonometric polynomial with no 
constant term: 

Φη(φ) = αΑ cos φ + bx sin φ + . . . + an cos ηφ + δΠ sin n<p, 

and not identically zero, cannot retain a constant sign for 
all φ. 

2. Fourier Series 

4366. Show that the function y = ζ
3
 sin - for χ *j= 0, and 

χ 
y = 0 for χ = 0, is continuous along with its first derivative 
in the interval [—π, π], but does not satisfy the conditions 
of Dirichlet's theorem. Can it be expanded in a Fourier series in 
the interval [—ττ, π] ? 

Solve problems 4367-4371 on the assumption that f(x) is 
a continuous function. 

4367. Function f(x) satisfies the condition 

/(* + n) = -/(*). 

4363. Find the zeros of the trigonometric polynomials 

sin φ - f sin 2φ + . . . + sin ηφ 
and 

cos φ + cos 2φ + . . . + cos ηφ 

in the interval [0, 2π]. 

4364. Show that the trigonometric polynomial 

, sin 2w , , sin ηφ 

has a maximum in the interval [0, π] at the points 



392 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS 

Show that all its even Fourier coefficients are zero (a 0 = 
= a2 = b2 = aA = δ4 == . . . = 0). 

4368· Function fix) satisfies the condition 

/(* + π) = f{x). 

Show that all its odd Fourier coefficients vanish. 

4369. Function f(x) satisfies the conditions f(—x) = fix) 
and f(x + π) = —f(x). 

Show that b± = b2 = bz = . . . = 0 and a0 = a2 = a4 = 
= . . . = = 0. 

4370. Function /(#) satisfies the conditions 

/(—a;) = — f(x) and /(χ + π) = —/(#) . 

Prove that α0 = αχ = a2 = . . . = 0 and 62 = 6 4 = 66 = 
= . . . = 0. 

4371. Function f(x) satisfies the conditions: 

(a) f(—x) = f(x) and f(x + π) = / ( « ) ; 

(b) f(-x) = -fix) and / ( * + π) = / ( « ) . 

Which of its Fourier coefficients vanish ? 

4372. Expand in a Fourier series the function equal to 
— 1 in the interval [—π, 0] and equal to 1 in the interval 

4373. Expand in a sine series the function y ·. in 

the interval (0, π). 

4374. By using the results of problems 4372 and 4373, 

obtain the expansions of functions y — χ and y = 

Indicate the intervals in which the formulae obtained are 
valid. 

4375. Expand the function y = in the interval (0, 

π) in a cosine series. 

4376. Expand the function y = χ
2
 in a Fourier series: 

(1) in the interval (—π, π), (2) in the interval (0, 2π) (Figs. 
72 and 73). 
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\ λ 1 Ι Α , / 
"Ζ7Γ -27T -π 0 7? 2ττ Zw

 x 

F I G . 72. 

F I G . 73 . 

Calculate with the aid of the series obtained the sums of 
the numerical series: 

Ä a = i - ^ + ^ - . . . + ( - i )
n

"
1

^ + . . . 

1 1 1 
» 3 = 1 + -32 + "52 + · · . + { 2n _ 1 )2 + · · · 

Expand the functions of problems 4377-4390 in Fourier 
series in the indicated intervals: 

4377· The function y = χ
2
 in the interval (0, π) in a 

cosine series. 

4378. Function y = χ
3
 in the interval (—π, π). 
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4382. The function y = \x\ in the interval (—1,1). 

4383. The function y = e
x
 — 1 in the interval (0, 2n). 

4384. The function y = e
x
 in the interval (—1,1). 

4385. The function y = cos ax in the interval (—π, η) 

(a is not an integer). 

4386. The function y = sin ax in the interval (—π, π) 

(a is not an integer). 

4387. The function y = sin ax (a is an integer) in the inter-

val (0, π) in a cosine series. 

4388. The function y = cos ax (a is an integer) in the inter-

val (0, π) in a sine series. 

4389. The function y = sinh χ in the interval (—π, π). 

4390. The function y = cosh χ in the interval (0, n) in a 
cosine series and a sine series. 

4391. Expand in a Fourier series the function whose 
graph is illustrated in Fig. 74. 

(0, 2h), in a cosine 

y 

X 
-3 -2 - I 0 2 3 

F I G . 74. 

4392*. Expand in a Fourier series the function whose 
graph is illustrated in Fig. 75. 

4379· The function f(x), equal to 1 for — π < χ < 0 and 

equal to 3 for 0 < χ < π. 

4380. The function f(x), equal to 1 in the interval (0, h) 

and equal to 0 in the interval (h, π), in a cosine series (0 < 

< h < π). 

4381. The continuous function f(x), equal to 1 for χ = 0, 

equal to 0 in the interval (2h, π) and linear in the interval 
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4393*. Expand in Fourier series the functions whose graphs 

are illustrated in Figs. 76 and 77. 

F I G . 76. 

y 

~
7r
 -tr -a) - a o| a 

F I G . 77. 

4394. Expand the function y = χ(π — χ) in a sine series 
in the interval (0, π). Use the result to find the sum of the 
series 

33 τ 53 73 τ · · · τ (2η — l )
3
 ^ ' ' ' 

4395. Given the function φ{χ) = (π
2
 — a;

2
)

2
, 

(a) show that the equalities hold: 

φ(—π) = φ(π), ψ'(—π) = ψ'{π) and ψ"{—π) = ψ"(μ) 

[but φ"\-π) -h ψ"'(π)]. 
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(b) by using these equalities, expand φ(χ) in a Fourier 
series in the interval (—π, π) (see Course, sec. 214); 

(c) calculate the sum of the series 

2
4
 ^ 3

4
 4

4
 ^ ' * * ^ H

4
 ^ ' ' ' 

3· Krylov's Method. Harmonic Analysis 

Improve the convergence of the trigonometric series of 
problems 4396-4400 by bringing the coefficients of the series 
up to the order indicated in brackets (k). 

OO 2 
4396

*· Σ ^ + 1
B i a nx

 (* =
 4

)· 

4397. 2 (-ly-iVL^ännx {k = 2). 

«
2
 + ι 4398*. Ύ . - cos nx (k = 4). 

η sin 
rm 

4399*. y - 5 r— cos nx (k = 5). 
^ 0 η

2
 — 1 

4400. Functions /,(#) (i = 1, 2, 3) are given in the interval 
[0, 2π] by the following table: 

ο π π π 2π 5π Ίπ 4π 3ττ 5π l b r 

6 3 2 3 Τ 6 2 ΊΓ 6 

27 32 35 30 26 20 18 22 26 30 32 36 

0-43 0-87 0-64 0-57 0-28 0 —0-30 —0-64 —0-25 004 0-42 0-84 

/.(·) 23 32 21 1-6 —0-4 —0-2 0-4 0-3 0-7 0-9 1-2 1-6 

Find the approximate expression for these functions as 
a second-order trigonometric polynomial. (See Course, sec. 
220.) 



C H A P T E R X V I 

E L E M E N T S OF T H E T H E O R Y 
OF FIELDS* 

Vector Field, Divergence and Curl 

4401. Find the vector lines of the homogeneous field 
A(P) = ai + bj + cfc, where a, b and c are constants. 

4402. Find the vector lines of the plane field A(P) = 
= —coyi + œxj, where ω is constant. 

4403. Find the vector lines of the field A(P) = —œyi + 
+ coxj + hk, where ω and h are constants. 

4404. Find the vector lines of the fields : 

(1) A(P) = (y + z ) i - x j - xk; 
(2) A(P) = (z-y)i+(x- z)j +(y-x) fc; 
(3) A(P) = x(y

2
 - z

2
) i - y(z

2
 + x

2
) j + z(x* + y*) fe. 

Evaluate the divergence and curl of the vector fields of 
problems 4405-4408: 

4405. A{P) = xi + yj + zk. 

4406. A{P) = (y
2
 + ζ

2
) i + (z

2
 + x

2
) j + (x

2
 + y

2
) fe. 

4407. A{P) = x
2
yzi + xy

2
zj + xyz

2
k. 

4408. A(P) = grad (x
2
 + y

2
 + z

2
) . 

4409. A vector field is formed by a force having a constant 
magnitude F and the direction of the positive axis of abscissae. 
Find the divergence and curl of this field. 

4410. A plane vector field is formed by a force, inversely 
proportional to the square of the distance of its point of 
application from the origin and directed to the origin. (For 
example, the plane electrostatic field produced by a point 
charge.) Find the divergence and curl of this field. 

t Problems on the properties of a scalar field and its gradient are 
located in the section 4 of chapter X I . 

397 
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4411. Find the divergence and curl of the spatial field in 
which the forces are subject to the same conditions as in 
problem 4410. 

4412. A vector field is formed by a force, inversely pro-
portional to the distance of its point of application from Oz, 
perpendicular to this axis and directed towards it. Find the 
divergence and curl of the field. 

4413. A vector field is formed by a force, inversely pro-
portional to the distance of its point of application to the 
xOy plane and directed towards the origin. Find the diver-
gence of the field. 

4414. Find div (ar), where a is a constant scalar. 

4415. Prove that 

div (φΑ) = φ div A + (A grad φ), 

where φ = φ(χ, y, ζ) is a scalar function. 

4416. Evaluate div b(ra) and div r{ra), where a and b 
are constant vectors. 

4417. Evaluate div ( o x r ) , where α is a constant vector. 

4418. Without passing to coordinates, evaluate the diver-
gence of the vector field: 

(1) A(P) = r(a • r) - 2ar\ (2) A(P) = , 

4419. Work out the divergence of the vector field 

Show that the divergence of the field is zero only when / ( I r l ) = 
G C 

= , if the field is in space, and / ( | r | )
 = =

y ^ | > if ^he field is 

plane, where G is an arbitrary constant number. 

4420. Prove that 

curl [A^P) + A2{P)] = curl A^P) + curl A2(P). 

4421. Evaluate curl φΑ(Ρ), where φ = φ(χ, y, ζ) is a scalar 
function. 
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4422. Evaluate curl ra, where r is the distance of a point 

from the origin, and α is a constant vector. 

4423. Evaluate curl (axr), where α is a constant vector. 

4424. A rigid body rotates with constant angular velocity 

ω about an axis. Find the divergence and curl of the field of 

the linear velocities. 

4425. Prove that 

n(grad (An) — curl (Axn)) = div A, 

if η is a unit constant vector. 

The differential operations of vector analysis (grad, div, 
curl) are conveniently represented with the aid of the sym-
bolic vector V (Hamilton's operator — Nabla): 

The application of this operator to a (scalar or vector) 
quantity is to be understood as implying: the operation of 
multiplying this vector by the given quantity is to be carried 
out in accordance with the rules of vector algebra, then the 

g 
multiplication of the symbol — and so on by the quantity 

ÇjjC 
S is to be regarded as finding the corresponding derivative. 
Thus grad u = SJu\ div A = V-4; curl A = V X i . 

The second order differential operations can also be written 
with the aid of Hamilton's operator : 

V = div grad u ; V X V w = curl gracj u ; 

V(S/A) = grad div A; V ( V X ^ l ) = div curl A; 

V X ( V x 4 ) = curl curl A. 

4426. Show that (r\J) r
n
 = nr

n
, where r is the radius 

vector. 

4427. Prove the relationships: 

(1) curl grad u = 0; (2) div curl A = 0. 

4428. Prove that 
d

2
u . d

2
u . d

2
u 
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Hence obtain, as a particular case, the potential of the 
field of gravitational force of a point mass and the potential 
of the field of problem 4431. 

a 

(This expression is called Laplace's operator and is usually 
written as Au. By using Hamilton's operator, it can be written 
in the form = ( V V ) w = \J

2
u.) 

4429. Prove that 

curl curl A(P) = grad div A(P) - AA(P), 

where AA(P) = AAxi + AAyj + AAzk. 

Potential 

4430. A vector field is formed by a constant vector A. 
Show that this field has a potential, and find it. 

4431. A vector field is formed by a force, proportional to 
the distance of its point of application from the origin and 
directed towards the origin. Show that this field is conserv-
ative, and find its potential. 

4432. The forces of a field are inversely proportional to 
the distances of their points of application from the Oxy plane 
and are directed towards the origin. Is this field conservative ? 

4433. The forces of a field are proportional to the square 
of the distances of their points of application from the Oz 
axis and are directed to the origin. Is this field conservative ? 

4434. A vector field is formed by a force inversely pro-
portional to the distance of its point of application from Oz, 
perpendicular to this axis and directed towards it. Show that 
this field is conservative, and find its potential. 

4435. A vector field is formed by the linear velocities of 
points of a rigid body, rotating about its axis. Has this 
field a potential? 

ν 
4436. The forces of a field are given as: A(P) = f(r) — 

(called a centred field). Show that the potential of the field is 
equal to r 
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4437. Find the work done by the forces of the field A(p) = 
= xyi + yzj â fc °

n
 displacement of a point mass m round 

a closed curve, consisting of the segment of the straight line 
χ - f ζ = 1, y = 0, the quadrant of the circle x

2
 + y

2
 = 1, 

ζ = 0 and the segment of the straight line y -\- ζ = 1, χ = 0 

y 

F I G . 78. 

(Fig. 78) in the direction indicated on the figure. How does 
the amount of work change, if the arc Β A is replaced by the 
step-line BOA or the straight line Β A ? 

Potential of Force of Attraction* 

4438. Given in the Οξη plane a homogeneous rod AB of 
length 21 with linear density δ, disposed on the 0 | axis, sym-
metrically with respect to the origin (Fig. 79): 

7< 
p(<r,7) 

A 0 β c <r 

F I G . 79. 

t Here (in problems 4438—4449) we have in mind a force of 

attraction acting in accordance with Newton's law. Instead of 

referring to the "potential of a mass", distributed over (or in) a given 

geometrical entity, we speak for brevity of the "potential of the 

given entity". 
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(a) Find the potential u(x, y) of the rod. 

(b) Show that the projections X and Y of the force of 

attraction acting on a point Ρ of mass m with coordinates 

ξ = χ, η = y, is equal to 

v j j 1 Μ ν mhbfOB , AG\ 
Χ
 =

 Μ
[ΡΑ-ΡΒ)>

 T
 = ~ ( P B

 +
 PÂ)' 

whilst the resultant force R is equal in magnitude to R = 
2wikö 1 

= —-—sin-(α + β), where k is the gravitational constant 

(C is the projection of point Ρ on the Οξ axis, α is the angle 

APC, β the angle BPC). 

4439. Find the potential of the circumference of the circle 
-f Î/2 = R2} z = ο at the point (R, 0, 2R)} if the density 

at every point is equal to the absolute value of the sine of 
the angle between the radius vector of the point and the 
axis of abscissae. 

4440. Find the potential of the first turn of the homo-
geneous (density δ) helix χ = a cos t, y = α sin ί, ζ = bt at 
the origin. 

4441. Find the potential of the homogeneous square with 

side a (surface density δ) at one of its corners. 

4442. Mass is distributed on the Oxy plane with density 
δ, decreasing with the distance ρ from the origin in accordance 

with the law δ = -—}•—^. Find the potential at the point 
1 + Q

2 

(0, 0, A). (Consider the three cases: h < 1, h = 1 and A > 1.) 

4443*. Find the potential of the homogeneous lateral sur-
face of a right circular cylinder: 

(1) at the centre of its base, 

(2) at the mid-point of its axis (radius of cylinder R, height 

Hy surface density δ). 

4444. Find the potential of the homogeneous lateral sur-
face of a right circular cone (base radius R, height H) at its 
vertex. 
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4445· Given a homogeneous right circular cylinder (base 
radius R, height H, density δ) : 

(1) Find the potential at the centre of its base. 
(2) Find the potential at the mid-point of its axis. 

4446. Given a homogeneous right circular cone (base 
radius R, height H, density δ): Find the potential of the cone 
at its vertex. 

4447. Find the potential of the homogeneous hemisphere 
x

2
 + y

2
 + ζ

2
 ^ R

2
(z ^ 0) with density δ at the point 

^4(0, 0, a). (Consider the two cases: a^R and a ^ R ) . 

4448. Find the potential of the homogeneous body bounded 
by two concentric spheres with radii R and r (R > r) and 
density δ at the point at a distance a from the centre of the 
spheres. (Consider the three cases: a ^ R, a ^ r and r ^ 
^ a ^ R) Show that, if the point is situated in the interior 
cavity of the body, the force of attraction acting on this 
point is zero. 

4449. Find the potential of the non-homogeneous conti-
nuous sphere x

2
 + y

2
 + z

2
 ^ R

2
 at the point ^4(0, 0, a) 

(a > R) if the density δ = kz
2
, i.e. it is proportional to the 

square of the distance of the point from the Oxy plane. 

Flux and Circulation (Plane Case) 

4450. Find the flux and circulation of a constant vector 
A round an arbitrary closed curve L. 

4451. Find the flux and circulation of the vector A(P) = 
= ar, where α is a constant scalar, and r is the radius vector 
of the point P, round an arbitrary closed curve L. 

4452. Find the flux and circulation of the vector A(P) = 
= xi — yj round an arbitrary closed curve L. 

4453. Find the flux and circulation of the vector A(P) = 
= (a

3
 — y) i + (y

3
 + x)j round a circle of radius R with 

centre at the origin. 
4454. The potential of the velocity field of particles in a 

fluid flow is equal to u = ln r, where r = γχ
2
 + y

2
. Find 

the quantity of fluid flowing out of a closed contour L sur-
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rounding the origin per unit time (the flux) and the quantity 
of fluid flowing per unit time round the contour (the circula-
tion). How is the result changed if the origin lies outside the 
contour (and not in it)? 

4455. The potential of the velocity field of the particles in 

a fluid flow is equal to u = φ, where φ = arc tan - . Find the 
χ 

flux and circulation of the vector round the closed contour L. 

4456. The potential of the velocity field of particles in a 
fluid flow is equal to u(x, y) = x(x

2
 — 3y

2
). Find the quantity 

of fluid flowing per unit time through the straight segment 
joining the origin to the point (1, 1). 

Flux and Circulation (Spatial Case) 

4457. Prove that the flux of the radius vector r through 
any closed surface is equal to three times the volume bounded 
by this surface. 

4458. Find the flux of the radius vector through the lateral 
surface of a circular cylinder (base radius R, height H), if 
the cylinder axis passes through the origin. 

4459. By using the results of problems 4457 and 4458, find 
the flux through both bases of the cylinder of the previous 
problem. 

4460. Find the flux of the radius vector through the lateral 
surface of a circular cone, the base of which lies on the xOy 
plane, whilst its axis is Oz. (The height of the cone is 1, the 
base radius 2.) 

4461. Find the flux of the vector A(P) = xyi + yzj + zxk 
through the boundary of the piece of the sphere x

2
 + y

2
 + 

- f z
2
 = 1 lying in the first octant. 

4462*. Find the flux of the vector A(P) = yzi + xzj + xyk 
through the lateral surface of the pyramid with vertex at 
the point S(0, 0, 2) the base of which is the triangle with 
vertices O(0, 0, 0), A(2, 0, 0) and B(0, 1, 0). 

4463. Find the circulation of the radius vector along one 
turn AB of the helix χ = a cos t% y = asm t, ζ = bt, where 
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A and Β are the points corresponding to values 0 and 2π 
of the parameter. 

4464. A rigid body rotates with constant angular velocity 
ω about the Oz axis. Find the circulation of the field of the 
linear velocities along the circle of radius R whose centre 
lies on the axis of rotation, whilst the plane of the circle is 
perpendicular to the axis of rotation in the direction of 
rotation. 

4465*. Find the flux of the vorticity of the vector field 
A(P) = yi + zj + %k through the surface of the paraboloid 
of revolution ζ = 2(1 — χ

2
 — y

2
), cut off by the plane ζ = 0. 



A N S W E R S 

Chapter I 

1. A U the positive integers except η = 1 and η = 2. I f S is the 
sum of the angles, and η the number of sides, then S = π(η — 2). 

4. (a) The function vanishes for χ = — 2, χ = 1, « = 6; 

(b) the function is positive for # < —2, — 2 < χ < 1, # > 6; 

(c) the function is negative for 1 < χ < 6. 

1 
6. r = 

a
2
 - 6

2 

7· S = tan a. 8. 6 = ]/25 - a
2
. 

9. /(0) = - 2 ; / ( l ) = - 0 - 5 ; /(2) = 0; / ( - 2 ) = 4; / J - 1 ) = - 5 ; 

/ ( f2 ) -0-242, 
U j 

= 1; <p(0) = 2; ç>(l) = 0-5; φ(2) = 0; 

p( — 2) = —4; <p(4) = 0*4; / (— 1) does not exist; <p( — 1) does not 
exist. 

10. / ( I ) = 0; / (a ) = a
3
 - 1; / ( a + 1) = a

3
 + 3a

2
 + 3a; 

f(a - 1) = a
3
 - 3a

2
 + 3a - 2; 2/(2a) = 16a

3
 - 2. 

11. JF(0) = 1; ^ (2 ) = 1; 2^(3) = 2; = JF(2-5) = ][2; 

F ( - V 5 ) = - ^ ; φ(0) = I ; p ( 2 ) = l ; = = 
7128

 4
 2 

= 2 * "
2
f o r a > 0 and φ(χ) = 2 - * -

2
f o r # < 0; p ( - l ) + .F( l ) = 1. 

12. ψ(0) = 0; ψ(1) = α; ψ(-1) = - - ; ψ(-) = a~°~ ; 

ψ(α) = α
α + 1

; ψ( — a) = — α
1 _ α

. 

13. <p(*
2
) = t* + l; [>(*)]

2
 = *

β
 + 2*

3
 + 1. 

_ / (α) 
20. is equal to the tangent of the angle between 

b — a 
the secant through the points (a, / ( a ) ) and (6, /(&)), and the positive 
direction of Ox. 

22. (a) ^ = 0, x2 = 2; (b) ^ = - 1 , # 2 = 3. 

1 
5, x* 2 . 23. ^ = - 2 , » 2 

24. One root will always be χ = a. 25. 4 and —2; —2, 2, 4, 10. 

406 
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26. x1 = — 3, x2 = —2, x3 = 2, x4 = 3. 27. a ;^ —1 and χ ^ 2. 

28. α = 4, 6 = - 1 . 

29. α = or, since sin 0*5 ^ 0*48, we have a f& —1*04, 
2 sin 0-5 

6 = 1 and c = — — + 2&π. (Alternatively, a = — œ 1·04, 
2 ^

 V
 •

y>
 2 sin 0-5 

b = — 1, c = - + ( 2 Ä + 1 ) π , & = 0, ± 1 , ± 2 , . . . ) . 
2 

30. y = (χ + l )
2
. 31. y 

1 

cos χ 
32. y = Y(at + Ι )

2
· 

33. u = / I -f (log sin α )
2
. 34. ν = sin (1 -f χ). 

3 _ 

35. (1) y = v
z
, ν = sin (2) y = ν = u

2
, u = χ + 1; 

(3) y = log ν, ν — tan (4) y = u*, u = sin ν, ν = 2χ -f 1 ; 
(5) y = 5", u = ν

2
, υ = Sx + 1. 

3 
36. (a) ; (b) 0; (c) sin 12; (d) - s i n 2x cos2 2x; (e) x9 -

8 
- 3#

7
 -f 3a;

5
 - 2z

8
 -j- x; (f) 0; (g) sin (2 sin 2x). 

38. (1) y = ± f i — *
2
; (2) y = ± - fa;

2
 - a

2
; (3) y = f a

8
- **; 

a 
(7 log2 5 10000 

(4) y = - ; (5)y = - 2 i - ; (6) y = 1; 
X X X 

X
2 

(7) y = log2 (a;
3
 + 7) - log2 (x

2
 - 2) - x ; (8) y = arccos — — . 

1 + X 
39*

.
 Let

 χ
 > 0 and y > 0

,
 then y + y

 —
 x

 —
 x = 0; y = x (the 

graph is the bisector of the first quadrant). Let χ > 0 and y < 0, 

then y — 2/ — a* — # = 0; a* = 0 (the graph is the negative half 

of Oy). Let χ < 0 and 2/ > 0, then y + y—x + x = 0; y = 0 (the 

graph is the negative half of Ox). Let a; < 0 and y < 0, then y — y — 

— χ + χ = 0 (an identity; the "graph" is the aggregate of points of 

the third quadrant). 

40. 
X 1 2 3 4 5 6 

1 1 1 1 1 
y 1 Y Τ 24 Î2Ô 72Ô 

41. 

η 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

u 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 
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η 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

u 0 0 0 1 0 2 0 2 1 2 0 4 0 2 2 3 0 4 0 4 

44. S = n(2R — x)
2
 for 0 ^ x ^ R; S = nR

2
 f o v R ^ x ^ 3R; 

S = n(GRx - x
2
 - 8R

2
) for 3R ^ χ ^ 42?. The function S =f(x) 

is not defined outside the interval [0, 4R] . 

45. F = π#^Β
2
 - ^ - j ; 0<x<2R; - o o < χ < + oo. 

πα;
2

 r 
46. £ = — Y±R

2
 - χ

2
; 0 < χ < 2R; -2R ^ x ^ 2 R . 

ΔΚ 

5 
47. (1) a? > 0; (2) χ > - 3 ; (3) χ ^ - ; (4) - o c < α ^ 0; 

Δ 

(5) the whole of the real axis except for the points χ = ± 1 ; (6) the 

whole of the real axis; (7) defined everywhere except for χ = 0, 
χ = — 1, χ = 1; (8) the whole of the real axis except for the points 

χ = 1 and χ = 2; (9) — 1 ^ α ^ 1 ; (10) — oo < # < 0 and 4 < 
< a; < oo; (11) —oo < χ ^ 1 and 3 ^ # < oo; the function is 
not defined in the interval (1, 3) ; (12) — oo < χ < 1 and 2 < χ < oo ; 

the function is not defined in the interval [ 1 , 2 ] ; (13) — 4 ^ # ^= 4; 

3 5 1 
( 1 4 ) 1 ^ * ^ 3 ; ( 1 5 ) 0 ^ x ^ 1 ; (16) ^ χ ^ - ; (17) 0 ^ χ ^ - ; 

(18) — 1 ^ x ^ 1; (19) —oo < χ < 0; (20) meaningless; (21) 
1 ^ χ ^ 4; (22) 2kn < χ < (2k + 1) π, where k is an integer; 
(23) 2kn ^ χ ^ (2& - f 1) π, where & is an integer; (24) 0 < χ < 1 
and 1 < χ < oo. 

4 8 . ( 1 ) - 2 ^ # < 0 and 0 < χ < 1; (2) - l ^ x ^ 3 ; (3) 
3 

1 ^ # < 4 ; (4) — < χ < 2 and 2 < χ < oo; (5) the domain of 
2 

definition only consists of the single point χ = I; (6) — 1 < a; < 0 
and 1 < # < 2; 2 < # < o o ; (7) 3 — 2π < χ < 3 — π; 3 < # ^ 4; 

(8) — 4 ^ x ^ — π and 0 ^ χ ^ π; (9) 2kn < χ < (2k + 1) π, 

where k is an integer; (10) 4 < χ < 5 and 6 < χ < oo; (11) nowhere 
defined; (12) — 1 < χ ^ 1 and 2 ^ χ < 3; (13) the whole of the 
real axis; (14) 4 ^ χ ^ 6; (15) 2 < .τ < 3. 

42. 

, The function is defined for 0 ^ χ ^ 4. 

43. I f / (# ) is the weight of segment AM, we have : f(x) = 2x for 

for 1 < χ ^ 3, j(x) = χ + 2 for 
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49. (1) Yes ; (2) they are identical in any interval not containing 

the point χ = 0; (3) identical in the interval [0 , oo ) ; (4) identical 

in the interval (0, oo) . 

50. (1) e.g. y = f 4 - x*; (2) e.g. y =
 1

 ; (3) e.g. 

χ y 4 — x
2 

1 1 1 
y = — Ö + — ^ + — τ · 

a; — 2 χ — ö χ — 4: 
51. (1) 1 < x ^ 3; (2) 0 ^ χ < + oo for two branches and 

I ^ x < + oo for the other two branches. 

52. — oo < X < oo. 

53. (1) y > 0 for χ > 2 ; t/ < 0 for a; < 2 ; y = 0 for χ = 2 ; 

(2) y > 0 for χ < 2 and χ > 3; y < 0 for 2 < χ < 3; y = 0 for 

xx = 2 and # 2 = 3; (3) i/ > 0 in the interval ( — oo, oo) , the function 

has no zeros; (4) y > 0 in the intervals (0, 1), (2, + o o ) ; y < 0 in 

the intervals ( —oo, 0) and ( 1 , 2 ) ; y = 0 for â j = 0, a?2 = 1, a*3 = 2 ; 

(5) y > 0 for α ^ 0; y = 0 for χ = 0. 

54. ( 1 ) , (3 ) , (8 ) , (10) , (11), (15) are even; ( 5 ) , (6 ) , ( 9 ) , (12) , (14) 

(17) are odd; (2 ) , (4 ) , (7 ) , (13) , (16) are neither even nor odd. 

55. (1) y = (χ* + 2) + Zx; (2) y = (1 - an) + (-χ
9
 - 2x*); 

(3) y == (sin 2x + tan x) + cog 

59. Functions (1 ) , (5 ) , ( 6 ) , (8 ) . 

60. For the graphs see Fig. 80 and 81. 

61 . (1) Decreasing in the interval ( - o o , 0 ) , increasing in (0, + o©); 

(2) decreasing in the interval ( — oo, 0 ) , retaining the constant value 

zero in the interval (0, -f oo). 

62. (1) Maximum = 1, minimum = 0; (2) maximum = 1, mini-

mum = — 1; (3) maximum = 2, minimum = 0; (4) there is no 

maximum value, the minimum = 1. 

66. (a) ρ = 0-727Λ; (b) 10-5 g/cm
2
; (c) 36*4 cm. 

+ 8 6 3 . 
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69. (a) V = 100 + 0·35t; (b) 100 ern". 70. S = 16·6 + 1·34t.

x

FIG. 80.

71. V = 12 - 0·7t.

y

-I o 2 3 x

82. y =

FIG. 81.

72. Lly = 6. 73. Lly = -6. 74. Llx = 4.
75. For the finite value of the argument X 2 = 2a.
76. x = 3; the solution is found graphically by seeking the point

of intersection of the graph of y = q>(x) and the straight line
y = 2x - 4.

78*. It should be remarked that the sign of equality is excluded
by hypothesis from the relationship If(x) + q>(x) I <: If(x) I + Iq>(x) I
which always holds: f(x) and q>(x) must have opposite signs by hypo
thesis; by considering the two possible cases, we get x < 3 and x > 4.
The problem can be solved by drawing the graphs of functions <1J(x) =

= If(x) + q>(x) I and tp(x) = If(x) I + Iq>(x) I·

79. x < 2. See the hint on the solution of problem 78*.

o in the interval (-00; -3),
5

-- x 2 + 5 in the interval [-3; 3],
9

2
- x - 2 in the interval [3; 6].
3

7 1 17 3
83. (1) Y = - 8 for x = 4; (2) Y = 4 for x = - 2;
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2 6 - fa" η + 4 

98. The side must be equal to 10 cm. 

99. The side of the base and the lateral ribs must be 10 cm. 

3a 
100. The side of the triangle must be equal to cm. 

9 + 4f3" (b b\ 
101. The point is - , - j . 

/15 37Ϊ 
102. The point is I — , — I . 

5 
104. (\)xxç^ — 1-1, α 2^ 2 · 1 ; (2) xx = — 1, x2 = - ; ( 3 ) ^ ^ 0 - 5 , 

2 
3 

x2 œ 4*1; (4) xx = x2 = — ; (5) there are no real roots. 
2 

7α
2
 α α

4 

(3) y = 5 for χ = 0; (4) y = — for χ = - ; (5) y = — 
8 4 4ο

ζ 

α
2 

for # = . 
26

2 

3 
84· (1) y = - 6 for a: = - 2 ; (2) y = 0*31875 for χ = - ; 

8 

5 1 9 
(3) y = - for ζ = - ; (4) y = - α

4
 for χ = 0; (5) y = - - 6

2 

8 4 4 

& 
for £ = — . 

2α 

85. α = - + - - 86. α = - + - . 87. 4 m. 88. 50 cm. 
2 2 2 2 

89. The one for which the axial section is square. 

90. The smaller the height of the cone, the greater its lateral 

surface; the function has a maximum for a base radius equal to 

Ρ 
— , i.e. when the cone degenerates to a plane disc. 
4 

91. 12-5 cm. 

92. The height of the rectangle must be equal to half the height 

of the triangle. 

93. The radius of the cylinder must be equal to half the radius of 

the cone. 

94. For H > 2R, the radius of the cylinder must be equal to 

RH 
—— — ; for H ^ 2R the total surface of the inscribed cylinder 
2(H — R) 
will be the greater, the greater the radius of its base. 

Ρ Ρ 4 
96. a = . 97. 
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106. I f b
2
 — 4ac > 0 and a > 0, the function is defined throughout 

the real axis except for the interval xx ^=k χ ^ x2, where xx and x2 

are the roots of the trinomial. I f b
2
 — 4ac > 0 and a < 0, the function 

is defined only for ict < χ < x2. I f b
2
 — 4ac < 0 and a > 0, the func-

tion is defined throughout the real axis. I f b
2
 — 4ac < 0 and a < 0, 

the function is defined nowhere. Finally, if b
2
 — 4ac = 0, the function 

will be defined throughout the real axis except for the single point 

b 
χ = , if a > 0, and is nowhere defined if a < 0. 

2a 
107. f{x + 1) = 2z2 + 5x + 3. 

#
2
 + 2# + c 

108*. Let = m, where m is an arbitrary real number ; 
+ 4x + 3c 

then (m — 1) a;
2
 + 2(2m — 1) χ + c(3m — 1) = 0. The argument 

χ must be a real number, consequently (2m — l )
2
 — (m — 1) 

—(3mc — c) ^ 0 or (4 — 3c) m
2
 + 4(c — 1) m — (c — 1) ^ 0; but since 

m is real, this inequality is in turn only valid for 

( 4 - 3c > 0, 

U(c- 1)
2
 + ( 4 - 3c) ( c - 1 ) ^ 0 ; 

hence 0 = c ^ 1; but c 0 by hypothesis, so that 0 < c ^ 1. 

109. pv = 1748. 

110. χ is inversely proportional to v. 

111. a; is directly proportional to v. 

112. The amount of material separated out is inversely proportional 

to the volume of the solvent
. 

114. (1) for χ = 1, y = 4 is the maximum value; 

for X = 5, y = 
4 
— is the minimum value: 
5 

(2) for X = - 1 , y = 
1 
— is the maximum value; 
7 

for X = 2, y = — 2 is the minimum value; 

(3) for X = 0, y = 1 is the maximum value; 

for X = 4, y = 
3 

is the minimum value. 
5 

117. (1) y = = χ; (2) y 
X 

~ 9 ' 
(3) y = (4) y =±f. 

1 x - 1 

105. xx = — 3, x2 = 8. To find the solution graphically we seek 
the point of intersection of the graph of y = φ (χ) and the parabola 
î/2 = 73. + 25. 
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(8) y = ± \x* - 1; (9) y = l o g ^ - ; (10) y = - 2 + 1 0 * "
1
; 

( l l ) y = 2
T
; (12) y = log2 — ; (13) y = ί log 

2 ° 2 -

1 a; 
(14) y = - arc s i n - ; 

ÎC — 1 
1 + arc sin — - — 

(15) y = - ; (16) y = ± cos^ (0 ^ χ ^ 2π). 
a; — 1 4 

1 — arc sin — - — 

122. 1 < a: ̂  3; y = I + 2
1
"*

2
. 123. y = arc sin y χ - χ

2
 — 2. 

125. xx —0*5, # 2 = 1, xz ^ 54*5. 

126*. (1) xv 1-4, the remaining roots are imaginary; xx is the 

abscissa of the point of intersection of the graphs of the cubical and 

linear functions y = x* and y = — χ + 4. 

(2) χχ = 1, χ2 = — 1, a?3 = 3; the substitution χ = x' - f α should 

be made, and α chosen so that the coefficient of x'
2
 vanishes; further 

details as in (1); (3) xx = 4, x2 = x3 = 1; see the hint on (2); (4) 

xx = —1, the remaining roots are imaginary; see hint on (2). 

127. (1) 1-465 . . . ; (2) ^14-26 cm; (3) almost 6*8 cm. 

η 

128. I f 2/1 = x
n
, y2 = Y*> then 

for η > 1 and 0 < χ < 1 2/i < 2/2»
 D ut

 for 1 < a; < oo 2/1 > 2/2» 

for 0 < η < 1 and 0 < a; < 1 2/1 > 2/2» but for 1 < a; > oo 2/1 < 2/2» 

for — 1 < η < 0 and 0 < χ < 1 2/i < y2, but for 1 < χ < oo yL > y2> 

for η < — 1 and 0 < χ < 1 i/i > 2/2» f °
r
 1 < # <

 00
 2/i < 2/2· 

133. a?! = 1, a:2 = 2. 

134. The points of intersection are : (1 ,2 ) ; (3 ,8 ) ; ^3, — j ; 

( - 1 - 5 , 0-3). 135. η = 15. 

136. I t can be shown by starting from the definition of the hyper-

bolic functions that sinh (—x) = —sinh a?, tanh ( — a;) = — tanh x, 

cosh (—x) = cosh a;. These functions are not periodic. 

a
x
 — a~

x 

140. 2/min ^ 0*8 for χ ^ 0*4. 141, y = . 
2 

2 
143. (1) A = 1, Τ = - π; (2) A = 5, Τ = π; (3) = 4, 

3 

8 16 
Τ = 2; (4) .4 = 2, Τ = 4π; (5) Λ. = 1, Τ = - ; (6) 4̂ = 3, Τ = — π. 

3 5 
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Y δ + 2 f 3 

TT 
155*. (1) Period —. The function can be written in the interval v

 ' 2 
[0, 2π] as; 

y = sin a; + cos χ in the interval £θ, — j , 

sin χ — cos χ in the interval 
L 2 

3πΊ [ 3πΊ 
π >

 ~2~ I ' 
[3π 1 

— > 2π \ , 

146. The domain of definition is (0, π). The area is a minimum 

151. (1) xx = 0, x vZ ^ ± 1-9; (2) χ = 0; 

further, we can take fairly accurately x œ : 

(3) χ & 0-74; (4) xx = 0*9, x2 = 2*85, x3 = 5*8; (5) there is an infinite 

set of roots; xx — 0, x2 slightly under slightly over and 

so on. 

152. (1) 2π; (2) 2π; (3) 24; (4) 2. 153. (1) y = 

arc sin where 

 sin a; + cos χ in the interval

sin χ — cos χ in the interval 
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neither even nor odd ; periodic, of period 2π. In the interval (»•9· 
the sine increases from 0 to 1, so that log sin χ increases to 0 whilst 

remaining negative. The sine decreases from 1 to 0 in the interval 

, π ) , so that log sin χ also decreases. The sine has negative values in 

the interval (π, 2π), so that log sin χ is undefined. (2) The domain of 

π 
definition consists of the individual points of the form χ = f- 2πη, 

2 
where η = 0, + 1 , + 2 , . . . A t these points y = 0. The graph consists 

of individual points of the axis of abscissae. (3) The function is defined 

throughout the real axis, except for the points χ = πη, where η = 0, 

± 1 , ± 2 , . . . 
α 

158. ω = 2 arc sin — . 

2π 
a(l cos φ + b sin φ) 

159. γ = arc tan 

160. α = arc cos 1 

b
2
 + I

2
 + a(b cos φ — I sin 

#(2a — #) 

2R(a + R - x) 

161. (1) - l ^ x ^ l ; 

( 2 ) 0 ^ x ^ 1 ; ( 3 ) 0 ^ x ^ 1 ; (4) - 1 ^ a ^ 0; 

(5) 0 < a < oo; (6) —oo < χ < 0; (7) 0 ^ x < oo; 

(8) — oo < a ^ 0; (9) — o o < a < l ; (10) 1 < χ < oo. 

162. (1) - 1 ^ x ^ 1; (2) O ^ x ^ l ; (3) - ο ο < α < ο ο ; 

(4) defined everywhere except for χ = 0. 

163*. Period 2π. For the graph see Fig. 82. 

71 71 
Hint. In the interval ^ χ ^ — , y = arc sin (sin χ) = χ by 

2 2 

definition of the function arc sin x. To obtain the graph of the function 

(2) Period 2π. The function can be written in the interval [0, 2π] as : 

y = tan χ in the interval ĵ O, ^ j , 

y = 0 in the interval | — , TTJ , 

y = — tan χ in the interval — π j , 

2/ = 0 in the interval π, 2πJ . 

156. (1) The domain of definition consists of the infinite set of 

intervals of the form (2ηπ, (2n + 1)π), where η = 0, ± 1 , ± 2 — ; 
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F I G . 82. 

in the interval — ^ χ ^ 3— , we put ζ = χ — π, so that χ = π + ζ, 

71 71 

y = arc sin (sin χ) = arc sin sin (ζ + π) = —arc sin (sin z) = —z; 

167· 2/max ^ 15, s/mm 5*5; the function passes from increase to 

decrease at χ = —2. The zero of the function is at χ 9Ö —3*6. 

+ 8*344; zeros of the function: χλ œ —22*09, x2 ^ 12-09. To obtain 

the roots to an accuracy of 0-01, the coefficients must be taken to an 

accuracy of 0*0001. 

171. xx 9ό —2*3, x2&3; the remaining roots are imaginary. 

172*. Choose α so that the coefficient of χ'* vanishes; xx —3*6, 

x2 ^ —2-9, x3 œ 06 , xt ^ 4*8. 

173. ^ 0*59, α* 2̂ 3·10, x3 6*29, a*4œ9*43; in general x œ 

πη (η > 2). 

174. χχ ^ — 0*57, yx —1*26; χ2 ^ —0*42, y2 œ 1*19; xa œ 0*46, 

2/3 ^ 0*74; α 4 ^ 0*54, y4 -0*68. 

170. a?! ̂  2*60 cm, a*2 ^ 7*87 cm. 

Chapter II 

176. lim u n = 1, η ^ 4. 177. lim w„ = 0; η : 178. η = 19.999. 

179. lim vn — 0; η ^ 1000. v„ is sometimes greater than, some-
n—>oo 

times less than, and sometimes equal to its limit (the last when 

η = 2& + 1, where k = 0, 1, 2, . . . ) . 
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180. lim un = 1 ; η ^ 14; η ^ log2 — 
π—»oo ε 

181. η ^ — / -

- 3 y 
5 - 6ε 5 .„ 5 

, if ε —; η = 0, if ε > — 
ε 6 6 

182. η ^ — 
α 

_; the sequence is decreasing. 
f ε(2 + ε) 

183. lim υη = 0; ν α reaches its limit with η = m + 1> since, as 
n — > o ° 

from this value, vn = 0. 

185. 0. 186. (1) N o . (2) Yes. 

189. With a = 0 this limit can equal any number or be nonexistent. 

190. δ < /4+~ε" - 2; δ < 0-00025. 191. δ < 2 - p~ . 

2 
192. <5 < 

193. 

194. Ν ^ 

195, 

13 

π 

' 2 
< arc sin 0*99 ^ 0136. 

2 

1, if ε ^ 1 ; Ν = 0, if ε > 1. 
ε 

- y ? 4 4 
3 , if ε ^ - ; = 0, if ε > -

3 3 

196. η > 
Ν - 1 

197. un is a positive large order magnitude if the difference of 
the progression d > 0, and is negative if d < 0. The statement holds 
for a geometric progression only when the denominator of the pro-
gression has an absolute value greater than 1. 

198. - • 
10

4
 + 2 

< x < 
10* 

3000 3000 
199. -^rz <X < 

1001 999 

200. δ < — = = 0-01. 201. log2 0*99 < χ < log2 101. 

YN 
202. M ^ 10^ = 101 0 0. 

203. sin x, cos χ and all the inverse trigonometric functions. 

205. N o ; yes. 206. N o . 

π 
207. For example, xn = h 2ηπ, xn = 2πη; no. 

2 

209. I f α > 1, the function is unbounded (but not infinitely large) 
as χ —» + oo; it tends to zero as χ —* — oo. I f 0 < a < 1, the function 
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10,001 9999 

1 - ε*\* (I - ε
2
\
2 

- ι 216. (1) y = 1 + _ ; W , - f + _ _ ; 

< 3 ) y = - 1 + d b -
216*. Compare un with the sum of the terms of the geometric 

progression I , I , JL. . . ., I . 

220. 3. 221. Yes. 

222. f(x) = 9π for 0 ^ χ ^ 5; / (# ) = 4π for 5 < χ ^ 10; / (α) = π 

for 10 < a; ̂  15. The function is discontinuous at χ = 5 and a? = 10. 

2 
223. ο = 1. 224. A = - 1 , £ = 1. 225. a; = 2; a; = - 2 . 226. - . 

3 

sin χ 
227. The function y = has a removable discontinuity at 

χ 

cos χ 
the point χ = 0, y = has a discontinuity of the second kind 

χ 

(infinite). 

228. The function is discontinuous for χ = 0. 

229. The function has three points of discontinuity. A t χ = 0 the 

discontinuity is removable, whilst it is of the second kind (infinite) 

at χ = ± 1 . 

π 
230. N o . As χ -* 0 from the right, f(x) —» — , whilst as χ —> 0 

2 

from the left, f{x) —> . 
2 

231. The function is discontinuous at χ = 0. 

232. 0. 

234. N o . As χ —» 1 from the right, 2/ —• 1, whilst as χ —> 1 from 

the left, y - > 0. 

235. As χ - » 0 from the right, 2/ —» 1» whilst as a;->0 from the 

left, 2/ - > —1. 

is unbounded as χ —» — <χ> (but is not infinitely large) ; it tends to 

zero as χ —> + °° · Wi th a = 1 the function is bounded throughout 

the real axis. 

210. (1), (3) and (5) - N o ; (2) and (4) - Yes. 

- 1 2 
213. < χ < 



CHAPTER I I 419 

244*· D r a w schematically the graph of the function y = — \-
x — λγ 

-| 1 , and investigate its behaviour in the neigh-
X — λ2 X λ$ 

bourhood of points λχ, λ2 and λζ. 

245. 1. 246. ί . 247. 3. 248. oo. 249.0. 250. 0. 2 5 1 . — . 
2 17 

252. 1. 253. 0. 254. 4. 255. 1. 256. 0. 257. 0. 258. 0. 259. 1. 

4 1 1 
2 6 0 . - . 2 6 1 . - . 262. . 2 6 3 . - 1 . 264*. 1. Notice that 

3 2 2 

= — - . 265. - . 266· 1. 267. 0. 268. 9. 
(n — 1) η η — 1 η 2 

269. - . 270. oo. 271. 0. 272. 0. 273. - - . 274. - . 275. 6. 
4 5 2 

m 
276. oo. 277. - 1 . 278. oo. 279. 0. 280 .—. 281. 0. 282. oo. 

η 

283. - . 284. - 1 . 285. 0. 286. - . 287. - - . 288. 100. 
2 4 2 

2 8 9 . - 1 . 290. 1. 291. oo. 292. 0.293. 0. 294. oo. 295. 4. 296. 
4 

1 1 2 
297. 3. 298. if χ > 0; oo if χ = 0. 299. - . 300. - . 

2Yx~ 3 3 

1 tïh 1 
301. . 302. — . 303*. - . A d d and subtract unity from 

4a Ya - b η 2 
1 c 

the numerator. 304· . 305· One root rends to , the other 
4 b 

and investigate its behaviour as χ —> ± o o . 

241*. Write the polynomial in the form ι 

239. All three functions are discontinuous when χ is equal to an 

integer (positive or negative) or zero. 

238. The function is continuous at χ = 0, and is discontinuous 

for χ ^ 0. 

points χ 

237. The function has discontinuities of the first kind at the 

236. The function is discontinuous at χ = 0 (discontinuity of the 

first kind). 
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a = 0; (3) 
1 + L̂ 

380. O i f a * — > + o o ; — oo if a* —> — oo. 

381. With a > 1, the limit is equal to 1 if χ + oo, and 0 if 

x—> — oo. With α < 1, the limit is equal to 0 if x—> + oo, and 1 

1 
if χ —> — oo. With α = 1 the limit is equal to — . 

to oo. 306.0. 307.0. 308. 0 if a?-> + o o ; o o i f # - > - o o . 309. - if 
2 

a + b 
χ —> 4- oo ; —oo if χ —> — oo. 310. if X —> 4- oo ; oo if 

2 

a ; ^ - o o . 311. + - . 312. 0. 313. 1. 314. 3. 315. k. 316. - . 3 1 7 . - . 

- 2 β 6 
2 

318. 0 if η > m; 1 if η = ra; oo if η < m; 319. — . 

320. - . 321. ί . 322. - . 323. oo. 324. - 1 . 325. - . 326. oo. 

3 2 4 2 
1 3 π 2 

327. 0 328. - . 329. oo. 330. . 331. 1. 332. - . 333. - . 
2 2 2 π 

334. - - . 335. — . 336. 2. 337. — . 338. - 2 . 339. - 2 sin α. 

π 2 2 
β

2
 — α

2
 sin 2β 

340. . 341. cos
3
 α. 342. - . 343. - s i n α. 

2 2β 

2 sin a V 2 3 
344. . 3 4 5 . ^ - . 346. 1. 347. 6. 3 4 8 . - . 3 4 9 . - 1 . 

cos
3
 α 8 2 

1 1 1 
350. - ^ . P u t arc cos α = y. 3 5 1 . - . 3 5 2 . - . 353. 1. 354. e™

k
. 

\2π
 θ θ 

355. e
6
. 356. Θ

 3
 357. Θ

2
. 358. 0 if χ - > + ο ο ; oo if χ - > - οο. 

359. oo if χ-> + ο ο ; O i f a ; - ^ — ο ο . 360. 1. 

361. oo, if χ-* + ο ο ; 0, if — οο. 362. Θ
2
. 363. Θ. 364. f ë . 

1 1 2 
365. 366. - . 367. α. 368. - . 369. 1η α. 370. - . 371. e. 

α Θ 3 

3 
372. — ; add and subtract unity from the numerator. 

2 

373. 2. 374. 1. 375. a - b. 376. 1. 

377. 0 if + o o ; o o i f a ; - > — o o . 

378. l i f # — > + o o ; — \ iî χ —> — oo. 

379. (1) a"; (2) 0 if A ^ 0, a" if A = 0 and α ^ 0, and oo if 

1 
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382, With a > 1 the limit is equal to 1 if χ —» + σο, and — 1 if 

χ — oo. With a < 1, vice versa. With a = 1 the limit is 0. 

383. 0. 384. 0. 385. 1. 386. 0. 387. - c o s a. 388. — . 389. 

12 8 
sin χ χ 

390*. . Multiply and divide by sin — . 

1 1 
391. — . 392. 0. 393*. . Use the formula arc tan b — arc tan α = 

2 2 
b — a 1 1 

= arc tan . 394. — . 395*. — . Replace arc sin χ by 
1 + ab 2 2

 F
 * 

χ 
arc tan - — = = and use the hint on problem 393. 

y i - x
2 

396. o o i f n < l ; e if η = 1 ; 1 i f η > 1. 

397*. 1. Take the expression 1 — (1 — cos a?) instead of cos a:. 

398. - - . 399. - . 400. e. 401. e^. 
2 e 

402. vn is of the higher order of smallness. 

403. un and vn are equivalent infinitesimals. 

405. Of the same order. 

406. The order of smallness is different at χ = 0. Ay and Ax are 

equivalent for χ = ± . 407. N o . 408. Of the third order. 

3_ 

409. (1) 2; ( 2 ) 1 ; (3) 1; (4) 10. 410. x=

411. a = h. 412. N o . 414 . (1 )1 ; ( 2 ) 1 ; ( 3 ) 1 ; (4) an equivalent 

3 2 2 
infinitesimal; (5) an equivalent infinitesimal; ( 6 ) 1 ; (7) an equivalent 

2 
infinitesimal; (8) 2; (9) 2; (10) 1; (11) - ; (12) 2. 

3 
415. a

2
 }

r
3. 416. 2nR

2
; 4R

2
. 

418. I t does not follow from the fact that the step line tends to 
merge with the straight line (in the sense of their points approximat-
ing) that the length of the step line tends to the length of the seg-
ment. 

TlCb 
419. a. 420. a, — . 421. 2n(B + r). 

2 

422. Both the segment and the angle are of order — . 
2 
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443. /'(Ö) = 10; / ' ( - 2 ) 

444. 3; 0; 6; ^ . 445. xx = 0, x2 = 2. 

ο 
446. Does not hold for f(x) = x*. 447. 1. 448. 04343. 449. 2303. 

450. The limit is equal to / ' (0) . 

458. (1) δχ'; (2)Hte»; (Z)%x~
T
; (5) — ^ ; ( β ) - - ^ ! 

7
 sysr

 2
^ 

425. (1) 10-25; (2)30*2; (3)16*125; (4)40-4; (5)0*558; (6)0*145. 

426. (1) 10-16; (2) 20*12; (3) 1*02; (4) 4*04. 

427. 1η 1*01^0*01, ln 1-02 ^5 0 02, I n H w O ' l , ln 1-2 & 0*2. 

Chapter ΠΙ 

m m 
428. (a) 5; (b) 5. 429. (a) v = 15 ; (b) v = 33 ; 

min min 

m 
(c) 3 ( ^ 4 - ^ ) — ^ . 430. 75*88; 60*85; 49-03; 48*05. 

min 

m m m m m 
431. 53*9 ; 49-49 ; 49*25 ; 49005 ; vb = 49*0 ; 

sec sec sec sec sec 

m m 
v10 = 98*0 ; υ = 9-8* . 

sec sec 

432. (a) 4 — ; (b) 40 — ; (c) U — , where I is the length 

cm cm cm 
of segment A M. 

433. (1) 95 — ; (2) (a) 35 — ; (b) 5 — ; (c) 185 — . 

cm cm cm cm 
434. (1) 1*00201; (2) 1*013. 

435*. Introduce the mean angular velocity, then obtain the 

required quantity by passage to the limit. (See Course, sec. 50.) 

/'(*) 
438. k = - — , where k is the coefficient of linear expansion. 

/ W 
439.

 Κ
 = S 440. (1) 56; (2) 19; (3) 7*625 (4) 1*261. 

441. (1) 4*52; (2) -0*249; (3) 0*245. 442. (a) 6*5; (b) 6-1; (c) 

601; (d) 6-001. 
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_1_ 

1 3 5 » * Ία 
(7) - (8) — ; ( 9 ) — ; (10) 3-5**; (11) a ;»; (12) -

χ 
δχ γχ* 

.8 ' 

5 
1 ρ 2 - 4 

(13) ; (14) - 4 ; (15)
 3

 • 

454. (1) 0; (2) 6; (3 - 4 ; (4) fc,= 2, &2 = 4. 

455. ( 1 , 1 ) ; ( - 1 , - 1 ) . 456. (1) ( 0 , 0 ) ; (2) | Ι , 1 ) . 

457. I t cannot. 458. α, = arc tan — , α, = arc tan —— . 
1
 7

 2
 13 

π 3 
459. OLX = — , α 2 = arc tan — . 460. arc tan 3. 

461. y = I2x — 16; χ + 12y — 98 = 0; the subtangent is equal 

2 
to —, the subnormal to 96. 

3 
2 

462. For χ = 0 and for a? = — . 
3 

463. (1) (2, 4); (2) ( - | , ?-); (3) ( - 1 , 1) and £ , ^ ) . 

466. (1) 6a; - 5; (2) 4a;
8
 - a;

2
 + 5a; - 0*3; (3) 2ax + b; (4)

 1 

s y ï
2 

1 1 0-2 0-4 1 η 2x 2m
2 

(5)— + ^ ; (6) I 0 y
2

- — ; (7) - + — - ; 

fa
 37 ŷ a" y n * α 

3 _ r— 7 · 1 1 2raz + η ( 8 ) - m ] f c + - n Y x + V p — ; (9) ; 
2 6 2 ρ + q 

1 - f 0-5 
(10) t

 8
 + 7·28*"

2
·* — ; (11) 2x - 1; 

15 A— 
* y r 

(12) 35a;
2
 f x - 1 +

 1
 ; (13) 3v

2
 + 2v - 1; (14) 6 (a - x); 

2 Yx 
2ax b c 3m(mu 4- n)

2 

(15) 1 ; (16) —S — — - . 
a + b a + 6 (a + 6)a;

2 v
 ' p 3 

467. / ( I ) = 1; / ' ( l ) = 2; / (4) = 8; / '(4) = 2-5; f(a
2
) = 3 a

2
- 2|a|; 

1 
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19
468. /(-1) = -5; /'(-1) = -8; /'(2) = 16;

f'(~) = 3a4 + lOas - a 2
•

469. 13. 471. (1) 4x 3 - 3x 2 - 8x + 9; (2) 7x 6 - IOx 4 + 8x 3 

-I2x2+4x+3; (3)-~(I+~);
2 Yx x

1(60 5 y3 6 )
(4) 9" -6---I- + -3- - 48 V27x 2 ;

Vx x VX5 x VX
3 3 3

1 + 12x 9 VX2 + lOx yx-+ 36x yx2

(5) -3-- + 3 ; (6) 2x(3x4 - 28x2 + 49);
3 yx2 3 Vx 2

1 + V2+ V3 + 2 V2X + 2 V3X + 2 y6x + 3x Vtf
(7) _ •

2 Vx
2 1 - x 2 3t 2 - 6t - 1

472. - . 478. . 474. ----
(x - 1)2 (1 + X 2)2 (t - 1)2

v 4 + 2v 3 + 5v 2 - 2 ad - be
475. . 476. .

(v2 + V - 1)2 (ex + d)2
4x 2v4 (v 3 - 5)

477. + 1 + 2x - 3x 2. 478. - ---------
3(x 2 - 1)2 (v3 - 2)2

6x 2 6x2 2v - 1
479. 480. - 481. -- .

(x 3 + 1)2 (x 2 - 1)2 a 2 - 3

3x 2 2t + 1
482. - - 483. - ----

yn (t2 + t + 1)2

3 - 2t 4x 3(2b2 - x 2 )
484. . 485. .

(t 2 - 3t + 6)2 (b2 - X 2)2

1 + 2x + 3x 2 - 2x 3 - x 4

486. .
(1 + X 3)2

487. 6x(I + 3x - 5x
3

) • 488. ~_± 2bx .
(1 - x 2)2(1 - 2X3)2 m(a+bm)

a2b 2c2 [(x - b) (x - c) + (x - c) (x - a) + (x - a) (x - b)]
489. - .

(x - a)2 (x - b)2 (x - C)2

490. /'(0) = 0; /'(1) = 6. 491. F'(O) = 11; F'(I) = 2;
F'(2) = -I.

I I 3 17
492. F'(O) = -4; F'( -1) =:2. 498. 8'(0) = 25; 8'(2) = 15·
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4

2 5
494. y'(I) = 16; y'(a) = 15a2 +- - 1. 495. e'(2) =-; e'(O)= 1.

a 3 9
a+l

496. q;'(I) = - -4-. 497. z'(O) = 1.

498. (1) 4x 3 - 3x 2(a + b + e + d) + 2x(ab + ae + ad + be +
+ bd + cd) - (abc + abd + acd + bed); (2) 8x(x2 + 1)3;
(3) -20(1 - X)19; (4) 60(1 + 2X)29; (5) -20x(I-x2)9;

(6) 5(I5x2 + 2x) (5x3 + x 2+ 4)4; (7) 6(3x2 - 1) (x 3 - x)o;

(8) 6 ( 14x + ;)(7x 2
- ~ + 6r (9) 4(3t2 + ~ )(t3

- ~ + 3r
0) 4(x + 1). (11) 5(x2 + 2x - 1) (1 + X2

) 4 .

(1 - (x _ 1)3' (1 + X)6 '

(12) 24(x2 + x + 1) (2x3 + 3x 2 + 6x + 1)3.
(8 + 2) (8 + 4) (3 - t) t 2

499. 500.
(8 + 3)2 (1 - t)3

1 - V2
501. . 502.-

2 Vx(I + V2X)2

503. Vi --=-X2
mv m - 1

x
507. ----

2x 3 + 4x'

508.
2x

3

3 V-(I-+-x-2)-4

3-x

514. u'(I) = 9.

x(x2 + 2a 2 ) v + Va 2 + v 2

511. . 512. - .
V(x 2 + a 2 ) 3 a 2 Va 2 + v 2

2 15x
513. - ----a t _

3 V(2x - 1)4 2 V(x2 + 2)'

515. y'(2) = - Y3. 517. cos X - sin x.
3

1 - cos x - x sin x x - sin x cos x
518. . 519.------------

(1 - cos X)2 x 2 cos2 x

520. q; cos tp, 521. (oc cos oc - sin oc) (~ __._1_) .
oc2 s1n2 oc
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522· 

524· 

1 + cos t 1 -f sin 2x 

(1 + tan x) (sin χ -\- χ cos χ) — χ sin χ sec
2
 a* 

(1 + tana;)
2 

525. —sin 2a;. 526· tan
8
 a; sec

2
 a;. 527. —sin

3
 a;. 

3 sin χ 
628. — sin 2a;(2 — sin x). 529. tan

4
 x. 530. 2a; 

2 "
x
 ~ ' " " ' cos

3
 χ 

16 cos 2a; a x 
531. . 532. 3 cos 3a;. 533. sin - . 

sin
8
 2a; 3 3 

1 1 
534. 9 cos {Sx + 5). 535. . 536. . 

2 cos
2 X + 1

 f 1 + 2 tana; cos
2
 χ 

2 

1 
cos — 

X 
537. . 538. cos (sin a*) cos x. 639. —12 cos

2
 4a; sin 4a;. 

x
2 

540. - - . 541. *
 C OS n + 

m , Χ X Vi ψ ί 
4 1 / t a n - c o s

2
-
 1 

2 2 

2χ 
542. . 543. 4(1 + sin

2
 a;)

8
 sin 2a;. 

544. 

3 sin
2
 y i + a;

2
 ] / ( l + a;

2
)

2 

χ
2
 - 1 

2a;
2
 cos

2
 \x + ^ J | / 1 + tan |a; + ^ j 

sin 2 ^ = 

I 1 4- Vx I 
545, ^ ^

 y y
 . 646. - 3 sin 3a; sin (2 cos 3a;). 

a?
 77 

548. arc sin a; + _ . 549. 
y i — a;

2
 2 (arc cos a;)

2
 y 1 — a;

2 

2 arc sin χ 1 
550. — • . 551. arc sin a;. 552. — 

y i — a;
2
 (arc sin a;)

2
 y i — a?

2 

χ sin χ 
553· (sin x) arc tan χ -f- (χ cos χ) arc tan χ + 

1 + a ;
2 

- . a; + arc cos χ V1 — χ
2
 arc tan χ Vx 

554.
 r

 . 555. — + — . 556. 0. 
a;

2
 y i - x

2
 2 fx

 1
 +

 χ2 

1 sin χ + cos x -f χ (sin χ — cos x) 
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|cos » | 1 + »
2 

„ Λ„ arc c o s » 
567. - . 568. 

569. 

y I - »
2
 y i - (arc cos » )

2
 (1 + x) \2x(l - x) 

x + 1 
4 

8 / (arcs in y»
2
 + 2 » )

8
 }^(1 - 2» - »

2
) ( »

2
 + 2») 

sin α y α
2
 — b

2
 1 

570. . 5 7 1 . — — . 572. 
1 — cos α cos χ a + b cos χ 2(1 + »

2
) 

χ 2 ln » ln χ 4- 1 
573. 2» log3 χ -\ . 574. . 575. . 6 3

 In 3 χ In 10 

1 » ln » — » + 1 
576. . 577. 1η2. 

2χ yin χ * 1η
2
 χ 

578. sin χ tel χ -\- χ cos » ln χ + sin a?. 

1 1 — η ln χ 2 
579. . 580. • . 581. 

» I n
2
» " " » η + ι » ( l + l n » )

2 

I _L χ2 2 »
2
 In » 

5 82
 7\—; —

 . 583. χη-\η]ηχ + 1). 

» ( 1 + »
2
)

2 

„ Λ, In » 2 2 » — 4 
584. — = — . 585. . 586. - . 

» y i + In
2
 » 1 - 2 » »

2
 - 4 » 

2 » 2 587. cot » . 588. — r 7- 7— ; L. 589. ( »
2
 — 1) ln 3" sin 2» 

2 
590. = · 591. 4(ln

8
 sin » ) cot » . 

arc cos 2» \ 1 — 4 »
2 

592. . 593. nil + In sin » J " "
1
 cot » . 

(ax + b) [1 + In
2
 ( o » + 6)] 

1 
594. 

» loge # l°g3 (loge
 x

)
 m

 2 ln 3 ln 5 

1 2 »
2
 V i — »

2
 + » arc sin χ 

557. . 558. . 559. - . 

χ y »
2
 - ι (ι + χ

Ύ y ( i - χ*)* 

2» χ
2
 1 

560. . 561. - . 
a r c t a n » (1 -f- a;

2
) (arctan » )

2
 y 2» — #

2 

V2 2χ 2 
562.

 γ
 — . 563. . 564. == . 

]/1 + 2» - 2χ
2
 1 + *

4
 \χ\ fx

2
 - 4 

1 
2 arc tan — 

c o s » a; 
565. . 566. -
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595. 

596. 

A N S W E R S 

( a r c t a n f l + χ
2
) (2 + x

2
) \ l + χ

2 

6a;
2
 aresin Γΐη (α

3
 + a;

3
)l 

— . 597. 
(α3 + xz) Υΐ - ln2 (α3 + ζ*) 

cot 
a; + 3 

12 In
2
 sin 

a? + 3 

ln 3 

3* 
598. 2* ln 2. 599. 10« In 10. 600, 

602. 10
x
(l + χ ln 10). 603. e

x
( l + x). 604 

605, 

607 

601.4-*(1 - a?ln 

2
x
(ln 2 - 1) + 3a;

2 

e^ 

(sin χ — cos x). 608. — 

ex 

. 606. e
x
(cos χ — sin x). 

sin χ + cos χ 

609. 

612. 

615. 

617. 

620. 

622. 

sin
2
 χ 

(Ina; - 1) ln 2 e
x 

In
2 χ 

ex(x2 + 1). 613, 
β*(χ - l )

2 

2
l n x

. 610. 3a;
2
 - 3* ln 3. 611. 

2 Yl + e
x 

2(10* ln 10) 2e
x 

614. -

(χ2
 + i )

2 

(1 - e
x
)

2
 (1 + 10

x
)

2 

616. e
x
(cos χ + sin χ + 2a; cos a;). 

- e "
x
. 618. 2 (10

2 x
"

3
ln 10). 619. — 

2 Yx + 1 
(2* ln 2) cos (2*). 621. (3sinx cos

 x) ln 3. 
2earc sin 2x 

(3 sin
2
 a? cos x) α*η

3
 χ In a. 623. V

i - 4a;
2 

624. 23- 3* ln 2 ln 3. 625. 

626. 

627. 

628. 

629. 

2a; yin χ 

cos (e*
2
+3*-2) e*

2
+3x-2(2# + 3). 

- 12(10l-sin*3x in 10) sin
3
 3a; cos 3a;. 

(2aa; + b) e V
| n

< «
a
+ t e + 0 

2(ax2
 + bx + c) yin (ax

2
 + bx + c) 

3 

cot yarc tan ( e
3 x

) e
3x 

630. 2αδ
2
 xe-b*x\ 

(
1 + e

6 x
) y[arctan ( e

3 x
) ]

2 



CHAPTER III 429 

1 2a; 
636. . 637. \ . 638. 2 sinh 2a;. 

cosh 2a; cosh
2
 (1 — x

2
' 

639. sinh (sinh x) cosh x. 

sinh χ 1 
640. — ,

 641. ecosh»xsinh 2x. 642. 
2 fcos

h χ
 x c o s

h
2
 (In x) 

3 tanh a; 1 
643. χ cosh a;. 644. . 645. 

χ 2 cosh
2
 x VI + tanh

2
 a; 4 cosh

4
 — 1

 2 

646. —
 1

 . 647.
 1 

648. 

2 ycosh χ — sinh χ 1 — sinh4 « 
« ( 4 + V » ) sinh 2a; + 2(2a;

2
 yx — l ) cosh 2a; 

2a;
2 

xe*
x 

649. — [(3a; + 2) sinh χ — χ cosh a;]. 
sinh

2
 a; 

650. a*'+i(2 ln χ + 1). 651. a;** a;*|ln
2
 a? + ln χ + - j , 

( COS
2
 X \ 

sin a; ln sin a; . 
sm χ J 

653. (ln χ)* + ln ln χ I . 
Vin a; ) 

654. 2 V to+T ) iT—
l
- ^ ± 1 > 1 . 

La;(a; + 1 ) χ
2
 \ 

655
.
 a;2 ex1 sin 2a;(3 + 2a;2 + 2a; cot 2a;)

. 

6 5 6 . - ^ -
2 ) (

^
L K + 1 )

. 6 5 7 . -
 L N

° 

OP in
2 χ 

3(a; - 5 )
4
 / (a; + I )

2 

Λ ρο 57a;
2
 - 302a; + 361 (χ + l )

2
 ]fx - 2 

658. · . 
20(a; - 2) (x - 3) · . V

 '
 V
 ' y (a; - 3)

2 

659. - Yx sin a; y i — e * ( - + cot a; - - — ^ — ) . 

r
l — arc sin χ 

660. 
y i — a;

2
 [(arc sin χ)2

 — 1] 1 + arc sin a; 

2 - -
631. — xe

 α
* (α

2
 - χ

2
). 632. ^θ-***[ω cos (ωχ+ a)-k

2
 sin (ωχ+ α ) ] . 

CL 

633. αΧχ°\ - + 1η α Ι . 634. 3 sinh
2
 χ cosh χ. 635. tanh χ. 
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1 
ν — 2 / sin χ \ 661. xx
 (1 — ln x). 662. x*nx cos » ln χ -\ J 

χ \x 1 χ \ Υχ-Τ 
+ ln . 664. χ

 2
 (2 + ln x). 

χ + 1) \x + l) [x+1 

[ 2x sin χ l 
h cos»ln(o;

2
 + 1) . 

x
2
 + 1 J + 

3a(l - a;
4
) ^ ( » 2 - l )

2
 ' ' ^ _ 

a ν 
668. . 669.

 y 

k cos
2 g- + 6 j 2 V l + \2Vx Y2px 

2x — 3 1 + sin » 
670. . 671. 

1 + (a;
2
 — Sx + 2)

2
 (a; — cos x) ln 10 

3 χ 

672. - sin 2»(cos χ - 2). 673. sec
2
 - . 

2
 V

 ' 5 

674.
 1 + 2

^ . 

6 yx fix + yx ; 

» 1 » 
675. 2 sin — cos 2» ~\ cos — sin 2x. 676. ecosx(cos χ — sin2 x). 

2 2 2 
χ*(7χ« - 4 0 ) (I \ 677. . 678. e-x

e
 2a; ln a; . 

V(»6
 - δ )

2
 ^ ' 

5(a; - 1) / _ 1 V> 1 
679. — I Yx Η . 680. . 681. 2x

2
 e

2
* +

3
. 

» y ï 1/ y*J i + *
2 

2 sin 2» 1 + x2 2(x cos » 4- sin x) 
682. . 683. - . 684. - ' . 

cos
2
 2x 1 + x

2
 -f- a;

4
 x

2
 sin

2
 » 

1
 x . 2x I . x x 4(31»

5
 + 18) 

685. — cot — sin sin
2
 — cos

2
 — . 686. . 

3 2 3 2 3 2 ·, β 27»δ y(4»s + 2)
8 

1 —̂ Va? 
687. . 688. arc tan \x -f 

y »
2
 + a

2
 2(1 + a) 

tan χ (1 + 2 tan
2
 a;) 

cos
2
 a; y 1 + tan

2
 a; + tan

4
 χ 

tan a; ( 1 + 2 tan
2
 x) cos 2» 

689.
 v

 . 690. 2 sin 2» ln x. 
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1 + χ
6
 yi — η

2
 sin

2
 χ 2 j^sin χ — sin

2
 a; 

a; arc sin χ 1 arc sin χ 1 
694. sin

5
 3a; cos

3
 3a\ 695. •. 696. sin -

γ ι - χ2 2 2
 y i - a : 

1 + 2 Va; + 4 Va; /a; + 
697. — - — - — - — ' — - . 698. 

8 YxÎxTTx ]fx + f a T + T Î 2 } ' 3* - 9*° 

K l — ln a? ^ l 2a; — cos χ 
. 700. , x JJ (x2

 — sin x) ln 3 

701. . 702. 

705. -

2 f i - x2 xYl - a;
2 (x + l/l - a;

2
) 

1 2e* 
. 704. ]/1

 - In
2
 a; (1 + e*)

2 

2 sin
3
 a; 

Π — e
x
\ 

703. arc sin (ln x) +
 - . 704. sec

2
 . 

y i + sin
2
 a; 

Γ 2a; + 1 W 2» + 1 Ϊ 
706. —0*8 cos — sin 0*8a;

J I s i n — - 1- 0*8 cos 0'8a;L . 

Vxf Yx \ 4 
707. 10 1 + -L_ln 10 . 708. - tan

 2a; sin
2
 2a; 

1 
709. . 710. 

(x
2
 + 2x + 2) arc fcan ^

2
 "

 1 

1 + χ 
711. ϊ ± ± . 712. ^

 + 9 1
^ 

2 y ^ + 3 Y (I + χ y o T + 3 )
2 4 1 /1

 + ^ 

sin 2a; 3a;
5 

713. — . 714. 3a;
2
 arc tan a;

3
 + 

2 y ( l + sin
2
 a;)

3
 1 + a;

6 

cot χ ln cos χ + tan χ ln sin χ 
715. • . 716. „ 

In
2
 cos χ ν 1 + χ 

717. - [ 1 / i z i ? + arc sin 4a; 1. 718, 

(1 - 4a;)
2 \ \ 1 + 4a; J 

719. — - — . 720. lO^tanx in lof tan χ -\ —] . 

e
x
 — 1 V

 c o s2 x
 I 

ι 
lnx 

a; In
2
 a; 

_ 1 + xA

 λλλ η cos χ Λ cos χ 
691· — — . 692. - . 693. 
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721. 

723. 

A N S W E R S 

2 sin x(x sin χ cos x
2
 + cos χ sin x

2
). 722. 

2 — 3x — x* 

2 sin χ 

cos 2a; ycos 2a; 

2(1 - x) (1 + α
2
) 

1 — a; a;
2 

724. 
1 + χ

2 
1 - a;

4 

725, 
τ— ln χ — 1 

2
1 η χ

— — In 2. 726. 

728. -

ln
2
 χ 

1 

a — χ 2(2 cos
2
 χ + 1) 

727. — 

(1 + χ) Υΐ - χ
2 

χ — b 

729. 

sin
2
 2a; 

Ψ-
I α 

+ χ 

(1 + e~
4
*) (arc tan e -

2
* )

2 

«,-vr 

(cos x — sin a;) (e* + e
- x

) arc tan x 

e
x
 cos a; + e ~

x
 sin x 

sin (x — cos a;) (1 -f- sin a;) 

730. 

733. 

735. 

738. 

740. 

742. 

743. 

744. 

746, 

747. 

749. 

752. - -

X" Vx
2
 + 1 

— . 731. - cos 2x. 732. 
x
 Y(x

2
 - l )

8 

(a
2
 + 1) sin xe

ax
. 734. el - cosx(i + x sin a;). 

2 e -
2X 736. 10e

x
sin3a;. 737. 9a;

2
 arc sin x. 

- . 739. 
f 2 + 4a; — a;

2 

1/(1 + χΎ 

cos
2
 (a; — cos χ) 

e
x
 sin a; cos

3
 a;(l -f cot χ — 3 tan a;). 

54 Va 
745. 

]Ae
2x
 + 4e

x
 + 1 

55 f (9 + 6 ] / a ^ )
10 

earctan Vl + ln(2.x+ 3) 

(2a; + 3) [2 + ln (2a? + 3)] f 1 + ln (2a; + 3) ' 

e
x2

 l n ( l + s i n a ; ) 
[2a;(e

x
 + e ~

x
) - ( e

x
 - e ~

x
) ] . 748. ——r-9 . 

a;
5
 + 1 

. 750. Ζ . 751. 

( e
x
 + e "

x
)

2 

40 

2a; - 3 f l - 4a;
2
 "

 χ
*(

χ2
 + 1) 

1 

χ 

Y1 - 2a; - a;
2 

χ (1 + 2a;
2
) sin a; 4- a;(l 4- x

2
) cos χ 

- + cot a;. 753. '
 v 

1 - a; f l + x
2 
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(*» - 32* - 73) (3 - .τ)» sJ
x
 (2 + fx") 

7ο4· ——— . 7οο· 
2(χ + 1)

β
 Υχ + 2 

756. 
I ι + χ

2
) 

χ* — arc tan χ + - In χ + 1 

10 V (1 + χο^)
2 

1 

]fx~ 
. 757· 

e
x
 arc tan χ r 

758. — — 1 + χ + 

cos
5
 χ 

5 

In
5
 χ (1 4- x

2
) arc tan χ — 1 

ln a; J 

759. 
(1 — a

2
) e

3
*-

1
 cos xt3 — 2x — 3x

2 

(arc cos x) 

cos a* |*£ 
8
 L 

- — tan χ + 

+ Y1 — χ
2
 arc cos a*J 

760. 4 V (α
2
 + α

2
)

8
. 761. (arcsin α )

2
. 762. — — 

e ~
x
 -f- e

x 

763. 
aemx be-mx 

ί 

-. 764. 
x

3
 + 1 

765. 
1 - x 

1 + x 

766. (tan 2») 
COt ; 

4 cot -
ln tan 2a; 

sin 4a; 

V 
2 sin

2
 -
x 

767. 
3a;

2
 + 10a; + 20 

2 ; 

-. 768, 

15(a;
2
 + 4)f(a; - 5 )

2
 y a;

2
 + 4 

2nx"-
1 

χ* + a;
2
 + 1 

769. -
a;

2
" + 1 

if n is an odd number, 

24a;
8 

, if n is an even number, and — 
2nx

n 

\x\ (x
2
" + 1) ' 

770. 
(1 + 8a;

8
)

2 774*. (a) 1 -
(n + 1) x

n
 + nx

n
+

x 

( i - * )
2 ; 

n(n — 1) — 2(n + l )
2
 xP + n(n + 1) x

n
~

l
 + 2 

(b) . Hint; use 
( 1 - * ) » 

the value of the sum χ + a*
2
 + · · · + x

n
» 

, , cos ln χ 
776. y i — 2/

2
e-arcsiny and . 777. 

1 

3(*
2
 - 1) 



434 

(Arc tanh 
1 

782. 

A N S W E R S 

783. 

785. 

- ( 1 + *
4
)

2 

1 - t 

-2 V(l — 2/
2
)

2
 (1 — 2/)

2
. 784. 

32/
2 

1 _ y 1 
Vi - 22«, cot t 789. y

 =
 fix)

 =
 sin2 χ. 

2*ln2
 F

 In 2 ν ι\ ι 

790. t/ = ± fl - x
2
. 791. . 792. 

4 

b
2
x 

793. 

796. 

y ay 
- . 794. 4- 795. 
a; 

2a 

3a
2
 cos 3x + y

2
 sin χ 

2y cos » 

797. 
y 

799. -

800, 

3(1 - y
2
) 2/ - * 

3x
2
 + 2a»2/ + &2/2 

χ y
2
 — 2x

2 

798. - . — . 
y 2y

2
 — x

2 

ax
2
 + 2bxy + 3y

2
 ' 

y cos
2
(# + y) (cos (xy) — sin (xy)) 1 

801. 2*-y 

803 

» cos2(# + y) (cos (#2/) — sin (xy)) — 1 

2 ^ - 1 _ ι 802. 
1 — 2^ 2(1 + In?/) 

y ï ^ 7
2

( i - y r 
2
) 

805. -

]fl-x
2
(l - y i -2/

2
) 

sin (x + 2/) 

804. 
y

2
 — xy ln y 

1 + sin ( » + y) 

3 

806. 

»
2
 — xy ln » 

1 + y sin (»2/) 

# sin (xy) 

807. - - . 808. 
χ y 

809. 
sm y 

2 sin 22/ — sin y — χ cos 2/ 

810. 
y i - k

2 

811, y cos » + sin (x — 2/) 812. 1 +2/2 

1 + k cos a; sin (x — y) — sin χ y
z 

814. (2,4). 816. y + 4» + 4 = 0; 81/ - 2» + 15 = 0; the sub-

tangent is equal to — , the subnormal to — 8. 

819. (a) tx = 0, t2 = 8; (b) ^ == 0, t2 = 4, *3 = 8. 

820. 181-5 x l O 3 erg. 821. ω = 13 

rad 

rad 
822. ω = 2π-

rad 

823. ω = (2α* — b) 

sec sec 

the velocity becomes zero after 

2α sec. 
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2a 
-{x — xQ). 

v0 

837. 2x - y + 1 = 0. 838. 2Ίχ - 3y - 79 = 0. 

839. 2x - y - 1 = 0. 840. 4* - 4y - 21 = 0. 

842. 3-75. 844. χ + 25y = 0; χ + y = 0. 

845. (0, 1). 846. y = χ. 848. χ - y - 3e~
2
 = 0. 

2χ — y ± 1 = 0. 849. — . 850. i l + — ; l ) . 857. 

π { 2 ) 
858· (a) The parabola y

2
 — —px; (b) the straight line y = -

2 Ιηδ 

parallel to Ox ; (c) the kappa curve y y a
2
 — χ

2
 -j- #

2
 = 0 ; (d) the 

circle #
2
 + y

2
 = a. 

8 1 
859. (1) arc tan— ; (2) φ1 = 0, φ2 = arc tan—, 

15 8 
860. (1) arc tan 3. (2) 45°. 

861. 90°. 862. 45 and 90°. 863. arc tan 3. 864. arc tan (2 f2~) . 

865. When η is odd, the tangent is — -f- \ - = 2, the normal 
a b 

x y 
ax — by = a

2
 — b

2
. When η is even, the tangents are — ± — = 2, 

a b 

the normals ax ± by = a
2
 — b

2
. 

824. 234. 825. ( 0 , 0 ) ; ( 1 , 1 ) ; (2 ,0 ) . 

827. (1 ,0 ) ; ( - 1 , - 4 ) . 828. y = 2x - 2; y = 2x + 2. 

829. Sx + y + 6 = 0. 

830. The tangent is y — y0 = cos x0(x — x0) ; the normal is 

y - y0 = -seco;0(a; — a:0). 

831. The tangent is #0(y — yQ) = x — x0; the normal is (y — y0) + 

+ x0(x — x0) = 0. 

832. The tangent is x -\- 2y = 4a; the normal is y = 2x — 3a. 

833. The tangent is y — y0 = °- (x — x0) ; 
y0(2a - x0)

2 

y0(2a — x0)
2 

the normal is y — y0 = — (x — x0). 
x%(Sa — x0) 

x 2x 
835. The subtangents are equal to —, — and — 2x respectively ; 

3 3 

3*
2
 1 

the subnormals are — 3x
5
, and — - respectively. 

2 2x 
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4/ 
zh/ — dy 

-0-0025; — = - 0 0 2 5 . 

885. 

Ay 

Ax = 1, 

Ay = 18, 

dy = 11, 

4/ — dy = 7, 

Ay — dy 

Ay 
= 0-39, 

o-I, 
1161, 

11, 
0-061, 

00526, 

886. Ay 1-3; dy pa 1-1; Ay — dy & 0-2; δ = 

0-01, 

0-110601, 

OIL, 
0-000601, 

0-0055. 

Ay — dy 

Ay 
= 0-15. 

887. (a) dy = 16,
 &V

 % =- 5-88%; 
Ay 

( b ) d y = 8, % = 3-03%; (c) dy = 1-6, f ^ Z i î ? % = 0-62%. 

4/ 4/ 
888. (a) dy = 4-8 cm

2
; (b) dy = 6*0 cm

2
; (c) dy = 9-6 cm

2
. 

0*125 5da; 4tdx dx dx 

889. (1) - — d a ; ; ( 2 ) — — ; (3) - — ; (4) - — ; (5) -

(6) 

3nx Yx 
(?) 

3 y^
2 

do? 

2(a + b) Yx 
= ; (8) -

ρ ln g 

χ

5 

4kxYx~ 

dx; 
0*2(m — n) (m -\- n) dx 

(9) rr2 dx; (10) — — ; 
χ

12
 2z y*7 

(2a; + 4) (a;
2
 - Yx) + (x2

 + 4a; + 1)^ (11) 

(12) 

(15) 

2a; 

6x
2
 dx 2« d< 

: ( 1 3 ) - — ; (14) 3(1 + χ - χ
2
)

2
 (1 - 2x) dx. (x> - 1) 

2 tan a; 

(1 - *
2
)

2 

21n5 
da;; (16) 5m tan χ d r ; (17) - 2 

cos
2
 χ sin 2a; 

da; (χ

2
 — 1) sin χ 4- 2x cos χ 

(18) ; (19) A _ 

^ l n 2̂ d , ; 

2 sin-
tl - *

2
) .2\2 

da;; 

879. Ay = 1-461; dy = 1-4. 880. Ay = 0-1012; ay = 0 Ί ; 
dy 
— = 0-9880. 
Ay 

881. 4. 882. - 2 . 883. Ay = 1-91; = 1*9; Ay — dy = 0-01; 

^ ~
 d

y = 0-0052. 884. 4/ = 0-1; dy = 0Ί025; Ay — dy = 
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3 y[(i» + 2t + 1) (*
3
 + 2t + 6 ) ]

2 

£ j2 j 
(2) ds = sin dt; (3) dz = — ds; 

2 2 

2 In 3 de (4M — 3) dw 
(4) dv = (5) de = 

3
l n t a n s

l n
2
t a n « 

2d« 

sin 2s 2 ]/2M
2
 - 3ω + 1 

(6) dy = -
cos 2s 

908. Continuous and differentiable. 

909. f(x) is continuous everywhere except for the points χ = 0 

and χ = 2; / ' (# ) exists and is continuous everywhere except for the 

points χ = 0, 1, 2, where it does not exist. 

910. A t χ = kn, where k is any integer. 

911. Continuous, but non-differentiable. 

912. / '(0) = 0. 

913. Continuous, but non-differentiable. 

890. (1) -0-0059; (2) -0*0075; (3) 0*0086; (4) 0; (5) 0-00287. 

891. Ay κ 0-00025; sin 30°1' PU 0-50025. 892. 0*00582. 

893. -0-0693. 894. dp -

895. 0-3466. 896. sin 60°03' == 0-8665; sin 60°18' = 0*8686. 

899. 0-995. 900. arc tan 1*02 ^ 0*795; arc tan 0-97 & 0-770. 

901. 0-782. 902. 0-52164. 

903. (a) The change in the length of the cord is 2ds 

(b) the change in the sag is df = 

904. The error when finding the angle from its sine is Ax$ = 

= tan χ Ay ; the error when finding the angle from its tangent 

(where Ay, Az are the errors with which y 

and ζ are given); the accuracy is higher when find-

ing the angle from the logarithm of its tangent than from the loga-

rithm of its sine. 
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(3) y* = (x- l )
2
; (4) » = Arc cos (1 - y) + f2y - 2/

2
; 

2(1 + χ - x
2
) 

(5) y 
1 + » 2 

935. (1) t = (2k + 1) π; (2) ί = 1 ; (3) « = - + 
4 

(4) ^ = 1, t2 = - 1 . 

& b φ St
2
 - I 

936. cot œ. 937. tan œ. 938. cot - . 939. 
a a 2 2t 

t cos φ — φ sin φ 
940. - 1 . 941. - . 942. -

 ψ Ψ Ψ 

2 1 — sin φ — φ cos φ 

1 + ί
2
 1 - tan ί ί(2 - ί

3
) 

943. . 944. . 945. - . 
ί(2 + 3ί — *

3
) 1 + tan * 1 — 2*

3 

914. Ay and Ax are quantities of different orders of smallness. 

915. Continuous, but non-differentiable. 

916. Yes; no. 917. a. 918. aœew. 

919. The abscissa varies at the rate vx = — 2rco sin 2φ ; the ordi-

nate varies at the rate vy = 2rœ cos 2<p. 

920. The rate of change of the abscissa is vx = ν (1 + cosç>); 

the rate of change of the ordinate is υ y = ν sin φ (φ is the angle between 

the axis of ordinates and the radius vector of the point). 

p i n 2 
921. - - pa -0·000125ρ. 

5540
 y 

922. 2 units/sec at the point (3, 6) and —2 units/sec at the point 

( 3 , - 6 ) . 

923. 2 cm/sec at the point (3,4) and —2 cm/sec at the point 

( - 3 , 4). 

924. A t the points ^3, ^ - j and | - 3 , - ^ - j . 

925. 4v cm /sec and 2av cm
2
/sec. 

926. 2πν and 2nrv. 927. 4πτ
2
υ and 8πη> cm

2
/sec. 

928. For χ = 2nk + - and for χ = 2nk + — . 

- 3 - 3 

929. A t χ = 2ττ&. 930. — times. 932. (a) Yes; (b) N o . 
n

2 

934. (1) x
2
 - ISx + 9y = 0; (2) s/

2
 = 4»

2
(1 - *

2
) ; 
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71 

) . (1) * = - + « ; (2) * = π - α ; (3) t 
π α 

1— , where 
6

T
3 

α is the angle formed by the tangent with Ox. 

956. (1) The curves cut at two points at angles a t = a2 = 

41 
= arc tan — pa 87° 12'; (2) the curves cut at three points at angles 

α ι = α2 = 30° and α3 = 0°. 

958. The length of the tangent is Τ = 
y 

3 
sin — t 

2 

; the length of 

the normal is Ν = 
y 

3 
cos —t 

2 

; the length of the subtangent is 

3 
y cot — t U
 2 

959. 

961. 

y 

cos t 

y 

sin t 

the length of the subnormal is S χ 

y 

3 
y tan — t 

2 

sin t 

y 

cos t 

| y t a n i | and |ycot£|. 

| y c o t i | and | i /tanf| . 

963. x + 2y — 4 = 0; 2x - y - 3 = 0. 964. 4* + 2y — 3 = 0; 

2x — 4y + 1 = 0. 

965. y = 2, a; = 1. 966. (1) 4x + 3y - 12a = 0; 3# - 4y +-

π
2
 V2~ π Y2 

+ 6a = 0; (2) x + y = - ^ — 5 2/ - * = — ( 3 ) y = 1 + » l n a . 

969. ρ = 2a cos 

970. θ = φ, <* = 2φ. 974. 3; - 3 . 975. (1) 0; (2) 0; p~; - f 3 . 

/ i W /2W 2 2 
977. = tan Θ. 978. arc tan — bt

2
 = arc tan — œ. 

f[(t) 3 3
 ψ 

979. ρ = ] /α
2
 cos

2
1 -j- 6

2
 sin

2
 φ = arc tan |— tan ij ; the tangent 

of the angle between the tangent and radius vector is equal to 

2a& 

(b
2
 — a

2
) sin 2t 

980. The polar subtangent is ST 

dp 
mal is S χ = 

d<p 

dg 

άφ 

; the polar subnor-

4 1 1/3" 
- . 947. 0 and - . 948. Does not exist. 949. — . 
3 3 6 
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ln a 

986. 

988. 

f r
2
 -

. 984. ρ ln a. 985. y i + a
2
. 

= r 9 g 7e y6
4
x

2
 + a y 

^ y ' " δ
2
χ 

1 + — dx or
 ry

 ^ dx. 989. 
2x 2/ 

1 + 
9ax 

990. y i + c o s
2
x d x . 991, 

e* + Θ" 
2/. 992. r. 

J. 2a sin - . 994. 3a cos t sin ί d*. 995. a y i + *
2
 dt. 

2
 r 

4a sin - dt. 997. a cot t dt. 998. ai. 
2 

999. a ycosh 2* d*. 

1000. — m/min; the velocity vector is directed vertically down-
2 

wards. 

1001. 10 |/2(Γ£~: 51 km/hr; the velocity vector is parallel to 

the hypotenuse of the right-angled triangle, one adjacent side of 

which is horizontal and equal to 50 km, whilst the other is vertical 

and equal to 10 km. 

1002. 14-63 km/hr. 

1003. 40 km/hr. 

[ Β sin 2α ^ 

1004. Ra sin a Η , . 

V 2 y *
2
+ i ?

2
s i n

2
a J 

1005. 9-43 m/sec. 1006. 2. 1007. - 2 4 x . 1008. 207 360. 1009. 360. 

1010. 6(5x
4
 + 6x

2
 + 1). 1011. 4 sin 2x. 1012. - . 1013. - - . 

e 2 
5! 6 anln + 1) 

1014. . 1015. - . 1016. — — 7 — . 1017. 16a sin 2w. 
(1 - χ )

6
 χ x " +

2 Ψ 

2(—l )"n! 6x(2x* — 1) 
1018. — . 1019. 2ex*(3x + 2x

8
). 1020. — . 

(1 + x)n+i v i z ( , + 1 ) 3 

1021. 
2x 

1 + x
! + 2 arc tan x. 1022. 

1023. 
V ( i + χ

2
)* 

1024. 

y ( a
2
 - x

2
)

8 

a + 3 Yx 
4x Υ χ (a + Yx )8 ' 
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1039. ( - l ) " n !
[ Î - 1. 

( η \ d
2
» d »

2 

4» + η - . 1054. — = . 
2) dy

2
 | d y j

8 

6
4
 3 r

2
» 2(3t/

4
 + 8i/

2
 + 5) 

1056. . 1057. . 1058. -
 V U

 * ' . 
a

2
y* y

5
 y* 

(3 _ 8) e
2
« 2a*xy 

1059.
 V

 — . 1060. - * 
(2 - s )

8
 (y

2
 - a » )

8 

y y\(x - l )
2
 + (y — l )

2
j 

1061. . 1062. - -
 ; U

 - , 
[1 — cos ( » -f- y ) ]

8
 # (y — i )

s 

d*y 

d
2
» d r

2
 1 p2 

1063. — = . 1064. — . 1065.
 F 

ay
2
 idyy o

2
 y ( 2 /2 + V2) 

[dxj 

2a a
2
 1 

. 1070. = . 1071. -
96

2
£

4
 y* a sin

8
1 a

8
 sin

5
1 

x 4- y = 0. 

2a a
2
 1 36 cos ί 

1069. . 1070. = . 1071. 
y

3
 a sin

8
1 

1 _ cos
2
 £ — 4 sin

2
 £ 

1072. . 1073. (1) — : ; (2) 0, since 
a ( l + cosg?)

2
 9a

2
 cos

7
1 sin

8
1 

1025. ^ ^ Γ ^ . 1026. - + 

4 » ] / » ] / ( l - x
2
)
9 

a(a
2
 — 1) s i n » Γ 11 

1027.
 1

 ' — . 1028. x*\ (ln χ + I)
2
 + - L 

V ( l - α
2
s i n

2
» )

8
 ί

 x J 

1029. a
n
e

ax
. 1030. ( - l ) " e " * . 

1031. a" sin | a » + η ^ j + 6
n
 cos ^6» + η ^-j . 

1032. 2 « -
1
 sin [ 2» + (n - 1) ̂  J . 1033. e*(» + n). 

(n — 2)! ( — l)"a"n! 
1034. ( - 1 ) " - ±- ( n ^ 2 ) . 1035.-^ - i——- . 

» " -
1
 (ax + δ ) " *

1 

( _ l ) n - i an ( n _ ] ) t (η - 1)! 108β· u+v ·1037· <-1)n w · 
ι ο 8 8

·
 (- i ) nT[(^+W +(^WJ-
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1074. (1) 4*
2
; (2) — . 1075.

 2 + 

a(cos t — t sin i )
3 

Chapter IV 

1110. (1) The function has a maximum; (2) is decreasing; (3) is 

increasing; (4) has a minimum; (5) has a maximum; (6) has a mini-

mum; (7) has a minimum; (8) has a maximum; (9) has a minimum. 

1106. (1) d
2
y = cos ζ d

2
z — sin ζ dz

2
; 

(2) d
2
y = α

χ
 cos (α

χ
) 1η α d

2
x — α

χ
 In

2
 α(α

χ
 sin α

χ
 — cos α

χ
) da;

2 

(3) d
2
y = a

/s
 In a[cos at* (6t + 9*

4
 In α) - a'

3
 sin a

fi
 9i

4
 In α] di

2
. 

1080. 

1084. 

1088. 

(3) 0L
n
X* 

1093. 

1095. 

1096. 

1098. 

1099. 

1100. 

1102. 

1104. 

cm/sec
2
. 
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1135. As χ —* Ο, ξ tends to zero, but without taking all inter-
1 

mediate values : it only takes a sequence of these such that cos — 

tends to zero. 

1136. 0-833. 1137. 0*57. 1138. 1 0414. 1139. 0-1990. 1140. 0 8449. 

1141. 1-7853. 

1149*. The required inequality follows from the increase of the 
tan χ . ( π \ 

function y = in the interval 0, — . 
* I 2 j 

1150. The function is increasing in ( — oo, —1), decreasing in 

(—1, 3), increasing in (3, oo) . 

1151. The function is decreasing in ( —oo, — 1), increasing in 

(—1, 0), decreasing in (0, 1), increasing in (1, oc ) . 

1152. The function is increasing in | — oo, — — j , decreasing in 

( 2' W

 I N C R E A S I N

S * (π· 4 

1153. The function is decreasing in I — oo, — ] , increasing in 
(a 2 \ . (2 λ . \

 2
' 

I—, — α I, decreasing in \~^
a
>

 a
y increasing in (a, oo). 

1154. The function is increasing in (—oo, — 1), decreasing in 

( — 1, 1), increasing in (1, oo) . 

1129. arc sin [2(x0 + Ax)] — arc sin 2x0 = where 

where a < ξ < 6. 

I cos 3£, where xl < 

1112. The function is increasing at xl = 0, decreasing at x2 = 1, 

and decreasing at a 

1113. The function is decreasing at xx = is increasing at x2 = 2 

and x3 — e; has a minimum at x4 = 1. 

1114. The function is increasing at xx = 1, decreasing at x2 = — 1, 

has a minimum at x3 = 0. 

1 
1115. The function is decreasing at a?, = - , increasing at x2 = 

has a maximum at x3 = 0. 

1125. Three roots, lying respectively in the intervals (1, 2), (2, 3) 

and (3 ,4) . 

1127. si 

1128. a\ 
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1155. The function is decreasing in (—00,0), decreasing in 

increasing decreasing in (1, 00). 

1156. The function is increasing in ( — 00, 0), decreasing in (0, 00). 

1157. The function is decreasing in ( — 00, 0), increasing in (0, 2), 

decreasing in (2, 00). 

1158. The function is decreasing in (0. 1), decreasing in (1, e), 

increasing in (e, oo). 

1159. The function is decreasing in increasing in 

1160. The function is decreasing in increasing in 

decreasing in 

1161. The function is increasing in decreasing ir 

increasing in decreasing in increasing in 

1162. Increasing monotonically. 1163. Increasing monotonically. 

increasing; decreasing. 1164 

1165 

1166, 

1167 

1168, 

1169, 

1171 

1172 

1174 

1175 

1176 

1177 

1178 

1179 

Increasing monotonically. 
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20 V3 
1217. — cm. 1218. 2n 

Γ2 
- 293°56'. 
3 

3p ρ 
1219. Lateral side = — , basé = — . 

4 2 

3p 4p 
1220. Lateral side = — , base = — . 

5 5 

3 f 3 - 2π 1 
1180. 2/max = 0 for χ = 0, 2/min = — for a* = - . 

6π V3 - π
2
 + 18 π 

1181. 2/max =
 1

 Tz ^ M 3 for χ = ± - , 

ob ο 
y m in = 1 for χ = 0. 

1182. i / m ax = sin ^ + 16 for χ = ^ , 

9 V3 - 3π f 3 + 18 - π
2
 + 6π n π 

Vmin = for X = — . 
1 1 

1183. 2/max = - for χ = 1, y m in = for a; = 3. 

1184. I f ab ^ 0, there are no extrema. I f ab > 0 and α > 0, 

Λ Γ— 1 δ 
2/min = 2 |/α& for a; = — ln — ; if ab > 0 and a < 0, 2/m ax = 

2p a 

r— l b 
= - 2 Vab for a; = — ln - . 1185. 13 and 4. 1186. 8 and 0. 

2p a 

1187. 2 and - 1 0 . 1188. 2 and - 1 2 . 1189. 10 and 6. 

3 3 
1190. 1 and - . 1191. - and - 1 . 

5 5 

1192. The minimum value is (a + 6 )
2
, there is no maximum. 

π π 
1193. - and . 

2 2 

1194. The maximum value is 1, there is no minimum. 

l_ 
1195. The minimum value is | - j , there is no maximum. 

1196. f 9 and 0. 1197. - and 0. 1208. 4 and 4. 1209. 1. 

4 
1210. 6 and 6. 1211. 3, 6 and 4 cm. 1212. 3 cm. 1213. 1 cm. 

3 

1214. feu 1215. Base radius = height = ^ - . 1216. H = 2R. 
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1224. 

3 3 3Ä; 27 &
2
 sec

2 

2ÖP 
. 1225. 20 km/hr, 720 roubles. 

k 

1226. After l
 2 7

/ 43 hours pa 1 hour 38 min. 

1227. The distance of the chord from point A must be equal 

3 
to — the diameter of the circle. 

4 

4R V5 Rfö 
1228. — and . 

5 5 

]/ 8i?
2
 + h

2
 - 3Λ 

1220. The height of the rectangle is equal to , 
4 

where h is the distance of the chord subtended by the arc from the 

centre, and R is the radius of the circle. 

1230. The base radius of the cone must be one and a half times 

the cylinder radius. 

1231. 4Ä. 1232. ^ 4 9 ° . 1233. 60°. 1234. R f3. 1235. - R. 

'
 3 

1237. - + - = 1. 1238. a f2 and b][2 . 
3 6 

2 
1239. The area of the rectangle = — X the area of the ellipse. 

π 

1240. The point (2, 3). 

1241. C(— ]A6, — Y&) for a maximum, C ( y 6 , y6) for a mini-

mum. 

1242. χ = a — p, if a > ρ; χ = 0 if a ^ p. 

1243. The gutter section is a semicircle. 

1244. The length of the beam = 13
1
/ 3 m, the side of the cross-

2 y 2 
section = m. 

3 

1245. The required value is equal to the arithmetic mean of the 

results of the measurements: 

x
\ ~1~

 x
2 ~f" · · ·

 x
n 

X = . 

2#y"3 4 2m0 2 mlg
2
 g e m

2 

1221. — . 1222. - R . 1223 .—- sec, —
 y 6 
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in other words, the distance I is divided by the required point in the 

3 3 

ratio YIj : YT2. 

1249. 2-4 m. 

fi-

kP 

1250. Fm\n = for φ = arc tan k. 

Yl + k
2 

1251. 4-5. 1252. 26 + and 2a + 

1253*. , where L is the generator of the cone. 

(L-R)(L + 2R)
 6 

Notice that the difference between the distance from the centre 

of the sphere to the vertex of the cone, and the radius of the sphere, 

is equal to the difference between the height of the cone and the 

height of the submerged segment. 

R R 
1254. - . 1255. - . 1256. P(p, ± pY2). 

4 2 

3 
1263*. — . Since the function is a constant (y' = 0), the value 

4 

of the constant is equal to the value of the function for any x, e.g. 

for χ = 0. 

1264. π. 1265. 0. 

4 a 
1267. t/m ax = — a

8
 at χ = - , ymln = 0 for χ = α. 

ο
4
 a 

1268. 2/max = — for a? == - , y mm = 0 for χ = 0 and a; = a. 

1269. 2/max = — 2a for χ = — a, 2/min = 2a for χ = a. 

1270. 2/m ax = for a; = \ . 
4 4 

1271. 2/max = 1 for a* = 1, t / m in = —1 for a* = —1. 

1272. 2/min = 2 for χ = 0. 
4 

1273. 2/m ax = for a; = 2, 2/min = 0 for χ = 0. 
e

2 

1274. y m in = e for χ = e. 

1246. A t 3 km from the camp. 1247. A t height - y - . 

1248. The distance from the source of intensity Ix is -
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( Μ . (
5
 λ I — oo, — , concave m — , oo 

V 3 / ν 3 , 

1288. N o point of inflexion, the graph is concave. 

1289. Points of inflexion (2, 62) and (4, 206). Intervals: concave 

in (— oo, 2), convex in (2, 4), concave in (4, σο) . 

1290. Points of inflexion ( — 3, 294) and (2, 114). Intervals: con-

vex in (— oo, —3), concave in ( — 3, 2), convex in (2, oo) . 

1291. Point of inflexion (1, —1). Intervals: convex in (— oo, 1), 

concave in (1, oo) . 

1292. N o point of inflexion. The graph is concave. 

1293. Points of inflexion I — 3a, - j , (0,0) , 3a, — I . Inter-

vals: concave in (— oo, —3a), convex in ( — 3a, 0), concave in (0, 3a), 

convex in (3a, oo). 

1294. Point of inflexion (6, a) . Intervals: convex in (— oo, b), 
concave in (6, oo) . 

( VB - i
 v

^ 
1295. Point of inflexion I arc sin — , e I . Intervals: con-

1/5 - η / . \ l - 1 π\ ι arcsin-
. ( π ]/5 — 1Λ ( 
in , arc sin . , convex in a 

I 2' 2 ) ' { 2 2J 

1296. Points of inflexion ( + 1, ln 2). Intervals: convex in (— oo, 

-1), concave in (—1, 1), convex in (1, oo). 

1278. Convex in the neighbourhood of (1, 11), concave in the 

neighbourhood of (3, 3). 

1279. Convex in the neighbourhood of , concave in the 

neighbourhood of 

1280. Convex in the neighbourhood of concave in 

the neighbourhood of (1 ,0) . 

1287. Point of inflexion Intervals : convex in 

1275. 

1276. 

1277. 

Maximum at a = 2. 
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1319. e& + e
a
 = 2 e$, where α < f < 6. 

2 
β _ * 

3 f a 

1 3 2 4 . - ^ - . 1325. 0. 1326. 1. 1 3 2 7 . - . 1 3 2 8 . - . 1329 .—. 

ß 3 γι 
ln
~b 

1330. . 1331. 2. 1332.—a™-". 1333. . 1334. - 2 . 
2 n e 

1335. 2. 1336. I n - . 1337. cos a. 1338. 2. 1339. 1. 1340. 1. 
b 

1341. — . 1342. 16. 1343. 1. 1344. 1. 1345. - 2 . 1346. 0. 
128 

1347. 0. 1348. a. 1349. - . 1350. — . 1351. - 1. 1352. 0. 

2 π 

1353. oo. 1354. ?
 +

 ^
 +
 ° . 1355. 1. 1356. 00. 1357. 1. 

( L 3 -«Λ 
1297. Point of inflexion I a e 2 , — e 2 I . Intervals: 

( ·-) ( '- ) 
\0, a e

2
 / , concave in \a e

2
 , o o / . 

1298. N o point of inflexion. The graph is concave. 

( 1 arc tan | Λ 
1299. Point of inflexion I — , e I . Intervals: concave in 

| — °°» g j '
 c o n v ex

 *
n
 (2 ' ° ° ) " 

1800. Point of inflexion (1, —7). Intervals: convex in (0, 1), 

concave in (1, oo) . 

3 9 
1305. a = - - , b = - . 

2 2 

20 4 
1306. α = , β = - . The points ( - 2 , - 2 - 5 ) and (0,0) 

3 3 

are also points of inflexion. 

e 
1307. For a ^ and for a > 0. 

6 

1316. Points of inflexion (1, 4) and (1, - 4 ) . 

3π 
1317. Points of inflexion for t = — ± κπ (k — 0, 1, 2, . . . ) . 

4 
sin b — sin α 

1318. = ξ cos ξ, where α < f < δ. 

α 
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2
- 1 

1358. 1. 1359. e. 1360. 1. 1361. e
2
. 1362. e" . 1363.1. 1 3 6 4 . - . 

2 

1366. χ
χ
 is greater than α

χ
χ°. 

1367. f(x) is greater than ln f(x). 

1374. /(115) = 1,520,990; /(120) = 1,728,120; δχ=\οο = 003 (ab-

solute error). 
b 

1375. y = + - χ. 1376. χ = 0, y = 0. 1377. y = 0. 
α 

1378. α = 6, y = c. 1379. χ = —1, y = — χ — 1. 

2 
1380. a; + y = 0. 1381. y = a; + 2. 1382. y = + a \ 

1383. x = 0, y = 0; a; + y = 0. 

1384. x = b; x = 2b. y = x + 3 (b - a). 

1385. y + l = 0; 2x + y + 1 = 0. 1386. a * = - - , t / = a ; + - . 

e e 
1387. x = 0, y = x. 1388. a: = 0, y = a; + 3. 1389. y = - x - 1. 

2 

1390. y = 2a; + - . 

1391. i/ = %9 if / (#) is not identically constant. 

1392. I f lim cp(t) = σο, whilst lim xp(t) = 6, 2/ = b is an asymptote; 

/-/ο /-ίο 
if lim ν>(ί) = σο, whilst lim <p(t) = α, χ = α is an asymptote. 

1 1 1 
1393. χ = - 1 , y = 0. 1394. 2/ = - x + e. 1395. y = ± - a; . 

2 2 2 

1396. a; + y + α = 0. 1397. x = 2; 2a; + 82/ + 1 = 0; 6a; -

— 40t/ + 9 = 0. 

1398. Is defined everywhere. The graph is symmetrical with 

1 1 
respect to the origin. y m ax = - for χ = 1, 2/min = for a; = — 1. 

Δ L 

The graph has points of inflexion at f— ]/3, — — \ (0, 0) and 

( V*\ I
 4

 ; 
I y3, J . The asymptote is y = 0. 

1399. Defined everywhere except for χ = + 1 . The graph is 

symmetrical with respect to the axis of ordinates. There are no maxima. 

2/min = 1 for χ = 0. N o points of inflexion. Asymptotes χ — ±1, 

y = 0. 

1400. Defined everywhere except for χ = + 1 . The graph is 

symmetrical with respect to the origin. There are no extrema. 

Point of inflexion (0, 0). Asymptotes a; = — 1, a; = 1, y — 0. 
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(
 Ρ

"
 ϊ . 

N o maxima. Points of inflexion at I — , 01 . Asymptote χ = 0. 

1406. Defined everywhere except χ = 0. The graph is symmetrical 

with respect to the axis of ordinates. y mm = 2 for χ — + 1 . N o maxi-

ma. N o points of inflexion. Asymptote χ — 0. 

1407. Defined everywhere except χ — 1. y m in = — 1 for χ = 0. 
( I S\ 

N o maxima. Point of inflexion at I — —, — — I . Asymptotes χ = 1 

and y = 0. 

1408. Defined everywhere except χ = ± ]/ΊΓ. The graph is symmet-

rical with respect to the origin. 2/max = —4*5 for χ = 3, y mm = 4-5 for 

χ = — 3. Point of inflexion at (0, 0). Asymptotes χ = + ]/ΊΓ and 

x + y = 0. 

1409. Defined everywhere except χ = — 1. N o minima. 2/max = 
3 

= — 3 — at χ = —3. Point of inflexion at (0, 0). Asymptotes χ = — 1 
8 

and y — — χ — 1. 
2 

1401. Defined everywhere except for χ = 1, χ = 2 and χ = 3. 

2*60 f °
r
 2-58, 2/min ^ 2-60 for χ ^ 1-42. N o points 

of inflexion. Asymptotes χ — 1, χ = 2, χ = 3, y — 0. 

1402. Not defined for χ = + 1 . The graph is symmetrical with 

respect to the axis of ordinates. y m ax = 0 for χ = 0. There are no 

minima. Increasing for χ < —1, decreasing for χ > 1. N o points of 

inflexion. Asymptotes χ = +1, y = 1. 

1403. Defined everywhere; the graph is symmetrical with respect 

to the axis of ordinates. î /max = — 1 for χ = 0; (1,0) and ( — 1, 0) 

are points of inflexion where the tangent is horizontal; 

are points of inflexion. N o asymptotes. 

1404. Defined everywhere; the graph is symmetrical with respect 

to the axis of ordinates. 2/max = 0 for χ = 0, y mm = for χ = 

Points of inflexion with horizontal tangent at ( ± 1 , 0 ) 

Four further points of inflexion at +0-7 and x +0-26. N o 

asymptotes. 

1405. Defined everywhere except at χ = 0. 2/min = 3 for χ 
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1410. Defined everywhere except χ = 1. N o maxima. ym[n = 

27 3 
= — for χ = — . Point of inflexion at (0, 0 ) . Asymptote χ = 1. 

1411. Defined everywhere except χ = 1. t / m ax = 0 for χ = 0, 

Vmm = - f 4 for » = f 4 . Point of inflexion — \2 , — - \2 J . 

Asymptotes » = 1 and y = x. 

2 
1412. Defined everywhere except χ = — 1. 2/max = — at χ = 5, 

ζ / 

y m in = 0 at α = 1. Abscissae of the points of inflexion are 5 + 2 ] / 3 . 

Asymptotes » = — 1 and y = 0. 

7 
1413. Defined everywhere except χ = 0. î/max = ~ f °

r
 # = 1> 

A 

11 27 

2/max = — for χ = - 3, ?/m in = — for » = 2. Abscissae of 

9 1 
point of inflexion is — . Asymptotes χ = 0 and y = — » -f~ 1· 

7 2 

1414. Defined everywhere except χ = 0. N o maxima. —0-28 
3 

at χ pa 1*46. Abscissa of point of inflexion — ] /2 . Asymptote χ — 0. 

1415. Defined everywhere except at χ = 0. i / m ax = —2*5 for 

a; = — 2; no minima. N o points of inflexion. Asymptotes χ = 0 

and y = x. 

1416. Defined everywhere, i/max = ~ f °
r
 # = 1. N o minima. 

e 

Point of inflexion at [2, — ] . Asymptote y = 0. 

1417. Defined everywhere. y m ax •• for χ = 2, ymin = 0 for 

χ = 0. Abscissae of points of inflexion are 2 : Asymptote y = 0. 

1418. Defined everywhere except at χ = 0. 2/min = e for χ = 1. 

N o maxima. N o Ooints of inflexion. Asvmntotea χ = 0. ι/ = 0. 

1419. Defined for a* > — 1. y mm = 0 for χ = 0. N o maxima. N o 

points of inflexion. Asymptote χ = — 1. 

1420. Defined everywhere. The graph is symmetrical with respect 
to the axis of ordinates. ymin = 0 for χ = 0. N o maxima. Points of 
inflexion at ( + 1, In 2) . N o asymptotes. 

1421. Denned everywhere. The graph is symmetrical with respect 

to the axis ot ordinates. ymàX - for χ = + 1 , y m in = 0 for χ = 0. 
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k = Ο, + 1 , ± 2 , . . . Period 2π. The graph is symmetrical with respect 

to the axis of ordinates. y mm = 1 for χ = 2kn. The graph has no 

points of inflexion. Asymptotes χ • 

1430. Defined in the intervals , where 

k = 0, + 1 , + 2 , . . . Period 2n. The graph is symmetrical with respect 

to the axis of ordinates. ym&x = 0 for χ = 2kn. N o points of inflexion. 

Asymptotes χ - kn 

1429. Defined in the intervals where 

1428. Defined everywhere. The graph is symmetrical with respect 

to the axis of ordinates. The extremal points satisfy the equation 

tan χ = — x. The abscissae of the points of inflexion satisfy the 

equation χ tan χ = 2. N o asymptotes. 

1426. The function is defined for — oo < χ < — 1 and for 0 < 

< χ < oo. I t increases from e to oo in the interval (— oo, —1); 

it increases from 1 to e in the interval (0, + oo) . The graph consists 

of two separate branches. Asymptotes are y = e and χ = — 1. 

1427. Defined everywhere. N o extrema. Stationary at χ = + 

•Ykn (k = 1, 3, 5, . . . ) . The graph is symmetrical with respect to 

the origin and has no asymptotes; points of inflexion (kn, kn) (k = 0, 

+ 1, + 2 , . . . ) ; the graph cuts the straight line y = χ at the points of 

inflexion. 

Asymptotes χ = 0 and y — x. 

1425. Defined for χ > 0. N o extrema. Point of inflexion at 

Points of inflexion at (0, 0), 

Asymptote y = 0. 

1424. Defined everywhere except at χ = 0. N o extrema. The 

graph has no points of inflexion. Asymptotes χ = 0, y = 0 and 

to the origin. y m ax 

Abscissae of the points oi inflexion are + Asymptote 

1422. Defined everywhere. ymSLX at χ = 3. N o minima. 

Abscissae of points of inflexion are 0 and 3 Asymptote y = 0. 

1423. Defined everywhere. The graph is symmetrical with respect 

for 

and 

for 
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1431. Defined everywhere. The graph is symmetrical with respect 

to the origin. 2/max = j — 1 for χ = - 1 , 2/min = 1 - ^ for 

χ = 1. Point of inflexion at (0, 0). Asymptotes y = χ ± π. 

1432. Defined everywhere except for χ = 1 and χ = 3. ymBiX = 

= — for α = 2. N o minima. N o points of inflexion. Asymptotes 

x = 1, χ = 3 and 2/ = 1· 

1433. Defined everywhere. Period 2π. y m in = 1 for χ = 

where & = 0, ± 1 , + 2 , . . . ; 2/max = e — 1 for χ = j- 2&π and 
2 

1 3 
2/max = 1 Η f °

r
 α = — π + 2&π. N o asymptotes. 

e 2 

4 8 1434. Denned everywhere, 2/max = — for
 x

 = — > 2/min = 0 

for α = 0. N o points of inflexion, no asymptotes. 

1435. Defined everywhere. The graph is symmetrical with respect 

to the axis of ordinates. 2/max = 0 f °
r x
 = 0, 2/min = — 3 for α = + 1 . 

N o points of inflexion, no asymptotes. 

1436. Defined everywhere. The graph is symmetrical with respect 
2 2 

to the origin. 2/max = ττ for α = 1, 2/min = — — for χ = — 1. Point 
ο ο 

of inflexion at (0, 0). N o asymptotes. 

1437. Defined everywhere. 2/max = 2 for χ = 0, 2/min = 0 for 

χ = — 1. Point of inflexion at | — — , 1 j . Asymptote y = 1. 

7 

1438. Defined everywhere. 2/max ̂ 2*2 at χ = — , 2/min = 0 for 

7 ± 3 V 3 
χ = 1. Abscissae of points of inflexion are —1 and ^ . N o 

asymptotes. 
3 

1439. Defined everywhere. 2/max = 2 / 4 for χ = 4, y mm = 0 for 

# = 0. Point of inflexion at (6, 0). Asymptote χ + y = 2. 

1440. The function is defined for χ ^ 0 and is two-valued. The 

function y = χ + yä? (upper branch of graph) increases monotoni-

cally. The function y = χ — y i? (lower branch of graph) has a maxi-

V2Ö 
mum at χ = . The graph has no points of inflexion and no 

5 

asymptotes. 
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γ i2 
1 -\ . N o asymptotes. 

3 

1444· Defined for χ ^ 0, two-valued. The graph is symmetrical 

ΥΪ2 1 
with respect to the axis of abscissae. |t/|m ax = —— for χ = —. 

The graph has no points of inflexion. N o asymptotes. 

1445. Defined for χ = 0 and for χ ^ 1. The origin is an isolated 

point. The graph is symmetrical with respect to the axis of abscissae. 

U 4Υ3Λ 
N o extremals. Points of inflexion at I — , ± I . N o asymptotes. 

s 

1446· Defined for χ < 0 and for χ ^ Υ2, two-valued. The graph 

is symmetrical with respect to the axis of abscissae. |y|max = 1 for 

xfZ 
χ = — 1. N o points of inflexion. Asymptotes χ = 0 and y — + 

3 

1447· Defined for χ ^ — 2 and for χ > 0, two-valued. The graph 

is symmetrical with respect to the straight line y — x. ymiX = — 2 

for χ = 1. N o points of inflexion. Asymptotes χ = 0, y = 0 and 

x + y = 0. 

1448. Defined for —a^=àx<a, two-valued. The graph is sym-

yöl /ΊΓ- i l 

for χ = (y5 — 1) . N o points of inflexion. Asymptote χ = α. 

1441· Defined for χ ^ 0, two-valued. The function y = x
2
 -f Υ χ

6 

(upper branch of graph) increases monotonically. The function 

_ 16 
y = χ

2
 — Yx

5
 (lower branch of graph) has a maximum at χ = —. 

25 

64 
The abscissa of the point of inflexion of the lower branch is . 

225 
N o asymptotes. 

1442. Defined for χ i= — 1, two-valued. N o extrema. The graph 

is symmetrical with respect to the axis of abscissae, has points of 

inflexion (0, 1) and (0, —1). N o asymptotes. 

1443· Defined in the intervals [—1,0] and [1, oo], two-valued. 

The graph is symmetrical with respect to the axis of abscissae. |t/|m ax = 

VÏ2 l /T 
= for χ = . The abscissa of the point of inflexion is 

3 3 * 
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1449. Defined for 0 ^ χ ^ 4, two-valued. The graph is symmetrical 

with respect to the axis of abscissae. 13/1max
 =
 V% f °

r
 # = 3. Abscissa 

of the point of inflexion is 3 — ] /3 . N o asymptotes. 

1450. Denned for — 2 ^ χ ^ 2, two-valued. The graph is symmetri-

3 7 3 " 
cal with respect to the coordinate axes. |2/|max = f ° r x = i l -

5 

Points of inflexion are (0, 0) and I + y 3 , + 1. N o asymptotes. (±yr. ±Ç). 

τ(][3 - 1), ±a Asymp-extrema. Points of inflexion are 

tote χ = 0. 

1456. Defined for — l ^ x ^ 1 and for χ = + 2 , two-valued. 

The graph is symmetrical with respect to the coordinate axes and 

has two isolated points: ( ± 2 , 0 ) . |2/|max = 1 f °
r
 x = 0. N o points 

of inflexion or asymptotes. 

1457. Defined for — 1 ^ χ ^ 1, two-valued. The graph is symmetri-

cal with respect to the coordinate axes. |2/|max = 1 for χ = 0. Points 

( \2 \ 2 \ 
of inflexion are ± , ± . N o asymptotes. 

I
 2 4

 ; 

1451. Defined for — 1 ^ χ < 1, two-valued. The graph is sym-

metrical with respect to the coordinate axes. [ 2/1 max = for χ = 

Point of inflexion at (0 , 0 ) . N o asymptotes. 

1452. Defined for χ ^ 1, two-valued. The graph is symmetrical 

with respect to the axis of abscissae. |2/|max = 1 f °
r x
 — 2. Abscissa 

of point of inflexion is Asymptote y = 0. 

1453. Defined for 0 ^ χ < 2a, two-valued. The graph is symmetri-

cal with respect to the axis of abscissae. N o extrema. N o points of 

inflexion. Asymptote χ = 2a. 

1454. Defined for χ < 0, for 0 < χ ^ 1 and for χ ^ 2 , two-valued. 

The graph is symmetrical with respect to the axis of abscissae, has 

asymptotes χ = 0 and y = + 1 and two points of inflexion. N o 

extrema. 

1455. Defined for — a ^ χ < 0 and for 0 < χ < a, two-valued. 

The graph is symmetrical with respect to the axis of abscissae. N o 
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1458. Denned for χ ^= — 1 and for χ ^ 1, two-valued. The graph 

is symmetrical with respect to the coordinate axes. N o extrema. 

Points of inflexion are ( + ]Α2~, + — ] . Asymptotes y = +x. 

1459. Defined for χ ^ 0, two-valued. The graph is symmetrical 

with respect to the axis of abscissae. [2/|max
=
 1 f°

r x
 = ~ · The 

2 
ι + y 2 

abscissa of the point of inflexion is . Asymptote y = 0. 
2 

1460. Defined everywhere except for χ = 0. N o extrema. Point 

( I l\ 
of inflexion is I — — , e - 2 + ™ I· Asymptotes χ = 0 and χ + y = 1. 

π 
1461. Defined everywhere except at a* = h &jr, where & = 0, 

2 

+ 1, ± 2 , . . . N o extrema. The graph has no points of inflexion. 

π 
Asymptotes χ = — + Ten. 

1462. Defined everywhere. The graph is symmetrical with respect 

to the axis of ordinates. Extremal points satisfies the equation χ = 

= tan x. Asymptote y = 0. 

1463. Defined everywhere. N o extrema. N o points of inflexion. 

For χ ^ 0 the function is identically equal to the linear function 

y — 1 — χ. Asymptote χ + y = 3. (0, 1) is a node where there are 

two different tangents. 

1464. Defined everywhere. The graph is symmetrical with respect 

to the axis of ordinates. y m ax = 3 for χ = 0, y mm = — 1 for χ = + 2 . 

The graph has no points of inflexion and no asymptotes ; the right-

hand side of it is part of the parabola y = χ
2
 — 4# + 3, lying to the 

right of the axis of ordinates. (0, 3) is a node with two different tan-

gents. 

1465. Exists and is continuous for any t; ( — 3, 3) is a maximum, 
( 5 , - 1 ) a minimum, (1, 1) a point of inflexion. N o asymptotes. The 
slope of the curve with respect to the axis of abscissae tends to 45° 
as χ —> oo. 

1466. Exists and is continuous for any t. Asymptotes y = χ and 

y = χ + 6π; is a maximum, 

a minimum, ( —3π, 0) a point of inflexion. 

1467. Exists for all values of t except t = —1. Asymptote is 

» + y + 1 = 0. The curve cuts itself at (0, 0), where the tangents 



458 A N S W E R S 

are the coordinate axes. N o points of inflexion. A closed loop in 

the first quadrant. 

1468. Exists for all values of t. For χ < — —, y is not denned as 

a function of x, the function being two-valued for — — < χ < 0, 

and single-valued for χ > 0. The curve is symmetrical with respect 

to the straight line χ + y = 0. e, — is a maximum. There are two 

points of inflexion. The asymptotes are the coordinate axes. 

1469. Exists for all values of t. The curve is symmetrical with 

respect to the axis of abscissae and consists of a closed curve with a 

cusp at (a, 0). 

1470. A closed three-petal rose. The pole is a triple point of self-

intersection at which the curve touches the polar axis and the straight 

η π τι 5JI 
lines φ = — and φ = . Extrema at φ = —, φ = — and 

3 3 6 6 

71 
φ = — . Is it sufficient to investigate the curve for 0 ^ φ < π. 

2 

I t is superimposed on itself for further values. 

1471. Exists for all values of φ in the interval [0, 2π] except 

71 3τΐ 
φ = — and φ = — . Symmetrical with respect to the polar axis 

2 2 

71 
and the straight line φ = — . The pole is a point of self-intersection 

2 

with polar axis as double tangent. The straight lines χ = —α and 
χ — a are asymptotest. 

1472. Exists for all values of φ in the interval [0, 2π] except for 
π 3π 

φ = — and φ — — . The pole is a point of self-osculation with the 
2 2 

3 
straight line φ = — π as double tangent. Asymptotes χ — a and 

4 
χ = —a. 

1473. Exists for all values of φ, A maximum equal to 2a at φ = 0, 

a minimum = 0 for φ = π. The curve is closed, symmetrical with 

respect to the polar axis. The pole is a cusp. 

t In this and following problems the asymptotes are given in 

the Cartesian system of coordinates, in which the axis of abscissae 

is the polar axis and the axis of ordinates is the perpendicular to 

the polar axis through the pole. 

e 
1 

e 
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Symmetrical with respect to the origin. Asymptote χ = 0. (0, 0) is 

a point of inflexion, with the axis of abscissae as tangent. There are 

two further points of inflexion. 

1480. Symmetrical with respect to the four axes χ = 0, y = 0, 

y = x, y = — χ; a closed curve with four cusps at (a, 0), (0, a ) , 

( — a, 0) and (0, — a) . The origin is an isolated point. 

1481. The curve is symmetrical with respect to the coordinate 

axes and the bisectors of the quadrants. Asymptotes are (χ ± y)
2
 — 

= —. The origin is a quadruple point of self-intersection, at which 
2 

the branches of the curve touch the coordinate axes. The curve is 
shaped like a windmill. 

1485. The remaining roots are simple. 

1486. 0-1 < χ < 0*2.1487. —0*7 < xx < -0-6and0*8 < x2 < 09 . 

1488. 0-32 < χ < 033. 1489. -ZH<x1 < - 3 1 0 , 022 < x2 < 0*23 

and 2-88 < xz < 289. 1490. 0*38 < xx < 039 and 1-24 < x2 < 1*25. 

1491. -0-20 < χ < -0-19. 1492. 0*84 < χ < 0*85. 

1493. 1-63 < χ < 1-64. 1494. 1 537 < χ < 1-538. 1495. 0 826 < 

< χ < 0-827. 1496. 1Ό96 < χ < 1Ό97. 1497. 0-64 < χ < 0 65. 

For 0 < a < 1 there exists a unique real number equal to its logarithm 

and less than 1. For 1 < a < e
e
 there exist two distinct numbers 

equal to their logarithms: one in the interval (1, e), the other in 

1479. The curve lies entirely in the strip 

1478. A four-petal rose. The origin is a double point of self-oscu-

lation. 

1477. Exists for — 1 ^ 1, situated entirely to the right of 

the axis of ordinates. A closed curve. A maximum at t = 0 (φ = 1 

radian, ρ = 1). N o points of inflexion. Touches the axis of ordinates 

at t = + 1 . 

1474. Exists for all values of φ. A maximum equal to a ( l + b) at 

φ = 0, a minimum equal to a(l — b) at φ = π. The pole is a point 

of self-intersection. 

1475. Exists for φ > 0. Point of inflexion ( f 2π, 0*5). The polar 

axis is an asymptote. The curve winds spirally about the pole, 

approaching it asymptotically. 

1476. Exists for all values of φ. For φ ^ 0 the curve is a spiral 

starting from the pole and approaching the circle ρ = 1 asymptoti-

cally. For φ < 0, we have the same curve but mirrored in the straight 

line φ -
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1_ 

the interval (e, + ° ° ) . For a = e
e
 there exists a unique number 

equal to its logarithm: the number e (it is the double root of the 
\_ \_ 

equation loge
6
 χ = χ). For e

e
 < a < oo there exist no real numbers 

equal to their logarithms. 

1.498. (x - 4 )
4
 + 11 ( * - 4)

8
 + 37(a; - 4 )

2
 + 21 ( * - 4) - 56. 

1499. (χ + l )
3
 - 5(a? + 1) + 8. 

1500. (χ - l )
10

 + 10(a? - l )
9
 + 45(x ~ l )

8
 + 120(s - l )

7
 + 

+ 210(aî - l )
6
 + 249(x - l )

5
 + 195(a? - l )

4
 + 

+ 90(x - l )
3
 + I5(x - l )

2
 - δ(χ - 1) - 1. 

1501. x« - 9a;
5
 + 30a;

4
 - 45a;

3
 + 3 0 - 9x + 1. 

1502. / ( - I ) = 143; / '(0) = - 6 0 ; / " ( l ) = 26. 

1503. - 1 - (x + 1) - (x + I )
2
 - . . . - (x + l)

n
 + 

(x + I ) " *
1 

+ ( - l )
n +1

 — where 0 < Θ < 1. 
[ - 1 + θ(χ+ 1 ) ] « +

2 

1504. ζ + _ + _ + . . . + + ( ^ + η + 1) eöx, 
1 2! (η — 1)! (η + 1) ! 

where 0 < 0 < 1. 

α - 4 (ζ - 4)
2
 (a? - 4)

3 

1505. 2 + + - . . . + 

4 64 512 

( ( 2 η - 2)! (χ - 4)π [ (2η)! (s - 4)"+* 
η! (η - 1)! 2

4
""

2
 2

2
"+ *η ! (η + 1) ! f [ 4 + θ (χ - 4 ) Ρ + ΐ ' 

where 0 < 0 < 1. 

χ
2

 a;
4

 a;
2
" a;

2
"+

1
 Θ

θ
* — e-

e
* 

1506. 1 + — + — + . · . + Η , 
2! 4! (2η)! (2η + 1)! 2 

where 0 < θ < 1. 

1507. ( * - 1) + i j (a; - l)i + I l ( * _ 1)3 + 1 ( a? _ 1)4 + . . . + 

( - l ) n e ( a ; - 1)" 

(η - 3) (η - 2) (η - 1) η 

(—1)"+
1

β(α: - 1 )"+
χ 

+ where 0 < θ < 1. 
^ (η - 2) (η — 1) η(η + 1) [1 + θ {χ - Ι ) ] " "

2 

2a;
2
 2

3
#

4
 2

5
χ* 2

7
#

8
 2

? n
~

1
a;

2
" 

1508. 1 f- . . . + ( - Ι ) " "
1
 — h 

2! 4! ^ 6! 8! ^
 V

 ' (2n)! ^ 
( — l )

n
2

2 n
a ;

2
" +

1 

+ sin 20a;, where 0 < Θ < 1. 
( 2 n + l ) ! 

1509. 2 - (x - 2) + (x - 2)
2
 - (a; - 2)

3
 + {1+~χ**2)γ. 

where 0 < Θ < 1. 
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χ* 1 + 2 sin
2
 Θχ 

1510. χ Η · , where 0 < Θ < 1. 
3 cos

4
 Θχ 

X
s
 χ* 9Θχ + 6 0

3
»

8 

1511. » Η 1 , where 0 < Θ < 1. 
6 4! 1 

(1 - 0
2
»

2
)2 

1 1 . 3 1 . 3 . 5 
1512. 1 - - (χ - 1) + (χ - I )

2
 (χ - I )

8
 + 

2 2
2
. 2 2

8
 . 3! 

1 . 3 . 5 . 7 ( » - I )
4 

Η , where 0 < 0 < 1. 
2

4
. 4 ! f [ l + Θ(χ - 1)? 

1513*. lim Θ = . W e have by virtue of the existence of the 
h^o η -f 2 

third derivative: 

f(a + h) = f(a) + hf'(a) + ^ /"(a) + ^ / " ' ( « + <W-

W e obtain by comparing with the expression in the text: 

^ [f"(a + 6h) - / " ( a ) ] = ^ / ' " ( a + 

i.e. 
Γ (a + 6h) - Γ (a) 1 , 

Λ — = 3 / " ' ( « + W 

It remains to pass to the limit as Λ —* 0. 

1514. The function is decreasing. (0, 3) is a point of inflexion of 

the graph. 

1515. The function has a minimum, equal to 1. 

1516. The function has a minimum, equal to 2. 

1517. The function has a maximum, equal to —11. 

1518. The function is increasing. (0, 0) is a point of inflexion of the 

graph. 

1519. The function is increasing. (0, 4) is a point of inflexion of the 

graph. 

1520. f(x) = 1 - 6(x - 1) + (χ - l )
2
 + . . . ; /(1Ό3) pa 0-82. 

1521. f(x) = 321 + 1087(» - 2) + 1648(a? - 2)
2
 + . . . ; 

/(2-02) pa 343-4; /(1-97) pa 289*9. 

1522. f(x) = 1 + 60(x - 1) + 2570(* - l )
2
 + . . .; 

/(1-005) pa 1-364. 

1523. f(x) = - 6 + 2l(x - 2) + 50(x - 2)
2
 + . . . ; 

/ ( 2 · 1 ) ^ - 3 · 4 ; /(2-1) = -3-36399; δ = 0Ό36; δ ' ^ 0Ό11 = 1-1%. 

1524. 1-65. 1525. 0-78, δ < 0-01. 1526. 0-342020. 1527. 0-985. 

1528. 0-40, δ < 0-01. 
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V2 a b V2 
1529. — . 1 5 3 0 . - ; - . 1531. 36. 1532. 0 128. 1533. — . 

4 b
2
 a

2
 4 

8 V2 6 |x | 
1534. 0. 1535. 1. 1536. — . 1537. — — . 

3a s 
(1 + 9x

4
)

2 

1538. 

1541. 

1544. 

a
4
6

4 

1539. I cos a 1. 1540. 
1 

(6
4
x

2
 + a*y

2
)
2 

|(m - 1) (ab)
2
™(xy)

m
~

2
\ 

(b
2m
x

2m
-
2
 + a

2m
y

2m
'
2
Y 

3 \a\xy\ 

1542. 

2 2 
. 1545. — . 1546. 

3a I sin 2tx \ πα 

X 
a cosh

2
 -
a 

3 

t 
8a sin — 

2 

1543. -
6 

1547. 
1 

y I + In
2
 a 

1548. 
2 + y

2 

a ( l + P
2
)

1 

1549. 
φ

2
 + k

2
 -\- k 

( a
2
+ 6

2
)

2 
f 7 Ϊ

2
 12 

:. ( * + 4 )
2

+ ^ - - j = -
125 1550. -——é-. 1554 

2a6 f 2 

1555. (x - 2)
2
 + (y - 2)

2
 = 2. 1556. (x + 2)

2
 + (y - 3 )

2
 = 8. 

9 \
2
 125 

Τ β " 

\2 / Q \2 

/ π - 10 V / 9 \
2 

1557. ( x — ) +[ y - - ) 

ί 1 Y ( S V 125 (a a\ 

1558. (χ + - a j + ^ - - a j = — a 2 . 1559. ^ J . 

1560. (—, - - ln 2 ) . 1561. ( - - ln 2, —1 1562. For * = kn. [2 2 ) [2 2) 
3 

1563. - a . 1566. a = 3, b = - 3 , c = 1. 
4 

1567. 1/ = - χ
5
 - 0·6χ

4
 + 4·5χ

8
 + 0·1χ

2
. 

[1 + n V « " -
1
) ] χ 1 + η-ΐχ

2
*"-

1
) 

1568. I = χ — — — , η = χη + 

(α
2
 + 6

2
) χ

8 

1569. ξ =
 1

 ' , V = 

η(η — 1 ) χ η~ 2 

(α
2
 + &

2
) 2/' , ,1 ,, 1 

6
4 

(β* + &
2
)* 

file:///a/xy/
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•L L 
3 3 

2 1_ 
v,3 Λ 13 

1570. I = χ + Sx y , η = y + 3α
3
 y' ; (ξ + η)* + 

+ (ξ - ηγ = 2α
3
 . 

1571. ξ 

1572, 

4 Ί Γν 
- 3 y α 

(Sy + α) , η = — 
Vy

2 + 2ay 

2α 

4 3 16 ( S γ 

1573. (y )V 6«2 (^)2 + 3«3£ = °· 1574· ί + V = (2α)
Γ
· 

1576. Yes, it is possible. 1579. 2p 

4(α
8
 - 6

3
) 

1580. — 1581. 6α. 
α& 

x + Ρ 

3ρ 

\ 3 

1582*. 16α. Having obtained the parametric equations of the 

evolute, transform them to new coordinates and parameter by 

putting χ = —xl9 y = yly t = tx -f n. 

1583*. Use the relationship between the length of the evolute 

and the increment of radius of curvature. 

1584. 233.1585. 0073.1586. (3Ό0; 2-46). 1587. (-0-773; -0-841). 

1588. (1-38; 4-99). 1589. (0-57; -3-62) . 1590. 0Ό387. 1591. (2-327; 

0-845). 

Chapter V 

3 b n 

1592. (1) j (a
2
 + 1) dx; (2) J (e* + 2) dx; (3) Jsin χ dx; 

υ a 0 

2 1 e 

(4) J (8 - 2a
2
) da; (5) f [fx - a

2
) da; (6) J (ln χ - In

2
 x) dx. 

- 2 0 1 

4 4 4 1 1593. 20 and 20 + - ; α = - ; ο = — . 
n n n ön-

Ud 2 
1594. α = π 0-248, ό & 0039. 1595. 31-5. 1596. 1 0 - . 

600 3 

1597. - ah = 40 cm

2

. 1598. 10-. 1599. 8. 1600. 21^. 
3 3 3 
7 5 

1601. 2 - . 1602. 140 cm. 1603. & 122-6 m. 1604. 2 0 - cm. 
8 6 
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(b) m = J v(t) dt. To 

n-

l 

1608. (a) Θη = Σ Vtè/) fo+i ~ *i)> h = ^o* <n = ^ιϊ 

Τ, 

(b) θ = J γ-(ί) d
' -

Γ0 

1609. = ^ 1(h) (</+ι - «ο = Ο, *„ = Τ ; ρ = / ( ί ) d*. 

ι = 0 J ο 

ο 

1605. 62-5 kg. 1606. 4 cm. 

n-\ 1607. (a) m n = 2
 v

^ fa+i ~ *)> *o =
 T
o> *n = Tx\ 

i = 0 

1611. 1500 coulombs. 1612. pa 67,600 joules. 1613. 2880 joules. 

1615. 18-75 kg; (b) the line must be drawn at a 

distance ; 17*7 cm from the surface. 

(1) 50; (2) 4; 

1619*. pö 1·67 x1ο
1 1
. Write the expression whose limit 

is sought as the nth integral sum of a certain function. 

1620. In 2. 1621. In 2. 1622*. In a, In 3 pa 1-1. See problems 1620 

and 1621. 

1623*. (1) av
a
 - e

a
 + 1; (2) a In a - a + 1; (3; 
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1643. yav = — (xi + xxx2 + x2). I f xxx2 ^ 0, at one point; if 
3 

xx < 0 and x2 > 0, at two points if the inequalities are satisfied: 
x
i 
—^x2= — 2xv otherwise at one point. 

1644. 245 1645. — . 1646. 0. 1647. -h = 1 m. 
4 3 

χ
3

 χ* — a
6 

1648. 11a. 1649. pa 1558 V . 1650. (1) — ; (2) 
3

 λ
 ' 6 

#
4
 — x* 

(3) . V
 ' 20 

2 
1651. s = - *

3
. 1652. A = 100 s + 25 s

2
 ergs, s is the path in cm. 

ο 

E2 — Ex 1 (OL
2
 \ 

1653. A = - l — t* + oißt
2
 + ß

2
t \ , where α 

ß = 

— «ι 
-£71̂ 2 — -̂ 2^1 

j

 - Ί 
1654. Q = C0t + ~t* + - 1 \ 1655. d£ = 10, AS = 10, 10 033 . . . 

Δ Ο 

The expression q + 2g
2
 -f- . . . + nq

n
 is found with the aid of 

differentiation of the terms of a geometric progression. 

1636. (a) The first; (2) the second. 

1637. (1) The first; (2) the second; (3) the first; (4) the second. 

1640*. 0-85 < / < 0-90. Use the result of problem 1639. 
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1656. dS = 1. 

1657. Δχ AS àS α δ 
1 92-25 64 28-25 0-442 
O l 6-644 6-4 0-244 0-0382 
001 0-6424 0-64 00024 0-00376 

1658. 
1 

3' 
1659. 0; 

2 ' 
1. 1660.^ 

α 

a 
d ρ 

si'*** άχ = —f(x). 

5 sin 2χ 
1661. - 1, . 1662. . 1663. (1) χ; (2) - 4 α 1η χ. 

4 α 
2χ 

1664*. 2 1η
2
 2α — In

2
 χ. Write the integral J In

2
 α da as the sum 

χ 

a 2x 

of integrals J In
2
 α da + J In

2
 a da, where a > 0. 

χ a 
cos a dty dy 

1665. y' = . 1666. (1) — = cot t; (2) — = - t
2
. 

ey dx dx 

1667. - 2 . 1668. Minimum at a = 0 (1(0) = 0). 1669. 1. 

5 2 
1670. 2/max = -

 f or
 x = 1> 2/min = - for α = 2. The graph has 

a point of inflexion at 
3 3 

J 9 Τ ) 
1672. (1)?-; (2) - ^ ; (3) 52; (4) Λ; (5) 45 ί ; ( 6 ) « * 0-08; 

4 61 o b 

( 7 ) 2 - V 2 ; ( 8 )6? - ; (9) 3 - ) ; 

(10)
 21

 2

 Z
° - ^ ( f « î " V*o) + * i - *ο· 

1673. (1) 2; (2) 0; (3) e
3
 - 1; (4) 1; ( 5 ) - ; (6) 1674. 0. 

4 6 
1675. 1 - Y3; - 1 . 

Chapter VI 
- + 1 

2 r— mx
m
 1 

1676. - V a
3
 + C. 1677. + C. 1678. C 

3 η + m a 

(ae )
x 

1679. 5̂ 0-4343 χ 10* + C. 1680. - — + C. 
1 + ln a 
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1711. — Y a + bx + C. 1712. - Y(x
2
 + l )

3
 + C. 

b 3 

1713. G y ( l - a*
2
)

3
. 1714. — y (a*

3
 + 2)

6
 + (7. 

3 18 

1715. y^
2
 + 1 + G. 1716. - y4 + x

b
 + C. 

5 

1717. - y (a;
4
 + I )

2
 + <7. 1718. y 3x

2
 - 5a* + 6 + (7. 

8 

1681. Yx + C. 1682.1/—+(7. 1683. œ 4-la;
0 83

 -J- C. 

r
 9 

1684. u - u* + C. 1685. -x
2
Yx + x + C. 

5 

2 
1686. (7 - e* + In \x\. 

3xYx 
1687. G — 10x-°'2 + loa;0

'
2 - 362a-1 3 8. 

1 2x
2
 12a* 6 

1688. ζ - 2 ln Izl + C. 1689. + (7. 

* 3 Yx 
3 s 18

 e
— 9

 3
 6

 β
 — 

1690. - Υ χ
2
 -\ a; f x + - χ Y χ

2
 + — x

2
 Yx + C. 

2 7

 r

 5 13 
g β 4

 4
 1 

1691. - Υ χ
1
 Υ χ* + C. 1692. — arc sin χ + C. 

7 ^ p 
2(1-5)* 1 

1693. 3x + (7. 1694. - (tan χ + χ) + (7. 
ln 1*5 2 

1695. (7 — cot a* — tan x. 1696. tan χ — a* + (7. 

1697. (7 - cot χ — x. 1698. a; - sin χ + C. 

1699. arc tan χ - - + G. 1700. ln |a*| + 2 arc tan a* + <7. 
a* 

τι sin
2
 χ 

1701. tan χ + (7. 1702. -a? + C. 1703. + (7. 
2 2 

tan
4
a* fa* 4- l )

16 

1704. + C. 1705. 2 f i + a;
2
 + (7. 1706.

 V
 ' + C. 

4 16 

1 (a + fa^-C 
1707. C . 1708. — — + C\. 

8 (2x - 3)
4
 b (1 - C)

 1 

5 ν y(8 - 2a*)
3 

1709. (7 (8 - Sx)
5
 . 1710. C - LI L . 

33
 v
 ' 3 

3m 
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1719. - s i n
4
 α + (7. 1720. sec χ + Ο. 1721. 3 /s in α + G. 

2 
1722. G cos* x. 1723. - / ( l n a )

3
 + C. 

5 3 
(arc tan x)

3
 1 

1724. i + C. 1725. (7 -
2 (arc sin a) 

1726. 2 y i + tan α + C. 1727. sin 3a + C. 

1728. tan (1 + ln x) + (7. 1729. - sin 3a + (7. 
3 

1730. α cos α - - sin 2α + C. 1731. (7 — -cos (2α - 3). 
2 2 

1732. Ο - *-sin (1 - 2α). 

1733. tan ^2α — ^ j + G or ^ (tan 4α — sec 4α) + C. 

1734. (7 - cos (e*). 1735. ln (1 + x
2
) + C. 

1736. ln | arcs ina | + G. 1737. ln (a
2
 - 3a + 8) + C. 

1738. Î l n |2a - 1| + (7. 1739. ί ln |ca + m| + (7^ 

1740. - ln (a
2
 + 1) + C. 1741. - ln | a

3
 + 11 + (7. 

2 3 
1 

1742. ln (e* + 1) + C. 1743. - ln (e
2
* + a

2
) + <?. 

2 
1744. C - ln |cos a|. 1745. ln |sin a| + C. 

1746. C — - ln |cos 3a|. 1747. - ln |sin (2a + 1)| + C. 
3 2 

1748. <7 - ln (1 + cos
2
 a ) . 1749. ln |ln a| + (7. 

l n
m +1

 a 
1750. f- (7, if m ^ — 1 and In I ln α I + (7, if m = - 1 . 

m -f- 1 

1751. esinx + (7. 1752. esinx + (7. 1753. _f!?L + c. 
31na 

a - x e
1 - 3x 

1754. (7 . 1755. (7 . 1756. 0 5 ex
2
 + (7. 

I n a 3 

1 a l 
1757. (7 e-*

3
. 1758. arc sin - + (7. 1759. - arc sin 5a + <7 

3 3 5 

1 a 
1760. - arc tan 3a 4- (7. 1761. arc sin - + (7. 

3 2 
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1762. 

1764. 

1766. 

1768. 

1770. 

1772. 

1773. 

1774. 

1775. 

1776. 

1 V2 l Sx 
arc tan — x -f- (7. 1763. — arc sin \- C. 

3 Y2 3 3 2
 τ 

1 1 
arc tan χ

2
 + C. 1765. — arc sin - — h C. 

2 2 a 

1 x* 1 

- arc tan — + C. 1767. — arc sin x* + C. 

1 e
x

 - λλ arc sin 2
X 

- arc tan f- <7. 1769. f- (7. 
2 2 l n 2 

1 sin α 
- arc tan + C. 1771. Θ* + e~* + (7. 
α a 

1 3 
- e

3
* + - e

2
* + 3e* + x + (7. 

3 2 

arc sin # — ]/1 — x
2
 + (7. 

3 1 a* 
- ln (x

2
 + 9) arc tan - + C. 

2 3 3 

arc sin x + yi — x
2
 + (7. 

1 1 
— arc tan x* ln (x* -f- 1) -f G. 
2 4 

1777. arc sin x + • + C. 

1778. 

1779. 

1780. 

1781. 

1783. 

1785. 

1787. 

1789. 

1790. 

[x* _ y (α
2
 - î)

8
] - * + c. 

G - 2 y i - x
2
 y(arc sin x)\ 

3 

C [ y i - 9z
2
 + (arc cos 3a;)

3
]. 

9 

x - 4ln\x + 4| + (7. 1782. ί | s - ^-ln|2a- + l | j + C. 

£ | α _ ^-1η|&# + a|J + 0. 1784. C - x - 6 ln |3 - x\. 

2x + 3 ln \x - 2| + (7. 1786. ί-a; + - l n |2a; — 1| -f <7. 

2 4 
a: + ln (a;2 + 1) + <7. 1788. a: - 2 arc tan x + C. 

1 

1 1 

(7 χ* x 
4 3 

x
a 

x -j- arc tan a; -f- (7. 1791. ln 

a? — lu 11 — a?|. 

x - 1 

x 
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1792. 

1794. 

1796. 

1797. 

A N S W E R S 

ln 
χ + 1 

+ C. 1793. - ln 
^ 5 

2x 

b — a 

1 

3 

1 

7 

In 
b — χ 

χ + 1 

+ (7. 1795. ζ + ln 

+ 0 . 

a; + 1 
+ G. 

In 

In 

a; - 5 _|_ c. 
χ - 2 

a; 

1799. 

1801. 

1803. 

1805. 

1807. 

1809. 

1811. 

1813. 

1815. 

1817. 

1819. 

1820. 

1822. 

1824. 

1 

2] '6 

1 

χ + 5 

f2 + χ YS 

1 2z - 3 
+ G. 1798. — ln 

12 2a; + 3 

ln 
\2 - xY3 

χ + 1 

1 £ _ 
+ C. 1800. - arc tan 

2 2 
+ 0 . 

2 1 — 2a? 
arc tan f- (7. 1802. — arc tan \- C. 

yi yi 3 3 

1 * 2x + 1 1 
- arc tan f- (7. 1804. - arc sin (2x + 3) + C. 
4 2 2

 V
 ' 

1 3^ 
arc sin (x — 2) -f (7. 1806. — arc sin 

3 3 

+ 0 . 

1 3a; -f 1 a; sin 2a; 
- arc sin 1- C. 1808, - H h C. 
3 γ J 2 ^ 4 ^ 

a: sin 2a; χ 
+ C. 1810. C - cot - . 

2 4 2 

tan 

2 tan 

(a; 

(χ π\ 

+ (7. 1812. 2 tan a; + (7. 
2 

a; + (7. 1814. - tan
3
 χ + C. 

3 

1 ί cos 4a; "\ 
ln (2 + sin 2x) + C. 1816. C — - — f- cos 2a; I . 

1 1 1 1 
— sin 5x Η sin χ + (7. 1818. — sin 3a; sin 7a; + (7. 
10 2 6 14 

1 
, 2a; + sin 2a; Η sin 4a; + 

8 2 3 

1 Ϊ 
— sin 6a; 
3 J 

+ C. 

ln tan 
(π x \ 

+ (7. 1821. ln (1 + sin x) + (7. 

1 1 
- ln IcosaH + (7. 1823. 

sin χ 3 sin
3
 χ 

+ C. 

-, Λ ( cos
2
 α Ί 1 _ 

2 ycos α 1 + C. 1825. tan a; + - tan
3
 a; + <7. y 5 ) 3 
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x
n
+

1
 / 1 "\ 

In χ + (7. 
n + l{ n + l)^ 1837. arc tan χ — — + (7. 

2 2 

1838. χ arc cos χ — Y1 - χ2 + (7. 

1839. a; arc tan yäT— yâ7 + arc tan Υ χ -f (7. 

1840. 2 yâT+Ί arc sin χ + 4 f l — χ + (7. 

χ
2 

1841. χ tan χ h In |cos x\ + (7. 
2 

1842. 1 χ sin 2x + - cos 2a* + (7. 
4 4 8 

1843. <7_--Llog («, y ^ ) . 
2a*

2 

1844. y I + z
2
 arc tan χ - ln (a* + f l + α

2
) + (7. 

1845. 2(Yx — Υΐ^χ arc sin Υ χ ) + (7. 

1846. χ ln (χ
2
 + 1) - 2x + 2 arc tan a* + O. 

χ 1 
1847. (7 — Η arc tan a*. 

2(1 + x
2
) 2 

2 
1848. x

2
 y i + x

2
 - - y{i + x

2
)

3
 + a 

i 8 49 (x
3
 + 1) ln (1 + x) _xl & _x_ 

3 9 6 3 

1850. (7 - e-*(2 + 2x + x
2
). 1851. e*(a*

3
 - 3x

2
 + 6a* - 6) + C. 

sin
3
 χ l _ 

1826. sin χ h C. 1827. - tan
3
 χ — tan χ + χ + C. 

3 3 

2 1 
1828. C — cos χ Η— cos

3
 χ cos

5
 χ. 

3 5 

3 1 1 
1829. - χ sin 2χ -{ sin 4tx + <7. 

8 4 32 

1830. - tan
2
 χ + In |cos x\ + C. 

2 
2 1 

1831. C — cot χ cot
3
 χ cot

5
 a*. 

3 5 

1832. — sin 2x χ cos 2x + C. 1833. χ sin χ + cos a* 4- C. 

4 2 
3* 

1834. (7 - e-*(x + 1). 1835. (a? ln 3 - 1) + (7. 

1836. 
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{ x
2
 2χ 2 \ 

1852. αχ + \+α 
\ 1η α 1η

2
 α 1η

3
 α/ 

1853. (7 — χ
3
 cos « -f Sx

2
 sin a; -f 6a; cos « — 6 sin x. 

1 1 1 1 
1854. — x* -\ x

2
 sin 2x A χ cos 2x sin 2x + (7. 

6 4 4 8 

1855. « (In
2
 a; - 2 ln χ + 2) + (7. 

1856. (7 — — (In
3
 a: + 3 In

2
 » + 6 ln χ + 6). 

a; 
8 (9 \ 

1857. (7 = - In2 χ + 3 ln χ + 2 . 

27 }'a;

3

 1

4

 / 
1858. « (arcsin a;)2 + (2 arc sin χ) \ \ — χ2 — 2x + (7. 

a;
2

 + 1 1 
1859. (arc tan χ)

2
 — χ arc tan χ A ln (1 + x

2
) + (7. 

2 2 

e
x
(sin χ — cos a:) e

3x 

I860. — + C. 1861. — (sin 2a; - 5 cos 2a?) + (7. 
2 13 

1862. 
eax 

a
2
 -f- n

! (n sin na; + α cos nx) + (7. 

1863. — (sin ln a; — cos ln a?) + C. 
2 

1864. — (cos ln χ + sin ln a;) + (7. 

φ \ ι da; 
1865*. (7 y 1 - a;2 + - arc sin a;. Put dv = 

2 2 i 
further, transform Γ V i — a;

2
 dx to the form Γ ————— da;. I 

1866*. - f a
2
 + a;

2
 + — ln (x + f a

2
 + a:

2
) + C. 

2 2 

(Put y «
2
 + 

and 

1867. 
χ + 2 

e
x
 + (7. 

1 
1868. - [(χ

2
 - 1) sin χ - (χ - l )

2
 cos a;] e

x
 + 0. 

1869. 2 [ faT+Ί - ln ( l + "KaT+Ί)] + G. 

2Yx ~ 

1870. 
35 

(5a;
3
 + 6a;

2
 + 8a; + 16) + C. 

1871. (7 -
11 

2(x - 2)
2 

χ - 2 

1872. ln 
1 a; + 1 — 1 

+ 0. 
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1873. 2 Υ χ - 2 + y 2 arc tan |/ n

 2
 + C. 

1874. 2 [ / α - ln ( l + fx ) ] + <7. 1875. 2 arc tan yï" + (7. 

1876. 2 ( y » — arc tan Yx) + (7. 

2 I 
\3 o/^ ι i\3 1877. - (x + 1) - 3(a + 1)

J
 + 3 ln | 1 + y » + 1 | + (7. 

2 

2 

1878. - [yax+b - m In \ Y ax + b + m |] + C. 

6 vö* 3 ι/α
2- 3 β 

1879. χ + —— + — — + 2 Yx~+ 3 y^ + 6 Yx + 
5 2 

+ 6 1n| y i ~ - 1 I + C. 

1880. 3]Αα~+31n| y ö ~ - 1 | + C. 

1881. 2 y i " - 4 Yx + 41n( l + yi~) + C. 

1882. - [yâ* + 2 + 2 ln | j ^ " - 11] + (7. 
5 

1883. — (3e* - 4) Y(e* + 1)» + C. 1884. ln 
y I - e * - 1 

y i + e* + 1 

1885. 2 y i 4 - l n a - ln |lna?| + 2 ln | y i + Ina - 1 | + (7. 

1886. 0-4 y ( l + cos
2
 a )

3
 ( 3 - 2 cos

2
 a) + C. 

2 2 

1887. - In
2
 tan χ + (7. 1888. C l'a

3
 - a

3
(2a

3
 + a

3
) . 

2 9 

+ C. 

1889. 
a

2
 - 4 8 

1890. (7 

1892. C 

1894. C 

1896. C 

1898. ln 

2 a
2
 - 4 

y a
2
 + a

2 

+ 4 1 n | a
2
 - 41 + (7. 

era 
1891. — arc sin Y a

2
 - x

2
 + C. 

2 α 2
 K 

1 a Y(l + a
2
)

3 

- a r c s i n - . 1893. (7 -
 Π

 ^
 } 

α χ 3a
3 

y r = x< 
— arc sin a. 1895. 

χ 

a
2
 Yx

2
 + a

2 + G. 

Y ( 9
-

X 2 )
\ 1897. ^ = _

9
 4- C. 

45a
5 

1*1 

1 4- y a
2
 4- 1 

9a 

4- (7. 1899. <7 -
a

2
 y a

2
 - a

2 
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1900. - (χ
2
 - 2) ]/4 - χ

2
 + 2 arc sin - + C. 

4 Y15 \x Υ15 - 2 y 4a;
2
 + 1 

1902*. arc cos h C. (The + G. (The substitution χ — — can be 
ζ X X 

used.) 

1903*. 2 arc sin ]/# + G. (The substitution χ = sin
2
 ζ can be used.) 

by e
x
 and put xe

x
 = z.) 

1905. 2e^(yâ7 - l) + G. 

1906. 3 [(2 - / ί
2
) cos \x + 2 j/âTsin faT] + (7. 

a; arc sin a; 1 
1907. + - ln 11 - x

2
 \+ C. 

1 1 
1908. χ arc tan χ — - ln (1 + x2) — — (arc tan x)2 + G. 

\x\ 1 1 
1909. ln - 3 1 = = arc tan χ (arc tan x)2 + C. 

y i + #2 x 2 

1910. Iy(#
2
 + 2a;)

3
 + C. 1911. I (1 + e

3
*)

3
 + G. 1912. 2e^

*

 + <7. 

2 £ 1 
1913. e-cosx + c. 1914. G - - (1 - e*)2 . 1915. - sin a;

2

 + (7. 

3 2 1916. (7 - — ( 2 - 3al)ïT. 1917. G - - ln 11 + 3a;3 - α?·|-
24 3 

1918. ? ln ( l + al") + (7. 1919. (7 - ln (3 + e"*). 
3 

1920. C - arc sin e~*. 1921. 2 \ l + a;
2
 + 3 ln (a; + y i + x

2
) + (7. 

1922. I [2 y9a;
2
 - 4 - 3 ln 13a; + y9a;

2
 - 4|] + G. 

1923. 2 sin yâT + (7. 1924. arc sin + (7. 

1904*. ln + (7. (Multiply numerator and denominator 
1 + a;e* 

1925. G - - I n 11 - ln
2
a;|. 
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1931. — y tan
5

 x(5 tan
2

 χ + 9) + C. 

1932. - (tan 3x + ln cos
2
 3x) + C. 

3 

1933. h a* - In |a* + 1| + (7. 
3 2 

1 1 
1934. C - x - l 2(x-l)

2 

1/2-4- 4χ(χ 1) 1 
1935. — - 5 - + <7. 1936. χ ]/1 + 2x - - f ( l + 2x)

3
 + C. 

6 3 

1937. — (Sx - 2a) Y (a + x)* + (7. 
15 

# 1 4 
1938. h - sin 2x + - y sin

8
 χ — cos χ + C. 

2 4 3
 K 

amxfcnx 
1939. + c. 

m ln a + η ln b 

1940. C - ln [ l - χ + y5 - 2x + χ
2
] . 

1941. - I n ( 3 * - 1 + y9x
2
 - 6x + 2) + C. 

3 
1 3̂  2 

1942. - arc sin f- (7. 
3 y2 

χ - 1 
1943. C - 8 Y 5 + 2x - x

2
 - 3 arc sin 

ye 
1944. - ln (x

2
 + 2x + 2) + arc tan (a* + 1) + <7. 

χ — 1 
1945. (7 - y3 - 2x - x 2 — 4 arc sin . 

ό[ 1 2x— l l 
1946. - ln (4x

2
 - 4x + 17) + - arc tan + C. 

8 L 6 4 J 

1947. 3 Yx
2
 + 2x + 2 - 4 ln (x + 1 + y #

2
 + 2x + 2) + C. 

(x - 4 )
2 

1948. ln
 v
 + C. 
\x - Ζ 

(arc t a n a * )
n +1 

1927. + (7, if η Φ — 1, and ln larc tan x\, if η = — 1. 
η + 1 

1 
1928. C - 2 cot 2<p. 1929. 2x - tan χ + C. 1930. - tan5 χ + C. 
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2 13 
- Y$x

2
 + 6x + 2 + — ln (Sx + 1 + f 9 x

2
 + 6x + 2) + C. 

9 9 
1949, 

1950. C - ln |2x
2
 — 3x + 1|. 

1951. 
29 bx + 3 3 
— arc tan ln (5x

2
 + 6x + 18) + C . 

45 9 10 

1952. 

1953. 

1954. 

1955. 

1956. 

1957. 

1958. 

1959. 

1960. 

1962. 

1963. 

1965. 

1967. 

1970. 

1971. 

1973. 

— In I Sx + 9 + 4 ]/4x
2
 + 9x + 11 - - V4x

2
 + 9x + 1 + (7, 

11 
- ] / 3 x

2
 - l l x + 2 + — - In 3

 6 f 3 

11 1/ 11 

1 . 3 ( 3 1/ 30Λ 
- V2x

2
 + Sx ln χ + - + V x

2
 + — + C. 

2^ 4 f 2 I 4 f 2 j ^ 

. l / α —χ 
Y (a — x) (x — b) — (a — b) arc tan μ h C. 

ι χ — b 

χ arc tan χ — - ln (1 + χ
2
) + (7. 

1 1 
- sin 2x χ cos 2x + O. 
8 4 

2 
x + -

3 
+ C. 

1 
• [ (ω

2
χ

2
 — 2) sin ωχ + 2ωχ cos ωχ] + C. 

Π 3 3 3ï 
e

2
* - χ

3
 - - χ

2
 + - χ + <7. 

\2 4 4 8J 

(tan χ) In (cos χ) + tan χ — χ + (7. 1961. In |1η sin χ| + (7. 

-
1
 [in (1 + χ

4
) + — J — 1 + C. 

4L 1 + x
4
J 

tan -
3x 

+ cos 3x + C. 1964. 
1 (π Sx\ 
- tan - Η 
3 U 2 j + (7. 

4 

1 

3 , 

1 2 + cos 2x e* 
G - - In — . 1966. ln h (7. 

8 2 - cos 2x e* + 1 

2 ln {è + e"ï) + C. 1968. ee* + (7. 1969. - e
2
*

1
 + (7. 

4 

A: f 3 ln (χ + VlTä2") + - (x
2
 - 2) f T + l ^ l + (7. 

f2L
 3

 J 

x _ V i _ χ* arc sin χ + (7. 1972. (7 - - ί— h cot χ ) . 
v
 2Vsin

2
x J 

e
x
 ( 2 sin 2x -j- cos 2x"| 

τΐ1 ~ 
+ c. 
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1974. - (tan x + ln | tan x\) + (7. 
2 

1975. ln |sin x + cos x\ + G. 1976. ^ ln | tan ( | + | + G. 

1977. sec x — tan χ + x + C. 1978. sin a; — arc tan sin a* -f C 

1979. y21n tan - + G. 1980. (ln x) ln ln x — ln a; + C. 

1981. — i — - + <?. 1982. (7 e " *
1
^ + 2a;

2
 + 2). 

2 2 
1983. ^ (a;

2
 - 1) / l + 2a;

2
 + (7. 

a;(a;
2
 - 3) 3 

1984. C — — - = z z z z arc sin x. 

2ψΓ^χ~2 2 1985. - Y(x
2
-a

2
)* - —y(a;

2
 - a

2
)

3
 + a

4
 fx

2
 - a

2
 f a

5
 arc sin - +(7. 

5 3 x 
. ΛΛ y4 + x

2
(x

2
 - 2) y (a;

2
 - 8)

3 

1986.
 K

 _ _ + C. 1987.
 KV

 _ .
 )

 + (7. 
24a;

3 
24a;

3 

y(4 + a;
2
)

3
 (x

2
 - 6) ya;

2
 - 3(2a;

2
 + 3) 

1988.
 v v

 \ ' + C. 1989.
 r

 _ „ + (7. 
120a;

5 
27a;

3 

1990. i [ y ï
3-
 - ln (ya;

3
 + 1 j ] + (7. 

1991. x + 4 y a T + l + 4 ln ( 1 / Τ + ~ ϊ - 1) + C. 

1992. 2 arc tan y i + x + (7. 1993. ln 

(v* + i )
6 

1994. ya;
2
 + 2a; + ln \x + 1 + Yx

2
 + 2a; | + G. 

x
9 

1995*. h C. (x = sin u is a convenient substitution.) 
8(1 - a;

2
)

4 v 

3 

1996. arc tan 
fab 

Γαχ (1 + a;
8
)

2 

— +C7. 1997. (7 -
6 12a;

12 

1998. — + G. 1999. -x
2
]fx^ + 4 - ln (a;

2
 + \x* + 4) + (7. 

4 

2000. ln 

2002. G -

2 y r - # 

ya7- 1 

y i r + 1 
a;

3 

+ (7. 2001. C7 -
1 - a;

3
 2 Ί_ 

arc sin l'a;
3
. 

3a; 

4 ( 1 + x
2
)

2
 8 ( 1 + a ;

2
) 

+ · 
3 arc tan a; 

8 
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2008.
 ( x 2 + l )

*
T C t a n X

- 2 Y * - + ö . 
fx~ ' 

2004. arc sine* — y 1 - Θ
2
* + (7. 

2005. 2 ye*— 1 - 2 arc tan ye* - 1 + C. 

2006*. G - ί In
2
 | l + ; ^substitute u = 1 + ^ j . 

2007. arc tan a; + --— + (7. 

2008. a; arc cos / — 1- Yx — arc tan Yx + G. 

y x+1
 1

 ' 
2009. xhi(x+ y r + s c

1
) - y i + a

2
 + (7. 

3
 8 

2010. — y tan
5
 χ(δ tan

2
 x+ll) + 0. 

55 

y2" . \χ 4- II 

2011. 1— (tan
2
 s + 5) ytan χ + G. 2012. ln

 1
 ' + (7. 

5
 y 2a? + 1 

(x- l )
4
( a - 4 )

f 

2013. - I n [ ( a ; - 2 )
2
 y2a + l ] + < 7 . 2014. ln 

5 

2015. A In | 3 » + 1| + 1 In | 2 » - 3| - i l n | * | + 0 . 

2016. — + — + 4a + ln 
3 2 

| α
2
( α - 2)

5
| 

+ G. 

2017. I » + l n | * | - — 1 η | 2 α - 1| _ A m | 2 a + 1| + (7. 
4 16 16 

2018. ln |2a - r - 1| - 6 ln |2a - 3| + 5 ln |2a - 5| + G. 

"2 
2019. 

α - ] / 2 
2020. — z l n 

2]A2 * + y 2 
+ — I n 

2y3 

a ? - y 3 

a + y s 

2021. — + ln 
2 

2022. ln 

|s(a - 2) Y(x - 1) (α + l )
8 

χ + 1 + 
6 

α + 1 

α + 2 

+ C7. 

+ 0. 

+ G. 

2028. 4 1 η | α | - 3 1 η | α - 1 | - + C7. 
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Λ 1 (χ I )
2 

2024. + In \χ + Il + C. 2025. χ + - + In — — — + C. 
χ + 2

 1
 x \x\ 

2026. C - 1 h ln la: — 21. 

3(a? - 2)
3
 2(a; - 2)

2 1 1 

1 1 a - 1 
2027. - + - ln — — 

x 2 a; + 1 
+ <7. 2028. 21η 

a; + 4 

a; + 2 

5a; + 12 

' a;
2
 + 6a; + 8 

+0. 

2029. 

2030. 

2 (x - 2 )
2 

a; 

+ ln|a? - 5| + C. 

9a;
2
 + 12a? + 5 

ln \x + 1 — -f G. 
8 I ^ I 3(a; + l )

8 

(χ + 2)
2
 1 9 31 

2031.
 1 ;

 + —lnla; - Il + 
2 4(a? - l )

2
 4(a; - 1) ^ 8

 1 1 

+ Î l n | a ? + 1| + C . 
o 

1 V(x- l ) ( a ? - 3 ) 
2032. + ln — + G. 

x — 1 I a; I 

2033. — - - ln \x\ + 20 ln la? - 31 - — ln la; - 21 + G. 
2a; 4

 1 1 1 1
 4

 1 1 

2034. - l n 
4 

x l
L

 l
\

 1 

1 ^ + G. 
ï - 2 a;i 2a;J 2(a? - 2) 

2035. G . 2036. ln
 1

 ' + G. 

(*2 - υ 2 y ^ T i 
1 (χ + l )

2
 1 2a; - 1 

2037. - ln -f—'—— + — arc tan _ + G. 
6 x

2 

2038. - ln 

•x + l p 
il ι 

H - arc tan 3
 Yx

2
 + a; + 1 y 3 

2a; + 1 

" 7 Γ 
+ 0. 

Λ Λ ΛΛ , V *
2
 - 2a; + 5

 3
 1 χ - 1 

2039. ln — - + - arc tan + (7. 
|α? — 1J 2 2 

(a; 4- l )
2
 la; — 1| 

2040. + ln
 1 1

 - arc tan χ + C. 

2041. - l n 
4 

l + o ? 
y a;

2
 + 1 

arc tan χ + (7. 
2 

2042. - ln arc tan χ + (7. 

4 ( a ; + l )
2
( a ;

2
 + 1) 2 ^ 

2043. l l n | a ? + II - l l n ( a ;
2
 + 1)

 1 

2
 J 1

 4
 V

 ^ ' 2(a; 4- 1) 
+ C. 
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2044 
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4 y χ
2
 + 1 

In ί '-^ + arc tan χ 

χ< . 2 
2045. 2χ f- 2 ln (χ

2
 + 2χ + 2) - 2 arc tan (χ + 1) + (7. 

2 α; 

a;
2
 + 4 3 χ 3 1/2 a? V2 

2046. In - 3 ζ ζ = Η — are tan arc tan h (7. 
]fx^f2 2 2 2 2 

1 χ
2
 + χ ][2+ 1 1 / 2 χ Y2 

2047*. — - ln •
 r

 + — arc t a n — - — + C. (Add and 
4 f 2 ^ 2 + 1 

sub tract 2a;
2
 in the denominator of the integrand.) 

2 - a ; In a;
2
 + 2 

2048. h — • — -
4{x

2
 + 2 ) 2 

1 a? 
arc tan + (7. 

4 f 2 y 2 

2049. 1 ln| * | - 1 In (a;
2
 + l ) + - L In (a;

2
 + 4) 

+ 0 . 

24(a;
2
 + 4) 

13a; - 159 53 χ - 3 
2050. 1 arc tan h G. 

8(a;
2
 — te + 13) 16 2 

3 5a;
3
 + 15a;

2
 + 18a? + 8 

2051. - arc tan (x + 1) — + C. 
8 8(a?

2
 + 2a; + 2)

2 

2052. 

2053. 

χ 

216(a;
2
 + 9) 

χ 

+ 
X 1 χ 

A arc tan - + C. 
36(a;

2
 + 9)

2
 648 3 

1 1 , 1 
In \x + 1 + - l n ( l + x

2
) + C. 

2(x
2
 + 1 ) 2

 1
 ^

 1 τ
 4

 v
 ^ ' ^ 

15a;
5
 + 40a;

3
 + 33a; 15 

2054. 1 arc tan χ + C. 
48(1 + a;

2
)

3
 48 

1/2a;
6
 - 3a;

2
 3 , x

2
- l \ \ 

2055. - + - ln + (7. 
4 i x

i
 - 1 2 a;

2
 + 1 | ) 

χ 2 2x -f- 1 
2056. 1 a r c t a n — Ξ 2 ln (a;

2
 + χ + 1) + 

χ
2
 + a; + 1 -J/3 y 3 

a;
4
 2a;

3
 x

2 

Η 1 + 2x + (7. 
4 3 2 

2057. 
3a;

2
 — χ 

(x - 1) ( a. « + l ) 

Ι χ — 1 

(a? - l )
2 

+ ln ——;—;—f- arc tan a? + C. 

2058. (7 - 6 ln 

1 

a;
2
 + 1 

12a;
2
 — 5a; 1 

2(a;
3
 - x

2
) 

2059. 
x

2
(x

2
 + 1) 

+ ln yx
2
 + 1 + (7. 
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1 1 + χ 1 x - 2 1 
2060. - h h - arc tan x + C. 

2 (1 + x
2
)
2
 4 x

2
 + 1 4 ^ 

2 a;
3
 + 1 

2061. - In — — 
1 

3a;
8
 3(a;

3
 + 1) 

» + 1 Six + 1) 
2062. — arc tan —— + — — — + 

648 L 
lS(x + 1) 

x
2
 + 2x + 10 (a;

2
 + 2a; + 10)

2 

3 3 χ + 1 
2063. - arc tan (a? Ί- 1)H 

8
 K

 ' 8 x* + 2x + 2
 1

 4(x
2
 + 2x4- 2)

2 

2064. G 
2x + 5 1 a; 

arc tan - — 
8(a;

2
 + 4) 2(a;

2
 + 4a; + 5) 16 2 

arc tan (x + 2). 

57a;
4
 - 103a;

2
 + 32 57 

2065. G arc tan x. 
8x(x

2
 + I)

2
 8 

3 - 7a; - 2a;
2
 \x - II 

2066. : — + ln J ' + C. 2(x* — χ
2
 — χ + 1) (x + I )

2 

2067 

2068. ln 

( l δ S\ I 1 
. a;

4
 + - x

2
 j ln 

I 2 ^ 4 5) x(S - 2x
2
)
2 T

 8 Vg 

a; 

8 ye 
10 5 10 5 

p + a;y2 

y3 - χ y2 

y 10 >.10 ' 1 0 6 · 10 6 

(l + Yx) fc Iß S]fx~* 2]fx~
2 

2069. 2 Yx - 3% - 8% + 6% + 48% + 3 ln ( l + % ) + 

33, · » aX 171 2 % - 1 
-\ ln (Yx — Yx + 2) arc tan — μ C. 

2 y7 ]/7 

2070 
r l - 1 - 1

 7
- 1 

». 6 [ ö ( a ; + l )
2
 - - ( a ; + l )

8
 + _ ( a ; + l )

e
 - - (x + 1) + 

1
 1

 1 -1 
+ - ( * + 1)

β
 - - ( * + 1)8J + G. 

2071. In 

5
V
" " ' 4 

y r + ä - y i - « 

y r + ^ + y i ^ i 
+ 2 arc tan 

1 - χ 

l+x 
+ G. 

2072. (Yx — 2) Yl — χ — arc sin Yx + (7. 

2073. 6y ( l -fa;) 1 (1 + a;)
2
 l + x Yl + 

16 + 7 4 J 
\u

2
 — II - 14- 2w

2 

2074. ln
 1

 ' - + y3 arc tan + (7, 
yw

4
 + w

2
 + ι y3 
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where u 
1 - χ 

1 + x 

2075*. 
χ - 1 

χ + 2 
+ (7. Multiply numerator and denominator of the 

fraction by ]/a? — 1 and take out the factors from behind the radical. 

2 24
 β

 36
 β

 8 6
e 

2076. -xVx H a-Ta-H x
2
 Vx + - χ

2
 Vx Η a*

2
 Va;

5
 + C. 

3 11 13 5
 F

 17 * 

2077. 3 ln -

1 

fx 

+ ys 

2 y ï + 3 

2(1 + y i ) 

1 » 1 » 
2078. - ln (Yx

2
 + 1 - 1) - T ln [y(x

2
 + l )

2
 + y»» + l + l ] + 

2 4 

ys ^ + 1 + 1 

H arc tan h (7. 
2 Ρ 

2079. - Y{1 + x*)* - - Y(l + x
8
)

5
 + G. 

8 5 

1 , t * « + M + 1 1 2w + 1 _ , ys^+i 
2080. — ln — — — arc tan = 1- (7, where u = . 6 (u - l )

2
 yâ ys 

1 y i + χ
4
 + x 1 y i + x

4 

2081. - l n - — - arc tan
 v
—~— + (7. 

4 V 2 x 
f\ + #4 _ x 

1 , y i - a:
4
 + 1 1 y i - a;

4
 ^ 

2082. - I n - \-C. 
4 x

2
 4 x

4 

3 
3 - * 1/

 4 

2083. - (4 Yx -f Yx - 3) Π + y i + C. 

2084. 6t* + 2 ln
 U 1

 - — 2 ]/3 arc tan + Q, 

Yu
2
 + ^ + 1 y3 

where w = Yl-\- Yx . 

1 k — Il Τ/3 1 + 2^
 8 

2085. - ln ' - — -\ arc tan — --h G, where w = y 1 +a;
5
. 

5 y w

2
+ w + i 5 y 3 
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Vi + a?
8
 1 2 Vi + χ

9
 + χ 

2086. G -
 r

 + — a r c t a n - ^ 

:Y3 
Yl + χ* - χ 

I ίνα -f a?
8
)

2
 + χγΐ + a?

8
 + a;

2
1 

2088. 
1 . u+ 1 
— 1η-

where 

2(w
8
 + l ) 6 y M2 _ w + χ 2p 
3 

- X
2 

2 w - l 
arc tan — 1- C, 

[ Vu** 3Υΰ*° ZYv? Yl?'] « 
V ~ i o ~

+
 7 — 7 - \ + ° >

w h 6 re
 + v̂  

2090. — cos

8

 a?(3 cos

2

 a; — 5) + C. 2091. —Î h C. 

15 3 cos
8
 a? cos a? 

2092. ln j tan a; I — 
2 sin

2
 χ 

+ 0. 

1 3 
2093. tan χ + - sin 2a? χ + C. 

4 2 

2094. - (tan
2
 a? — cot

2
 a?) + 2 ln |tan x\ + C. 

2 

(tan
2
 a? — 1) (tan

4
 a? + 10 tan

2
 a? + 1) 

2095. — : •—- 4- O. 

2096. 

3 tan
8
 a? 

- + C. 2097. ί cot
X
- - - cot

8
 - + C. 

cos a? — 1 2 2 6 2 
5 1 / 5 15^ 

2098. — a? Η sin 2a? cos
4
 a? 4- - cos

2
 χ -\ + O. 

16 12 V * 8 J 

2099. a? — i cot
8
 a? + cot » + C. 

2100. - tan
4
 a? — - tan

2
 a? — ln Icos x\ 4- C. 

4 2 i i ' 

2101. a? — - cot
7
 a? 4- - cot

5
 a? — - cot

8
 a? 4- cot a? 4- C. 

7 5 3 
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2102. 
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cos χ 1 
G h - I n 

2 sin
2
 χ 2 

χ 
t a n -

2 

2103. - l n 
1 -f tan χ 

1 — t a n « 
H — sin χ cos χ + C. 

2 

2104, 
1 V2 \ (π x\ 

G - . 2105. — ln tan - + -
1 + tan χ 2 8 2 

+ 0. 

2106. ln 

2107. ln 

1 

y «
2
 + ν 

G sin x\ 

χ + arc tan ; 

tan- + <7. 

ycos 2x 
. 2108. ln · 

\G sin x\ 

yi - 4 sin
2
 « 

2109. - [ « + In I s i n « + c o s « | ] + G. 
2 

2110. - arc tan (2 tan?) + ( 7 . 2111. - arc tan 
3 

5 tan —1-4 
2 

+ 0. 

2112. ln (2 + cos « ) + 
4 ( 1 x\ „ 

— arc tan — tan - I + C. 

2113. 

2114. 

2115. 

2116. 

2118. 

2119. 

2120. 

2121. 

cos « (cos χ — sin « ) 1 
ln cos « — sin χ \ + G. 

4 4
 1 1 

4
 3 

— « In tan « + 2 + 
25 25

 1 1 

cos 2« — 15 

+ 

5 ( t a n « + 2 ) 25 

4 sin 2« + 1 
- arc sm -

4 -f sin 2x 15(4 + sin 2«) 15 y 1 5 

1
 h (7. 2117. - arc tan (3 tan x) + G. 

χ 3 
2 — t a n -

— — In | c o s « | + C. 

+ C. 

— arc tan (1/lTtan x) 4- (7. 
y2

 r 

1 1 i,r- χ 
— tan « H arc tan (1/2 tan x) + (7. 
2

 2 p 
1 a tan « 

— arc tan \- C. 
ab b 
„ 1 Γ 1 /tan « ^ l 
(7 cot « Η arc tan . 2L I V2 JJ 
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2128. 2 arc sin y sin a; + (7. 

2129. G — 1 tan x (2 + tan
2
 a;) y4 — cot

2
 a:. 

3 

1 + 1/ cos* 
4 1/ » " ' ^ ""2 

2130. , + 2 arc tan J/ cos - — ln • _ + G. 

2131. — [in (sin x + cos x — ysin 2a;) + arc sin (sin χ — cos χ)] + (7. 
]/2 

2132. sinh x + C. 2133. cosh χ + C. 2134. tanh a; + <7. 

2135. x + C. 2136. — sinh 2aa; + G. 
2a 

sinh a; cosh a; — a; ^ , ^ 
2137. μ C. 2138. a; — tanh x + O. 

2139. a; - coth a; + <7. 2140. I cosh
8
 a; - cosh a; + <7. 

2141. sinh a; + - sinh
8
 a; + (7. 2142. x — tanh a; - - tanh

8
 a; + (7. 

3 3 

2143. - sinh
8
 x + - sinh

5
 x + C. 

3 5 

2144. ln I sinh x | — \ coth
2
 a; — I coth

4
 x + C. 

2 4 

3 _ 

Ι Y tan χ — 1 V 3 2 tan χ + 1 
2122. ln - — — : arc tan = μ C. 

^ tan
2
 a; + tan χ + 1 ^

3 

( a; a;'! 
sin - —

 C 0 S
2 j Ί" ^ ^

or v a u i es
 ° f # satisfying the in-

a; a? ( χ x\ 
equality sin — μ cos - ^ 0, and — 2 sin cos - + G for values 

2 2 \_ 2 2) 

of χ satisfying the inequality sin
 X
- + cos ^ = 0. 
Δ Δ 

2124. 2VtâïraT + (7. 

41/2 Λ 
2125*. (7 j j - f cot5 a;. (Substitute w = cot a;.) 

« 1 r 
2126. 4 f tan x + C. 2127. — ln tan a; + ]/1 + 2 tan

2
 x) + (7. 

1/2 
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, Χ 
tanh -

2 
+ 0. 2145. ln I tanh x\ + C. 2146. ln 

2147. - tanh - - - tanh
3
 - + (7. 

2 2 6 2 

1 1 + y tanh χ r 
2148. - ln — — — arc tan Vtanh χ 4- C, 

2 | l - y t e n h i | 
2149. χ tanh χ — ln cosh χ + <7. 2150. (7 

I cos χ I 

Θ3 Χ 

3 sinh
3
 χ 

2151*. In 
2 + χ + 2 ] /x

2
 + a; + 

- . (e.g. the substitution χ = 

can be used.) 

1 2 — χ χ — I 
2152. - arc cos — + (7. 2153. arc sin — + G. 

γ~2 γ 2 

2154. G ln 
γ* 

\2 + χ - χ
2
 + ψ2 1 

« 2 f 2 

2155. ln I χ + 1 + ^2χ + χ
2
| -

1 
2156. (7 In 

2157. (7 ^_-ln 
y i ö 

χ + f2a? + χ
2 

3 + 3a* + 2 ][3(χ
2
 + a* + 1) 

(7. 

χ - 1 

* + 6 + Υ 60a* — 15a*
2 

2a; — 3 

2158. - (χ - 1) f x
2
 - 2a; - 1 - In | χ - 1 + f x

2
 - 2χ - 1 | + (7. 

1 / χ ^ 
2159. - χ - - y 3a;

2
 - 3a? + 1 + 

2 1 2 ; 

+ — 1 η 
s y 3 

_ r y 3 
y 3a ;

2
- 3a ; - 1 + — (2a? - 1) 

2 
+ C7. 

2160. -
2 

2161. <7 

2162. In 

(χ -\- 1) Yi — 4x — χ
2
 + 5 arc sin 

3 

2(2x - 1 - 2 yx
2
 - a; + 1) 

+ 2 k 

χ + ]/x
2
+ 1 I y i + ar 

a; + 2 

y5 
+ 0. 

- - l n | 2 a ; - l - 2 yx
2
-x + 1 | + 2 ln | a; - yx

2
 - a; + 1| 

+ 0. 

486 
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1 1/2 4- 2α2
 — α 

2172. In
 y

 + In (α + V a
2
 4- 1) 4- Ο. 

2/2 72 4- 2α2
 4- » 

rt,„ft f2a2 - 2a 4- 1 „ 
2173. \-C. 

Yx
2
 + 2a 4- 4 - 1 1 y2(a

2
 4- 2a 4- 4) , ^ 

2174. ln arc tan h (7. 

f a
2
 4- 2a + 4 4- 1 f 2 * +

 1 

2176. C - 1 1 3 1 
8(a - l )

8
 3(a - l )

9
 1 0 ( a - l )

10
 l l ( a - l )

11
 " 

8 

1 , 3(4a — 3a) Y (a 4- a )
4 

2176. - [ a » 4- Y(x* - D
8
] 4- C. 2177. -± g

j Π
 ^

 }
 + C. 

2178. — - — a r c tan je'"* 

m yâb \ 
1 α + 2 

2179. - arc sin α Vi - α
2
 4- C. 

2 2 

WH-

1 - V χ
2
 + 2α + 2 1Λ 

2163. - — + ln (χ + 1 + ]Αα
2
 + 2χ + 2) + C. 

χ + 1 

1 _ r Χ + 1 
2164. - (3 - χ) y 1 - 2χ - χ2 + 2 arc sin h (7. 

2 f 2 

2165. α y α
2
 - 2x + 5 - 5 ln (α - 1 4- f a

2
 - 2α + 5) + <?· 

1 α + 1 

2166. G (3α - 19) f 3 - 2α - α
2
 + 14 arc sin . 

2 2 

2167. (α
2
 - 5α + 20) f a

2
 + 4α + 5 - 15 1η (α + 2 + 

+ y χ
2
 + 4α + 5) + (7. 

Π 5 1 ϊ , 5 2168. - α 2 a + - V ^ + 2 a + 2 + - l n ( a 4 - l + 
[S 6 6 Jκ

 2 

+ f a 2 + 2α 4- 2) 4- (7. 

2169. (α
2
 4- 5α 4- 36) ]Αα

2
 - 4α - 7 4- 112 In | α - 2 4-

+
 / α

2
- 4 α - 7| 4- C. 

2170
.
 [J-a» -

 Ι
 »

ι
 + - y

 α

2
 + 4

α
 4- 5 + 

35 r 

4- — In (α 4- 2 4- "Κ*2
 4- 4α + 5) 4-

8 
„ y α

2
 4- 2α - 3 1 2 

2171. - — — ( - — arccos + C. 
8 α 4- 1

 2
 16 χ 4- 1 
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2180. 

2181. 

2x + - l n 
2 6 

ANSWERS 

\x - 1| (x + 2 ) « 

| « + ι I
3 + 0. 

In 
l + x 

1 - « 
Η arc tan « + C. 

2 

4(a;
4
 - 1) 16 

2182. — arc tan χ — 

2183. 2 Υχ + I [ln | « + 1| - 2] + (7. 

2184. 

χ + I 
+ C. 

(1 3\ (I 3 9 ϊ 
- χ + - cos 2χ + - χ

2
 + - χ + - sin 2χ + C. 

[2 4 j U 2 4 j 
2185. «

2
 cosh χ — 2χ sinh a; + 2 cosh a; + C. 

2186. « a r c t a n ( 1 + fx) - ]/a; + ln | χ + 2 ] / « + 2 | + (7. 

- y r ^ 
2187. In 

2188. 

2189. 

2190. 

2191. 

2192. 

2193. 

2194. 

2195. 

2196. 

2197. 

2198. 

2199. 

S g 3 

3 e ^ (ftf - 2 f i + 2) + G. 

3efc ( y ï
5
" - 5 yï

4
" + 20« - 60 fx^ + 120 fx - 120) + G. 

(I 2 13Ï ^ 
θ 3Χ

 3 ~"
 χ 2 +

 3 *
 +
 I f )

 + 

2 (sin y ï — y « cos ] / « ) + (7. 

y à T ^ l (3« + 2) 3 

4a;
2 + - arc tan y « —· 1 + (7. 

— + - y «
2

- 1 - - In I« + y «
2
 - 11 + C. 

2 2 2 

ln ( « + y 1 + x
2
) — -— h C. 

5 «
5 

3 «
3 

( ï *
8
 " l

x
) 1

/
^

Γ
+

1
 + ^

m
 ( « + WTï) + c 

s 
3[ ln |w | - l n ( l + y i - u

2
) — arc sin u\ + G, where u = \x 

yi + χ - ι 15a;
2
 + 5a; - 2 15 

H ln 
4 «

2
 y i + «

 8 

y i + « + 1 
+ G. 

V2x+ 1 
C - - — + ln 

] /2« + 1 - 1 

± [ ! l n 
15 12 

(* - l )
2 

ζ
2
 + z + 1 

y 2 « + 1 + 1 

— y 3 arc tan 
2z + 1 

~ ~ y f 
] +0, where z = x

5
. 
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2200. G - - ln 
4 

tan-

1 1
 tan x _ 

H . 2201. — arc tan h G. 

8 s i n
2
* Va V* 

2202. 

1 

-ln 
6

2
 sin 2α 

tana; 

sin (α — χ) 

sin (α + χ) 
-f G, where α = arc cos - , if a

2
 < b

2
 : 

b 

sin a 
arc tan + C, where α = arc cos - , if a

2
 > b

2
. 

sin a a 

1 3 1 1 
2203. - x

2
 ln (1 + x*) - - x

2
 + - l n (χ

2
 - χ + 1) - - ln (x + 1) + 

2 4 4 2 

V3 2a ; - 1 
— arc tan h G. 
2 y3 

2204. — + G. 2205. arc tan fa;
2
 — 1 ^

X 

Ina; y^
2
 _ ι 

+ 0. 

2206. - e* [(x
2
 — 1) cos a; + (χ - l )

2
 sin x] + G. 

2 

a;
2
e

x
" 2 tan

2
 a; — 3 

2207. — - + O. 2208. - = — + G. 

2 3 ytan χ 

2209. - (tan
4
 χ — cot

4
 a;) + 2 (tan

2
 a; — cot

2
 x) + 6 ln |tan x\ + G. 

4 

2210. arc tan (tan
2
 x) + C. 2211. ln 1 + tan - + 0. 

tan χ 
2212. — I arc tan - + ln (y2 + tan

2
 a; + tan a;) 

2 l y 2 + tan
2
 a; 

2213.1n*
2 + 1 +

 ^
 + 3

-
2 + 1

+ C . 

+ C7. 

2214. <7 ln 
yî5 

x + 6 + y60a; - 15a;
2 

2a; - 3 
. 2215. 

e* 

1 + χ 
+ 0. 

2216. 2a; Y1 + e* - 4 y 1 + e* - 2 ln V
1 + Θ

* - + C. 
y i + e* + 1 

1
 ,

 1
 +

χ 2
 arc tana; 1 ^ 

2217. - I n — - }- C. 

6 a;
2
 3a;

8
 6a;

2 

Λ _ arc tan x arc tan x 
2218. (7 - 1 h 

2(1 +x
2
) 4 ^ 

1 , Ι
χ
 + Μ arc tan a; 

2219. - ln
 1 1 

4(1 + x
2
) 

1 

4 y a ^ + i
 2

( * + * )
2
 ^

x
 +

 l
) 
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log211 — 2*1 + -
1

— [ — ! h 
6 2 1 1

 In 2 LI - 2* 2(1 - 2*)
2 

1
 ] + a. 

3(1 - 2*)»J 

, J/1 + e
*

 + e2
*

 - e
*

 - 1 
2222. ln - — - I + C. 

γ ι + e* + e2* — e* + ι 

2 1 + 2 tan χ 2223. a? arc tan— • \-C. 

Yz yw 
35 1 . 7 1 

2224. χ sin 2α Η sin 4α A sin
3
 2a + 

128 4 ^ 128 24 ^ 

4 — sin 8a -f G. 

1024 
1 3 1 

2225. - a
2
 4- - I n (1 4- *

2
) + 

2 ^ 2
 v

 ^ ' ^ (1 4- a
2
)

2 

2226. 
8 27 30 

4- In 
49(a - 5) 49(a 4 - 2 ) 343 a 4- 2 

+ G. 

Y2 , r— X 2227. G - — arc tan (yTcot 2a). 2228. a tan - 4- C. 
2 2 

1 α"|/2~ 
2229. arc cos h G. (Divide numerator and denomina-

Y2 a
2

 4- 1 
tor by a

2
 and use the substitution χ -\ = z.) 

χ 

2230. esinx(a; — sec a) 4- G. 

Chapter VI I 

2231. - (YS - 1). 2232. —. 2233 . - 5 (We - 1). 2234. 7 - . 

3
 r

 ' 72
 F

 3 
Τ b 

2235. - cos ψ0. 2236. 12. 2237. 0-2 (e - l )
5
. 2238. 3 ln 

π b — a 

1 π 1 π 
6n 

2239. - . 2240. - . 2241. 1 4- - log e. 2242. e - VQ~ 2243 7Γ 
4 2 2 ' ' on 

4 3 4 1 
2244. 2. 2245. 2246. ln - . 2247. 0-2 ln - . 2248. arc tan - . 

3 2 3 7 

1 8 7i 2 4 
2249. - ln - . 2250. - . 2251. 2. 2252. - . 2253. - . 

2 5 6 7 3 

2220. α 

+ 
2221. arc tan (e* - e~*) + G. 



CHAPTER VII 491 

36 2 2 41η 2 

s 
141 α

3
 Vä πα

2
 β» - 2 

2264. 1. 2265. — - i - . 2266. — . 2267. 
20 4 5 

8 7 . 5 . 3 . 1 π 
2268. 6 - 2e. 2269. (a) — ; (b) . . - çv 0-429; W

1 5
 U

 8 . 6 . 4 . 2 2 
10 . 8 . 6 . 4 . 2 256 

(c) = . w
 11 . 9 . 7 . 5 . 3 693 

n — 1 m — 1 2270. Jm, n — ;— Jmm—2 = ; — J m—2» η· 
m + n m + n 

I f n is odd

,

 then 

(η - 1) (η - 3) . . . 4 . 2 J m» η — 

dd, thei 

J m> η 

(m + n) (m + η — 2) . . . (m + 3) (m + 1) 

if m is odd, then 

(m - 1) (m - 3) . . . 4 . 2 
(m + n) (m + n — 2) . . . (n + 3)(n + 1) ' 

if m is even, n even, then 

(η - 1) (η - 3) . . . 3 . 1 x (m - 1) (m - 3) . . . 3 . 1 π 
J my η — 

(m + η) (m + η — 2) (m + η — 4) . . . 4 .2 2 

2271. ( - 1 ) « Λ! [l - ! (-1 +
 1

— + . . . + 1 + l ) l . 
L e \η\ (η — 1)! 1 ! ) \ 

11 5π 
2272. — + — . 

48 64 

2274*. . Put χ = sin
2
 ζ and use the result of prob-

te+<?+ί)! 
lern 2270. 

2275. 7 + 2 ln 2. 2276. 2 - - . 2277. — . 

2 3 
5 Θ + Vi + e

2
 3 / 3 

2278. 2 ln 2. 2279. In . r
 . 2280. 8 + — ^ - π. 

3 1 + f 2
 2 

5 2281*. — π. Putting a* = 2z, the given integral is transformed to 
16 η 

2 
2 ^ sin8 ζ dz. (See Course, sec. 106.) 

π 2 π cot
3
 3 

2254. — . 2255. -0-083 . . . 2256. - + α Η α - c o t α 
2ω 3 4 3 

2257. 1. 2258. - — . 2259. 1 - - . 2260. - - 1. 

3 Θ 2 
π (9 - 4 V3 1 3 3 

2261. — — + - In - . 2262. π
3
 - 6π. 2263. 2 -
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16 16 

π 

' é ' 
2292. 

y î2 π 
- — . 2293. 
48 3 

•y 2 
48 

2296. 
20 

2 1 π 
2312. — a r c tan — . 2313. -

p Ρ 2 

6 π
4 

- . 2314. 3π
2
 + 24. 

7 16 

16π , - 19 5 Ι α 
2315. 2 p . 2316. . 2317. 1η -

3
 r

 27 6 yë α
2

- 6
2
 b 

2319. χ = 2. 2320. α = 1η 8. 2322*. Use the relationship 4 -

x
2
 4 — χ

2
 — χ

3
 ^ 4 — 2#

2
, which holds for 0 ^ χ ^ 1. 

2323*. Use the inequalities 

YI — χ
2
 ^ y i — χ

2
" ^ 1, where — 1 ^ χ ^ 1 and η ^ 1. 

2324. 1 098 < I < 1-110. 

2325*. Use the inequality 1 + χ* < (1 + χψ for the lower 

estimate, and Bunyakovskii's inequality for the upper estimate. 

2326. 1(1) pa 1*66 is the maximum value, I (— i-j ^ —0-11 is 

the minimum value. 

( 1
7>
I 

2327. Minimum at # = 1 \y = 1; points of inflexion are 
( 2 , - - ) and ( - , - - ] . 

2282*. — . Put χ = - . 2283. — . 

35 2 32 

2 2-4- V3 8 τι 
2284. p - τμ + ln

 F
 . 2285. — . 2286. p . r

 Ρ
 τ

 χ + yg 15 ' 3 

1 f 7 p ^ a 
2287. π + — ί - . 228S 

1/3 
2290. — + ln (2 - p ) . 229 

2 

1 p 
2294. arc t a n - . 2295. f-

2 27 
6 . 2 1 2 

2297. 2 ln - ^ 0-365. 2298. - . 2299. 2 + ln . 
5 π 2 e

2
 + 1 

1 8 2 
2300. For α = Θ. 2301. - ln - . 2302. — . 

2 5 45 

2303. 8 ln 3 - 15 ln 2 + — . 2304. — (5 + 7 V δ
5
) . 2305. -

8 192
 r

 6 

2306. a
2
 [ p - ln ( p + l ) ] . 2307. p - - ln (2 + p ) . 

Δ 

848 7 + 2 1/7 π I 
2308. — . 2309. 4 - π. 2310. ln — — — . 2311. . 

105 9 4 2 
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2332*. (a) Substitute for the variable of integration in accordance 

with the formula t = — x, divide the interval [ — a, —x] into two 

intervals: [—α, a ] and [a, — x] and use the fact that the integral of 

an odd function over the interval [ — α, a ] is zero, (b) N o , if a ^ 0; 

yes, if a = 0. 

2333*. Put t 

2338. Each of the integrals is equal to 

2339*. Put χ — π — ζ. The integral is equal to 

2340*. Divide the interval of integration [α, a + T] into [a, 0] , 

[0, T] and f Τ, a + T], then show by using the property f(x) = f (x + 

+ T) that 

2341*. The equality required for the proof is equivalent to 

Show that the integral on the left of this equality is independent of x, 

then put χ — 

2343. The substitution ζ = tan is not permissible because 

the function tan is discontinuous for χ = π. 

2344*. To estimate In, use the fact that In decreases as η increases. 

2345*. Replace the variable of integration in accordance with the 

formula ζ - and use the property of the integral of an 

even function (see Course, sec. 107.) 

2346*. Replace the variable of integration in accordance with 
the formula ζ = kco

2
x

2
 and then use THopital's rule. 

2347. B y the rectangle rule π ^ 2*904 (under-value) and π 3*305 
(over-value). B y the trapezium formula π ^3*104. B y Simpson's 
formula π ^3*127. 

2348. B y the rectangle rule π 3*04 (under-value) and π ç& 3*24 
(over-value). B y the trapezium formula π 3-140. B y Simpson's 
formula π œ 3*1416 (correct to all places). 

2349. In 10 = 2-31, M ^0*433. 2350. ^0*837. 
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2351. ^ 1 09. 2352. ^2-59. 2353. 0-950. 2354. ^ 1 5 3 . 

2355. pa 0-985. 2356. Pa 0-957. 

2357. pa 239 m
2
 (by Simpson's formula). 

2358. ρα 11-7 m
2
 (by Simpson's formula). 

2359. Pa 1950 m m
2
. 2360. pa 10-9. 2361. Pa 36-2. 2362. ^98-2. 

2363. Pa 9-2. 2364. pa 569 m m
2
. 2365. pa 138 m m

2
. 

1 1 
2366. - . 2367. Divergent . 2368. - . 2369. Divergent . 

3 a 
1 

2370. π. 2371. Divergent . 2372. 1 - ln 2. 2373. - . 

π Va
4
 + 1 + 1 1 1 

2374. - . 2375. ln " . 2376. - . 2377. - . 
2 a

2
 2 2 

1 
2378. Divergent . 2379. 2. 2380. - . 

2381. , i f a > 0, divergent if a ^ 0. 
a

2
 + b

2 

π 1 2π π 1 π 
2382. - + - ln 2. 2383. . 2384. - . . 2385. - + - . 

4 2 3 ]/3 2 2 4 

2386. Convergent. 2387. Divergent . 2388. Convergent. 

2389. Divergent. 2390. Convergent. 2391. Divergent . 

2392. Divergent . 

π 8 
2393. Convergent. 2394. - . 2395. Divergent. 2396. - . 

2 3 

2397. - ~ . 2398. 1. 2399. Divergent . 2400. 2. 2401. π. 

2402. -π(α + b). 2403. — . 2404. — ^ - . 2405. — . 

2 2 3 Ρ y3 
4 10 9 

2406. 14 - . 2407. — . 2408. Divergent . 2409. 6 ln 3. 
7 7

 6
 2 

2 
2410. . 2411. Divergent . 2412. Convergent. 

e 

2413. Divergent. 2414. Convergent. 2415. Convergent. 

2416. Divergent . 2417. Convergent. 2418. N o . 

2419. Convergent for k < — 1, divergent for k ^ — 1. 

2420. (1) Convergent for k > 1, divergent fr k ^= 1 ; 

(2) I = • — if k > 1 : divergen i k ^ 1. 

(k - 1) (InZ)*-
1 6 
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2433*. (a) 
m (m — 2) . . . 4 . 2 2 

(m - l ) ( m - 3 ) . . . 4 . 2 
(b) . Put x = sin ç>. 

m (m — 2) . . . 3 . 1 

2n (2n - 2) . . . 4 . 2 
2434*. 2 . Put x = sin

2
 ç>. 

(2Λ + 1) (2n - 1) . . . 3 .1 

2435.
 π

 ~
 α

 (7 = 1 with α = π), 
sin α 

1 
2436*. To prove that the integrals are equal, put χ = — in one of 

ζ 

them. Then evaluate their sum, using the identity 

1 + x
2 

1 ( 1 1 
2
 l l + a

2
 + x][2 1 4- α

2
 - xy~V ' H *

4
 2 \i + ^ 2 + 14- ; 

oo 1 oo 

2437*. Write the integral as the sum of two integrals: J = J* + J ; 

1 put # = — in the second integral. V 

π nA_ _ Υ~π 
* _ι 2438. 0. 2439. -

2 
parts. 

. 2440. y π. 2441*. — . Integrate by 
4 

1 . 3 . 5 . . . (2n - 1) Ττ\ π 
2442. * - — . 2443. - . 

2
n
 2 2 

2444. - i f a > 0 ; 0 i f a = 0 ; - - i f a < 0 . 
2 2 

2421. Convergent for k < 1, divergent for k ^ 1. 

2422. Divergent for any k. 

2423. Convergent when the inequalities k > — 1 and t > k + 1 

are fulfilled simultaneously. 

2424. Convergent for m < 3, divergent for m ^ 3. 

2425. Convergent for k < 1, divergent for ^ 1. 

2426. π. 2427*. — . Put χ = cos φ and integrate by parts. 
3 

3 + 2 Y 3 3 
2428. — —π 1η2. 

4 2 

1 . 3 . 5 . . . (2n - 3) π _ η ! 
2429. . 2430. η ! . 2431. — . 

2 . 4 . 6 . . . (2n - 2) 2α
2
""

1
 2 

2432. ( - l ) " n ! . 

(m - 1) (m - 3) . . . 3 . 1 π 
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φ(χ) = J In sin ζ dz. 

16 9 16 1 32 Λ Γ-
2 4 5 5 . — . 2 4 5 6 . - . 2457. — ρ

2
. 2 4 5 8 . - . 2 4 5 9 . - / 6 . 

3 4 3 ^ 3 3
 r 

1 4 4 
2460. 2 - . 2461. 2π + - and 6π . 

4 3 3 

2462. - (4ττ + f 3 ) and - (8π - p ) . 
3 3 

6
2
c c -|- 6 Γ ζ η /- ν-ι 

2464. ab 1η = b [eb — a 1η(ε + |/ε
2
 — DJ, where ε is 

α α 

the eccentricity. 

2445. - if a > b; - i f a = 6; 0 if a < b. 
2 4 

2446*. — . Integrate by parts. 
2 

π 
2447*.— . Write the numerator as a difference between sines of 

4 
multiple angles. 

η 
2448*. - . Use the methods of solution of problems 2446 and 2447. 

π 
2449*. Put y = ζ and reduce <p(x) to the form 

2 

Chapter V I I I 

for the variable. 

In 2. Reduces to the previous problem by substituting 

In 2. Integrate by parts. 

2450. 

2452* 

2453* 

two reduce to integrals of the original type by substituting for the 

variable; g 

Split the integral into three by using the formula sin ζ = 

one integral is then obtained directly. The other 
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2465. α
2 J - Ç t a i V s + yï)" 

and α
2 2

Λ+ 11^(^3+ γΐ) 
ο 4 

\2 
2466. S, = S3 = π — -— 1η 3 — 2 arc sin 

2 

St = 2(π - S,) 

π I 1 1 
2467. . 2468. — . 2469. — . 

2 3 12 12 

46. 

2470. 

m — η 

m — η 

m -f η 
; 4 

m — η 

if m and n are both odd ; 

, if m and η are both even: 

m — η Ι 

m + η 
if m is odd and η even 

I m + η 

or vice versa. 

2471. ( a ) ^ ; (b) 7 3 ^ . 

2472. 1 (the figure consists of two parts whose areas are equal). 

2473. — . 2474. - π. 2475. - . 
15 4 3 

2476. — . 2477. 8 
8 

2 1 A-
1 Η ^ 3 — arc tan 

3
 r 

1 3 18 
2478. e + 2. 2479. 4. 2480. - (e

3
 - 4). 2481. — - 2. 

e e e
2 

2482. (a) b (ln b - 1) - a (ln a - I); (b) 6 - a. 2483. 3 - e. 

3 - 2 1 n 2 - 2 1 n
2
2 i r- 1 V3~ 

2484. . 2485. 2 - V2. 2486. - + ln — . 
16

 r
 3 2 

2487. - V 2 " . 2488. V2 - 1. 2489. - . 2490. 3πα
2
. 

3
 r r

 4 

2491. - πα
2
. 2492. 6πα

2
. 

8 

2493. (1) ~ (η + 1) (η + 2); (2) (η - 1) (η - 2). 

η
2
 η

2 

72 8 4 76α
2
π

3 

2494. (1) —J/3; (2) — . 2495. ( 1 ) - π ' α
2
; ( 2 ) — — . 

ο Ιο ο ο 

2496. — (four-petal rose). 2497. — . 2498. 18πα
2
. 
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π { η Y^\ 
- . 2507. α

2
 2508. α

2
 1 + — . 

4 V 6 2 J 
2509. - (α

2
 + Ö

2
). 2510. α

2
. 2511. π / 2 . 2512. π. 2513. 2. 

2 
Vrä" -

2514. 3πα
2
. 2515. 4ττ. 2516*. (1) — ; (2) \π. Use the fact that 

2 

Υπ 
J e-*

2
 dx = (Poisson's integral). 

IX/ JTf 
2517. — . 2518. 2 and 2 + - . 2519. 

2 2 2 

/
 0

 % 

Ρ , 2/ + IV + V
2 

2520. — V i /
2
 + p

2
 + - ln 

2p 2 p 

2521. 1 + - ln - . 2522. ln 3 - - . 

2 2 2 

2523. ln . 2524. - - / 1 . 

Ga _ e- a 9 2̂ ^ 2 ) 
26 l f-

2525. 4 — . 2526. 4a f3 . 
27 

τι 3TT JT ,_,·— v 
2527. - + 2 ln tan — = - + 2 ln (Y2 + l ) . 

2 8 2 

2528. ί + - ln 3. 2529. 2. 2530. 8. 
6 4 

2531. A t t = 
2π 2π Y3' 

Ύ 2~ 

Λ 3α 
χ = α Ι

 J
— , y = — 

y » 2 
π f 3 V 3 R\ 

2532. A t i = - , α = ~γ-Κ> 2/ = g -

α
2
 + α& + &

2 

2533*. 4 ! — — . Put χ = α cos
3
1, y = b sin

3
 ί. 

2534. 5α 

α + 6 

1 + -
1

— 1η (2 + Υ3) 
2 Υ% 

2535. α 1η - . 2536. — i?. 

y 2 

To construct the curve, the variation of 

φ from 0 to 3π must be taken into account. 
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2537. — . 2538. 4 / 3 . 2541. 2(e' - 1). 
3 

2543. πα l/l + 4π
2
 + °^ ln (2π + f l + 4π

2
). 

3 5 3 
2545. In - Η . 2546. 8α. 2547. - πα. 

2 12 2 

2Ν + 1 2iV 
2549. & must have the form or 

2N 2N - 1 
, where Ν is an 

integer. 

2550. 4. 2551. ln - . 
2 

2554*. Prove that the length of the ellipse can be written in the 

form L = 4 J ( f a
2
 cos

2
1 + b

2
 sin

2
 * + f a

2
 s in

2
1 + 6

2
 cos

2
1 ) dt, and 

ο 
use the theorem on estimating an integral. 

4 4 
2555. 2π. 2556. (1) - παδ

2
; (2) - πα

2
&. 

3 3 

2557. — πΚ
2
α. 2558. — (3α + h). 2559. - (e

2
 - 1). 

15 3
 ν

 ' 4
 ν

 ' 

π Γβ
2ί 

4L 

— e~
2b 

Ρ2 α -2α 

2560. 

2562. ^ - ( 1 5 - 161η 2). 2563. π 

+ 2(6 - α) 2561. 
3π 

ΪΟ 

(τ-')· 2564. 
8π 

2565. 2π
2
. 2566. 

4 
f 2 In ( l + Υ2)· 

2 π
2
 (3π

2
 8\ 

2567. ( 1 ) - π α
3
; (2) — . 2568. 5π

2
α

3
. 2569. πα* \ . ν

 '3
 ν

 ' 16 { 2 3 J 

2572. — . 
2 

32 167TC
6 

2570. πα\ 2571. . 
105 105α&

2 

2573. — . 2574*. (1) π; (2) 
2 

3 V2π~ 
2575*. — ! . See hint on problem 2516. 

32 

See hint on problem 2516. 

r sm χ π 
2576*. π

2
. Use the fact that — dx = — (Dirichlet's integral). 

J χ 2 

2577*. 2π
2
α

3
. I t is advisable to pass to the parametric form by 

2a sin
3
1 

putting χ = 2a sin
2
 t, y = . 

cos t 
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2 
2578. - πα

3
. 

3 

4 *• 
2579*. — nahe. Use the formula υ = J S(x) dx, where S(x) is 

3 

the cross-sectional area. 

2580. (1) π }f2; (2) 36π. 

2581. v t = π Y 2 2̂ / θ " - y j , V2 = π y ^ y j . 

2582. ^ = ν.ό = 4π ( f ö " + f3 - 4), v2 = 8π (4 - p " ) . 

8π Ve" 
2583. — . 2584. 8π. 

3 

2 
2585*. — R

2
H = 400 cm

3
. Take the axis of symmetry of the 

3 

base as axis of abscissae. 

4 2 1 
2586. — a h H = 128 cm

3
. 2587. - abH = 1 3 3 - cm

3
. 

15 3 3 

2 
2588*. — nR

2
H. The area of a symmetrical parabolic segment is 

3 

2 
equal to — ah, where α is the base of the segment, h the "height" 

3 

(see Course, sec. 84). 

i ?
2
# f 4 Ï #

2
i ï / 4 Ï 

2589*. —^— I π + — I and —— \π — — I . (See hint on problem 

2588). 
8 8 16 4 

2590. - a
3
. 2591. - nr\ 2592. — RK 2593. - R

2
H. 

3 3 3 3 

56 τι , , r ν πα 
2594. y πα2. 2595. + « 4 ) 3 - l ) . 2596. — ( e 2- e ~ 2+ 4 ) . 

Λ _ Λ „ το 2nab nb
2
 1 + ε 

2597. 2πο
2
 Η arc sin ε and 2πα

2
 Η ln , where ε 

ε ε 1 — ε 
is the eccentricity of the ellipse. 

2598. 2π [y2 + ln ( l + y2~)> 

' r— r— 2 V2 + 2 2599. π y5 - y2 + ln - " — - Χ -

ι ys"+1 
2600. 3πα

2
. 

_r— ( π\ 2π y2 12 
2601. πα

2
 y2 2 - - . 2602. — ^ — (β

π
 - 2). 2603. — πα

2
. 

5
 λ

 5 
32 

2604. 8πα
2
 | π | . 2605. — πα

2
. 2606. 4π

2
/·

2
. 

" 5 
ί 4 Ϊ 

71 . I 3J 
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2607. 2πα
2
 (2 - f2~). 2608. π[][2+]η{\ + f2)]. 2609. 4πα

2 

ah
2
 α

9
 a* a*V2 

2610. — . 2611. - , — , — 
2 6 6 12 

2613. The centre of gravity lies on the axis of symmetry of the 

2 
segment at a distance — h from the base. 

3 3 3 3 
2614. For S,: ζ = - α, η = -b; for S2: ξ = — α, η = - 6. 1

 5 8 10 4 

2615. ξ = 0 , T? = — . 2616; f = 0 , 77 = — · 

π 3π 
2617. The centre of gravity lies on the bisector of the central 

α 
sin — 

2 
angle subtended by the arc, at a distance 2r from the centre. 

α 

a a 4a 46 
2618.1 = - , , = - . 2619 .* = - , , = - . 

6
2
 αδ 

2620. 1 arc sin ε, where ε is the eccentricity of the 
2 2ε 

ellipse. 

71 71 71 4 71 V3 
2621. ί = - , η = - . 2622. - + - . 2623. — + — . 

2
7

8 2 ^ 5 12 8 

3 5 
2624. — . 2625. ξ = - α, η = 0 . 

20 8 ' 

e
4
 + 4e

2
 - 1 

. £ — 0 , η = a . 1
 4e(e

2
 - 1) 

4 5 
2628. ί = πα, π = - α. 2629. ξ = πα, 77 = - α . 

3 6 

2 2 256α 256α 
2630. ξ = - α, 77 = - α. 2631. ί = , η = . 

5
 1

 5 315π ' 315π 

6α(4 - π
2
) 2α(π

2
 - 6) 

ί = y V = 3 ' 

π
3
 π

3 

2634. The centre of gravity lies on the axis of symmetry of the 

2 r sin α „ , „ , . , 
sector at a distance from the centre of the circle. 

3 α 

5 1/2 
2635. ξ = - α, η = 0 . 2636. | = — πα, τ? = 0 . 

6 8 
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α 2e
2
* -f θ

π
 α θ

2π
 — 2θ

π 

2638. f = - - ± — , ι; = . 
5 * 5

 η
_ 

1 2 
θ

π
 — θ θ

π
 — θ 

4 4 3 
2639. f = - α, T? = - α . 2640. 

5 ' 5 8 

2641. The centre of gravity is on the axis of symmetry at a distance 

— from the centre. 
2 

H H VE
2 + H

2
 H h 

2642. — , - — , — . 2643. - . 

3 3 (R + YR
2
 + H

2
) 4 3 

l 
2644. - (a

2
 + ab + δ

2
) . 

3 

2645. —^— = i
s
 ^

η θ
 rnass of the semi-circular disc). 

2646. n ^ - 2 ^ . 
3 

256 
2647. J x = a

8
; J v = 16a

8 

15
 y 

a6
8
 6Λ

8
 bh* bh* nR* 

2648. . 2649. (1) ; (2) ; (3) . 2650. . 
3

 v 1
 12

 v
 ' 4

 v
 ' 36 8 

2651. — . 2652. - a6
8
. and - 6a

8
. 2653. - nRW. 

2 4 4 2 

2654. — nR*H. 2655. — nR*. 
10 15 

8 
2656. — πα6

4
, where 2a is the length of the axis about which 

the rotation takes place. 

1 56π 
2657. - nR*H. 2658. . 

6 15 

π(β
4
 - 1) 

ι. (1) Jx = ~ (2) Iy = 4π(3 - e). 

2660. MR
2
, where M is the mass of the lateral surface of the 

cylinder. 

2661. - MR
2
. 2662. - MR

2
. 2663. - πα

8
. 2664. 6π

2
α6

2
. 

2 3 2 
3 Y2 ι— 

2665· The volume is π
2
α

8
, the surface area is 6 ]/2πα

2
. 

8 

2666. The volume is 12π
8
α

8
, the surface area 32π

2
α

2
. 
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2668 ι. pa 23-7 m. 2669. x2 = xx + sin — + <p0 J ~ sin + φΛ. 

kmM a + I km M r,(r- -f- I) 
2670. , — - M, — — ln

 n 2
 / . 

a(a + I) a I r2{rx -f- Z) 

2km M km M a kmM cos
8
 o> 

2671. . 2672. — = = =_ = , where φ is the 
nr

2
 yjßt + α2 ) 3 α

2 

angle between the straight lines joining point C to the centre of 

kmM 
the ring and to any point of the ring ; . 

R 

2kmM ( a \ 
2673. 1 z = == . 2674. 2nkma. 

2675*. 2nkmyh 11 z=zzzzz=z=z=z = 2nkmyh (1 — cos a) , 

I + (R - r)
2
) 

where a is the angle between the generator of the cone and its axis. 
Use the solution of problem 2673. 

2676. 2kmy. 

kM
2
 4 

2678*. ln —. First calculate the force of interaction of 
I
2
 3 

element as of the first rod with the second rod (use the result of prob-

lem 2670), then find the total force of interaction. 

g*M* 
2679. ^ 2 ergs (M and m in grams, g in cm/sec2). 

2680. pa 754 kg. 2681. pa 1*63 . 10
11
 kg. 

2682. 353,250 kg. 

ndR
2
H

2
 ndR

2
H

2 

2683. — — — , . The work is obtained in kg in the 

12 4 
answers to problems 2683-2686 if the distance is in metres, and the 

specific weight in kg/m
3
. 

_ ndR" ndRW

2 

2684. pa 101-8 kg. 2685. pa 26,800 kg. 
4 6 

4 Sl*œ
2
v 

2686. —dabH
2
 = 240 kg. 2687. ?^4·1 χ 10

7
erg^0-418kg. 

15 6 

ab
3
 dvco

2
 ah* dco

2
v 

2688.
 Ύ

— pa M 6 kg. 2689. — pa 0-05 kg. 
6

 &
 24

 6 

Λ Λ ΛΛ ha*do)
2
v nR

i
Ho)

2
v 

2690. — P a 0-015 kg. 2691. erg (R and Η in cm, 
60 4 

γ in g/cm
8
, ω in rad/sec). 

2G67. The axis of rotation must be perpendicular to the diagonal 

of the square; the axis of rotation must be perpendicular to the 

median. 
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2697. &bd -f
 h- sin α j . 

d
2
H

2
S 1 

2699. (a) = 32 kg; (b) - SH2(l - d)2 = 2 kg. 

4 
2700, - π J?

4
. 2701. ^ 0*206 cm

2
. 

3 

2702. (a) pa 33*2 sec; (b) pa 64*6 sec. 

2703. pa 1 hour 6 min 53 sec 

2bL f2â, i r_ 26 f- F 
2704. L _ . ( 2 } T - 1). 2705. [

 y
 [(H + h)

2
 - H

2
]; for 

3SYg 3 

MR
2
n

2
n

2
 ΜΒ

2
(3π - 8) πη

2 

2692. erg, - erg (R in cm, M in g ) . 
3600

 6
 3600

 6 V Bf 

ah
2 

2693. (a) ; (b) The pressure is doubled. 
6 

α
8
 ]Î2 2 

2694. — . 2695. 222 m. 2696. -da
2
b. 

2 3 

2726. te 373 min. 

- of the original quantity. 2724. tel 2*49 g. 2725, 

2720. tel 7 min 2 sec. 2721. tel 2-9151. 

The effective voltage of alternating current is equal to 

2713. (a) 40 erg. (b) 60 erg. 2714. 5 cm. 2715. tel 946 coulombs. 

2716. tel 1092 coulombs. 2717. tel 5110 coulombs. 

2711. Slightly more than 5°. 2712. 

2709. pa 1600 kg. 2710. tel 82 min. 

2708. 1(a) tel 716 kg; (b) tel 16-6 kg; (c) tel 23*8 kg; (2) the 

work increases indefinitelv on indefinite exüansion of the eras. 

2706. (a) tel 2*4 sec; (b) tel 6*3 sec; (c) tel 53 sec; (d) as i - > oo. 

2707. tel 3-4 kg. 

where S is the area of the slit. 
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Chapter I X 

2727*. Sn = 1 — , S = 1. Write each term of the series 
η + 1 

as a sum of two terms. 

2728. ^ 4 ( 1 - ^ ) . 

2 7 2 9 . ^ = 1 ( 1 - ^ ) , ^ = ^ 

1 / 1 1 1 1 ι \ 

11 

1 / 1 1 
2 7 3 1 . ^ = - [ l + - + F 2n + 1 2n + 3 2w + 5 

2732. S „ = - [ -
 1

 1, S = - . 

2 1.2 (n+ l)(n + 2)J 4 

2 7 3 3 . ^ = l + i _ l - ^ - n , 5 = | . 

2735. =-fl
 1

 1, S = - . 

8 L (2n + 1)
2
J 8 

2736. Sn = arc tan — - — , S = - . 
η + 1 4 

2737. Convergent. 2738. Convergent. 2739. Divergent. 

2740. Convergent. 2741. Divergent. 2742. Divergent. 

2743. Convergent. 2744. Divergent. 2745. Divergent. 

2746. Convergent. 2747. Convergent. 2748. Divergent. 

2749. Convergent. 2750. Divergent. 2751. Convergent. 

2752. Convergent. 2753. Divergent. 2767. Convergent. 

2768. Divergent. 2769. Convergent. 2770. Convergent. 

2771. Convergent. 2772. Divergent. 2773. Divergent. 

2774. Convergent. 2775. Divergent. 2776. Divergent. 

2777. Divergent. 2778. Convergent. 2779. Convergent. 

2780. Divergent. 2781. Convergent. 2782. Divergent. 
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2783. Convergent. 2784*. Divergent. Use the formula 

. k + l h 

sin α + sin 2a + . . . + sin fca 

2 π 
sin χ > — χ if 0 < χ < — . 

π 2 

a sm - a 
2 

or the inequality 

2790. Convergent, but not absolutely. 

2791. Absolutely convergent. 2792. Non-absolutely convergent. 

2793. Absolutely convergent. 2794. Absolutely convergent. 

2795. Divergent. 2796. Non-absolutely convergent. 

2797. Absolutely covergent. 2798. Non-absolutely convergent. 

1 
2799. Divergent. 2802. - 1 < χ < 1. 2803. - < χ < e. 

e 

2804. - 1 < χ < 1. 2805. - 1 ^ χ ^ 1. 2806. - 1 ^ x < 1. 

2807. x < - l a n d « > 1. 2808. - 1 < x < 1. 2809. - 1 ^ x < 1. 

2810. xj£ ±1. 2811. For any x. 2812. - 2 < x < 2. 

2813. For any x. 2814. « > 0. 2815. x > 0. 2816. « ^ 0. 

2822. 11 terms. 2823*. Use the inequality ln (1 + α) ̂  α. 

2825. /(O) - L , /g) = ^ ; / ( l ) = 0049; 

/ ( - 0 - 2 ) = 0-108. 

1 1 -f x 1 
2827. — ln arc tan x. 

4 1 - x 2 

1 1 1 + 3 
2828. — arc tan x -\ ln . 

2 4 1 — x 

2829. (x + 1) ln (x + 1) - « . 2830. ^ . 2831. 0*2. 

3 a; a; a; sin a; 
2832*. In — . Use the relationship cos —cos — . . . cos — . . . = . 

2 2 4 2
n
 a; 

2833*. — . Use the formula Ύ — = — . 
12 ~ , n

2
 6 

2834 

2835. In 2. 2836. 

1 

p T 2 / 2 

2 - / 2 " 

(2) l n ( l + / 2 ) + -
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2837. The given series cannot be differentiated term by term in 

any interval. For, the general term in the series of derivatives has 

the form π cos (2
n
 πχ). N o matter how small the interval (α, β), 

and no matter where it lies on the real axis, a number of the form 

can always be found inside it, where k is an integer and Ν a 

sufficiently large positive integer. But the series of derivatives is 

divergent with χ ·• , since its terms become equal to π for all 

1 1
2838. and

(1 - X)2 (1 - X)3

(X - 1)2 (x - I)n
2841. (x - 1) - + ... + (_I)n+l + ...

2 n

2842. 1 3 [( 1) 1 (x - 1)2 1 (x - 1)3
+ 2 x - + 2 2! - 22 3! + · · ·

1 . 3 ... (2n - 5) (x - l)n ]... + (-I)n + ....
2n - 1 n!

2843. 1 x - 3 (x - 3)2 () +1 (x - 3)n-l3 - -9- + 27 - · · · + -I n 3n + ···

2844. 1 _ (~)2(X - 2)2+ + (_I)n+l (~)2n-2(X - 2)2n-2 +
4 2! · · • 4 (2n - 2)! · ..

x 2 X 2n- 2
2845. 1 + - + ... + + ...

2! (2n - 2)!
x 3 x' xn+1

2846. x 2 + - + - + ... + + ...
I! 2! (n - I)!

[
X2 x' x2n-a]

2847. COSlX I--+-+ ... +(-I)n+l + ... -
2! 4! (2n - 2)!

[
X3 x 3 X2n-1]

- sin ex x - - + - + ... + (_l)n+l + ....
3 ! 5! (2n - I)!

2x 8 4x 6 nn x n
2848. x + x 2 + - - - + ... + V2'i sin - · - + ...

3! 5! 4 n!

4x' 42x 8 4n - 1x 4(n - l )
2849.1--+-+ ... +(-I)n+l + ...

4! 8! (4n - 4)!
x x 2 x'

2850. In 2 + 2 + 8 - 192 + · · ·

2801. e (1 _~ + x; _...).



508

2852.

2863.

2856.

2866.

ANSWERS

nx2 3n! - 2n
1--+-----x4+ ...

2 24
x 2 x 4 x 8 5x 4

- + -- + . .. 2854. I + x 2 - - + - + ...
2 12 2 6

(2X)2 (2x)n-l
1+2x+ -+ ... + + ...

2! (n-I)!
x 4 x 2(n-l)

I - x 2 + - - ... + (_I)n+l + ...
2! (n - I)!

X x 2 xn - 1

2867. 1+- + - + ... + - + ...
2! 3! n!
x 6 XU x 6(n- l )

2858.1+ 3!+5"!+···+(2n_I)!+···
x x 8 X 2n- 1

2809. - - -- + ... + (_I)n+l + ...
2 23 .3! 22n- 1(2n - I)!

[
(2X)4 22n-lX2n]

2860.1- x 2 + ... +(_I)n+l + ....
2.4! (2n)!

x 2 x 2(n- l)
2861. I - - + ... + (- I )n+1 + ...

3! (2n-I)!
2x 8 4x6 2nx2n + 1

2862. - -31 + 51 - ... + (-I)n (2n + I)! + ...

2863. In 10 + [..:... - ~ + ... + (_I)n+l~ + ... ].
10 2 . 102 n . Ion

x 8 xn+1

2864. x 2 - - + ... + (-I)n --- + ...
2 n

[

X 2 I x 4

2865. I + - - - · - + ... +
2 2 4

I . 3 ... (2n - 3) x2n ]+ (_I)n+l + ....
2 • 4 ... (2n - 2) 2n

2866. 2 _ 2 [~(~)8 _~ (~)6 + ...
3 2 3.6 2

2 • 5 .•. (3n - 4) (X )3n ]... + (_I)n+l _ +. .. .
3n • n! 2

[
I I .4

2867. 1 - -x8
- -x6 + ... +

3 32 2 !
I . 4 ... (3n - 2) ]+ (_I)n+l x sn + ....

3n • n!

[
I I • 3 I · 3. · · (2n - 1) 2 +2 ]2868. x 2 + -x4 + - x6 + ... + X n + ... .
2 2 .4 2n • n!
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+ ( - 1 ) " - Μ [ ΐ + ί + ί + . . . + ! ] * " + 

2894. 1-39, error 0-01. 2895. 0-3090, error 0-0001. 

2896. 2-154, error 0-001. 2897. 7-389. 2898. 1*649. 2899. 0-3679. 

2900. 0-7788. 2901. 00175. 2902. 1-000. 2903. 0 17365. 2904. 0 9848. 

2905. 3 107. 2906. 4 121. 2907. 7-937. 2908. 1 005. 2909. 3017. 

2910. 5053. 2911. 2001. 2912. 1-0986. 2913. 0-434294. 2914. 0-6990. 

2869. 

2870. 

2871. 

2877. 

2880. 

2883. 

2886. 

2889. 

and 

2916. 

2915. 
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x x * χ 5a;
3 

2 9 1 7
·
 1

- ί
 +

 Ι Γ
+

· · ·
 2 9 1 8

' - 2 - + ^
+

· · · 

2919. χ - χ
2
 + 2χ* + . . . 

χζ χ*η + ι 
2 9 2 0 . C + , - — + . . . + ( - 1 ) ^ ( 2 η + 1) ( 2, + 1 ), + · · · 

( — σο < Χ < σο) . 

2921. C + In \χ\ - ^ + ^ - . . . 

χ
2η 

+ 1)η [_ . . . ( _ οο < χ < 0 and 0 < χ < <χ>). 
2η . (2η) ! 

χ
2
 χ

η 

« Μ . Cf + l n H + « + — + . . . + — + . . . 

( — σο < χ < 0 and 0 < Χ < σο) . 

1 a; χ
2
 χ

η 

2923. 0 - - + 1η |* | + - + + . . . + + . . . 
α; 2 2 . 3 ! η(η + 1)! 

2930. 0-3230, error 0-0001. 2931. 0-24488, error 0-00001. 

2932. 0-4971, error 0-0001. 2933. 3 518, error 0-001. 

2934. 0-012, error 0-001. 2935. 32-831. 2936. 0-487. 2937. 0-006. 

2938. 0-494. 2940. 3-141592654. 
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2 2
2 

2941. χ Η α
3
 Η 

1 . 3 1 . 3 . 5 
χ

5
 + 

+ 
+ 

2η - ι 

+ . . . 1 . 3 . 5 . . . (2η - 1) 

1 1 , 1 
2942*. 1 + . . . + ( - 1 )

η +1
 + . . . Write χ* 

2
2
 3

3
 (η + 1 )"+

χ 

in the form e* in *, expand as a power series in x ln χ, and integrate 

the expression of the form x
n
 l n

n
 x. 

2943. 0-6449. 2944. 0*511. 2945. 1 015. 

2946*. 3*71. Evaluation of the area with the aid of the formula 
1 4 

& = 4 \ y 1 — α
4
da* is inconvenient because the corresponding series 

0 

is slowly convergent for χ = 1. One should evaluate the area of the 

sector bounded by the curve, the axis of ordinates and the bisector 

of the first quadrant. This yields a rapidly convergent series. 

2947. 0-2505. 2948. 3-821. 2949. 0*119. 2950. 1-225. 2951. (0 347; 

2*996). 2952. (1-71; 0*94). 

Chapter X 

2953. ζ = ^ (x
2
y - y*). 

2954. S = ί y (α + y + ζ) (χ + y - ζ) (χ - y + ζ) (y + ζ - χ). 
4 

2955. 

χ 

y ^ \ 
0 1 2 3 4 5 

0 1 3 5 7 9 11 

1 — 2 0 2 4 6 8 

2 — 5 — 3 — 1 1 3 5 

3 — 8 — 6 — 4 — 2 0 2 

4 —11 — 9 — 7 — δ — 3 — 1 

5 —14 —12 —10 — 8 — 6 — 4 
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2956. 

\
 x 

y
 \ 

0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1 

0 000 010 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90 1-00 
01 010 014 0-22 0-32 0-41 0-51 0-61 0-71 0-81 0-90 100 
0-2 0-20 0-22 0-28 0-36 0-45 0-54 0-63 0-73 0-82 0-92 101 
0-3 0-30 0-32 0-36 0-42 0-50 0-58 0-67 0-76 0-85 0-95 104 
0-4 0-40 0-41 0-45 0-50 0-57 0-64 0-72 0-81 0-89 0-98 1-08 
0-5 0-50 0-51 0-54 0-58 0-64 0-71 0-78 0-86 0-94 103 112 
0-6 0-60 0-61 0-63 0-67 0-72 0-78 0-85 0-92 100 108 116 
0-7 0-70 0-71 0-73 0-76 0-81 0-86 0-92 0-99 106 114 1-22 
0-8 0-80 0-81 0-82 0-85 0-89 0-94 100 106 113 1-20 1-28 
0-9 0-90 0-91 0-92 0-95 0-98 103 108 114 1-20 1-27 1-34 
1 100 100 102 104 1-08 112 116 1-22 1-28 1-34 1-41 

2957. ( 1 ) - ^ - ; (2) 1; (3) 16; 2; 2. 

10 

2958. 

φ(α)ψ (-) - ψ(α)φ (-) a - - . 

φ(1)ψ(1) 

2959. The second function varies more rapidly. 

2960. A second-order parabola; (1) no, (2) no. 

2961. Put m = - . 
χ 

2965. The function is not single-valued. 

2966. (1) 1; (2) 1; (3) (4) not defined; (5) 1. 
5 

2967. ζ = (χ + y)
x
~y + (x + y)

y
~

x
, (x + y > 0) ; ζ is a rational 

function of u and v, but not of w, t, χ and y. 

2968. ζ = {χ + y)*y + (xy)
2x
. 

2969. u = (x
2
 + y

2
 + *

2
)
2
 - **

 + V% +
 ^ [(x

2
 + y

2
 + *

2
)
2
 + 

4 

+ 3(x + y
 +

 z) 4 ] ; u is an integral rational function of { and 77, x, y 

and z, but not of ω and φ. 

2970 ι. ζ = + w ; u = x

2

 + y

2

; ν = xy. 
\U — V ) 

2971. χ = const gives a parabola, y = const a parabola, ζ = 

= const 0 a hyperbola, z ^ O a pair of straight lines. 

2972. χ — const, y = const are straight lines, ζ = const ^ 0 

is a hyperbola, ζ — 0 is a pair of straight lines. 
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2973. χ = const is a parabola, y = const is a cubical parabola, 

ζ — const τ* 0 is a curve of the third order, ζ — 0 is a semicubical 

parabola. 

2974. ζ = const > 0 is an ellipse, χ = const and y — const are 

curves of the third order (semicubical parabolas with χ = 0 and 

y = 0). 

2975. 0 < 2 / < 2 ; — \ < y - ] - x < Q . 2976. x
2

^ y ^ f x . 

2977. 0 <y <xfS; y < (a - x) f3. 

2978. (χ - a )
2
 + (2/ - b)

2
 < 22

2
; - oo < ζ < oo. 

2979. (x - a )
2
 + (y - b)

2
 + (z - c )

2
 = 22

2
. 

2980. (a) x
2
 + y

2
 < 4fl

2
; (b) —oo < α < oo; —oo < y < oo. 

2981. ν = — xy{2R ± f 4 R
2
 — z

2
 — y

2
) ; the function is not 

6 
single-valued. The domain of definition of the function is x2 + y2 ^ 

^ 4 #
2
; .r > 0, y > 0. The domain of definiteness of the analytic 

expression is x
2
 -\- y

2
 ~ 4R

2
. 

2982. Wi th 0 = * = 1, 0 ^ 2 / = 1 S = xy; 

with 0 ^ χ ^ 1, 1 = 2/ S = x; 

with l = a? 0 ^ y = 1 £ = 2/; 

with 1 = Î C = 2 ; 1 ^ 2/ =
 2

 S = xy — x — y + 2; 

with l = a ; = 2 ; 2 ^ y £ = a?; 

with 2 = a?, 1 ^ 2/ =
 2

 S = y; 

with 2 ^ a;, 2 ^ 2 / £ = 2. 

The function is not defined for χ < 0 and y < 0. 

2983. ^ + ^ = 1. 2984. y
2
 > 4a? - 8. 

2985. The whole of the plane except for points of the circle x
2
 -f-

+ y*= R
2
. 

2986. The interior of the right-hand vertical angle between the 

bisectors of the first and fourth quadrants, including the bisectors 

themselves : 

χ + y ^ 0, χ — y ^ 0. 

2987. The same as in problem 2986, but without the boundaries. 

2988. The interior of the right and left-hand angles formed by 

the straight lines y = 1 + χ and y = 1 — a?, including these straight 

lines, but with their points of intersection: 

1 —- a? ^ 2/ = 1 + # > 0), 

l + a ? ^ 2 / = l — x (x <0) 
(the function is not defined for χ = 0). 
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2989. The part of the plane lying inside the first and third quadrants 

(without the boundaries). 

2990. The closed domain lying between the positive semi-axis 

of abscissae and the parabola y = x
2
 (including the boundary) : 

x ^ 0, y^O; x
2
 ^ y. 

2991. The ring, including its circumferences, between the circles 
x

2
- - j - _ ι a n (j χ2 _|_ yi _ 4 

2992. The part of the plane lying inside the parabola y
2
 — àx, 

between the parabola and the circle x
2
 -f- y

2
 = 1, including the arc 

of the parabola except for its vertex and excluding the arc of the 

circle. 

2993. The part of the plane lying outside the circles of unit radii 

with centres at the points (—1, 0) and (1, 0). Points of the circum-

ference of the first circle belong to the domain, points of the second 

do not. 

2994. Only points of the circle x
2
 + y

2
 = R

2
. 

2995· The whole of the plane except for the straight lines 

χ -f y = η 

(η is any integer, positive, negative or zero). 

2996. The interior of the circle x
2
 + y

2
 = 1 and of the ring 

2n ^ x
2
 + y

2
 ^ 2n + 1 

(n is an integer), including the boundary. 

2997. I f χ ^ 0, then 

2ηπ^ y ^ (2n + 1) η-, 

if χ < 0, then 

(2n + 1) y^(2n + 2) π; 

2998. χ > 0; 2ηπ < y < 2 (η + 1) π (η is an integer). 

2999. The open domain shown in Fig. 83. 

ί For χ > 0, y > χ + 1, 

χ +, l for χ < 0, χ < y < χ + 1. 

y = χ 

χ 

η is an integer. 

F I G . 83. 
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3000. The part of the plane lying between the curve y = 
1 + χ

2 

and its asymptote, including the boundary. 

3001. χ > 0, y > 0, ζ > 0. 

3002. The part of space lying between the spheres x
2
 + y

2
 -f- z

2
 = 

= r
2
 and χ

2
 + V

2
 +

 z
* = -R

2
» including the surface of the exterior 

and excluding the surface of the interior sphere. 

3003. 2. 3004. 0. 3005. 0. 

3006. The function has no limit as χ —» 0, y —> 0. 

3007. 0. 3008. 1. 

3009. (a) y = 0 or y = x* (α > 1), χ - * 0 in accordance with 
χ 

any law ; (b) y = — , χ —» 0 in accordance with any law. 
3 

3010. The point (0, 0) ; near this point the function can take 

positive values as large as desired. 

3011. All points with integral coordinates. 

3012. On the straight line y = x. 

3013. On the straight Unes χ = m, y = n (m and n are integers). 

3014. On the parabola y
2
 = 2x. 

3015. (1) continuous; (2) discontinuous; continuous with respect 

to χ and y separately; (3) continuous; (4) discontinuous; (5) discon-

tinuous; (6) discontinuous. Pass to polar coordinates. 

3016. Circles with centres at the origin and radii respectively 

9
 Ύ

9
 3 ' 2 

3017. Circles through points Λ and B. 

3025. The straight lines y = ax + b, where a = ln 6. 

3026. Concentric spheres with centre at the point Λ and radii 

equal to 1, 2, 3, 4. 

3027. Ellipsoids of revolution with foci at points Λ and B: 

Y(x - xx)
2
 + (y - yx)

2
 + (z - zx)

2
 + 

+ Y (x - x2)
2
 + (y - y*)

2
 + (z - * * )

2
 = const. 

3028. The spheres x
2
 + y

2
 + z

2
 = ( ^ — ^ ) > where c > 1. 

v
c
 + i ; 

3029. The paraboloids of revolution x
2
 + y

2
 = cz. 

3030. (1) The planes 2x + 3ι/ — ζ = C; (2) the hyperboloids of 

revolution or cone x
2
 + y

2
 — 2z

2
 = (7. 

1 dv 
3032. - — for Τ = T 0. 

ν BT
 0 
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3042. * y , - - * - ; * - Î L + .L , 

3 0 4 3 . ^
 1 92 

3044. 

dX + y2 dy χ2 + y2 + χ γχ2 + y2 

dz y dz χ 

dx x
2 + y

2
* dy x

2 + y
2 

8045. £
 V 

dx ( y \
2 9 

dz 

dy 

(x
2
 + y

2
) |arctan^-j 

χ 

(x
2
 + y

2
) ^arctan^-j 

80 
3033. — is the rate of change of temperature at the given point ; 

dt 
80 
— is the rate of change of temperature at the given instant with 
dx 
respect to distance (along the rod). 

as 
3034. — = 6 is the rate of change of the area as a function of 

oh 
dS 

the height of the rectangle ; — = h is the rate of change of the 
86 

area as a function of the base of the rectangle. 

dz dz 
3036. — = 1, — = - 1 . 

ox dy 

dz dz 
3037. — = 3x

2
y - y*; — = x* - 3y

2
x. 

ox oy 

80 dO 
3038. — = ae-t; — = -axQ~

l
 + 6. 

dx dt 

dz 1 υ dz u 1 
3039. — = ; — = μ - . 

du v u
2
 dv υ

2
 u 

dz χ* + 3x
2
y

2
 — 2xy* 

3040. — = — — ; 
dx (x

2
 + y

2
)
2 

dz y*> + 3x
2
y

2
 — 2x

3
y 

=
 (x

2
 + y

2
)
2 

dz 
3041. — = 30xy(5x

2
y - y* + 7 )

2
; 

8a; 

= 3(5x
2
y - y

3
 + 7)

2
 (5a;

2
 - 3y

2
). 

dy 
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dz dz 
3046. — = yxy-

1
; — = xy ln x. 

dx dy 

dz 2x dz 2y 
3047 * 

3048. 

dx x
2
 + y

2
' 9̂ / a*

2
 + 2/2 

0« 2 8z 2α 

9a? ]/ζ
2
 + î/

2 92/ y ]Λτ
2
 + 2/2 

82 a*/ V2" 82 a*
2
 V2 

3049. — ^
 r r 

3050. 

9a? (a.2 + yî ) γχ2 _ 2̂ θ2/ + yt) }fx2 _ 2̂ 

dz _ 2 dz _ 2x 

dx 2x' dy 2x 
y sin — y

2
 sin — 

y y 

dz 1 —— dz χ — — 
3051. | l = - i e y; — = 4τθ

 y 

82 1 82 1 
3052. 

8a* a* +
 m

 y dy y(
x
 + ln 2/) 

du w du ν 
3053. — 

dv v
2
 + dw v

2
 + w

2 

Ο Λ Κ. 9« ι « y . y . χ . y 

3054. — = — cos — cos 1 sin — sin — ; 
dx y y χ x

2
 y χ 

dz χ χ y Ι χ y 
— = cos — cos sin — sin — . 
dy y

2
 y χ x y χ 

dz y - - dz 1 - -
3055. — = —3

 x
l n 3 ; — = 3

 χ
 In 3. 

dx χ
2
 dy χ 

dz 
3056. — = 2/2(ΐ + xy)y~1; dx 

dz 

dy 
xy(l + xy)y~

1

 + (1 + xy)y ln (1 + xy). 

dz xy dz xu 
3057. — = y]n(x + y) + — i L - ; — = χ ln (x + y) +

 y 

8a; x + y oy χ + y 

3058. — = x&xy-Hy ln χ + 1) ; | ^ = â a**" In
2
 a*. 

dx dy 

du du du 
3059. — = yz; — = xz; — = xy. 

ox oy oz 

du du du 
3060. — = y + z; — = χ + ζ; — = χ + y. 

dx dy dz 
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dx yx2 + y2 + zi dy y x 2 + y2 + z2
f 

du z 

dz γχ2 _|_ y2 + Z2 

du du du 
3062. — = 3x* + 3y - 1; — = z

2
 + 3x; — = 2yz + 1. 

ox dy dz 

dw dw 
3063. — = yz + vz -f- vy; — = xz -\- zv -\- vx; 

dx dy 

dw dw 
— = xy + yv + vx; — = yz + xz + xy. 

du 
3064. — = (3a;

2
 + y

2
 + z

2
) e ^ + ^ + z

1
) ; 

03 

v du 
— = 2xyex(x

2
+y

2
+z*); — = 2xzex(x'+y

2
+z

2
). 

dy dz 

du du 
3065. — = 2x cos (x

2
 + y

2
 + z

2
) ; — = 2y cos (x

2
 + y

2
 + z

2
) 

03 σι/ 

9w 

dz~ 
2z cos (3

2
 -f y

2
 + z

2
) . 

9w 9^ du 1 
3066. — 

8a; dy dz x -\- y -\- z 

du y
 y

- ~
1
 du 1 7 , 9w 2/ 7", 

3067. — = -3
Z
 ; — = -3

2
 l n » ; — = - -x

z
 ln 3. 

z dy z dz z
2 

du du du 
3068. — = y

z
xy*-l ; — = zy

z
~

r
xy

x
 Inx; — = 2/

2
3>'* ln 3 ln y. 

dx dy dz 

2 1 
3069. - . 3070. - . 

5 2 

dz 
3071. — = 2 (2» + y)

2x
+y[l + ln (23 + y)]; 

ox 
dz 

— = (23 + y)
2
*+y[l + ln (23 + y)], 

dy 

dz 3 ( \nx\
2
 dz 3 1 n 3 ( lnx\

2 

3072. — = - — 1 + ; — = - — - U + r — . 

dx x ln y \ ln y ) dy y ln
2
 y { ln y ) 

dz 
3073. — = 2/es»n»xy(l - f nxy cos nxy); 

dx 
dz 

— = 3 e
s
«

n
^ y ( l + nxy cos nxy). 

dy 

du x du y 
3061. —

 y 
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dx 

3075. 

3076. 

3077. 

8z 
3079 

dz 

dy 

3081. 

dz 1 — x
2
 — y

2
 — Vx

2
 + y

2 

3074. — =
 U K

 -2a;; 
(ι + Vx^TV

2
)

2 

dz 1 — x
2
 - y

2
 — Vx

2 + y
2 

— = 2y. 

92/ (1 + Yx
2
 + y

2
)

2 

dz y Yx~y dz Yx~y ln χ 

dx ~~ 2x(l -f xy)' dy ~~ 2(1 + xy) ' 
9z ^ # 

9^ ( 1 + y^2/ ) Y
x
y ~~

 a ; 2
2/

2 

8z χ 
d
y ( l + Yxy - α V ' 

8z 2/
2
 + 2o?2/ 8z a;

2
 + 2xy 

d x
 y i + (a*/

2
 + s/z

2
)

2 9
s/ y i + ( ^ 2 + ^ 2 

8z I T [xy — χ — y dz 1 Ί A 
3078. — = - - / " — = - - / 

9a; χ
2
 I xy + x -\- y oy y \ 

xy — χ — y 

xy + x + y 

\ ( y \
2
 yi 

7 / ( 1 + arc tan
2
 — +2 arc tan

8
 — 

i \ # ; χ J 

9 X
 ( z

2
 + y

2
) | l + arc tan

2
 - j | l + arc tan - j 

a;| 11 + arc tan
2
 — j + 2 arc tan

8
 — J 

(x
2
 + y

2
) | l + arc tan

2
 - j | l + arc tan - j 

du 4kx du 4ky 
3080. —

 y 

dx (x
2
 + y

2
 + z

2
)

3
' dy (x

2
 + y

2
 + z

2
)

8
' 

8it 4Jcz 

8z (x
2
 + 2/

2
 + z

2
)

3 

du z(x — 2 / )
2 -1

 8w z(a; — y )
2 -1 

8a; 1 + (a; — 2/)
2 2
' 8t/ 1 + (x — y)

2 

du (x — y)
z
 ln (x — y) 

dz 1 + (x — y)
2z 

du 
3082.

 — 

8a; 

du dx 
3083.

 — = — 

— x
 z 

ζ 

ζ du y 

= x
z ln χ du y Ina; j 

z
2 — x

 z 

ζ 9 
dy 

y 

= x
z 

ζ ' te
 = 

y Ina; j 

z
2 

du du 

dy _ 8z" 2 
where r = ya;

2
 + 2/

2
 + y 

ζ r(r
2
 — • D * 

where r = ya;
2
 + 2/

2
 + 
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3084. 
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dw 
yzv) tan

3
 α ; — = (2x

2
y — xzv) tan

8
 α ; 

oy 

dw 
— = (2xy

2 

ox 

dw dw 
—= (2zv

2
 — xyv) tan

8
 α; — = (2z

2
v 

dz dv 
xyz) tan

8
 α. 

3085. 

where α = x
2
y

2
 + z

2
^

2 

4. 3086. 

a-yzt;. 

(du\ _ 36 

l & Jj:»
 =

 ~2 

ab 

b
2
 - α

2 

3α 1 

"2 

α6 

6
2
 - α

2 

3087. 1 and - 1 . 3088. 
3 13 

3089. - . 3090. 
2 22 

3091. 

3094. 

3095. 

3096. 

3097. 

45°. 3092. 30°. 3093. arc tan - . 
7 

dxz --

άχζ = 

άχζ --

dxu 

dzu -

1 

270 ' 

(y
9
 — Qxy

2
) dx; dyz = (3xy

2
 — 6x

2
y + 8y*) dy. 

x dx y dy 
; dyz 

]/χ
2
 + y

2 

y(y
2
 — x

2
) dx 

(χ
2
 + y

2
)
2 

Sx
2
dx 

χ
3
 + 2y

n
 — z

8> 

- 3 z
2
d z 

x
9
 + 2y* — z

8
 * 

3099. ^ 0*0187. 3100. 

fa;
2
 + y

2 

x(x
2
 — y

2
)dy 

dyz — 

dvu = 

(a;
2
 + y

2
)
2 

6y
2
 dy 

x* + 2y
3
 - z

8
' 

97 

600 
3098. 

3101. a*2/[(22/
3
 - 3a*2/

2
 + 4x

2
y) dx + (±y

2
x - 3yx

2
 + 2a;

8
) dy]. 

3102. + 3103. 
2(s di — < ds) 

3104. 

3106. 

a;
2
 + y

2 

2/ da; — a; di/ 

2/ fy
2
 — a;

2 

(* - t)
2 

3105. (a; dy + y dx) cos (a^). 

da; 

+ 
dy 

1+x
2
 ' 1+y

2 

x dy -f y dx 

3107. 
4xy(x dy — y dx) 

(χ
2
 - y

2
)
2 

3108. 

3109. 

3110. 008. 3111. 0 25e. 3112. 

3115. Pd 108. 3116. 6. 3117. 1-8 ± 0-2. 3118. 4730 ± 100. 

ι + x
2
y

2 

x
z
y~

l
(yz dx -f- za; ln χ dy -f- xy ln χ dz). 

1 

36 
3113. pa 7-5. 3114. pa 0-005. 
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8119. 2? + .
 Ô B B & i nG

 +
 Ô C

°
S in B 

sin B sin B + G sin G sin B + G 

3120. Increases at a rate of 4 4 4 cm
2
/sec. 

3121. B y ^ 2575 cm
3
. 

8 (l 8
2
 \ 

3123. dr = — ds + I 1 dp = 0-16 cm, i.e. about 1%. 
p {2 2p

2
) 

3124. esinf-2/»(cos t — ß t
2
) . 3125. sin 2t + 2e

2
' + e'(sin t + cos t). 

λ ί ι λλ 3 - I2t
2 

3126. 
yi _ ( 3 # — 4 *

3
)

2 

dz 
3127. — = Zu

2
 sin v cos v(cos v — sin v) ; du 

dz_ 

dv 
w

3
(sin v + cos v) (1 — 3 sin v cos v). 

dz u Su
2 

3128. — = 2 ~ l n (Zu - 2v) + 

3129. 

du ν
2 x 7

 v
2
(3w - 2v) 

8z 2w
2
 2u

2 

— = ln (3w — 2t>) , 
8v v

3
 v

2
(3w — 2v) 

du _ e* du _ e* + 3e*V 

8a7 " e* + ey' dx ~ e* + ex* 

dz e
x
(ic 4- 1) dw 1 

3130. — = . . · 3181. 
de 1 + as*e« da; 1 + x* 

3132. ^ = Î 3 - --—) sec' f 3 i + % - γΐ) . 

du 
3133. — = e

a
* sin 3 . 

da; 
y

2
 dx 4- a;

2
 dy 

3134. dz = arc tan (xy + a; + y) + 

( « + 2/)
2 

, atfty + 1) da; + (x + 1) dy] 
(x 4 . 2 / )

2
 [1 4 - (*y 4 - » 4 - y)

2
] 

x
2
 + y

2 

e 
3135. — ψ - [(y* - ζ

4
 4- 2a>y») a? dy + (a;

4
 - y

4
 4- 2a;

3
2/) y dx]. 

dz df df 

dz df df 
^ = —2y ^ + xe

x
y~~ I v = e*y. 

dy du dv
 1 

8146.
 3 X

-
y

-
y

° . 3146. ~ ^ . 3 1 4 7 . ^ ^ ^ . 
3 ^ 2 _ xz y(2y2 — x2) xe>y — e x — a?exy 
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3148. 
χ 2(x

2
 + y

2
) - a

2 

3150. 

3153. 

3157. 

at these 

3158. 

3162. 

3163. 

3164. 

3167. 

3169. 

y 2(x
2
 + y

2
) + a

2 

3 

Π} u2 

- . 3151. 

3149. 
y 2x + &

xy
 — cos xy 

χ cos xy — e
x
y — χ 

2y 

x(y - 1) 
3154. 

- xy 

y 

y - i 

3152. 
(x + y)

2 

y
2
 ln χ -

3155. — 
1 

x
2
 ln y — 1 

(άιΛ 4 f d ^ 4 
— χ = 6 = — ; — x = 6 = ; the tangents to the circles \dx)y=2 3 \dx)y=s 3 

points have the same angle of inclination to Ox. 
2
r dz c

2
y dz 

- 1 . 3161. — 
ox 

c'x 

dy b
2
z 

2 - χ dz 

dy 

2y dz 

dx ζ + 1 ' dy ζ + 1 

dz yz dz xz 

dx xy + z
2
' dy xy -f- z

2 

dz ζ dz ζ 

dx 

dz = -

3xy 

x(z — 1) dy y(z — 1) 

sin 2x dx + sin 2y dy 

sin 2z 
. 3168. ζ = 

y 
3170. ζ = k arc tan — . 

χ 

3171. dz = 

3173. 

3174. 

3176. 

ydy 
3172. dz 

x dx y dy 

a a 

3185. 

3186. 

3187. 

3188. 

2 

x dx 

ζ ζ 

dz = ]fz(x dx — y dy). 

dz = e~
u
 [(v cos ν — u sin v) dx + (u cos ν -\- ν sin dy] . 

2(xdx + y dy). 3177. 2(a* da: + y dy). 

d
2
z 2x

2
 + y

2
 d

2
z _ x

2
 + 2y

2
 8

2
z _ a*/ 

faT
2
 + y

2
 '

 9
2/

2
 fa;

2
 + y

2
 '

 9
*

 9
2/ Y x

2
 + y

2 

χ d
2
z x* + (x

2
 - y

2
) Yx

2
 + y

2 

dx
2 

d
2
z 

dx
1 

d
2
z _ 

8a7
2 = 

d
2
z _ 

dx~
2
 ~ 

d
2
z 

dx dy 

(x
2
 + y

2
f (χ

2
 + y

2
f (χ + Yx

2 + y
2
)

2 

2x d
2
z 2y d

2
z 

dy~
2 =

 " (1 + 2/
2
)

2 

d
2
z 

ογ 

(1 + *
2

)
2 

2a
2
 cos 2(ax + by) ; 

dx dy 

= 2b
2
 cos 2(ax + 6?/); 

= 2 ab cos 2(aa* + 6i/). 
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3189. 

3190. 

3191. 

3192. 

3193. 

3195. 

3197. 

3198. 

8
2
z d

2
z 

= QX&+2y; 

dx
2
 dy

2 

d
2
z 

— - = (1 + xey) ex*+y. 
ox dy 

d
2
z _ 4y 

dx
2
 (x + y)*' 

d
2
z ln y(m y + 1) 

dx
2 =

 x
2 

d
2
z ln x ln y -f 1 

x(l + a;ey) exev+y; 

4a; 8
2
z = 2(x - y) 

(x + y)*' dxdy (x + y)
3 

d
2
z 

dy
2
' 

d
2
z ln a;(ln χ — 1) 

elnxlny« = ein χ inj; · 
92/^ y* 

dx dy xy 

d
2
z xy* 

dx
2
 ~ V ( l — » V )

e 

d
2
z 1 

dx dy V( i - * y ) » 

(» — «) y 

elnxlny, 

d
2
Z x

3
y 

y ( *
2
 + 2 /

2
 + z

2 

4a;(3i/
2
 — a;

2
) 

2a;z)
3 3194. 2i/

3
(2 + a;i/

2
) e*?*. 

3196. — a;(2 sin xy + an/ cos a?i/). 
(a;

2
 + 2 /

2
)

3 

(a;
2
y

2
2

2
 + 3xyz + 1) e*>*. 

mrc(n — I) (n — 2) p(p — 1) xm-iyn-zzP-2% 3204. α = — 3. 

d^y 

dx
2 3209. - 4 = -

8a;
2
 v8t/ J 

8
2
/ 8/ 8/ 8

2
/ (df^

2 

dx dy dx dy dy
2
 \dx 

0 0 
8a; dy 

8
2
/ 8

2
/ 

dx dx
2 

8a; dy 

9 / d
2
f d

2
f 

9 i / dx dy dy~
2 

3219. 

3220. 

3221. 

3222. 

— 2y dx
2
 -f 4(i/ — x) dx dy + 2a; dy

2
. 

(da; — dy)
2 

(x — y)
2 

(3a;
2
 - y

2
) dx

2
 + Sxy dx dy + (3y

2 
a;

2
) dy

2 

(x
2
 + y

2
)

3 

2 sin 2y da; dy + 2a; cos 2y dy
2
. 

e*y [{ydx + x dy)
2
 + 2 dx dy]. 
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3228. — ' 
(z

2
 — a;y)

3 

d
2
y 

3229. -31-5 da;
2
 + 354 da; dy + 275 dy

2
. 3230. —^ + y. 

d
2
y x'" 

3231. y" - 5y' + y. 3232. y - χ. 3233. — + ay. 3234. -
d£

2
 a;

5 

v" 4- 2v do 2p' — pp" -f p
2 

3235. — . 3236. — = ρ. 3237.
 gg

 ^
 g

 . 
v* d(p 3 

(ρ'
2
 + ρ

2
)

2 

Oz 8
2
w 1 8

2
w 1 du 

3238. - . 3239. — + — — + _ — . 
ου Ορ

2
 ρ

2
 οφ

2
 ρ Ορ 

1 d*co 
3240. ω"(ι·) + -ω'(τ·) + kœ(r). 3241. - 4 — + 2. 

r dw
2 

Chapter X I 

3242. a;
3
 + 2y

3
 - xy + M3a;

2
 - y) + &(6y

2
 - a;) + 3a;Ä

2
 - hk + 

+ 6yk
2
 + Λ

3
 + 2fc

3
. 

3243. Az = 15Ä
2
 - 6Ä& + k

2
 + Ä

3
. 

3244. zfe = -2Λ, + - 4Λ
2
 + 4hk + 2k

2
 - 2h* - h

2
k + 

4- — hk
2
 -{-— k* — h

z
k -f- — h

2
k

2
 + -hk*; f(l'02; 2-03) pa 2 1726. 

2 4 2 4 

3245. ^la;
2
 4- By

2
 4- Cz

2
 4- £tey 4- Fyz 4- jPza; 4-

4- (2^4a; 4- Dy 4- Fz) h 4* (2£y + 4- -K«) ä? 4-
4- (2(7ζ 4- % 4- Fx) I + Ah

2
 + Bk

2
 4- CI

2
 4- 4- Ekl + Fhl. 

« * > · — Ϊ + Ϊ ( " - Ϊ )
+

Ϊ ( " - Γ ) -

- Η Κ ί - Κ ) Κ )
+

Κ Η -
1 Γ f » V . „ ( n\2 ( π\ 

— — I cos ξ cos η\χ — — I 4~3 sin ξ cos η\χ — — I I y — — I 4~ 

4- 3 cos ί sin η |# — ^j | y - 4- sin f cos 77 ^y — ^-j j . 

3224. 2(z dx dy + y dx dz + x dy dz). 

3225. - c o s (2a? + y) (2dx + d y )
3
; (2da* + d y )

3
; 0. 

3226. — sin (x + y + z) (dx + dy + dz)
2
. 

c
4
 rix

2
 z

2
\ dx

2
 2xy (y

2
 z

2
\ dy

2
i 

2z [a;y
3
 da;

2
 + (a*

2
y

2
 + 2#yz

2
 — z

4
) dx dy + #

3
y d y

2
] 
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8247. Z = 1 + (x - 1) + (x - 1) (y - 1) +
1+- (x - 1)2 (y - 1) + ... ; Zl Rj 1·1021.
2

8248. eX [Sin Y + h sin y + k cos y + ~ (h2 sin y + 2hk cos y -

- k 2 sin y) + ~ (hi sin y + 3h2k cos y - 3hk 2 sin y - k' cos y) ] +... ;
Zl Rj 1·1051.

1 1
8249. y + xy + 2x 2y - 6 y8 + · · ·

1 1
8250. y + - (2xy - y2) + - (3x3y - 3xy2 + 2y3) + ...

2! 3!
xn+1 _ yn+l

8261. 1 + (x + y) + ... + + ...
x-y

1 1
3252*. x - y - 3 (x8 - y8) + 5 (x5 - y5) - ••• +
(-I)n x - y+-- (X2n+1- ySn+l) + ... Note that arc tan-- =
2n+1 2+xy

= arc tan x - arc tan y.

3258. (i X
n
) (i yn) = i i x

nym.

n=l n n=l n n=l m=l nm

00 (x + y)n _ xn _ yn 00 (x2 + y2)Sn+l
8254. ~ . 3265. ~ (-I)n .

n==2 n n=O (2n + I)!
00 xm 00 y2n 00 00 xmy2n

8256. ~ - ~ (-I)n- = ~ ~ (-I)n- -.
n==Om! n==O (2n)! m==O n=O m! (2n)!

1 1
3257. Z = 1 + (x - 1) + 4 (y - I) + 4 (x - 1) (y - 1) +

+ ~(y - 1)2 + ...
64

8299. (0, 0), (-~, 0), (-1, 2), (-1, - 2).

8260. (~, -1). 8261. (0, 0), (0, a), (a, 0), (~, ~).

8262. (0, 0), (0, 2b), (a, b), (2a, 0), (2a, 2b). 8268. (i ' i).
8264. (~, ;). 8269. (-~, -~). 8266. (2, 1, 7).

3267. (6, 4, 10).
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fS 16 ^ 16\ x y ζ 1
 3287. - + f- + - = 3. 

a b c 

3288. χ = — — , y = —— . 3289. (3, ]Α39, 0 ) ; (3, - 1^39, θ ) . 
η η 

3290. A cube. 3291. A minimum ζ = 2 at the point (1, 1). 

3292. (α, a) or ( — α, —α), ζ = α
2
 (maximum), (α, —α) or ( — α, α) , 

ζ = — α
2
 (minimum). 

- y2~ 
3293. (—a f2, —a \2 ) , ζ = - — (minimum), (a f2, a f2), 

a 
γι ζ = (maximum). 
a 

3268· A and C are maxima, Β a minimum ; in the neighbourhood 

of D the surface is saddle-shaped, the function has a constant value 

along EF. 

3269. ( - 2 , 0 ) , | y , oj . 3270. (1, 1), ( - 1 , - 1 ) . 

3271*. (0, 0). To show that there is a maximum at the point 

obtained, the function only needs to be written in the form ζ = 10 — 

— (χ — y)
2
 — 2x

2
 — y

2
. 

3272. (2, - 2 ) . 3273. ( - 1 , 1). 3277. A maximum at the point (6, 4). 

3278. There is no extremum at (0, 0). A minimum at (1, 1). 

3279. The greatest and least values lie on the boundary of the 

domain; the greatest is ζ = 4 at the points (2, 0) and ( — 2, 0); the 

least is ζ = —4 at the points (0, 2) and (0, —2). The stationary point 

(0, 0) does not give an extremum. 

3280. The greatest value ζ = 17 at the point (1, 2); the least 

value ζ = — 3 at the point (1, 0); the stationary point ( — 4, 6) lies 

outside the specified domain. 

3281. The greatest value ζ = 4 at the stationary point (2, 1) 

(there is therefore a maximum at the point). The least value is ζ = — 64 

at the point (4, 2) on the boundary. 
3 

3282. The greatest value is ζ = — at the points (0, + 1 ) (maxi-
e 

12 
mum). The least value is ζ = — at the point (0, 4) (on the boundary). 

e
4 

3 ,— [π π\ 
3283. ζ max = — ]/3 at the point — , — (maximum), zm-m = 0 

2 \ 3 3 ) 

at the point (0, 0) (on the boundary). 

3284. All the terms of the sum are equal. 

3285. All the factors are equal. 
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2 4 
for xx + x2 -{- . . . -J- xn = A . The relationship 

η 

k 
η ~ \ η )

 9 

is satisfied in general if k ^ 1. 

3299. Wmin = abc/(bc + ca + ab) for a; = bc/(bc + ca + ab) ; y = 

— ac/(bc + oc + « & ) ; 2 = ab/(bc + oc + α&). 

1 1 1 /21 6 3 ) 
3300. a- = + - , 2 / = + - , 2= + _ . 3301. — , 2, — . 

~2

 u
 - 3 - 6 i l 3 26 j 3302. (3, - 1 , 1). 3303. (a) ( - 2 , 0, 0); (b) (2, 0, 0). 3304. A cube. 

Sabc 
A cube. 

3f3" 

3307. I f R is the radius of the base of the marquee, H the height 

of the cylindrical part, h the height of the conical top, the following 

relationships must hold: 

2 2 

3308. I f Ζ is the lateral side of the trapezoid, b the base and α the 

angle of inclination of the lateral side, the following relationship 

2 y z π 
must hold: I = b = , α = — , where Λ is the given cross-

h
 3 

sectional area. The perimeter of the section is now 

u = 2 yw YAÇV 2-632 y z . 
3309. A cube. 3310. The sides of the base are each equal to 2a + 

+ Y2v, the height is half as great: | a + ^ \2v^ . 

3311. a
8
 (a cube). 3312. The least area is equal to 3 y3a&. 

4 3 ( 6 \ \ 

3297*. Investigate the minimum of the function 

third equal maximum, equal to 

(minimum, equal to 4) ; two of the variables are equal to the 

3296. Two of the variables are equal to 2, the third equal to 1 

3295. (3, 3, 3), u = 9 (minimum). 

3294. Stationary points χ = — Arctan Arctan 
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ab - h
2 

3316. W _ + „ + 2 f^ h _ _ ^ _ . 

3317. The sides of the triangle are f2S, y 28 and 2 fS. 

H 2af2 
3318. The height is — , the sides of the base are , and 

3 3 

2b f2 8 
, the volume V = — abH. 

3 27 

3319. A tetrahedron. 

3320. The normal to the ellipse at the required point must be 

perpendicular to the line joining the given points. 

3321. The normal is drawn at the point with coordinates 

8 3 2 2 · (9· r F) ; H ' 4 ' 4 ) · 8 3 2 3 · 2 ^ · 
3324. χ + y = 2; y = χ. 3325. χ — y + a = 0; χ + y - Sa = 0. 

3326. χ + 2y — 1 = 0; 2x — y — 2 = 0. 

3327. x - y + 2 = 0; x + y - 2 = 0. 3328. (0, 0). 3329. (0, 0). 

3330. (0, 0). 3331. (a, 0). 3332. (0, a) , (0, - a ) , (a, 0), ( - a , 0). 

3333. (2,0) , ( - 2 , 0 ) . 3334. (0 ,3) , (—3,0), ( - 6 , 3 ) . 

3335. (0, 0) is a double point. 3336. (0, 0) is an isolated point. 

3337. (0, 0) is a break-point. 3338. kn; k = 0, 1, 2, . . . are cusps. 

d. (a, 0) is a cusp. 3340. (0, 0). 

3341. χ = — / ' ( a ) , y = f(a) — a / ' (a) ; y = x arc sin x + y i — x
2
. 

3342. I62/
8
 + 27z

4
 = 0. 3343. y

2
 = éax. 3344. y = - and y = — 

2 2 
#4 

3345. 2/ = . 3346. y = 0 and I61/ = x
4
. 

4 
4 

3347. y = x and y = x . The first is the locus of singular 
27 

points, the second the envelope. 

2 2 
3348. χ2 H y2 = 0 and ζ 2 - y 3 = 0. sfs sys 

2_ ?_ 1_ 3349. a 8 + y = d 8 . 

3350. 4 straight lines a; ± y == ±2?. 3351. 2&2/(*
2
 + 2/

2
) + #

2
 = 0. 
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d
2
r da dr / d a "\ 

- — = — r - f a — = h a
2
 r = ß(t) r and so on. 

^ Vdi J d*
2
 d* d* 

3363. Differentiation of the equation r
2
 = const (see problem 

dr 
3361) gives us: r · — = 0. The tangent to a spherical curve (i.e. 

dt 

to a curve drawn on a sphere) is perpendicular to the radius of the 

sphere through the point of contact. The converse also holds. 

dr dr d
2
r d

2
r dr 

3368. — = — φ'; = φ'
2
 Η φ"; 

dx du dx
2
 du

2
 du 

d*r d
3
r /8 ^d

2
r f „ dr 

clc
3
 du* ^ du

2
 ^ ^ du^ 

dr(r ) 
3370. I t follows from the equation a = 0, where tx < τ < t2, 

dt 
that a point can be found on a closed curve (closed by virtue of the 

equation r ( ^ ) = r(t2)) at which the tangent is perpendicular to any 

previously assigned direction
. 

3371. The hodograph of the velocity ν {a cos t, a sin t, 2bt} is a 

helix; the hodograph of the acceleration w{—a sin t, a cos t, 26} is a 

circle. 
dr 

3372. Scalar multiplication by α and by r gives: α — = 0, 
dt 

dr 
r— = 0 . Hence ar = const is the equation of a plane and r

2
 = 

dt 
= const is the equation of a sphere. The required trajectory is a 

circle, the plane of which is perpendicular to vector o. 

3352. The parabola ]fx + ]fy = fa. 

R R 
3353. The cycloid χ = - (t — sin t), y = — (1 - cos*). 

2 2 

y
2
 a 

3354. The ellipse x
2
 + — = R

2
. 3355. The hyperbola xy = - . 

2 4 

8 
3357. The evolute of the parabola y

2
 = -— (x — p)*. 

27ρ 

1 1 
3359. The hyperbolas xy = — and xy = — — . 

2 2 

dr dlrl (dr\
2
 d

2
r 

3361. ( a ) 2 , . _ = 2 M - ^ ( (b) ( - ) + , _ ; 

d
2
r / d r d*r\ 

dr 
3362. I t follows from the equation = a(i)r that: 

dt 
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—χ + y + 
πα f2 8πα Y2 

y — 18α z — 72a 
3378. x — 6a = = ; x -f 6y + 36z = 2706a. 

6 36 

π 

x μχ 
2 y - 1 ζ - 2 V2 3379.

 =
 v

 -

x + y +f2z = ^ + 4. 

3380. 
x - 1 y - 3 z - 4 

12 - 4 3 ' 

x + 2 y - ι 2 - 6 

27 28 4 ' 

X XQ y - 2/0 2 — Z 0 

2/0 + *0 

X XQ y - y 0 
Z — z0 

y
2
z

2 
x

2
z

2 

X XQ + y - y 0 
Z — ZQ + 

y\ Z
2 

3381. J„ = = — : — ί
 2 7 iC

 + 28y + 4z + 2 = 0. 

3382. -
u
 = * = -

X +y
 + - = 2. 

3383. 

X — X~ IV — 1J~ Z — Z„ 

= 0. 

3374. A n ellipse. The velocity will be a maximum at the instant 

when the material particle is at an end of the minor semi-axis, and 

a minimum when it is at an end of the major semi-axis. The accele-

ration is a maximum (minimum) at the instant when the velocity is 

a minimum (maximum). 

d@ άφ άθ 
3375. The velocity components are — ; ρ — ; ρ sin φ — . 

dt dt dt 

^ . , , , , dr dr dr 
Hint Find the scalar products — e Q\ — βφ; -j-eQ. 

dt dt dt 

t* t* t
2 

χ y ζ 
4 * 3 2 ί

6
 *

4
 t

2 

3376. = = ; t
2
x + ty + ζ = - ^ (- - . 

t
2
 t 1 ^ 4

T
3

T
2 

α p " a V2 k 
x — y z 

2 * 2 8 
3377. _ = — - — ; 

- a \2 a\2 * 
π 

k k
2 
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3385. 

3386. 

3387
. 

3389
. 

3390
. 

3391
. 
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3392. 
x + l _ y - 13 

2
 = 

x+ 1 

6 

» + 1 

3 

y - 13 

2 

2/ - 13 

- ; 2x + 3i/ + 6z = 37; 
ο 

= ftc + 2y - 3z 

3a* — 6y + 2z = 

= 20; 

81. 
3 - 6 

The equation of the osculating plane is 3x — 2y — 11 
for any point of the curve, i.e. the curve lies entirely in this plane. 

3394. The osculating plane is the same for all points of the curve 

Its equation is 

cosh
2
1 

0 

X y ζ ax α2 « 3 

« 1 a2 = δι 
&1 b2 Cl c2 c3 

sinh t 
. 3396. R = f2". cosec 20. 

3398· & 
(2/V - z'y")* + 2/"

2
 + s"

2 

3399. = - — · , r 

(1 + 2/'
2
 + z '

2
)

8 

r ' X r " ( r ' x r " ) x r ' 

| r ' Xr " | | r
,
| . | r x r ' | 

3400. r ^ ^ x f t ; vx= βχχτχ; = ^ x ^ . 

3401. The required vector o> (if it exists) can be written as 

ω = ( i f j t j T X + (covx) r x + (o>&) βχ. (1) 

It follows from the condition of the problem (taking into account 

Frenet's formulae) that 

ω χ τ ! = kyx; a*xvl = -kxx + Τβχ; ωχβχ = — Tvx. (2) 

On forming the scalar product of each side of these equations with 
v
i> ßif

 T
i respectively, we find that COTx = Τ, covx = 0, coßx = k, so 

that co = Ττχ + kßx. Substitution in (2) shows that this vector satisfies 

the condition of the problem. 

3π 
3402. 99 + ln 10 ^ 101*43. 3403. a ln ( l + f 2 ) = a ln tan 

8 

3404. V3V - 1). 3405. 5. 3406. 4a. 3407. ζ f2. 

1/2Ö+ fx 

f2a — fx~' 

χ — 2 y — 1 ζ — 4 
3410. 8a; - Sy - ζ = 4; 

3408. 
1/2Ö+ fx λ λλ a ( 1 ) 

;. a ln - ±J— . 3409. - 1 + - ln 3 . 
Vto-Vx- 2 I 2 j 

3411. χ + y — ζ — 1 = 0; 

3412. ζ + α = 0, a* = α, 2/ 

8 

a; - 1 

- 8 

2/ -

- 1 

ζ - 1 

- 1 
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17 11 

π 
ζ 

π 3 — 1 y — 1 2 
3414. χ - y + 2z = 0; = = . u

 2 1 - 1 2 

3 V Ζ , 

3415. - + £- + - = f3; 

3416. 3 + l l y + 5z - 18 = 0; 

3417. 33 - 2y - 2z + 1 = 0; 

3418. 23 + y + H z - 25 = 0; 

3419. 53 + 4y + z — 28 = 0; 

3 — 1 y _ 2 2 + 1 

1 11 5 

3 — 1 y - i ζ - 1 

3 —2 - 2 

3 — 1 2 / - 1 ζ - 2 

2 1 11 

3 — 2 y - 3 ζ - 6 

5 4 1 

3421. χ — y + 2ζ = and χ — y + 2ζ = — j / ^ . 

3422. 3 + y + ζ = "|/α
2
 + 6

2
 + c

2
. 

3424. AU the planes pass through the origin. 

3 y ζ 
3425. 3 0 3 + y0y + z 0

z = α 2ί — = — = — . 

2/υ zo 
<U9fi

 2 / 2 /0
 9I9JL*\- ~

 X o) b (V
 "

 V o) Z
~~

Z
° oltb. — — = Z(z + z 0) ; = = — - — . 

a
2
 b

2
 6 3 0 ay0 — 2ab 

9 
3428. - a 3. 3430. 2x + y - ζ = 2. 3434. 4 3 - 2y - 3z = 3. 

2 

3435. (0, 3, 3) and (0, 3, - 7 ) . 

3436. (a) 6 ^ v 03 - 3(u0+v0) y + 2 z + K + v 0 ) (u% - éu0v0+v
2
) = 0; 

(b) 3 ( 3
2
 - y

2
) 3 - 6 3 0y 0y + 2z + 4z0 = 0. 

3437. 2z(3
2
 + y

2
 + z

2
) -f- p(x

2
 + y

2
) = 0. 

3438. ( 3
2
 + y

2
 + z

2
)

3
 = 27a

3
3yz . 

3439. ( 1 ) {—2, 1}; (2) { 1 0 3 y - 3y
3
, 5x

2
 - 9xy

2
 + 4y

3
} . 

3440. (1) 6i + 4j; (2) (2i + j ) ; (3) + 

3 + y\ 

3441. (1) tan φ pö 0*342, ç? ^ 18°52' ; (2) tan φ pü 4*87, φ Ρό 78°24\ 

3 — 3 y — 4 ζ + 7 



534 A N S W E R S 

L ( 1 , ( - 8 L ' i ) 5 & ' 4 ) 5 

(2) Points lying on the circle x
2
 + y

2 

3444. 

I 3 4 ; γό 4 ; 

2 

~ 3~ 

3447. (1) { 3 * y oz 0, 2^ο 2 / ϋζ0, a$/
2

0}; xi -\- yj -\- zk r 
(2) - ^ = z = r z = ~ = — » where r is the radius vector. γχ* + y2 + Z2 \r\ 

3450. (1) 2r; ( 2 ) 2 - ^ - ; (Z)2F'(r
2
)r; (4) a(br) + b(ar); ( 5 ) α χ 6 . 

V2~ ,,— cos α + sin α 

3451. (1) 0; (2) -L-; (3) ; (4) J . 

VÎT 1 98 
3452. 2 _ . 3453. - . 3455. (1) 5; (2) — . 

3 2 13 

3456. 22. 3459. — . 
r

2 

Chapter XII 

3460. M = y(a?, y ) da. 3461. ^ = σ{χ. y) da. 

D D 

3462. Τ = -ω
2
\[ y

2
y(x, y) da. 2

 D 

3463. Q = (t2 - / t) j j c(a, y) y(x, y) do. 
D 

3464. M = y(s, y, z) dv. 3465. # = ô(z, y, z) dv. 

Ω Ω 
3466. 8π(5 - < I < 8π(δ + V%). 3467. 36π < I < ΙΟΟττ. 

3468. 2 < / < 8. 3469. - 8 < / < - . 3470. 0 < I < 64. 
ο 

3471. 4 < / < 36. 3472. 4 < / < 8(5 - 2 p " ) . 3473. 4π < I < 22π. 

3474. 0 < J < - πΞ\ 3475. 24 < / < 72. 
3 

3476. 2 8 π Ρ " < / < 52π f £ 3477. 1. 3478. (e - I )
2
. 3479. 

3442. The negative ζ semi-axis. 3443. (1) cos α pa 0-99, α pa 8°; 

(2) cos α pa — 0Ί99, α pa 101°30\ 
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4 2+V2 11:
3480. In - . 3481. In --. 3482. 1t - 2. 34-83. 2. 3484. - -.

3 1 + y3 16
3x+4

5 -2- 2 2-x

3486. ~ dz ~ f(x, y) dYe 3486. ~ dz ~ f(x, y) dYe
3 3x+ I 0 0

-2-

I YI-x· 1 I-x

3487. i dx i f(x, y) dYe 3488. ~ dz i f(x, y) dYe
o 0 0 x-I

¥2" 4-x. 2 :- ¥4-x·

3489. i dz i f(x, y) dYe 3490. ~ dz i f(x, y) dYe
-Y2 x· -2 3 Y-- 2" 4-x'

4 3+Y4x-x' I Yx
3491. ~ dz i f(x, y) dYe 3492. ~ dz i f(x, y) dYe

o 3-¥4X-X' 0 x'

2 2x 3 6-x
3493. i dz i f(x, y) dy + \dz i f(x, y) dYe

x x ~ x

1 2 I)

8 x+3 8 x+3 i" 5-2x
8494. i dz i f(x, y) dy + i dz i f(x, y) dy + i <Ix i tt». y) dYe

2 I-2x 1 x 2 x
-8 8" 8

2
I 2x 2 x

3496. idz i f(x, y) dy + i dz i f(x, y) dYe
o x 1 x

2 ~f

e
2 2x 2' 2 Y2X

3496. i dx ~ f(x, y) dy + i dz ~ f(x, y) dy +
o -2 ¥ax 2 -2 ¥2i

8 24-4x
+ i <Ix ~ f(x, y) dYe

e -2 ¥2i2-

-2 Y9-x' 2 YI+xl

8497. i dz i f(x, y) dx + i dx ~ f(x, y) dy +
-3 _ V9-x' -2 -¥I+x'

3 ¥9-x'
+ i dz i f(x, y) dYe

2 _ ¥9-x4l
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1 2-)
f
2y-y* 

(3) Jdy J / ( x , y ) d x . 
0 3_ 

y'
1 

2 2y 4 2 

3505. (1) J dy j f(x, y) dx + J dy J /(x, y) dx; 
0 y 2 2y-3 

2 

?zy 

3 2 3 l+y3+2x-x» 

(2) J dy \ f(x, y) dx; (3) J dx \ /(x, y) dy ; 

1 y+1 - 1 0 
2 

ι 3+yr^" 2 2+y2^ï 
(4) J dy J /(x, y) dx + jj dy J /(x, y) dx. 

o i-yi^yT ι 2-yf^^ 
2 — 1 33 9 

3506. (1) - a
2
; (2) 9; ( 3 ) - . 3507. 0. 3508. . 3509. - . 

3 2 140 4 

3510. - 2 . 3511. - . 3512. — . 3513. 4. 3514. 3. 3515. 12?-. 
6 135 3 

2 abcia + b + c) a
6
 a

11 

3516. - i ? . 3517.6. 3 5 1 8 . — . 3519. — . 3520. 
3 2 48 110 

3521. 2e - 5. 3522. - fin 2 - - ) . 3523. — . 3524. — 
2 { 8) 180 16 2 

1 χ 1 Vï^ 
3498. \ dx l /(x, y) dy. 3499. J dy \ f{x, y) dx. 

o x* ô _yrz^ 

r y Y2 YÂ=2Ji 

3500. \dy J f(x,y)dx. 3501. J dy J f{x,y)dx. 

0 _ r y r - ï 3 - K 2 - ^ 4 - 2 y » 

2 y 4 2 

3502. 5 dy J /(x, y) dx +\dy\ f(x, y) dx. 
1 1 2 y 

2 
y 

4 2 6 6 -y 

3503. J dy J /(x, y) dx + J dy J /(x, y) dx. 

0 0 4 0 

1 2-y 1 3-2y 

3504. (1) Jdy 5 /(a?, y) dar; (2) J dy J f(x,y)âx; 

O y 6 γ y 
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2π R 

3525. (1) Jdp $/(ρ cos g?, ρ sin 95) ρ dρ; 

ο υ 

2 Ü cos φ 

(2) Jdg? jj / (ρ cos 99, ρsing?)ρdρ; 
_ π 0 

2 

λ b sin ç> 

(3) J dg? J / (ρ cos φ, ρ sin g?) ρ dρ. 

arctan2 8 cos φ 

3526. J dg? J /(ρ cos φ, ρ sin φ) ρ dρ. 
π 4 COS φ 

4 

arc tan — . . 
b bsintp 

3527. J dç? J / (ρ cos φ, ρ sin g?) ρ άφ -f 

2 α cos ç> 

-f- J dg? J / (ρ cos g?, ρ sin g?) ρ dρ. 
. α 0 

arc tan — ο 
π 
4 sec φ 

3528. J dg? J / (ρ cos 99, ρ sin 9?) ρ dg?. 

0 ο 

3529. J dg? J / (ρ cos 9?, ρ sin 9?) ρ dg?. 

0 y2sec(Uj) 
π 

4 û Ycos 2φ 
3530. J dg? J / (ρ cos 9?, ρ sin 99) ρ dρ. 

_ π 0 
4 

π 
2 asin2<p 

3531. J dg? jj / (ρ cos g?, ρ sin g?) ρ dρ. 

2 R
. 

3532. J dg? jj / (ρ cos g?, ρ sin 9?) ρ dρ. 
0 0 
η 
2 2R sin φ 

3533. J dg? J / (ρ cos g?, ρ sin g?) ρ dρ. 

6 2 sin φ 

537 
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R arc tan R 

3534. ^ - | / ( ρ 2) ρ ά ρ . 3535. γ J /(tan φ) άφ. 

ο ο 

3536. ^ [(1 + R2) ln (1 + iZ2) - R2]. 3537. ~ 2 ). 

3538. 

3542. 

3543. 

3544. 

3545. 

3547. 

3548. 

3549. 

3550. 

3551. 

/(ρ cos φ sin 0, ρ sin φ sin 0, ρ cos 0) ρ
2
 άρ. 

/(ρ cos φ, ρ sin φ, ζ) dz. 

/(ρ cos φ, ρ sin ç>, ζ) dz or 

: αρ cos φ, y = &ρ sin g?; I = ab 

ί(ρ cos 9?, ρ sin <p, ζ) ρ α ρ . 

ί(ρ cos <p, ρ sin φ, ζ) dz. 

ί(2ρ cos φ, 3ρ sin 95) ρ dρ. 
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2π 3 R 

J άφ J sin θ άθ J / (ρ cos φ sin θ, ρ sin φ sin θ, ρ cos 0) ρ
2
 άρ + 

0 0 0 
π 

2π 2 2fl cos θ 
+ jj dp J sin θ d0 J /(ρ cos p sin 0, ρ sin <p sin 0, ρ cos 0) ρ

2
 dρ. 

3552. — . 3553. - α
2
. 3554. — nRK 3555. -

2 9 15 8 

3556. — π(Β
5
 - r

5
) . 3557. — . 

15
 V

 ' 3 

3558. 3 y ï Ô - f In 
Y2-

- ys" - s 
yio — 3 

2 a& / a
2
 δ

2
 ^ abc 

3559. 186 3560. — — + — . 3561. . 3562. 12. 
3 6 [ ρ ^ q) 6 

3563. - . 
6 

15 48 Λ Γ-
. 78 — . 3565. — Vë. 3566. 16. 3567. 45. 

32 5
 r 

[τ-τ) 
3571. 22π. 3568. 1 3 ί . 3569. 1 6 ί . 3570. ar

2 

3 5 
16 4 4 ß

5
 3 

3572. — R*. 3573. 12 — . 3574. . 3575. 27. 3576. - . 
3 21 15a

2
 8 

88 1 
3577. — . 3578. -abc. 3 5 7 9 . — 

105 3 4 
3580. 2 e

2 
( e

2
 - *±±1) . 

{ 9 J 

3581. 3e - 8. 3582*. 4e 

respect to the plane y = χ. 

1. The solid is symmetrical with 

3583. 2 
1 16 π 

3584. — . 3585. — . 3586. -
45 9 4 

5 3 
3587. 40π. 3588. 2π. 3589. - nR*. 3590. - πα*. 

2 2 

4 (π 2 \ α* 15 (3π \ 
3591. - α

8
 . 3 5 9 2 . — . 3593. — (- 1 . 

3 \2 3 J 24 8 V 8 J 

* ( Η · 3594. 
π V 2 πΉ

2
Κ 1 

3595. — — . 3596. . 3597. -
24 16 2 

ab 16 5 
3598. 2. 3599. παδ. 3600. — . 3601. — . 3602*. - πα

2
. Transform 

6 3 8 

3 2 1 
to polar coordinates. 3603. -π. 3604, 2α

2
. 3605. - . 3606, — . 

4 3 60 
1 a

2
b

2
 39 

3607. . 3608*. (1) , (2) — π. Use the result of problem 
1260

 1 7
 2c

2
 25 ^ 
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7 3 
3541. 3609· 8. 3610. — . 3611. — . 3612. 4(4 - 3 ln 3). 

12 35

 v 

71 
3613*. — . The projection of the solid on xOy is a circle. 

2 

3614. — . Transfer the origin to the point (— , — , o l . 
8 2̂ 2 ) 

19 15 
3615*. — π and — π. Transform to cylindrical coordinates. 

5 π 92 
3616. — πΕ*. 3617. — . 3618. — πΞ\ 

12 96 75 

3619*. ί πα
8
. Transform to spherical coordinates. 

α
8
 4 4 64 

3620. — . 3621. — πα
3
. 3622. - πα

3
. 3623. πα

8
. 

360 21 3 105 

π
2
α

3
 21(2 - V2) 

3624. . 3625. — — π. 3626. 14. 3627. 36. 3628. 8π. 
6 4 

3629. 2 Υ2πρ
2
. 3630*. 2nR

2
. Project the surface on to yOx. 

3631. 8f2a&. 3632. y {f% - l ) . 3633. γ {(I + R
2
f - l } . 

3634. — (1/8"- 1). 3635. 4πα(α - f a
2
 - R

2
). 

3 

3636. 2R
2
(n - 2). 3637. 2R

2
{n + 4 - 4 /2~). 

3638. - Î3 ]Î2- 1/ΊΓ- — 1 η 2 + y21n(V3" + V2)j . 3 6 3 9 . ^ ^ - . 
4 j

 r
 * 2

 r
 ) sin 2a 

nR
2 

3640*. (V3~ — f2) Pa 3-42 χ 10
8
 km

2
. Transform to spherical 

12 
coordinates. 

3641. — π α
2
. 3642. 8R

2
. 3643. — . 3644. - R \ 3645. nR\ 

3 2 3 
9 ah

2 

3646. — a
8
. 3647. The statical moment is equal to . 

4 6 

3648. The centre of gravity lies on the minor axis at a distance 

46 
— from the major axis (b is the minor semi-axis). 
3π 

3649. ξ = ( l - (V2 + 1), , = \ g - l ) m + 2). 
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3π#
4
 /2Λ,

2
 aM 

3658. . 3659. ah — + — . 
2 { 7 30j 

3662*. Choose the system of coordinates so that the origin coinci-

des with the centre of gravity of the figure and one of the coordinate 

axes is parallel to the axis with respect to which the moment of inertia 

is being sought. 

a
2
bc ab

2
c abc

2
 nR

2
H

2
 nabc

2 

, and . 3664. . 3665. . 
2 2 2 4 4 

14 26 8 3 3 fc 3 
£ = —, v = — , C = - . 3667. ξ = - α, η = - 6 , ζ = - c . 

15 ' 15 3 8
 1

 8 8 
6 12 8 18 151 Γ- 12 

3668. | = - , r ; = - , C = - . 3669. ξ = y, r; = - f 6 , C = y. 

3670. ξ = 0, τ; = 0, C = — (6 f3"+ 5). 
8o 

ZR 
3671. f = — (1 + cos α), η = 0, C = 0. 

8 

9α R R R 

3672. | = 0, = 0, ζ = 3673. f = - , 77 = - , C = - . 

55 + 9 / 3 
3674. £ = 0, 77 = 0, Ç = ' 

3675. -M(b
2
 + c

2
), - M ( c

2
 + α

2
) , - M ( a

2
 + δ

2
) and 

3 3 3 

i M ( a
2
 + 6

2
 + c

2
) . 

3676. - MR
2
. 3677. - M ( 6

2
 + c

2
) , -M(c

2
 + a

2
) , - M ( a

2
 + b

2
). 

5 5 5 5 

3650. The centre of gravity lies on the bisector of the angle α at 

α 
s i n -

4 2 
a distance -R from the centre of the circle. 

3 α 

3651· The centre of gravity lies on the bisector of the angle α 

α 
sin

3
 -

4 2 
at a distance - R from the centre of the circle. 

3 α — sm α 

3652. ξ = — , T? = 0. 3653. - nRK 3654. - α
4
. 

16
 1

 4 3 
nab ab(a

2
 + 6

2
) ah 

3655. (a
2
 + 6

2
). 3656. - — - — - . 3657. — (a

2
 + 12Λ

2
). 

4
 v

 ' 12 48
 v

 ' 
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3678. 

3680. 

3682. 

3683. 

3684. 

3687. 

3689* If the axis of the cone is taken as Oz, 

and its vertex as the origin, the equation of the cone becomes 

x
2
 + y

2
 — z

2
 tan

2
 α = 0. 

Transform to cylindrical coordinates. 

See hint on previous problem. 

3694*. Choose the system of coordinates so that the origin coin-

cides with the centre of gravity of the body and one of the coordinate 

axes is parallel to the axis with respect to which the moment of 

inertia is being sought. 

where M is the mass of the sphere, and k is the 3695. 

gravitational constant. 

3696*. Use the result of the previous problem. 

, k is the gravitational constant. 

3699. The centre of pressure lies on the axis of symmetry of the 

rectangle perpendicular to side a, at a distance > from the side 

lying on the surface. In the second case (side a situated at a depth h) 

the distance of the centre of pressure from the upper side will be 
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3719*. πψπ\ use Poisson's integral J*e~
x2
 cb? 

" Τ * 
0 

3720. Divergent. 3721. Convergent. 3722. Divergent. 

3723. ?- nR*{\nR— ^j . 3724*. π. (See hint on problem 3719). 

3725. - . 3726. — . 3727. 2π km y(R + Η - ]fR
2
 + H

2
). The 

4 2 

force is directed along the axis of the cylinder. 

2n km yH 
3728. {I — H)t where I is the generator of the cone. 

The force is directed along the axis of the cone. 

4 4 kM 
3729* (a) a = 4ac - 3<70, 6 = - (ac - σ0) ; (b) - nk Roc = —- . 

Κ ά £ί 

3 
b + -I 

26 2 h 
, where I = . (With I >> 6 the centre of pressure 

3 Η 21 sin α ' * 

almost coincides with the centre of the rectangle). 

h 3 
3700« (a) - sin a; (b) - h sin a. w

 2
 v

 ' 4 

3701. The centre of pressure lies on the major axis of the ellipse, 

a
2 

at a distance a A from its upper end. 
^ 4(a + h) ^ 

3702*. Choose the system of coordinates so that one of the co-

ordinate planes coincides with the plane of the lamina and one of the 

axes coincides with the line of intersection of the fluid surface and 

the plane of the lamina. 

π 1 
3703. Divergent. 3704. 2π. 3705. . 3706. 4. 3707. 2. 3708. - . 

4α
2
 4 

α 
3709*. . Transform to polar coordinates. 

2 sin α 

3710*. - . Change the order of integration. 
2 

3711. — . See the hint on the previous problem. 

3712. Convergent. 3713. Divergent. 3714. Convergent. 

3715. Divergent. 3716. N o . 3717. — . 3718. — . 
fe
 15 16 
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3739. - ln (α + }
f
l + α

2
) . 3740. π(]/1 - α

2
 - l ) . 

2 

3741. - I n (1 + α), if α ^ Ο ; - - ln (1 — α) if α ^ 0. 
2 2 

1 _|_ l/l _ α
2 

3742. π ln . 3743. π arc sin α. 3744. π arc sin α. 
2 

3745. Υ πα. 3746*. Υπ (Yb — Ya). Differentiate with respect to α 
or with respect to b. 

b c a(b — c) 
3747*. arc tan arc t a n — = arc tan . Differentiate with 

a a a
2
 -f be 

respect to b or with respect to c. 

1 a
2
 + b

2
 a + b 

3748. - ln — . 3749*. π ln . Differentiate with res-
2 a

2
 + c

2
 2 

pect to a or with respect to b. 

3750. - I n (1 + a) if a > 0; - - l n ( l - a ) if a < 0; 
2 2 

π 

J itr π 1 -\- β 
dx = — ln 2. 3751*. ln . Integrate with respect to 

tan χ 2 1 + α 
0 

parameter η between the limits α and β. 3752. ]Απ(6 — α). 
oo oo 

, Λ f cos a; da; Γ sin χ dx 1 /" π π , α 
3753. = = / - . 3755. - I n - . J Yx J Yx M 2 6 

0 0 
oo 

1 6 Γ rf(ax) — ίΦχ) I 
3756. - I n - . 3757*. I = lim - — —^-dx\ = 

η a e^olJ χ J 
ε 

_ limf \ m d* _ Ä dxl=. lim f M a,. 

3730. Denned everywhere except at χ = 0. 3731. 3π. 

6 (5α
2
 + 36

2
 3 b 

3733. 1 arc t a n -
8α

4
 ( (α

2
 + 6

2
)

2
 ab a 

1. 3 . 5 . . . (2w - 3) π 
3734. 5

 ;
 ( n > i ) . 

2 . 4 . 6 . . . (2n - 2) 2α
2
""

1 

(η - 1)! π(α
2
 + 6

2
) 

3735. — . 3736*. , , . Differentiate with respect 
α

η
 4 |α6|

3
 ^ 

to α and δ and add the results. 3737. ln (1 + α). 3738. — In (1 + α). 
2 
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3758. ln - . 3759. ln - . 3760. - ln 

a a 2 
a — 6 

6 
3761. a 6 1 n - . 

a 

3 
3762*. — ln 3. W e write sin

3
 χ as a difference of sines of multiple 

4 

angles and reduce the problem to the previous one (with suitable 

choice of a and 6). 

3763*. Two methods can be used for the proof: (1) integration 

by parts; (2) change of the order of integration in the double integral, 

obtained after substituting an integral for Φ(αζ). 

3764*. See hint on problem 3763. 

3765*. Use the second method of solution of problem 3763. W h e n 

proving the second relationship it is necessary to investigate the 

integral 
oo 

f sin ax cos (x sin 0) 
dx 

J χ 
0 

with \a\ > 1 and |α| ^= 1. This is done by transforming the expression 
oo 

( sin χ τι 
in the numerator, and recalling that dx = — (Dirichlet's integral). 

} χ 2 
o 

3767*. Substitute in the left-hand side of the required equation 

the expressions for y' and y" obtained by differentiation of the integral 

y with respect to the parameter. One of the terms obtained must be 

integrated by parts. 

3768*. See hint on problem 3767. 3769*. See hint on problem 3767. 

Chapter Χ Ι Π 

— V
2 

3770. / 51η 2. 3771. 24. 8772. — (5 p - l). 3773. 2πα
2η
+Κ 

ο 

ab(a
2
 + ab + b

2
) Λ w ι Γ-

3774. — - — — —
1
, 3775. 4πα Vä. 

3 (α + 6)
 r 

3776. J ^ ( ρ cos φ, ρ sin φ) Υ ρ
2
 + ρ'

2
 d<p. 

Φι 

πα
2 

3777*. . Transform to polar coordinates. 

W e write inequalities for the last integral by replacing f(x) by its 

greatest and least values in the interval (αε, 6ε), and pass to the limit. 

a + 6 
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3778. 

3781. 

3784. 

3786. 

3787. 

3789. 

3791. 

3792. 

3796. 

= 2ka 

3797. 

3803. 

3804. 

3807. 

3811. 

3812. 

3813. 

3817. 

3822. 

arc sin ε, where ε is the eccentricity of the ellipse. 

where 

3798. SR
2
. 3799. 4 #

2
. 3800. -

where a and b are the semi-axes of the ellipse. 

The integral is equal to 1 in all four cases. 

When 

3795. RK 

3785. δα. 

3810. 4π. 

3806. 3. 



CHAPTER XIII 547 

π #
4
 πα

8
 1 

3824. . 3825. (1) 0; (2) . 3827. - . 
2 8 3 

>*. Apply Green's formula to the doubly-connected domain 

bounded by contour L and any circle with centre at the origin 

and not intersecting contour L. 

3837. π. 3838. 8. 3839. 4. 3840. In ~ . 3841. R2 - Bv 
5 

10 9 a;
8
 + y* 

3842. — . 3843. 0. 3844. - - . 3845. u = — — + C. 
3 2 3 

3846. u = (x
2
 - y

2
)
2
 + G. 3847. u = ln \x + y\ — + C. 

x + y 

yx
2
 + y

1
 + 1 

3848. it =
 y

 + C. 

2/ 
V a;

2
 ν

8 

3849. u = m \ x - y \ + -2— + — - \ + C . 
x — y 2 3 

ey— 1 
3850. w = a;

2
 cos y + y

z
 cos a; + C. 3851. w = \- y + C. 

1 + a;
2 

3852. w = - — — — + C. 
(x + y)

2 

1 V 
3853. η = 1, w = - ln (a;2 + y2) + arc tan - + C. 

2
 χ 

3854. α = 6 = - 1 , w = ^ ~ ^ + G. 
x

2
 + y

2 

3855. u = la\x + y + z\ +C. 3856. w = fa;
2
 + y

2
 + z

2
 + C. 

2a; 
3857. w = arc tan xyz + (7. 3858. u = h C. 

a; — yz 

a; — 3v 22
 y~ 

3859. w = -\ l -O . 3860. u = e*(a; + 1) + e?
2
 — e~z. 

ζ 2 

3 
3861. παδ. 3862. - π α

2
. 3863. 6πα

2
. 

8 
3 

3864*. - α
2
. Transform to the parametric form by putting y — tx. 

2 

3865. — . 3866. — . 3867*. 2a
2
. Put y = x tan t. 

60 210 

3868*. - ί . Put y = xt
2
. 3869. mi^iZ. 

30 * 

3870. (1) ί ; (2) ^ ; (3) ? and 1. 3871. (a) (b) 0. 
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Je γαζ _|_ 5
2
 + c

2 

3873. In 2, where k is a coefficient of proportion-

ality. 

3874. 0'5k ln 2, where & is a coefficient of proportionality. 

3879. 0. 3880. πΒ,Κ 
η _ V 3 πR* 

3876. 41/61. 3877. — . 3878. r
 120 4 

2 π #
6
 Η 

3881. . 3882. 2π arc tan — . 
15 R 

2nR Γ 1 1 1 „ 2π# 
5. f o r n ^ 2 ; ln 

c (n - 2) L(c - i ? )"-
2
 (c + iZ)"-

2
J ^ c 

3883. 

for n = 2. 

3884. π [R \R
2
 + 1 + ln (i? + f i?

2
 + l)J. 

3885*. π
2
.#

8
. Use spherical coordinates. 

8 2nRi 
3886. - nR\ 3887. 3. 3888. 

3 105 

2nR Ί c+R 

c — R 

- nabc. 3890. 0. 

1 (2R πΗ 
3891. - . 3892. R

2
H 

8 
3893. - . 

8 

[2R πΗ\ 

3894. 2 J J (x — y) dx dy -f (y — z) dy dz + (z — x) dx dz. 

s 

3895. - . 3896. 2 | J J (a + y + z) da; dy dz. 

3897. jjj ^ + y + g 

_|_ y2 _ | _ 22 

d a d y d z . 3898. 0. 
12 

. — nRK 
5 

Chapter XIV 

3901. 1 + y
2
 = C(l - x

2
). 3902. x

2
 + y

2
 = InCa;

2
. 

3903. y = YC + 3a; - 3a;
2
. 3904. y = C sin x — a. 

3905. Ca; = 
y 

3906. a; f 1 - y
2
 + y f l - a;

2
 = (7. 

3907. γΐ - y
2
 = arc sin a; + C7. 3908. e' = G (1 - e"*). 

3909. 10* + 10-y = C. 3910. ln tan- C — 2 sin • 

3872. 0. 
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1 / ï 
3911. t = - [l + . 

a\ I — η) 

3912. t = — = - In L U
 ;

— — L - ? . 
— χ) — χ y&2 

tan- l + x _ 
3913. y = Θ

 2
 . 3914. y = . 3915. cos χ = V2 cos y. 

I — χ 
b +χ 

3916. y = — : — . 3917. The hyperbola xy = 6. 
1+bx 

3918. The tractrix y = y4 - χ
2
 + 2 ln 

2 _ y4 - χ
2 

3919. The parabolas y
2
 = Cx. 3920. y* = Cx. 3921. y = e

 a 

3922. (a; - C )
2
 + y

2
 = a

2
. 3923. y = 7 In |C(fc

2
a:

2
 - 1)|. 

k 
3924. χ = y

n
. 3925. ^ 269-3 cm/sec. 3927. 0-467 km/hr; 85-2 m. 

3928. # . 3929. ln 
0O — 0t 

0 - 0 ! 
= JL (2ί + ai

2
) . 

3930*. I f t is time, measured from midnight and expressed in 

hours, the differential equation of the problem becomes 

dS n(t - 12) 160,000 
= k cos dt ; whence S = . 

S YS 12 Γ. 12)Ί
β 

9 — sin -
12 

The function S(t) is defined for 6 =i t^ 18. 

4y - 6x — 7 = C e -
2
* . 3931. a? + cot = C. 

2 8 
. x + C = 2u + - I n \u — 1| — - ln (t* + 2), where 

ο ο 

w = y i + χ -f y. 

3934. y — 2x = Cx* (y + a;). 3935. arc tan - = ln C Yx
2
 + y

2
. 

a; 

3936. In |y| + - = C. 3937. x
2
 + y

2
 = Cy. 

2/ 

3938. y = ± χ Y2 In | C x | . 3939. x
2
 = C

2
 + 2Cy. 

3940. e* = Cy. 3941. ln |Cte| = - e \ 3942. y = xe^Cx. 
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3954. y = Ce-
2
* + 2x — 1. 3955. y = e-x^<7 + γ | . 

ι_ 
8956. y = Cx

2
e

x
 + χ

2
. 3957. y = (χ + C) (1 + a;

2
). 

3958. y = Ce~
x
 + ]- (cos x + sin x). 

3959. I f m ^ —a, then y = Ce~
ax
 -\ ; if m = —a, then 

m + a 
ι/ = (<7 -f a*) e

m
*. 

1 1 1 
3960. 2/1 - 2a* = CyK 3961. x = Ce 2* + - 1 / 2 + - 2 / + τ · 

2 2 4 
C ( x

2
\ x

 =
 y ln 2/ +

 -
. 3963. 2/

 =
 e*|m \x\ + y j + σ θ

* · 

y = ( 7 ο -
φ ( χ)

 + Φ(χ) - 1. 3965. y = . 
cos χ 

e* I α& • a? 
3966. y = — . 3967. y = (x - 1 + ln \x\). 

χ x + 1 

8. a? = arc tan t. 3969. (b) α + β = 1. 

3971. y = Ca* — a; ln \x\ — 2. 

a
2 

3972*. y = Cx ± — . The differential equation of the problem 
2x 

is \xy — x
2
y'\ = a

2
. 

3943. (χ τ yY = Cx*e~*+y. 3944. Cx = <p|^j . 

y y 
( . - arc tan -

3945. yx2 + y2 = ex x. 3946. y* = y2 - x2. 

3947. y = - α . 3948. y
2
 = 5 ± 2 ]/ö . a;, 

V du / l ) 
3949. I f - = u, then ln |α | = f ; © - = - u

2 

3950. a; = Ce
 r x

. 3951. a? = y ln |(7y|. 3952. a;
2
 = 2(72/ + C

2
. 

3953*. A paraboloid of revolution. Let xOy be the meridian plane 

of the mirror surface ; the required curve lies in this plane ; the differ-

ential equation is obtained by equating the tangents of the angles 

of incidence and reflexion, expressed in terms of x, y, y'. 
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α
2 

k* ( m m ~ \ 

3973*· χ = Cy + — . The differential equation of the problem is 
V 

dx x
y — y

2
 ~r~

 = 2 α 2
· 

dy 

3975. 

3976. 

3978. 

3979. 

3981. 

3983. 

3985. 

3987. 

3989. 

3991. 

3993. 

3995. 

Reduce to an equation linear in ζ = y
2
. 

3997. 

3999. 

4000. 

4001. 
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4002. 

4006. (y - χ)
2
 (χ + 2y) = 1. 4007. The parabolas y = χ + Cx

2
. 

4008. (2y
2
 - χ

2
)
3
 = Cx

2
. 4009. The catenary. 4010. y = Cx

2
. 

4011*. The pencil of straight lines y — y0 = C(x — x0). The 

differential equation is y — y0 = y'(x — x0). 

4012. The circle with centre at the point (x0, yQ) : x
2
 + y

2
 — 

= 2(xx0 + yy0). 

4013. Any circle with centre on Oy and touching Ox. 

4014. I f S is the path and t is time, we have S = S0 + <7e-M — 

\ where S0 is the initial path and kv k2 are coeffi-

cients of proportionality. 

rev /sec; (2) after 6 min 18 sec. 

4017. 0-00082 sec. 

4018*. v = vt 

The force acting is equal to When solving this problem 

and the next two, it must be borne in mind that mass m is a variable 

depending on time t; the velocity ν is the required function. 

on the solution of problem 4018. 

See hint 

4020*. ν t, where μ = M — mt, kl •• 

See hint on the solution of problem 4018. 

= quantity of second product. I f χ is the quantity of the second 

, where t = time, y = 

product formed in t units of time, then 

Hence we find χ — x(t). The speed of formation of the second 

product is proportional to χ — y. 
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IS 2p0lS 

ι 
[e^'^dx. 

4025. (x + y - l )
3
 = C(x - y + 3). 

4026. χ
2
 — xy + y

2
 + χ — y = C. 

—2 arc t a n t t ? 

4027. x - 2y + ln \x + y\ = C. 4028. e
 x

~
3
 = C{y + 2). 

C -
y
-

4029. y
2
 = χ + (x + 1) ln . 4030. y

2
e

 x
 = C. 

χ + 1 

4031. y = tan ln \Cx\. 4032. x
2
y

2
 + 1 = Cy. 

4033. Cx = 1 - - . 4034. (1 + Cx) & = 1. 

x
2
 + 2/

2 

4035. 2/
4
 + 2x

2
y

2
 + 2i/

2
 = (7. 4036. x

2
 + y

2
 = C(y - I)

2
. 

4022. 2*97 kg salt. The maximum is attained at t = 33 - min. 
3 

and is equal to 3*68 kg. 

4023. I = 1 + (J0 - 1) e-". 

4024*. ρ = , where k 

A n important practical case is that when ω is very large (centrifuge). 

Instoad of working out the integral in the denominator for a given 

ω (it is not expressed in elementary functions), lim ρ is evaluated 

(see problem 2439). B y using the same argument as when deducing 

the barometric formula (see Course, sec. 122), we obtain the differen-

tial equation S dp = co
2
x dm, where dm is the mass of element CD. 

Further, γ = 2kp (one of the forms of the Boyle—Marriotte law; 

the coefficient of proportionality is written as 2k in future for simpli-

city) ; dm = yS dx = 2kpS dx. As a result, the equation with separa-

ted variables 2kœ
2
x dx is obtained. Integration of this gives: 

where C is the constant of integration. Further. 

e*u>»x* fa whence C is found. W e have : 

and finally 
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(l+x) [C + l n | l +x\1 

4040. ny
n
 = Ce

 a
 + nx - a. 4041. a

2
= y

2
(C - y

2
) . 

4042. 2/(1 + ln x + Cx) = 1. 4043. y(x + C) = sec x. 

(C 4- In IcosaH V a;
4 

4044. 2/ =
 1 [

 + t a n z l . 4045. y = — ln
2 

4046. y
2
 = Ce

 x
 - - . 4047. y =

 Ψ 

a x + C 
α 6 α 6 

4048. (1) — I 1; (2) ~ + - = 1. 
x y χ

2
 2/ 

4049.
 g

 ~ ^ =
 ( go

 ~
 k ) q >

. 4050. a;
4
 - x

2
y

2
 + y* = C. 

Q 9οΨο 

4051. x + arc tan - = <7. 4052. ax^ - y
2
 = (7. 4053. = (7. 

a; 

4054. Va;
2
 -f y

2
 -f - = (7. 4055. tan (a*/) - cos a: — cos 2/ = C. 

x 

1 
4056. - Y(x

2
 + y

2
)* + x - - y

2
 = G. 

ο Δ 
y x 1 

4057. sin cos - + χ = (7. 
x y y 

y 1 
4058. x = G. The integrating factor is μ(χ) = —. 

χ χ
2 

2χ 
4059*. a;

2
 Η = C. Seek the integrating factor in the form 

V 
of the function ß(y). 

4060. (χ
2
 + y

2
) e* = G. 4061. — + — = C. 

2 y 

4062. (x sin y + y cos 2/ — sin y) e
x
 = (7. 

4064. /* = 2T
n
e-<

n
-

1 )
S

p
<

x ) £ b c
. 

4065. The expression —^ must be a function of (a; + y). 

4066. The expression — \ must be a function of xy. 
xX — yY 

_L 
4067. 06a; + b2y + a -f bc = Ce**. 4068. y = I Ce a " Ι 1- " 1 

4037. y = x tan (χ -f C). 4038. = Ce
2
*

2
 -f χ

2
 + ^ 

1 
4039. y 
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4077. y
2
 - 1 + Cxy = 0. 4078. + ln 

îc — y 

4079. 3 / y = G y χ
2
 - 1 -f a;

2
 — 1. 4080. y = sin χ + G cos χ. 

2e
x
 sin ν 

4081. y = . 4082. tan χ - = C. 
C -f- e*(cos x — sin a;) sm x 

y 
sin - 1/ 

4083. xe * = C. 4084. a^ cos - = (7. 
a; 

tan a; 4- sec a; 
4085. sin y = x — 1 + C e - * . 4086. 2/ = . 

C + sin a; 
x

2
+y

2

 x 

4087. ln |Ca?| = - e
 2

 . 4088. a; + ytf = C. 

4089. y = x ln |Cfc|. 4090. y
2
 - by - axy = C. 

2& 
4091. The circle a:2 + 2/2 — ; + by) = C (fc Φ - 1 ) or the 

k + 1 
2fc 

circle a?
2
 + y

2
 — (ax -\- by) = C (k Φ 1); if A; = — 1 or k = 1, 

/c
 I 

the straight line ax -\- by — C. 

4092. The logarithmic spiral: 

y 

, ± arc tan -

y a;
2
 + y

2
 = Ce

 x
. 

a;
4
 + C

4 

4093*. t/
2
 = . The differential equation of the problem 

2a?
2 

is y
2
 = a;(a? — yy'). 

4094. J = - . 
2 

4095. The field vector at any point is perpendicular to the radius 

vector of the point. The integral curves are a family of concentric 

circles with centre at the origin. The equation of the family is a;
2
 -f-

-j- 2/
2
 = C. The isoclines are a family of straight lines through the 

origin. 

4069. χ
2
 + 2xy - y

2
 - \x + By = C. 

2x 
4070. + ln |a; + y| + 3 ln \y - x\ = C. 

χ — y 

4071. χ + y = a tan | c + . 4072. y* - Zxy = C. 

4073. x
2
 - y

2
 = Ot/

8
. 4074. 3a

2
i/ + afy

8
 = C. 

4075. y ( *
2
 + ^ 2/

2
) = C e - * . 4076. In 11 + y\ - = C. 

= C. 
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4096. (1) 2/' = f(xy); (2) y' = f^j; (3) y' = f(x
2
 + y

2
). 

4097. The straight lines y = Cx. The result can be stated as the 

following geometric theorem : if a family of parabolas with a common 

axis and a common vertex is cut by a straight line through the vertex, 

the tangents to the parabolas at their intersections with the straight 

line are parallel. 

4099. y' =
 al+l + c; y' = ay + bx + C. 

χ 4103. I f Ax
 =

 0-05, y pa 0*31. 

4104. I f Ax = 0-05, y pa 1-68. 

4105. The exact solution is y = e

4

 = f(x); /(0*9) = 1-2244. 

The approximate solution is /(0*9) = 1*1942. The relative error is 

& 2-5%. 

4106. With the exact solution, χ = ]/3(e — 1) pa 1*727; numerical 

integration with the interval divided into 4 parts gives χ pa 1*72. 

3 4 13 1 1 1 
4107. y2 = 1 + χ + - x

2
 + - a?

3
 Η a

4
 + - α*Η χ

6
 -\ x\ U2

 2 3 24 4 18 63 

13 
4108. -1*28. 4109. y = 1 + χ + χ

2
 + 2x

3
 Η ce

4
 + . . . 

4 

χ
3
 χ

4
· χ

5 

4110. y = l - x + j - - - + - - + . . . 

1 1 2 
4111. y = - χ

3
 χ

1
 χ

11
 — . . . υ

 3 7 . 9 7 . 1 1 . 2 7 

4 3 
4112. y = 1 + 2χ - χ

2
 + - χ

3
 - -χ* + . . . 

ν 3 2 

χ
2
 2χ

3
 11 λ*

4 

4113. y = 0. 4114. y = χ + - + — + + . . . 

4115. y 
Χ

2
 Χ

3
 X

s 

2] ~~ 3~! ~ Tl 

the singular integral is x
2
 + — 0. 

; the singular integral is 9y +2xYx = 0. 

the singular integral is y
2
 = 4x. 
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4120. y — Cx + YI + C
2
; the singular integral is x

2
 + y

2
 = 1. 

4121. y = Cx + sin (7 ; the singular solution is 

y = #(π _ arc cos x) + ] / l — x
2
. 

4122. y
2
 = 2Cx + C

3
; the singular integral is 27y

4
 + 32a

3
 = 0. 

4123. y = (V* + 1 + C )
2
; singular solution y = 0. 

4124. 2/ = Ck
2
 + — ; singular integral y

2
 — 4a

2
 = 0. 

C 

4125. 2Cx = C
2
 — y

2
; no singular integral. 

4126. χ = Ce~p + 2(1 — p), y = a:(l + p) + p
2
; no singular inte-

gral. 

4127. e
x
(y — C) = C, singular integral y

2
 + 4e* = 0. 

4128. y = Cx + C + C
2
; singular solution y = — - (χ + l )

2
. 

4 

4129. y
T
 - χ*

τ
 = α

τ
 . 4130. 2/ - 4α = 0. 

4131. 2/2 - 4e* = 0. 4132. xy = 1. 4133. 2y - x
2
 = 0. 

4135. The equilateral hyperbola 4a*2/ = + α
2
, where a

2
 is the area 

of the triangle ; the trivial solution is any straight line of the family 

y = Cx ± aye. 
4136. (y - χ - 2a)

2
 = Sax. 

4137. Ellipses and hyperbolas. 

i_ i_ 
Ce

 2
P \ \ + p

2
) Ce ^ 

4138. α = , y = 

&
2
α

2 

4 1 3 9 . ^ = 0*
 Λ

 + 2 Τ Τ Ϊ· 

( ρ » + i ) c -cyp 
" « 2/ = 4 

Ρ 7(ρ
β
 + 2)« y (ρ2

 + 2)
3 

1 

4140*. y = cos a |c + ^ sin
2
 α j , 

= sin αία — C — - sin
2
 α Ι, 

I 2 j 

d2/ 
W e put — = tan α in the differential equation obtained, then 

dx 
dy 

express χ in terms of y and parameter a, find dx, replace da by 
tan α 
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: 1 j 2x* 

r ρ 

and solve the resulting differential equation, y being taken as a 

function of a. 

4141· S = at
2
, where a is some definite constant. 

χ 

4142. x
2
 + y

2
 = 2a

2
 ln \Cx\. 4143. y = Ce

 2
. 

4144. y = C(x
2
 + y

2
). 4145. (χ

2
 + y

2
)
2
 = C(y

2
 + 2x

2
). 

4146. I f the parameter of the parabola is equal to 2p and the 

straight line is taken as the axis of ordinates, the equation of the 

trajectory becomes: 

2 

y = c + -
4147. Tractrices. 

4148. On measuring angle α in one of the two possible directions, 

we obtain the equation of the family as xy 

4149. On measuring angle α in one of the two possible directions, 

we obtain the equation of the family as 

4150*. W e can assume say that the wind blows along Ox. The 

sound propagation curves in the xOy plane will be the orthogonal 

trajectories of the family of circles (x — at)
2
 -f- y

2
 = (v0t)

2
, where 

t is the time that has passed since the departure of the sound wave 

from the source, and v0 is the velocity of sound in stationary air. 

For any fixed t, the differential equation of the required orthogonal 

trajectories is y' together with the equation of the family 

of circles. 

On eliminating t, we obtain a Lagrange equation. Its general 

solution is 

where b φ is a parameter. 
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(at
2
 Λ 

4153· χ = a(cos t + t sin t) — cos t\ — + CI, 

(at
2
 \ 

y = a(sin t + t cos t) — sin il — -f Cj. 

4154. x = C sin £ + 2 tan t, y = tan
2
1 — C cos £ — 2. 

x
8 

4155. y = sin χ + Cxx + <72. 
6 

arc tan a: x _ 
4156. y = ( χ 2 _ 1) _ _ ln (1 + x 2) + Gxx + C 2. 

2 2 
4157. 2/ = γ [ ln x - ?| + Cxx + C 2. 4158. 2/ = Cxx

2
 + <?2-

x
2
 1 4159. y = C^e* + C2 — x . 4160. y = - x

9

 + Cxx
2

 + C 2. 

2 3 

4161. y = (1 + C | ) ln \x + Cx\ - Cxx + Gt. 

i + i 1 
4162. y = (ClX - C{) e

c
» + <7r 4168. y = — (x + C,)' + Or 1

Δ 
4164. y = A j / ( C x* - 1)« + C r 

_ _ 1 /a? sin 2aA 
4165. y = - - sin»x + C ^ - —J + C72. 

4166. (x + C 2)
2
 = 4Cx{y - Cx). 4167. y = Cx(x + C2)

z
 . 

X _ X 

4168. y = ( 7 ι θ

α
 + <72e ~

a
. 

ι Γ~Ί 
x + Cx 4169. a? = - 20 , ) j j + C x + C2. 4170. 2/ 
* + 0 2 " 

4171. (a; + C 2)
2
 - y

2
 = C7r 4172. 2/ = C^eC*. 

4173. 2/ cos
2
 (Cx ± x) = C 2. 4174. (x + C 2) ln y = a; + Cx. 

4175. I f the arbitrary constant introduced by the first integration 
is positive (+C\), then y = Cx tan (Cxx + C2); if it is negative ( — C\), 

1 _ f e2 ( C ! X + C 2) 

then y = ( 7 Χ — - = —Cx coth (C^a; + C2); if C x = 0, then 
I _ e2 ( C ! X + C a) 

y = 
x + C 2 

4176. a; = Gx + cos C 2 In tan 
y + c2 
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4177. Gxx + C2 = ln 
y + cx 

4178.
 x +

 °
2
 = cx arc tan (Cx ln y). 

4179. In |<7 l 2/ l = 2 tan (2a? + C 2) . 

4180. y = ln \x
2
 + C t| + •In + C2, if Ci < 0, 

Y-Ci 
2a χ 

and y = ln b
2
 + CJ H arctan f- C 2 if C x > 0. 

4181*. After substituting y' = ρ the equation splits into two, 

one of which is of Clairaut's type. Its general solution is 

4 
y = Ci + C2e>

c
i

x

9 whilst the singular solution is y 

The second equation is y' = 0. 
C — χ 

4182. y = Gxx(x — Cx) + C 2 and the singular solutions are 

CxxCi 
4183. y

2
 = + C 2. 4184. 2/ = ln 

4185. y = ][-x* + Gxx + C%. 4186. y = Cxx + 

c2 

4187. 2/ = Cyxe
x
. 4188. ln |y + Cx\ + χ + C 2. 

4189. y = x* + 3x + 1. 4190. 2/ = 2 + In — . 
4 

4191. y = J a « / t o - ^ . 4192. y = — τ -
5 5 (χ + 4)

2 

4193. 2/ - α = 2 In \y |. 4194. y = p a - - χ
2
. 

4195. 2/ = f i + e
2
*. 4196. y = - l n |1 - χ\. 4197. 2/ = 

a? + 1 

2
Χ 

4198*. y = a*. Make the substitution 2/ = ux. 4199. 2/ = 2e — 1. 
ay 

4200*. The differential equation of the curve is da; = 

where k is a coefficient of proportionality. 
f ( O d , )

s
- i 
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4201. e
a
 = C2 sec | ^ + C^j . 4202. Cx = y

2
*-\ 

' ί mqvfi 
4203. A catenary. 4204. ν = / — — . 4205. A parabola. r mg + kvl 

I f k = 1, then y = - i - [ e
C l

(
x
~

C 2)
 + e~

c
^

x
~

Cz)
]; this is a catenary. 

2CX 

I f k = - 1 , then (x + ( 7 2)
2
 + 2/

2
 = C\; this is a circle. I f k = 2, 

then (a* -f ( 7 2)
2
 = 4<71(2/ — Cx)\ this is a parabola. I f k = — 2, 

da* = — ; this is the differential equation of a cycloid. 
\y-ciy

2 

y 

4207*. Let the axis of abscissae be directed vertically down-

wards, let the origin be on the fluid surface, and let the equation of 

the ray be y = f(x). A t a depth χ we have 

where m is the refractive index at depth x, and α is the angle 

between the vertical and the tangent to the light ray. Obviously, 

tan α is equal to y\ W e obtain from the equation m sin α = 

= (m -f dm) (sin α cos da + cos a sin da) , on removing the brackets 

and neglecting higher order infinitesimals: m da = —dm tan a, 

On integrating this equation, we whence -

find y' as a function of m. On replacing m by its expression in 

terms of χ and integrating again, we obtain the answer : 

where m = 

4208. 

4209. 

4210. 9 is a polynomial of the ninth degree in χ 

with arbitrary coefficients). 

4211. 

4212. 
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4213. y = \ (Ct - 2xf + C& + C 3. 4214. χ = Cxy
2
 + C2y + Cr 

4215. The solution can be written in three forms: 

y = Cx sin (<72a* -f C 3) , or y = <7t sinh (C 2# + (73) , or 

y = d cosh (02a* + C 3) . 

4216. (x + <72)
2
 + (y + C 3)

2
 = C

2
. 

4217. y = C2 l̂ eCjx _ — eC i x j + C 8. 

x
2
 2x* 3z

4
 14z

5 

4219. (2) y = \ + x - \ H 1 H h . . . 
2! 3! 4! 5! 

(χ - l )
2
 2(χ - l )

4
 3(» - 1)5 

4220. y = 1 - 5 + — + . . . y
 2! 4! 5! 

π (χ - l )
2
 (x - I )

3
 (χ - l )

4 

4221. y = - (χ - 1) +
 V

 + - -
2 2! 3! 4! 

4(x - 1)5 
5! + . . . 

£c
3
 2ÎC

4
 3x

5 

4222. y = 1 + » + + _ + — + . . . I f f(x) ^
 1 + x + 

SI 4! 5! 

x
z
 2ÎC

4 

+ — + - j y » an alternating numerical series is obtained with 

χ = —0*5, and the value of the first of the neglected terms is less 

than 0-001. 

x
2
 x

3
 x* 4x

s
 14#

e 

4223. y = 1 h 1 h . · · ; the fifth. 
2! 3! 4! 5! 6! 

1 1 7 
4224. y = χ

2
 χ

5
 -\ χ» χ

11
 + . . . ; 0*318; 0-96951. 

* 10 80 4400 

d
2
Q 

4225*. The differential equation of the problem is Ε = L + 
d*

2 

dQ V0 - JcQ 
_i 9 where Q is the quantity of electricity that has 

at kx 

flowed through the circuit from the start of the experiment till 

the instant t. Having expressed Q in terms of V (V is the quantity 

of water in the vessel at the instant t) and found the coefficients from 

the conditions of the problem, we arrive at the equation V" + aVV + 

1 kE 
+ 6 = 0, where a = = 0005, b = — = 0-00935. On mtegra-

kxL L 
ting this with the initial conditions: V0 = 1000cm3, V'0 = — kIQ = 

= — 0 00187 cm
3
/sec, we obtain the series V = 1000 — 0Ό0187* — 
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- Ι Ο - » . [2-91*
3
 - 3·64*

4
 + 3-64*5 - 3*04*

β
 + 2*17*

7
 - . . . ] . The series 

is alternating and the coefficients, as from the sixth, are decreasing 

and tend to zero, which is convenient for computations. 

4226*· The differential equation of the problem is 

L — 4- — ** - E 
dt

2
 dt M 0 - kQ 

On taking the quantity y of hydrochloric acid not decomposed at 

the instant t as the required function, we reduce the equation to the 

k kE 
form yy" + ay' -f- by = 0, where a = — = 50, b = = 00191. 

L Jj 
Integration of this equation with the initial conditions y0 = 

= MQ = 10, y'0 = — kl0 = —0*00381 gives the series 

y = 10 - 0*00381* + 10 -

1 0

*

3

 (1*21 - 1*52* + . . . ) · 

4227. x
2
y" — §xy' + \2y = 0. 

4228. xy" - (2x + 1) y' + (x + 1) y = 0. 

4229. (x
s
 - 3a;

2
 + 3a*) y'" — (x* - 3a; + 3) y" - 3a; (1 - x) y' + 

+ 3(1 - x) y = 0. 

4230. y = 3a*
2
 - 2a;

3
. 

sin
2
 χ 

4231. (a) Φ const; (b) y" sin 2a; — 2y' cos 2a; = 0. 
cos

2
 a; 

4232*. (3) B y Ostrogradskii's formula: 

2/i 2/2 

yi yi 
= Ce 

-$P(x) dx 

or, on expanding the determinant (Wronskian): yxy'2 — y[y2 = 
- J P ( x ) dx 

•• Ce
 J

 . W e divide both sides of the equation by y\; then 

(yj\ =£ 

d# [yj y\ 
— |—j = Θ

 d x
, whence the required relationship follows. 

4233. y = Cxx ln 
1 + χ 

1 - χ 
-2CX + 

sin a; cos a; 
4234. y = CX + C2 . 4235. y = χ

2
 - e*"

1
. 

χ χ 

4236*. Functions Ρ and Q must be connected by the relationship 

Q' -f 2PQ — 0. Substitute yx = — in the formula (following 

2/2 from Ostrogradskii's formula) of problem 4232, differentiate twice 

the relationship obtained, and substitute y2, y"2 in the given equation. 

4237*. y = Cx(±x* - 3a;) + C2 f l - a*
2

(4a;
2

 - 1). W e put b y hy-

pothesis: yx = Ax* -f J5a;
2
 + Cx -f D. Having substituted yx in 
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4 

X
s
 x* 7a?

5 

4246. y = - 2 + 2 x - x
2

+ — - — + — -
ο 4 bU 

2a;
4
 2a?

5
 2a?

e
 2a?

7
 62a?

8 

4247. y = I -] H h 
y
 ^ 4 ! ß! 6! 7! 

4! 5! 6! 7! 8! 

a?
2

 ( fa?
4

 t 3a?* ( 5x*~ t , (2n - 1) a?
2
"+

2 

~2 

ra?
4
 3a?* 5a?»- 2n - 1) a?™+

2
 Ί 

4248. „ = - + [ - + _ + _ + . . . + _ _ + . . . j . 

( a?
2
 a?

3
 a?

4
 a?

5
 ^ 

H 1 1 1 + . . . + 
2 6 12 24 J 

( a?
3
 a?

4
 a?

5
 A 

a? H 1 1 h - - - -
6 12 30 J 

ί
 a?4

 λ
 ( 3a?M

 Ϊ 
4250. y = 0 , (1 + _ + .. .j + C 2 ( . - - + —j + . . . J . 
4251. y = Cxex + <72Θ"

2
*. 4252. y = d e

3x
 + d e ~

3 X
. 

4253. 2/ = d e « + C2. 4254. 2/ = d © ( l +^ 2 )x + d e ( l~ ^ ) x-
4255. 2/ = d e

2x
 + de~~**. 4256. y = d cos a; + d sin a?. 

4257. y = e ~
3
* ( d cos 2a? + d

 s in
 2»)· 

4258. y = e * | d cos | + C2 sin^j . 4259. y = e* ( d + d * ) . 

4260. a? = ( d + C2t)e
2
*t. 4261. 2/ = ( d + C ^ ) 

4262. 2/ = 4e* + 2e
3
*. 4263. y = 3e"

2
*sin 5a?. 

the given equation, we get Β = 0, D = 0, A :C = , or A = 4fc, 

—3 
C = — 3k. Hence the particular solution will be yl = &(4a?3 — 3a?). 

In accordance with the property of linear equations, we can take 

k = 1, so that yx = 4a?
3
 — 3a?. Knowing one particular solution, 

a second can be found in the usual way and the general solution 

obtained. 

4238. y = d sin χ + (72[l — sin χ ln tan ^ + |j | J . 

4239. y = Clx + C2x J ^ j p - . 4240. y = C
x
x + d ( *

2
 - 1). 

4241. y = Cxx + C2x
2
 + Czx\ 4242. y = a?

3
 + a?(d + d In |a?|). 

4243. y = CX<Ô* + da? - a?
2
 — 1. 

4244. y = Cxx* + C72(a; + 1) - x. 

4245. y = 2 + 3a: + x(- + 2 arc tan x] + x
2
. 
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χ 

4264. y = e " (2 + α). 4265. y = f 1 + (1 — m) .r] e"
1
*. 

4266. v = cos Zx sin Sx. 

4267. If k > 0, then y = sin [Yk(x — x0) ] + y0 cos []/&(α — α0) ] ; 

if k < 0, then 

y = - i = [ (i/o y ï ; + α) θ ^ - * · > + (2/0 - e - V ^ - * > ] , 
2 

where kl = —k. 

x_ 

4268. y = Cxe~* + <72e
T
 + e*. 

4269. y = Ci cos aa + C 2 sin ax -\—-

4270. y = Cxe*x + C2e
x
 + 

a
2
 + 1 

5 sin a + 7 cos a 

74 ' 

1 
4271. y = e

-
* (C^ cos 2a + <72 sin 2a) cos 2a - 2 sin 2a. 

2 

2 5 11 
4272. y = (CL + C2x) e

3X
 + - a

2
 H a H . J v 1 2

 ' 9 27 27 

4273. 2/ = e * ^ cos a + C 2 sin a) + a + 1. 

4274. 2/ = C^e* + C2q~*x - 0-2. 

5 
4275. 2/ = C^e* + C

2
e2x + 2/, where y is equal to: (1) ^e~*; 

3 1 9 21 15 
(2) 3ae

2
*; (3) - cos α + - sin α; (4) α

3
 - f - α

2
 Η α ; 

5 5 2 2 4 

8 Γ α αϊ 1 5 1 
(5) — - Θ * cos- + 2 s i n - ; (6) - α Η e~

2
*; Κ

 ' 5 L 2 2j
 1

 ' 2 4 12 

3 1 
(7) e* (2α

2
 + χ); (8) - α + - (9 + 3 cos 2α - sin 2α); 

2 4 

1 
(9) — 2ae* e

- 2
* ; V

 ' 12 

1 3 7 9 
(10) — cos a sin a ~\ cos 3a -| sin 3a; 

20 20 260 260 

1 1 
(11) e"* ae*. 

12 2 
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— - χ 4276. y = Cx -f (72e 2 + y, where y is equal to: 

1 3 7 1 

(1) _ X3 χ2 _| ^ ; (2) - e * ; (3) 5 sin χ — 2 cos χ; 
V
 ' 3 5 25

 7
 7 

1 5 1 
(4) — χ A sin 2x cos 2x ; v
 ' 10 164 41 

(5) cos 2'5x + sin 2*5x - 0-02xe-
2
*

5
*; 

ί
 1 6

ϊ Γ
 1 8 5

ϊ 

(6) — 5x cos χ — \2x sin χ ; 
y 1

 { 29/ { 29 j 
(7) e~*[(10x + 18) sin χ - (20x + 1) cos re]; 

4277. y = e
2 x

( ( 7 1 + C2x) + y, where y is equal to: (1) - ; 
4 

1 3 1 1 1 
(2) - e~

x
; (3) - x

2
e

2x
; (4) - cos 2x + - χ + - ; v

 ' 9 '
 v

 ' 2
 v /

4 2 2 

1 f - 5 
( 5 ) v
 169 1 2 

f - 5 Ϊ 1 
sin 3# + 6 cos 3x\ (3 sin χ 4- 4 cos ; I 2 ) 50 " 

3 1 
(6) (3 sin χ + 4 cos #) Η (5 sin 3# — 12 cos 3x) ; v
 ' 100 676 

(7) 2x
2
 + 4x + 3 + 4z

2
e

2x
 + cos 2#; (8) ^ | #

2
e

2x 

(9) 

1 ί#2θ2χ- _ i e -
2
* ) ; 

41 8 j ' 

W 1 _ \ 1 
- e

x
 e

 x
 A (3 sin χ + 4 cos #) ; 

2 1 9 J 2 5 " 

(10) e
x
 - - e ^

1
 + i - e

1
"^ v

 ' 2 18 

4278. y = Cx cos a; -f C 3 sin χ A~ y, where y is equal to: 

(1) 2x* — I3x + 2; (2) cos 3x; (3) ^ s i n x ; 

(4) 
1 1 / . 1 ^ 
— x cos χ — e

_ x
; (5) - h e sin χ cos 3# ; 

2 41 4 J 

(6) 9 + 4 cos 2x — 0*2 cos 4x; (7) 0'5 cosh x; 

(8) 0-5 + 0-1 cosh 2x. 

»x / 4 4 Ϊ 
4279. y = e

s
 \Cl cos —a* + CO sin — # -j- y, where y is equal to 

I 5 5 ; 

25 i x 15 4 40 4 
(1) — e

6
 (2) sin -x A c o s - # ; 
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1 1 / 36 107 908Λ 
(3) — e

2x
 + - 2x* Η χ

2
 Η χ ; V

 ' 13 5{ 5 25 125; 

(4) — - cos χ \ Θ
6
 ; (5) - -xe> cos -χ; (6) 0'5e

2
* + 1*3. 

4280. y = 2 + Cx cos a; + (72 sin χ + cos a* ln tan 

4281. y = e
x
{Cl + C2x — ln \x

2
 + 1 + a: arc tan a;). 

4282*. (1) y = e*(x + Cx) - (e* + 1) ln (e* + 1) + <72; 

(2) y = - e * [arc sin e* + 6 * ^ 1 - e
2
* + + - V ( l — e

2
*)

3
 + C 2; 

2 3 

(3) y = Cxe
x
 — cos e* + <72. 

All three results are easily obtained with the aid of the general for-

mulae (see Course, sec. 206). 

3 5 

4283. y = (1 + x) β~Ί* + 2 e " * . 

4284. y = e*(0-16 cos 3a; + 0*28 sin 3a;) + x
2
 + 2*2a? + 0*84. 

4285. y = e* + #
2
- 4286. y = e* (e* - a;

2
 - a? + 1). 

4287. y = - sin 2a; sin a; — cos x. 

* 3 3 

4288*. Differentiate twice the expressions quoted for y; on 

substituting for y, y' and y" in the equation an identity is obtained. 

4289. y = χ* (Cx + C2x*). 

4290. 2/ = I + <?i cos ln |z| + <72 sin ln \x\. 

4291. 2/ = a?[at + C2 ln |a;| + In
2 

4292. 2/ = χ In |a?| + C i » + C2x
2
 + #

3
. 

4293. I f > ω
2
, then y = Cy cos &t + C 2 sin kt + 

ma 
gr βω

2
 1 1 

+ — COSCÜJ Η , where &
2
 = ω

2
. I f < ω

2
, then 

F - ω
2
 &

2 

2/ = de* ' + C 2e - « -

1 

ma ma 
gr βω

2
 1 

cos œt , where k
2
 = ω

2
 . 

k
2
 + ω

2
 k

2
 mec 

4294. β = - (4e
f
 + e~

4
' ) . 

4295. s = e-° '^[ 10 cos (0-2450 + 8-16 sin (0·245«)]; * | ί =3 Ρό 7*07 cm. 
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X 

I Ο , cos h CA sin — I. 

I V2 p j 

4310. i/ = (Ü! + + Ca*
2
) cos - + ( C 4 + + Cex

2
) sin ^ + 

2 ^ 
+ C7x + C 8. 

4311. 2/ = e-*(Cx + C 2a + C3x
2
 + . . . + CnX""

1
). 

4312. 2/ = 1 + cos x. 4313. y = e* + cos χ — 2. 

4314. 2/ = ( C i + <72a;) e* + <73e
2
* - χ - 4. 

4315. 2/ = ( C x + C 2z ) e* + <73e"
2
* + (x

2
 + » - l )e~*. 

4316. 2/ = (Οχ + < V ) cos 2x + (<73 + <?4*) sin 2x + ^cos a;. 

4297. s = e°
 2 4

5 ' [2 cos (156-6*) + 0*00313 sin (156-6*)]. 

l g 1 dvn 
4298*. k = 3 3 - — = 3 3 - g — ; t = 0*38 sec; the height of 

3 cm 3 cm 

the submerged part of the block is χ = 5[3 + cos (8*16*)]. Take 

g = 1000 cm/sec
2
 when forming the equation. 

4299*. r = — ( β
ωί

 + e~<
ot
). The entire situation is as though 

2 

the tube were stationary, except that a force acts on the sphere equal 

to πιω
2
ν (r is the distance of the sphere from the axis of rotation). 

4300. I f k > πιω2, then r = ̂ _̂
ω21 & _ mœ* cos \t j / ^ - ω

2 j j ; 
if k = πιω

2
; then r = aJl -| *

2
1; 

V 2m ; 

if k < πιω
2
, then r = — Ι πιω

2
 cosh Ι ί ] / ω

2
 1 — k I. 

mco
2
 — & L V ' W J 

4301. y = Cx cos 3a; + C 2 sin 3a; + <73. 

4302. y = Cxe
2
* + C 2e "

2
* + <73e

3
* + C 4e " 3 * . 

4303. y = (CX + C2x) β
2
* + (<73 + CAx) e~

2
*. 

4304. 2/ = C^e
2
* + C2e~

2
x + Cz cos 2a; + C 4 sin 2x. 

4305. 2/ = CXQ-* + C 2e -
3X

 + <73e
4
*. 

4306. y = Cxe* + C2a;e* + C3x
2
e

x
. 

4307. 2/ = Cx + <?2# + C3e~
x
 + <74a;e-*. 

4308. 2/ = Cxe* + C2e~* + <73a;"-3 + 0^χ
η
~^ + . . . + Gn_xx + Cn. 

χ 

4309. 2/ = ©^
2
 (<?i cos + <72 sin | + 
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4317· y — ( d + G2x) cos ax + ( d + G^x) sin ax 
x

2
 cos ax 

8a
2 

4318· y = — χ
5
- - χ* + Gxx

2
 + C2a; + <78 + d cos a; + d sin a;. 

60 2 

χ2 £χ 

4319. y = C&x + C 2e - * + Gz sin a? + d cos χ -\ e* -

- χ sin x. 
4 

4320. y = ( d + d « + #
2
) ©

x
 + IP* + ^ +

 χ2
)
 θ

~
χ
 + sin a; + 

cos a;. 

4321. y = 4 - 3Θ~* + e~
2
*. 4322. y = e* + a;

8
. 

4323. y = a?(d + (72ln |a;| + C73ln
2
 |a;|). 

I # = e
- e /

( d cos £ + d sin £), 

y = e-«t[(C2 + d ) cos ί + (C, — d ) sin « ] . 
4324. 

4325. 

4326. 

4327. 

2/ = + σ 2θ - < + - < ( Θ ' + Θ - ' ) . 

x = d e ~
4
' + d e "

7
' + — e' + - β -

2 ί
, 

40 5 

1 1 3 
y = - d e "

4
' + C2e~^ -\ e' H e"

2
'. 

* 2
 1 2

 40 10 

z = d2/î 

ι z y2 _ = (72< 

4328. { 

y 

ln 
x + γΧ2 + Ci 

z=Yd + x2 ln 
y „ 

G, 

4329. Ja;
 1

' 4330, 

[χ
2
 + y

2
 + ζ» = d -

; y
2
 - z

2
 = d , 

» + fa;
2
 + d I 

*
2
 + y

2
 + *

2
 = d y , 

: a; = d © " ' + C 2e~
3
' , 

4331 ! 4332 
( y* — y2 — x = C2. ( y = d e ~ * + 3 d © ~ 3' + cos t. 
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4333. 
( α = Cxé + ( 7 2θ

_ί
 + <73 cos t + <74 sin t, 

\ y = CxQ
1
 + C2e~

t
 — <73 cos t — CA sin t. 

4334. 

4335. 

α - Cx + <72* + <73*
2
 - - t * + e', 

b 

y = C t - ( C i + 2C3) t - h c t - 1) f - ]-C3t° + ζ- - e'. 

2 3 24 

\v + y + z = cl9 

[ x
2
 + y

2 + z
2 C2. 

j z = x — y, 

( y(y — 2x)
z = (x — y)

2
. 

4337. 

y = 

4338. I 

x = ίθ-* + -e
2
' + -e~

2
' , 

3 6 2 

z = - - e"* + - e
2
' . 

3 3 

x — — e~~', 

θ " 

ζ = 0. 

4340. The curves 2/x 

Cxx
2 

2x 
and 2/2 = 

Gxx
2
 + C 2 

2a 

Given the initial conditions, we obtain the hyperbolas 

3 — a
2
 3 + a

2 

2/i 2a 2/2 2a 

χ — y + z = 0; 

4341. y = e
2
*. 4342. The plane curve { zln\z\ 1

 α = + • 
y2 

4343. 

4344. 

* = ^
2

+ ( i l - * o ) ( l - C O S ^ ; ) ] , 

1 Γ πίΊ 

2/ = 2L^ 2 + Z° + Z l + ( * 1 _ * o ) C O S ZT!' 
4 200 

α = 10 cosh 2t cos 14£ Η , 
49 49 

6 300 
y = 10 cosh 2ί H cos 14ί . 
* 49 49 

Here α is the path of the heavier sphere, and y that of the lighter. 
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, where 
ha

2
 Γ (1 - ße«M\

2
-) n 1 

4345. A = — 1 - î — - , Β = α - _. 2̂ L U + /?θ««; J 1 + jffe«« 

dJV 
4346*. I f T is the quantity of poison, then — = aN — 6iVT, 

dt 
dT dN 
— = cN and = 0 at the instant when Ν = M. 
dt dt 

4847. hx - + f '
Ht

 + J L - ( H l - g j e - ^ . 
$1 + $ 2 ^1 + $ 2 

^1^1 + $ 2 ^ 2 ^1 

#
2
*

3 

4348. (1) Θ - Θ0 + 0-002 (Ö
2
 - Ö

2
) = 0Ό0008 - — ; by 53°; 

R0T
2 

(2) Θ - Θ0 + 0-002(Ö
2
 - 0

2
) = 

by 76°. 

4349. (1) 44-5°; (2) 46-2°. 

4350. 

π # 0χ 1 0
7 (200π* — sin 200π£) ; 

χ 100 105 1-10 115 1-20 1-25 

y 1000 1-000 0-997 0-992 0-984 0-973 

χ 1-30 1-35 1-40 1-45 1-50 

y 0-959 0-942 0-923 0-901 0-876 

4351. y \ x- x = 3-43656. 

2/i 2/2 2/3 2/4 2/6 

2-5 316667 3-37500 3-42500 3 43472 

2/6 gives a relative error of the order of 0 Ί %. 

1 _ ßeaJct 
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Chapter XV 

4358. sin
2
* χ == ̂  + * ^ [cos 2fca; - G\k cos (2& - 2) χ + 

+ cos (2k - 4) a; - . . . + ( - l ) * "
1
 (G^

1
 cos 2a?]; 

(— D
k 

sin
2
**

1
 a; = ' [ s in ( 2& + 1) a; - ( 7 ^ + 1 sin (2& - 1) χ + 

+ Ch+i sin (2Ä - 3) a- - . . . + ( - 1 ) * C j Ä +1 sin a;]; 

Λ 1 
cos2* a; = ^ - + [cos 2&a; + G\k cos (2* - 2) a + 

+ G
2

2k cos (2Ä? — 4) χ + . . . + C ^
1
 cos 2a;]; 

cos
2
**

1
 a; = ^ [ c o s (2k + 1) χ + G\k+1 cos (2k — 1) a; + 

+ <?2/c+i cos (2& — 3) χ + . . . + G
k

2k+1 cos x]. 

4360. cos na* = cos" χ — (72 cos
n
~

2
 a* sin

2
 a; + C

4
 c o s

n -4
 a; sin

4
 χ . . . 

π π 
Since there are only even powers of sin x, cos nx can be expressed 

rationally in terms of cos x. 

2π 2π 4363. (1) φ = ν— and φ — ν , where ν = 0, 1, 2, . . ., η; 
η η + 1 

2π 
(2) φ = ν — , where ν = 1, 2, . . . , η — 1 for η odd and ν = 1 ,2 , . . .,η 

η 

4352. 0*46128; Simpson's formula with 2n = 10 gives the same. 

All the places are correct. 

The error is less than 0*2%. 

4354. 0*808. 

4355*. 1*001624. The result is obtained most rapidly if the requir-

ed function is sought directly in the form of a power series. 

4356*. 1*0244. See the hint on the previous problem. 

4357. 

h = 0*2297. 

/ ( 0 * 3 ) ^ 1*545. 

4353. 

2/4 ( 0 * 3 ) ^ 1*543; 
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for η even, and φ = (2 ν — 1) 
n -f- 1 

, where ν = 1, 2, . . ., η + L 

2π 

4365*. Notice that j" Φη(φ) άφ = 0. 

4366. Yes, since the function satisfies the conditions of the first 

fundamental theorem (see Course, sec. 212). 

4371. (a) 6t = 62 = 63 = = . . . = 0 and ax — a3 = a5 = . . . = 0; 

(b) a0 = αγ = α 2 = . . . = 0 and bx = 68 = 66 = . . . = 0. 

, sin (2n + l)a* sin 2na* 

2n 
ν . Ulli I imll V I J. ι »o> _ . 4372. -

 y — - — . 4373. Τ 
- ^ 2n + 1 

~ sin nx 
4374. α = 2 Y ( - l )

n _1
 ( - π , π); 

(0, 2ττ). 
π = 1 

4375. » y « " ( » » + ' > » . 
π n-fo ( 2 » + I ) 2 

4376. (1) ^ + 4 J £ ( - l ) » ' 

(2) 

3 

4π
2 

cos nx __, ι 

n-1 n = l 

1
 6

 2
 12

 3
 8 

4377. - Τ ( - 1 )
η
+

1
 ί — + — [ ( - 1 )

η
 - 1] j sin nx. 

π η=1 ( η η
3
 ) 

00
 /Τ2 2τι

2
\ 

4378. Υ ( - 1 ) η sin nx. 

_ _ 4 ~ sin (2n + l)a* 
4379. 2 + - Y —

 7 

π n-f0 2n + 1 

. 2ΛΓ1 ~ s i n n Ä 
4380. — - + J£ — cos ηα π [2 ~ j ηΛ-

* L2
 « - ι l n / l J 
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l 4Ζ ~ 
4382. - - Σ 

A N S W E R S 

| (2η + 1) 

4383. 

2 *
f

n± O (2η + 1)
2 

e
2
* - 1 1 /cos nx η sin nx' 

2
 + à l l + n

2
 ~ 1 + n

2
, 

- 1. 

/ _ -/ -
 ( — 1 )n COS

 ~r 

4384. ~ - , - + ^ - e i 2 2Z Ζ
2
 + η

2
π

2 

ηπχ 

( — l )
n _ 1

n s i n — — 

Ζ
2
 + η

2
π

2 

+ 

= sinh Ζ 

ηπχ ηπχ 
_ Ζ cos πη sin 

1
 V η

 1 1 

Ι
 + 2

η - ΐ
(
~

1 )η
 Ζ

2
 + η

2
π

2 

2 sin πα ( 1 α cos a; α cos 2a; ^ 

in πα ί sin a; 2 sin 2a; 3 sin 3a; ^ 

π 11 - α
2
 "~ 2

2
 - α

2 +
 3

2
 - α

2
 ~ " j 

4386, 

4387. sin ax 

4a r cos χ cos 3a; cos 5a; 
I L _J_ π ία2 - 1 α2 - 3

2 ' α2 - 5
2 

(α even); 

4α r 1 cos 2a; cos 4a; 

~π~ L2Ö
2 +

 a
2
 - 2

2 + 

(a odd). 

+ 

cos 4a; 1 

α
2
 - 4

2 +
 * * J 

4388. cos ax = 

4 r sin χ 3 sin 3a; 5 sin 5a; 

~~ π Ια2
 - l

2 + α2 - 3
2 +

 a
2
 — Ö

2 + 

(a even) 

π La 

4 r2 sin 2a; 4 sin 4a; 6 sin 6a; 
+ — τι Λ V 22 a

2
 - 4

2
 a

2
 - 6

2 

(a odd). 

2 sinh απ 
4389. Σ (~

l
)

n
~

1 

a
2
 - f n

2 



CHAPTER XV

sinh n [ 00 cos nx]
4890. -- 1 + 2 ~ (-I)n --2 ;

n n-l 1 + n

2 00 1 - (-I)n cosh n .
- ~ nSlnnx.
n n==l 1 + n 2

[

sin 2nn 3(1 _ cos 2nn)]
1 2 00 3 3 2nnx

4391. I(x) = "3 + :;~ n 2nn2 COB -3-

119 (cos 2nx cos 4nx cos 8nx )
1 y3 3 3 3

=3+-;- 1 2 +-4--···-

(

COS 2nx cos 4nx cos 8.1tx )

-2:2 12
3 +++++ ....

575

. nn
SIn-

n 3 00 3 (nn nn)4892*. j(x) = - +- ~ -- cos-sin2nx-sin-cos2nx
6 2n n=-l n 2 3 3

_ n 3 V3 (Sin 2x sin 4x sin 8x sin lOx )
-"6 + 8n 12-22 + 42--5-2- + ... -

9 (COS 2x cos 4x cos 8x cos lOx )
-8n 12+22+42+-5-2-+ ....

Use the result of problem 4368.

4898
*. _ 4 ( sin tX sin x sin 3tX sin 3x ).

(I) j(x) - -; 12 + 32 + ... ,
tX(n - tX) 1 00 1 - cos 2ntX

(2)j(x) = . - - ~ 2 cos 2nx
n n n-l n

= tX(n - tX) _ ~ (Sin2 tX cos 2x + sin2 2tX cos 4x )-----+ ....
n n 12 22

Use the result of problem 4371.

8 00 sin (2n - 1) x n 8

4894 (4094). - ~ ; -.
n n=l (2n - 1)8 32

8 00 cos nx 7
4895 (4095). (b) - n 4 - 48 ~ (-I)n--; (c) 720 n 4•

15 n-l n'

4 * n-x ~oo sinnx
896 • -- - (see problem 4374).

2 n-l n(n8 + I)
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sin nx (see problem 4374). 4397" 

4398*. 

Differentiate the series and use the solution of problem 4374 

and the fact that (see problem 4376). 

cos nx. 

Use the series cos nx see problem 4380 with 

2 cos χ • cos nx 

and the fact that (see problem 4394). 

4400. fx(x) pa 27-8 + 6-5 cos χ — 0Ί sin χ — 3*2 cos 2x + 0 Ί sin 2x; 

f2(x) pa 0-24 + 0-55 cos χ + 0*25 sin χ — 0*08 cos 2x — 0Ί3 sin 2a;; 

f3(x) pa 0*12 + 1-32 cos χ + 0-28 sin χ — 0*07 cos 2x + 0*46 sin 2x. 

Chapter XVI 

4401. Straight lines parallel to the vector A{a, b, c} 

4402. Circles with centres at the origin: x
2
 + y

2
 — -R

2
. 

4403. Helices with pitch lving on cvlinders whose axes 

coincide with the ζ axis: χ = R cos (wt + a) , y = R sin (cut -f- a) , 

ζ = ht + z0, where R, a and z0 are arbitrary constants. 

4404. The circles formed by cutting the sphere with centre at 

the origin by planes parallel to the bisector plane y — ζ = 0: χ
2
 + 

+ y
2
 + ζ

2
 = -R

2
, y — z + C = 0, where i? and C are arbitrary con 

stants. 

(2) Circles formed by cutting a sphere with centre at the origin 

by planes which cut off from the coordinate axes segments equal in 

direction and magnitude: x
2
 + y

2
 + z

2
 = R

2
> χ + y -\- ζ = C* 
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(3) The curves of intersection of the sphere x
2
 + y

2
 + z

2
 = R

2 

and the hyperbolic paraboloids zy = Gx. 

4405. div A = 3, curl .4 = 0. 

4406. div A = 0, curl ^ = 2[(y - z) i + {z - x) j + (x - y) k]. 

4407. div A = ßxyz, curl A = #(z
2
 — y

2
) i -f 2/(#

2
 — z

2
) j -f-

+ z(y
2
 — #

2
) 

4408. div A = 6, curl A = 0. 

4409. div 4 = 0, curl 4 = 0. 

where k is a coefficient of proportionality, 

Y the distance from the point of application of the force to the origin, 

curl A = 0. 

4411. div A = 0, curl A = 0. 

4412. div A = 0, curl A = 0. The field is not defined at points 

of Oz. 

4413. div A = where k is a coefficient of 

proportionality. The field is not defined at points of the Oxy plane. 

4414. 3a. 4416. div b(ra) = (ab), div r(ra) = 4(ra). 

4417. 0. 4418. (1) 0, (2) 0, (3) 0. 

if the field is spatial; div A = 

-f / ' ( r ) if the field is plane. 

4423. 2a. 4424. 2ωη°, where n° is the unit vector parallel to the 
axis of rotation. 

4431. 

4432. 

4435. 

4439. 

4440. 

4410. div ,4 
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4445*. (1) knà 

knà 
(2) V
 ' 2 

H YR
2
 + H

2
 - IP + R

2
]n 

H + YR
2
 + H

2 

H Y±R
2
 + H

2
 - H

2
 + 4:R

2
 ln 

R 

H + Y±R
2
 + H

2
] 

2R 

see the hint on problem 4443. 

4446. nkôH(l — H), where I is the generator of the cone. 

4447. u = 
nR*ô \( a

2
\j (a \ \ 3α ι 

fa^[(i+5f-(*)f+l(f),-i]tee;ajis 

u = (4 YI- 3) for a = R. 
3 

£kna kM 
4448*. u = (R

3
 — r

3
) = (M is the mass of the body) 

3a a 

for a^R; 

u = 2knô{R
2
 — r

2
) for a ^ r: 

4Α/7ΐδ 

u = (a
3
 — r

3
) + 2nô(R

2
 — a

2
) for r ^ a ^ R. 

3a 
Draw a concentric sphere of radius a and apply the results of the 

two previous problems. 

kM\R 2 (Ryi 
4449. 1 I — I I , where M is the mass of the sphere. 

R la 1 \a ) \ 

4450. Both the flux and circulation are equal to 0. 

4451. The flux is equal to 2aS, where S is the area of the domain 

bounded by the contour L. The circulation is 0. 

/ r— v 2nk 
4441. 2kàa{\ + 1/2 ) . 4442. arc cos h, if Λ < 1, 2π& 

] / Ί — Λ
2 

if Λ = 1, ln (h + Va* - l ) , if h > 1. 
1 

# + V #
2
 + #

2
 i f + 1/iï

2
 + 4iZ

2 

4443*. (1) 2knRÔ ln — , (2) 4JcnRÖ In v
 R 2R 

Divide the cylinder into two by cutting it parallel to the base, 

and work out the potential of the lateral surface of the cylinder as 

the sum of the potentials of the lateral surfaces of the two halves, by 

using the result of (1). 

4444. 2knRà. 
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4452. Both the flux and circulation are equal to 0. 

3 
4453· The flux is — π-Β

4
, the circulation 2πΕ

2
. 

2 

4454· When the origin lies inside the contour, the flux is equal to 

2π, otherwise the flux is equal to 0. The circulation is 0 in both cases. 

4455. The circulation is equal to 2π if the origin lies inside the 

contour, and is equal to 0 if outside the contour. The flux is 0 in 

both cases. 

4456. 2. 4458. 2πΒ
2
Η. 4459. πΒ

2
Η. 

4460. 4π. W o r k out the flux through the base of the cone and use 

the result of problem 4457. 

3π 1 
4461. — . 4462*. — . Use Ostrogradskii's formula and work out 

16 6 

the flux through the base of the pyramid. 

4463. 2n
2
b

2
. 4464. 2πωΒ

2
. 

4465. — π. Use Stokes's theorem, taking as the contour L the curve 

of intersection of the paraboloid with the Oxy plane. 
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sin a t a n a cotan α cos a a ° a radians sin α tana 

0 0-0000 0-0000 - 1-000 90 0 
5-73 

0 
0 1 

0000 
0100 

+ 0 000 
+0-100 

1 0175 0175 57-3 1-000 89 11-5 0-2 0 1 9 9 +0-203 
2 0349 0349 28-6 0-999 88 17-2 0-3 0-296 +0-310 
3 0523 0524 1 9 1 999 87 22-9 0-4 0-389 +0-422 
4 0697 0699 14-3 998 86 28-7 0-5 0-480 +0-547 
5 0-0872 0-0875 11-4 0-996 85 34-4 0-6 0-564 +0-68 
6 1045 1051 9-51 995 84 40-1 0-7 0-644 +0-842 
7 1219 1228 8-11 993 83 π 

+0-842 

8 139 141 7 1 1 990 82 45-0 
π 

0-707 + 1-000 
9 156 158 6-31 988 81 

45-8 
4 

0-8 0-717 + 1-028 
10 0-174 0 1 7 6 5-67 0-985 80 51-6 0-9 0-784 + 1-260 
11 191 194 5-145 982 79 57-3 1-0 0-842 + 1-558 
12 208 213 4-705 978 78 6 3 0 1-1 0-891 + 1-963 
13 225 231 4-331 974 77 68-8 1-2 0-932 +2-579 
14 242 249 4-011 970 76 74-5 1-3 0-964 +3-606 
15 0-259 0-268 3-732 0-966 75 80-2 1-4 0-985 +5-789 
16 276 287 487 961 74 86-0 1-5 0-998 + 14-30 
17 292 306 271 956 73 π 

+ 14-30 

18 309 325 3Ό78 951 72 90-0 
π 

1-000 _ 
19 326 344 2-904 946 71 

91-7 
2 

1-6 0-999 - 3 3 - 7 5 
20 0-342 0-364 2 7 4 7 0-940 70 9 7 4 1-7 0-992 -7-695 
21 358 384 605 934 69 103-1 1-8 0-974 -4 -292 
22 375 404 475 927 68 108-9 1-9 0-946 - 2 - 9 2 1 
23 391 424 356 921 67 114-6 2 0 0-909 - 2 - 1 8 4 
24 407 445 246 914 66 120-3 2 1 0-863 - 1 - 7 1 1 
25 0-423 0-466 2-145 0-906 65 1 2 6 1 2-2 0·808 - 1 - 3 7 3 
26 438 488 2050 899 64 131-8 2-3 0-745 - 1 - 1 1 8 
27 454 510 1-963 891 63 3π 
28 469 532 881 883 62 1 3 5 0 

3π 
0-707 -1-000 

29 465 554 804 875 61 
137-5 

4 
2-4 0-676 -0 -916 

30 0-500 0-577 1-732 0-866 60 143-2 2-5 0-599 -0-748 
31 515 601 664 857 59 149Ό 2-6 0-515 -0-602 
32 530 625 600 848 58 154-7 2 7 0-428 -0 -472 
33 545 649 540 839 57 160-4 2-8 0-336 -0 -356 
34 559 675 483 829 56 166-1 2-9 0-240 -0-247 
35 0-574 0-700 1-428 0819 55 171-9 3 0 0 1 4 1 - 0 - 1 4 2 
36 588 727 376 809 54 177-6 3 1 0042 - 0 0 4 2 
37 601 754 327 799 53 1800 π 0-000 0-000 
38 616 781 280 788 52 
39 629 810 235 777 51 39 629 810 235 777 51 

Κ3 .
 71 

1 π Κ3 
40 0-643 0-839 1 1 9 2 0-766 50 sin — 

6 ~ 2 ' 
1 

COS-g . " 2 ' 
41 656 869 150 755 49 

sin — 
6 ~ 2 ' 

1 

COS-g . " 2 ' 

42 669 900 111 743 48 χ
 71 

t a n -

~ 2 ' 
1 

χ
 71 

cot — = 
0 

43 6h2 933 072 731 47 
χ

 71 

t a n -
"
 η

 η 

χ
 71 

cot — = 
0 44 695 966 036 719 46 "

 η
 η 1 

45 0-707 1-000 1-000 0-707 45 η 
sin — 

= cos — 
1 

45 
4 4 

cos a co ta t a n a sin a a ° 
χ

 71 

tan — 
4 

χ
 71 

= cot — 
4 

= 1. 

a degrees 1 2 3 4 5 6 7 8 9 

a radians 0017 0-035 0-052 0070 0-087 0-105 0 1 2 2 0-140 0 1 5 7 

1 radian = 57°17'45" 

580 

T A B L E S 
1. Trigonometric Functions 
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2. Hyperbolic Functions 

χ sinh χ cosh χ χ sinh χ cosh χ 

0 0 1 

Ol 0-100 1-005 2 1 4-022 4-289 
0-2 0-201 1020 2-2 4-457 4-568 
0-3 0-304 1Ό45 2-3 4-937 5 0 3 7 
0-4 0-411 1-081 2-4 5-466 5-557 
0-5 0-521 1 1 2 8 2-5 6050 6-132 
0-6 0-637 1 1 8 5 2-6 6-695 6-769 
0-7 0-759 1-255 2 7 7-407 7-474 
0-8 0-888 1-337 2-8 8-192 8-253 
0-9 1-026 1-433 2-9 9060 9 1 1 5 

1 0 1 1 7 5 1-543 3 0 1002 1007 
1 1 1-336 1-669 3 1 11-08 1 1 1 2 
1-2 1-509 1-811 3-2 12-25 12-29 
1-3 1-698 1-971 3-3 13-54 13-58 
1-4 1-904 2 1 5 1 3-4 14-97 1500 
1-5 2-129 2 352 3-5 16-54 16-57 
1-6 2-376 2 5 7 8 3-6 18-29 18-32 
1.7 2-646 2-828 3-7 20-21 20-24 
1-8 2-942 3-107 3-8 22-34 22-36 
1-9 3-268 3-418 3-9 24-69 24-71 
2 0 3-627 3-762 4 0 27-29 27-31 

With χ > 4 we can take sinh χ cosh χ ^ — e* to an accuracy of 0*1. 

e* — e—* 
sinh χ = 2 >

 c o sn
 * 

e* = sinhx + coshx; e** 

_ e* + e-« . 
2 ' 

= sin χ + / cos x. 

3. Reciprocals, Square and Cube Roots, Logarithms, 
Exponential Functions 

X 
1 

X 
V~x V lOx 

1 
VlOx 

s 
V lOOx logx lnx e* X 

1 0 1000 100 3 1 6 1 0 0 2 1 5 4-64 000 0000 2-72 1 0 
1 1 0-909 05 32 03 22 79 041 095 3 0 0 1 1 
1-2 833 10 46 06 29 93 079 192 3-32 1-2 
1-3 769 14 61 09 35 5 0 7 114 252 3-67 1-3 
1-4 714 18 74 12 41 19 146 336 4 0 6 1-4 

1-5 0-667 1-23 3-87 1 1 5 2-47 5 1 3 176 0-405 4-48 1-5 
1-6 625 27 4-00 17 52 43 204 470 4-95 1-6 
1-7 588 30 12 19 57 54 230 530 5 4 7 1-7 
1-8 556 34 24 22 62 65 255 588 6 0 5 1-8 
1-9 526 38 36 24 67 75 279 642 6-69 1-9 

2-0 0-500 1-41 4-47 1-26 2-71 5-85 301 0-693 7-39 2 0 
2 1 476 45 58 28 76 94 322 742 8-17 2 1 
2-2 455 48 69 30 80 603 342 789 9Ό3 2-2 
2-3 435 52 80 32 84 13 362 833 997 2 3 
2-4 417 55 90 34 88 21 380 875 1 1 0 2-4 
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Χ 
1 

χ 
V5T V ΙΟχ 

3 
V ΙΟχ flOOx log χ In χ e* χ 

2-5 0-400 1-58 5Ό0 1-36 2-92 6-30 398 0-916 12-2 2-5 
2-6 385 61 10 38 96 38 415 955 13-5 2-6 
2-7 370 64 20 39 300 46 431 993 14-9 2-7 
2-8 357 67 29 41 04 54 447 1-030 16-4 2-8 
2-9 345 70 39 43 07 62 462 065 18-2 2-9 

3 0 0-333 1-73 5-48 1-44 3 1 1 6-69 477 1-099 2 0 1 3 0 
3 1 323 76 57 46 14 77 491 131 22-2 3 1 
3 2 3 1 3 79 66 47 18 84 505 163 24-5 3-2 
3-3 303 81 75 49 21 91 519 194 2 7 1 3-3 
3 4 294 84 83 50 24 98 532 224 30-0 3-4 

3-5 0-286 1-87 5-92 1-52 3-27 7 0 5 544 1-253 33-1 3-5 
3 6 278 90 6-00 53 30 11 556 281 36-6 3-6 
3 7 270 92 08 55 33 18 568 308 40-4 3-7 
3-8 263 95 16 56 36 24 580 335 44-7 3-8 
3-9 256 98 25 57 39 31 591 361 49-4 3-9 

4.0 0-250 200 6-33 1-59 3-42 7-37 602 1-386 54-6 4 0 
4 1 244 03 40 60 45 43 613 411 60-3 4 1 
4-2 238 05 48 61 48 49 623 435 66-7 4-2 
4-3 233 07 56 63 50 55 634 458 73-7 4-3 
4 4 227 10 63 64 53 61 644 482 81-5 4-4 

4 5 0-222 2 1 2 6-71 1-65 3-56 7-66 653 1-504 900 4 5 
4-6 217 15 78 66 58 72 663 526 99-5 4-6 
4-7 213 17 86 68 61 78 672 548 110 4-7 
4-8 208 19 93 69 63 83 681 569 121 4 8 
4 9 204 21 7 0 0 70 66 88 690 589 134 4-9 

5 0 0-200 2-24 7-07 1-71 3-68 7-94 699 1-609 148 5-0 
5 1 196 26 14 72 71 99 708 629 164 5 1 
5 2 192 28 21 73 73 8-04 716 649 181 5-2 
5 3 189 30 28 74 76 09 724 668 200 5-3 
5-4 185 32 35 75 78 14 732 686 221 5-4 

5-5 0 1 8 2 2-35 7-42 1-77 3-80 8-19 740 1-705 244 5 5 
5-6 179 37 48 78 83 24 748 723 270 5 6 
5-7 175 39 55 79 85 29 756 740 299 5 7 
5-8 172 41 62 80 87 34 763 758 330 5-8 
5 9 170 43 68 81 89 39 771 775 365 5-9 

6-0 0-167 2-45 7-75 1-82 3-92 8-43 778 1-792 403 6-0 
6 1 164 47 81 83 94 48 785 808 446 6 1 
6-2 161 49 87 84 96 53 792 825 493 6-2 
6-3 159 51 94 85 98 57 799 841 545 6-3 
6-4 156 53 800 86 4-00 62 806 856 602 6-4 

6-5 0 1 5 4 2-55 8-06 1-87 4 0 2 8-66 813 1-872 665 6-5 
6-6 152 57 12 88 04 71 820 887 735 6-6 
6-7 149 59 19 89 06 75 826 902 812 6-7 
6-8 147 61 25 90 08 79 833 918 898 6-8 
6-9 145 63 31 90 10 84 839 932 992 6-9 

7 0 0 1 4 3 2-65 8-37 1-91 4 1 2 8-88 845 1-946 1097 7 0 
7 1 141 67 43 92 14 92 851 960 1212 7-1 
7-2 139 68 49 93 16 96 857 974 1339 7-2 
7-3 137 70 54 94 18 9-00 863 982 1480 7-3 
7-4 135 72 60 95 20 05 869 2 001 1636 7-4 

7-5 0 1 3 3 2-74 8-66 1-96 4-22 909 875 2 0 1 5 1808 7-5 
7-6 132 76 72 97 24 13 881 028 1998 7-6 
7-7 130 78 78 98 25 17 887 041 2208 7-7 
7-8 12β 79 83 98 27 21 892 054 2440 7-8 
7·9 127 81 89 99 29 24 898 067 2697 7·9 
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χ 
1 

χ V* V ΙΟχ 
3 

YlOx 
3 

KlOOx log χ lnx χ 

8-0 0 1 2 5 2-83 8-94 2-00 4*31 9-28 903 2-079 2981 8 0 
8 1 124 85 9-00 Ol 33 32 909 092 3294 8 1 
8-2 122 86 06 02 34 36 914 104 3641 8-2 
8-3 121 88 11 03 36 40 919 116 4024 8-3 
8-4 119 90 17 03 38 44 924 128 4447 8-4 

8-5 0-118 2-92 9-22 2-04 4-40 9-47 929 2 1 4 0 4914 8-5 
8-6 116 93 27 05 41 51 935 152 5432 8-6 
8-7 1 1 5 95 33 06 43 55 940 163 6003 8-7 
8-8 114 97 38 07 45 58 945 175 6634 8-8 
8-9 1 1 2 98 43 07 47 62 949 186 7332 8-9 

9 0 0-111 3 0 0 9-49 2-08 4-48 9-66 954 2-197 8103 9 0 
9 1 110 02 54 09 50 69 959 208 8955 9 1 
9 2 109 03 59 10 51 73 964 219 9897 9-2 
9 3 108 05 64 10 53 76 969 230 10938 9-3 
9 4 106 07 68 11 55 80 973 241 12088 9-4 

9 5 0-105 3-08 9-75 2 1 2 4-56 9-83 978 2-251 13360 9-5 
9-6 104 10 80 13 58 87 982 263 14765 9-6 
9-7 103 11 84 13 60 90 987 272 16318 9-7 
9-8 102 13 90 14 61 93 991 282 18034 9-8 
9 9 101 15 95 15 63 97 996 293 19930 9-9 

10-0 0-100 3 1 6 10-00 2-15 4-64 10-00 000 2-303 22026 1 0 0 

The mantissae of the common logarithms are given in the log χ column. 
To find the natural logarithms of numbers greater than 10 or less than 1 we have to use the 

formula 
1η(χ· 10») = lnx + A In 10. 

Notice that 
in 10 = 2-303: In 10* = 4-605 

log x = 0-4343lnx; ln χ = 2-303logx. 

The formulae for approximate evaluation of roots are: 

(1) f î + ^ ^ l + | + y i x ' for | x | < 1 

(2) ί/*ΠΓ6~α(ΐ + — +1Ζ-?.-^Λ for 1-1 < 1 

583 
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Absolute convergence of series 

238-239 

Approximate values of functions 
248-249 

Areas 

of figures by integration 

198-203 

of surface of revolution 

213-215 

Asymptotes to curves 129—130 

Cauchy's formula 125 

Centres of gravity 215 — 219 

Clairaut's and Lagrange's equa-

tions 368 — 369 

Concavity 121 — 122 

Coordinate 

line integrals 337 — 345 

surface integrals 346—348 

Continuous functions 37 — 40 

Convergence 

of functional series 239 — 240 

interval of 247 — 248 

of series 234 

Convexity 121 — 122 

Cube roots tabulated 581 — 583 

Curvature 138—142 

Curves 

directional derivatives 

299-300 

gradient 297 — 299 

vector function of scalar argu-

ment 289 — 294 

Definite integrals 

approximate methods 

187-191 

by parts 178—180 

change of variable 180—181 

elementary properties 

144-147 

evaluation by summation 

147-148 

geometrical interpretation 

149 

inequalities 149—150 

variable limits 151 — 154 

Derivatives 56 — 57 

geometrical 

meaning 57 — 58 

and mechanical applications 

7 4 - 8 1 

Differentiability of functions 

86 -87 

Differential 

equations 

first-order 361 — 362 

exact 362—365 

homogeneous 352—356 

involutes 369—370 

isoclines 365—368 

separate variables 

349-352 

singular solutions 

368-369 

higher order 373 — 374 

second-order 370 — 373 

of functions 82—86 

Differentiation 

exponential functions 64—65 

function of function 268—273 

hyperbolic functions 65—66 

implicit functions 72—74 

inverse functions 71 — 72 

logarithmic functions 64 

repeated 97—105 

585 
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trigonometric functions 

62 -64 

Double integrals 301 — 309 

applied to 

moments and centre of 

gravity 318-321 

surface areas 316 — 318 

volume of solid 311 — 315 

improper 324—325 

Envelopes 287 — 289 

Evaluation of integrals by sum-

mation 147 — 148 

Exact first-order equations 

362-265 

Existence of limits, tests of 

36 -37 

Exponential functions 22—23, 

581-583 

Extrema 120—121 

Flow and circulation of vector 

403-405 

Fourier series 391 — 396 

Functions 

approximate values 248 — 249 

asymptotic variation 128 

behaviour in interval 

110-113 

continuous 37 — 40 

exponential and hyperbolic 

2 2 - 2 3 

implicit 6 — 7 

inverse 20 — 21, 27 — 29 

linear 13-14, 18-20 

logarithmic 23 — 24 

mean values 151 

power 21 — 22 

quadratic 15—18 

of several variables 

approximation of differen-

tials 266-268 

continuity 259 — 261 

derivatives and differentials 

263-266 

domain 257 — 259 

extreme by Taylor's formula 

279-287 

trigonometric 24 — 27 

Graphical differentiation 81 — 82 

Green's formula 339-343 

Guldin's theorem 221 

Homogeneous equations of first 

order 352-356, 357 

Hyperbolic functions 22 — 23, 

581 

Implicit functions 6 — 7 

Improper integrals 192 — 197 

Inequalities 113—114 

Integrals 

with infinite discontinuities 

193-197 

with infinite limits 192-193 

Integration 

by parts 161 — 162 

change of variable 162—164 

elementary methods 156—161 

of functions 250 - 252 

hyperbolic functions 173 

miscellaneous problems 

164-168 

rational functions 168—171, 

173-176 

trigonometric functions 

171-173 

Inverse functions 20 — 21 

trigonometric 27 — 29 

Involutes 369—370 

Isoclines 365 — 368 
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Iterated integration 

double integral 302—306 

triple integral 306 — 307 

Krylov's method in harmonic 

analysis 396 

Lagrange 

and Clairaut, equations of 

368-369 

theorem of 108—110 

Leibniz's 

formula 103—105 

rule in integrals 326—329 

Length of arc by integration 

204-207 

Level lines and surfaces 

261-262 

L'Hôpital's rule 126—128 

Limits 

comparison of infinitesimals 

4 8 - 5 0 

continuous argument 33 — 34, 

4 2 - 4 7 

existence 34—37 

functions of integral argument 

31-33 , 4 0 - 4 2 

Linear 

differential equations 

356-357, 376-383 

functions 13—14 

rational 18 — 20 

Line integrals 333 — 337 

Logarithmic 

differentiation 66 

functions 23 — 24 

Logarithms, tabulated 

581-583 

Maxima and minima 114—119 

Moment of inertia 219 — 221 

Newton-Leibniz formula 

154-155 

evaluation of definite integrals 

177-178 

Points of inflexion 122—125 

Potential of force of attraction 

401-403 

Power 

functions 21 — 22 

series 244-246 

Rate of change 

of arc length 94— 95 

of radius vector 93 — 94 

Reciprocals, tables of 581 

Relative velocity by differen-

tiation 87 — 89 

Repeated differentiation of a 

function 

explicit 97-100 

of a function 273-278 

implicit 100-101 

parametrically expressed 

101-102 

Rolle's theorem 107—108 

Series 

absolute convergence 

238-239 

convergence 234 

differentiation and integration 

241-244 

uniform convergence 

240-241 

with positive terms 235 — 238 

Simultaneous differential equa-

tions 384-387 

Singular solutions in first-order 

equations 368 — 369 

Solutions of equations 133—135 
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Square roots, tabulated 581 — 583 

Statistical moments 215 

Stokes's formula 347 — 348 

Surface 

areas of double integrals 

316-318 

integrals 345—346 

Tangents and normals 287 

Taylor's formula 135—138 

Trigonometric 

functions 24—27, 580 

polynomials 390 — 391 

Triple integrals 301, 309-310 

applied to volume of solid 

315-316 

improper 325-326 

Uniform convergence of series 

240-241 

Vector field 397-401 

Velocity of motion 95 — 96 

Volume of solid 

by double integrals 311—315 

by integration 207 — 213 

by triple integrals 315 — 316 
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