Ortogonální polynomy

Sférické harmoniky:

\[ Y_{lm}(\theta,\varphi) = (-1)^m\! \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{lm}(\cos\theta) e^{im\varphi} \]

Tabulka ortogonálních polynomů:

\(\phi_l(x) = k_l x^l + \tilde{k}_l x^{l-1} + \cdots\)

\((\phi_l,\phi_{l'})_\rho = \int_a^b\! \phi_l(x) \bar{\phi}_{l'}(x) \rho(x) \mathrm{d} x = \|\phi_l \|^2_\rho \delta_{ll'}\) [OG]

Název \(\phi_l\) \((a,b)\) \(\rho(x)\) Rodrigues: \(\phi_l= \) ODR \(\|\phi_l\|^2_\rho\) \(k_l\) \(\tilde{k}_l/k_l\) \(G(x,t) = \sum_{l=0}^\infty t^l \phi_l \,[/l!]\)
Laguerre \(L_{ls}\) \((0,\infty)\) \(x^s e^{-x}\) \(\frac{1}{l!} x^{-s}e^x (x^{s+l}e^{-x})^{(l)}\) \((x^{s+1}e^{-x}L'_{ls})' = - lx^{s+1}e^{-x} L_{ls}\) \(\frac{(l+s)!}{l!}\) \(\frac{(-1)^l}{l!}\) \(-l(l\!+\!s)\) \(\exp\big{(}-\frac{xt}{1-t}\big{)}/(1\!-\!t)^{s+1}\)
Hermite \(H_l\) \((-\infty,\infty)\) \(e^{-x^2}\) \((-1)^le^{x^2} (e^{-x^2})^{(l)}\) \((e^{-x^2}H'_l)' = - 2le^{-x^2}H_l\) \(2^l l! \sqrt{\pi}\) \(2^l\) \(0\) \(\exp \,(2xt-t^2) \,\,\qquad [/l!]\)
Čebyšev I \(T_l\) \((-1,1)\) \(\frac{1}{\sqrt{1-x^2}}\) \(\cos(l\arccos{x})\) \((\sqrt{1-x^2}\,T'_l)' = - l^2 T_l/\sqrt{1-x^2}\) \(\begin{cases} \pi, & l=0\\ \pi/2, & l>0 \end{cases}\) \(\begin{cases} 1, & l=0\\ 2^{l-1}, & l>0 \end{cases}\) \(0\) \(\frac{1-xt}{1-2xt+t^2}\)
Čebyšev II \(U_l\) \((-1,1)\) \(\sqrt{1-x^2}\) \(\frac{\sin((l+1)\arccos{x})}{\sqrt{1-x^2}}\) \(\left[(1-x^2)^{3/2} U'_l\right]' = - l(l\!+\!2)\sqrt{1-x^2} U_l\) \(\pi/2\) \(2^l\) \(0\) \(\frac{1}{1-2xt+t^2}\)
Legendre \(P_l\) \((-1,1)\) \(1\) \(\frac{(-1)^l}{2^l l!}\left[(1-x^2)^l\right]^{(l)}\) \(\left[(1-x^2)P'_l\right]' = -l(l+1)P_l\) \(\frac{2}{2l+1}\) \(\frac{(2l)!}{2^l l!^2}\) \(0\) \(\frac{1}{\sqrt{1-2xt+t^2}}\)
Asociované Legendre \(P_{lm}\) \((-1,1)\) \(1\) \(\sqrt{1-x^2}^m P_l^{(m)}\) \(\left[(1-x^2)P'_{lm}\right]' = \big{(}\frac{m^2}{1-x^2}- l(l+1)\big{)}P_{lm}\) \(\frac{(l+m)!}{(l-m)!}\frac{2}{2l+1}\)