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Title: Random polytopes

Author: Dominik Beck

Department: Mathematical Institute of Charles University

Supervisor: prof. RNDr. Jan Rataj, CSc., Mathematical Institute of Charles
University

Abstract: Our work covers the topic of moments of volumes of random sim-
plices. We explain both combinatorial and integral-geometric treatment of the
subject. The main themes throughout the work are moments of random determi-
nants, Crofton Reduction Technique, Efon’s formulae and Blaschke-Petkantschin
formula.

We made a major contribution in higher dimensional generalisations of the know
problems and pushed the older ideas to their limits in each of the branches men-
tioned. In random simplices metric moments branch, we were successful to enlarge
the list of the exact volumetric moments for other three-dimensional polyhedra
than to the only known three (ball, tetrahedron and cube). A new approach was
developed to tackle also the volumetric moments in higher dimensions, which
were inaccessible using previous methods.

A novel systematic use of the well known Crofton Reduction Technique enabled
us to found other characteristics of polytopes, such as mean random distances of
their interior points or the probability of a triangle formed by random interior
points being obtuse.

Last but not least, in moments of random determinants branch, we found the
fourth moment for a complete general case of matrix entries and the sixth moment
for a special special case of centrally distributed entries. Although we solved those
problems in our earlier published work, the treatment in this thesis is based solely
on analytic combinatorics, making the material more broadly accessible.

Keywords: Random simplices, Mean tetrahedron volume, Crofton reduction tech-
nique, Efron formula, Random determinants, Mean distance, Polyhedra, Deter-
minant moments, Blaschke-Petkantschin formula, Canonical section integral
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Abstract (in Czech): V této práci se zabýváme momenty objemů náhodných sim-
plexů. Vysvětlíme zde komplexní a ucelenou teorii kombinatorického a integrálně-
geomtrického přístupu k tomuto problému, jehož součástí nesmí chybět momenty
náhodných matic, Croftonova redukční technika, Efronovy vzorce a Blaschke-
Petkantschinova formule.

Hlavní přínos této práce spočívá ve zobecnění již známých výsledků do více di-
menzí, a to ve všech probíraných tématech. V kapitolách o náhodných sim-
plexech jsme spočetli střední hodnoty objemu náhodného čtyřstěnu v tělese pro
celou škálu nových mnohostěnů mimo jediných třech známých (koule, čtyřstěn,
krychle). Navíc jsme odvodili analogické výsledky i ve více dimenzích.

Nový a systematický přístup ke známé Croftonově redukční metodě nám umožnil
vyjádřit exaktně i další charasteriky v mnohostěnech jako například střední hod-
noty vzdálenosti dvou vnitřních náhodných bodů a nebo pravděpodobnosti, že
náhodný trojúhelník tvořený třemi náhodnými vnitřními body je tupoúhlý.

V neposlední řadě, co se týče momentů determinantů náhodných matic, jsme
zobecnili čtvrtý moment pro obecná rozdělení prvků matice a našli i šestý mo-
ment pro rozdělení prvků s nulovou střední hodnotou. Ačkoli jsme tyto výsledky
již publikovali, věnujeme se jim znovu v této práci a znovuodvozujeme je pomocí
nástrojů analytické kombintoriky, čímž se téma momentů náhodných determi-
nantů stává více přátelštější pro širší okruh čtenářstva.

Keywords (in Czech): Náhodné simplexy, Střední objem čtyřstěnu, Croftonova
redukční technika, Efronova formule, Náhodné determinanty, Střední vzdálenost,
Mnohostěny, Momenty determinantů, Blaschke-Petkantschinova formule, Kanon-
ický sekční integrál
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∂z

)︂T
. . . . . . .
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Introduction
The following paragraphs summarise the core topics constituting the doctoral
thesis of the author. The thesis serves as a comprehensive monograph encapsu-
lating the findings of the author, some of which have been already published as
separated papers in impacted journals, see [5, 6, 7, 8, 9, 10]. The complete list of
author’s publications is found in List of Publications at the end of this thesis.

Uniform random point selections and metric moments
Let Kd be a compact and convex body with dimKd = d, the so called d-body.
The most trivial example is Bd, a unit d-ball (d-dimensional ball with unit radius).
Another such body is Td, a d-simplex. Note that we can embed Td in Rd+1 such
that Td is regular in the following way: Let T ∗

d be the convex hull of vertices which
are located at the tops of the unit basis vectors ei, i = 1, . . . , d+ 1 (standard
regular d-simplex). A simple computation reveals that vold T ∗

d = (
√
d+ 1)/d!

is its d-volume (d-dimensional volume). Yet another example is Cd, a regular
d-cube and Od = conv(±e1, . . . ,±ed), its dual, a regular d-orthoplex, which is a
d-dimensional generalisation of a regular octahedron. More generally, we write Pd
for a polytope of dimension d (d-polytope). Specifically, P2 stands for a polygon,
P3 a polyhedron and P4 a polychoron. Let X = (X0,X1, . . .Xn) be a sample
of (n + 1) random points Xj, j = 0, . . . , n selected uniformly and independently
from the interior of Kd and let Hn(Kd) = conv(X) = conv(X0, . . . ,Xn) (or shortly
Hn) be the convex hull of those points. Almost surely, Hn is an n′-dimensional
polytope, where n′ = min{d, n}. The main interest of this thesis is to study the
normalised moments of random variable ∆n = voln′ Hn. That is, we define the
normalised volume ∆n = voln′Hn = voln′ Hn/(voldKd)n

′/d and

v(k)
n (Kd) = E∆k

n, (1)

we refer to as the metric moments in Kd. Normalization ensures that the metric
moments are scale invariant with respect to Kd. Moreover, if n ≥ d, metric
moments are in fact also affine invariant. For a d-ball, v(k)

n (Bd) is known for
any n, k and d (see Miles [48]). Obtaining v(k)

n (Pd) for various Pd is much more
difficult. When n = d, our Hn is almost surely a d-simplex and thus v(k)

d (Kd)
represents the volume moments of a random d-simplex (volumetric moment).
Selected exact values when Kd = Td with n = d are shown in Table 1 below.
Throughout the thesis, we will see how these values can be obtained.

Probabilitity that a random triangle is obtuse

Another related problem is as follows: Let us select three points randomly uni-
formly from some given d-body Kd. What is the probability that the random tri-
angle formed by those vertices is obtuse? We denote this probability as ηKdKdKd
and call it the obtusity probability (in Kd) for short. Note that the obtusity
probability is not a metric moment, however it can be approached by the same
techniques.
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v
(k)
d (Td) d = 1 d = 2 d = 3 d = 4 d

k = 1 1
3

1
12

13
720−

π2

15015
97

27000−
2173π2

52026975

k = 2 1
6

1
72

3
4000

1
33750

d!
(d+1)d(d+2)d

k = 3 1
10

31
9000

1
52500

(︂
733
240 + 79π2

46189

)︂
1

1055

(︂
5866197

800 + 63065881π2

3108248

)︂
k = 4 1

15
1063

2469600
871

123480000
2083

96808320000 ∗
k 2

(k+2)(k+1) ∗

Table 1: Volumetric moment v
(k)
d (Td) of a random d-simplex in Td

Crofton Reduction Technique
Often, we are faced with a problem in which the objective is to find the mean value
of some functional which depends on random points selected from the interior of
some polytope. An easier problem would be to find the mean value of the same
functional, but now with some of the points being selected from the boundary
of the polytope, from its edges or even being fixed at some of its vertices. We
say the original problem has been reduced. Seemingly unrelated, those reduced
problems are actually connected with the original one by a simple linear relation.
Moreover, to maximalise the simplification, this procedure of reduction can be
applied repeatedly. Although very powerful, the Crofton Reduction Technique
(or CRT for short) still remains fairly unknown, even though the technique itself
dates back more than one hundred years ago to Crofton and it is sometimes
presented in textbooks on random geometry (Deltheil [23], Mathai [46]). The
most influential to us was the PhD thesis of R. Sullivan [69]. Her thesis is fully
devoted to CRT, which is presented there in its most general version of the so
called Crofton Differential Equation (CDE). For even more general known version
of CDE, see Ruben and Reed [61]).

In this thesis, we do not generalise further neither we use the most general version
of CRT. Out of all affine transformations possible in CDE, we only consider sim-
ple scaling, which preserves uniformity of selection of random points. In Chapter
1, we introduce this (special) CRT and developed a notationally compact ma-
chinery enabling anyone to quickly determine the correct reduction equations (as
demonstrated on countless examples). As a result, using our machinery, we are
able not only to reproduce the famous results in just few lines, but also tackle
problems yet unsolved. Those problems are the following:

v
(k)
1 (P3) mean distance in polyhedra and its moments, respectively
η(P2) obtusity probability (of a random triangle selected from a polygon P2)
Π(k)

222 perimeter moments (of a random triangle selected from a disk B2)

Table 2: Moments studied using CRT in the thesis
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Mean distance

Quantity v
(1)
1 (Kd) has the meaning of the mean distance between two random

points selected uniformly and independently from Kd for any d. More generally,
v

(k)
1 (Kd) are the corresponding distance moments in Kd.

In two dimensions, the distance moments v(k)
1 (K2) have been studied extensively.

In fact, v(k)
1 (P2) is known for any polygon P2 and any integer k (there are many

partial results, see Bäsel [4] for P2 being a regular polygon, but the same methods
can be applied for any polygon as shown in our thesis).

In three dimensions, assuming K3 is convex, Bonnet, Gusakova, Thäle and Za-
porozhets [12] recently found a sharp optimal bounds on v

(1)
1 (K3) normalised by

the mean width of K3. However, exact values for specific K3 were scarce. The
only exception was v(1)

1 (B3) and v
(1)
1 (C3). The value of the latter is due to Rob-

bins and Bolis [60]. The consequence of author’s investigation by applying the
Crofton Reduction Technique (see Ruben and Reed [61]) is that in fact, v(k)

1 (P3)
is always expressible in an exact form for any polyhedron P3 and any integer k
(P3 also does not need to be convex). For example, the author showed

v
(1)
1 (T ∗

3 ) = 3
√

3
(︂√

2
7 −

37π
315 + 4

15 arctan
√

2 + 113 ln 3
210

√
2

)︂
≈ 0.72946242, (2)

v
(1)
1 (O3) = 3

√︂
3
4

(︂
4

105 + 13
√

2
105 −

4π
45 + 109 ln 3

630
√

2 + 16 arccot
√

2
315 + 158

√
2 argcoth

√
2

315

)︂
≈0.65853. (3)

The author also applied the Crofton Reduction Technique to obtain the values
of v(1)

1 (P3) for all other regular polyhedra. The full investigation of v(1)
1 (P3) is

covered in [7], which is also shown in Chapter 1 of this thesis.

Obtusity probability

In two dimensions, there are several known results. Obtusity probability was first
solved in a disk by Woolhouse [77]. Later, Langford [42] found η(C2) and η(P2)
for P2 being a general rectangle. In this thesis, we generalised Langford’s result
to any convex polytope. For example, we found in an equilateral triangle T ∗

2 ,

η(T ∗
2 ) = 25

4 + π

12
√

3
+ 393

10 ln
√

3
2 ≈ 0.7482. (4)

In higher dimensions, apart from the d-ball (Buchta and Müller [17]), η(Kd) was
not known for any Kd with d ≥ 3. Unfortunately, CRT becomes less useful in
higher dimensions. Nevertheless, using CRT, we were still able to derive

η(C3) = 323338
385875−

13G
35 + 4859π

62720−
73π

1680
√

2
− π2

105 + 3π ln 2
224 −

3π ln(1+
√

2)
224 , (5)

where G is the Catalan’s constant.
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Metric moments and random matrices
Moments of random determinants

It turns out that the even metric moments (even k) in Td can be analyzed only by
tools stemmed from the field of combinatorics. More concretely, there is a natural
connection between metric moments and moments of particular random deter-
minants. Let Xij be independent and identically distributed random variables,
from which we construct matrix A = (Xij)n×n. We denote moments of its entries
Xij as mr = EXr

ij and for their central moments, we write µr = E (Xij −m1)r.
By k-th random determinant moment, we mean the value fk(n) = E (detA)k.
This value can be expressed as polynomials in mr (or µr) or as expansion coeffi-
cients of the associated generating function Fk(t) = ∑︁∞

n=0
tn

(n!)2fk(n). If Xij follows
the standard exponential distribution Exp(1) (see Table A.1 of distributions used
throughout the thesis in Appendix A), that is if mj = j!. Those special random
determinant moments are then intimately connected with volumetric moments in
Td. For even k as shown by Reed [59]

v(k)
n (Tn) =

(︄
n!

(n+ k)!

)︄n+1

fk(n+ 1). (6)

When k = 4, we get for the first ten exact determinant moments f4(n):

n 1 2 3 4 5 6 7
f4(n) 24 960 51840 3511872 287953920 27988001280 3181325414400

n 8 9 10
f4(n) 418846663065600 63399549828464640 10964925305310412800

Table 3: Fourth moment f4(n) of a random determinant with exponentially dis-
tributed entries

When k = 6, we get for the first six exact determinant moments f6(n):

n 1 2 3 4
f6(n) 720 907200 1559900160 3340718899200

n 5 6
f6(n) 8515130572800000 25161471058916966400

Table 4: Sixth moment of a random determinant with entries exponentially dis-
tributed
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It is more convenient to first study random determinant moments without any
restriction on the distribution of Xij. Moments of Random determinants are
discussed in Chapter 2. A natural generalisation of the problem is to consider
a non-square matrix U = (Xij)n×p. Here, fk(n, p) = E (detU⊤U)k/2 are Gram
determinant moments and Fk(t, ω) = ∑︁∞

n=0
∑︁n
p=0

(n−p)!
n!p! t

pωn−pfk(n, p) their gener-
ating functions. The exact expression for F2(t) and F2(t, ω) can be easily derived
using recurrences for any distribution of Xij. By using those, Reed obtained the
second metric moment v(2)

n (Tn) for any n in an exact form. For higher power
moments, it is not that simple. In the case of fourth moment, Nyquist, Rice
and Riordan [50] found the expression for F4(t) when m1 = 0. The problem of
finding the second and fourth moment of a random determinant was also studied
by Fortet [32], Forsythe and Tukey [31] and Turan [73]. Later, Dembo [24] de-
rived F4(t, ω) when m1 = 0. The general case for both F4(t) and F4(t, ω) when
m1 ̸= 0 remained unsolved. However, as it will be shown in Chapter 2 using
several independent proofs (for the original one see [8]), we get

F4(t) = et(µ4−3µ2
2)

(1−µ2
2t)3

(︃
(1 +m1µ3t) 4 + 6m2

1µ2t
(1+m1µ3t)2

1−µ2
2t

+m4
1t

1+7µ2
2t+4µ4

2t
2

(1−µ2
2t)2

)︃
(7)

and

F4(t, ω)= et(µ4−3µ2
2)

(1−µ2
2t)2(1−ω−µ2

2t)

[︄
(1+m1µ3t)4+ 6m2

1µ2t(1+m1µ3t)2

1−µ2
2t

+m4
1t(1+7µ2

2t+4µ4
2t

2)
(1−µ2

2t)2

+ ωm2
1t

1−ω−µ2
2t

(︃
2µ2(1+m1µ3t)2

1−µ2
2t

+ m2
1(1+5tµ2

2+2t2µ4
2)

(1−µ2
2t)2

)︃
+ 2t2ω2m4

1µ
2
2

(1−ω−µ2
2t)2(1−µ2

2t)2

]︄
.

(8)

Hence, as a consequence of Reed’s formula, the fourth metric moment v(4)
n (Tn)

now also possess a closed form expression for any n. An obvious step further
would be to find the sixth determinant moment (k = 6). However, this case is
much harder to analyse. In collaboration with Aaron Potechin and Zelin Lv from
Chicago University, we obtained the value of f6(n) and F6(t) when m1 = 0 (see
our joint work [5]). However, since the exponential distribution does not satisfy
this criterion of m1 = 0, one cannot apply those results on finding the values
of v(6)

n (Tn). In order to overcome this, we developed the marked permutation ta-
bles method, which, coupled with the standard analytic combinatorics techniques,
enabled us to express F6(t) finally also in the general case of m1 ̸= 0. The full in-
vestigation is however beyond the scope of this thesis. In Chapter 2, the method
of marked permutation tables will be demonstrated to show yet another deriva-
tion of F4(t) and F4(t, ω), as well as the special case of F6(t) with µ3 = 0. Note
that expressing F6(t, ω) for m1 ̸= 0 in general is still an open question.

Even metric moments

The knowledge of even determinant moments enables us to deduce even volu-
metric moments in polytopes. That is v(k)

d (Kd) for k even This connection is
demonstrated in Chapter 3.

Odd metric moments in polytopes and integral geometry
Expressing the odd moments turns out be way harder since we can no longer rely
on combinatorial techniques. In the scope of the thesis, we will further analyse
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the first-order metric moments v(1)
n (P3) in dimension three and the volumetric

moments v(k)
d (Pd) of any order k and in general dimensions. These quantities

have the following geometrical interpretation:

v(1)
n (P3) mean convex hull volume (including mean tetrahedron volume)
v

(k)
d (Pd) mean simplex d-volume (and the corresponding moments)

Table 5: Odd metric moments considered in the thesis

First-order metric moments

In two dimensions, one of the classical problems of random geometry is to find the
mean convex hull area and its moments, that is to express v(k)

n (K2) for various K2
and with n ≥ 2. A lot of results were made in this direction. For example, Buchta
and Reitzner [19] found a formula expressing v(1)

n (P2) for any convex polygon P2, a
condensation of an endevour started by Buchta [13] earlier. Although the general
Buchta and Reitzner’s formula for v(1)

n (P2) is not beyond the scope of this thesis,
it is still rather technical so we omit it. A simplified, yet fully general, version of
the same formula appeared in Zinani [78, p. 343].

Apart from a ball, not many exact results were known in three dimensions. Here,
we are interested in expressing v(k)

n (K3) with n ≥ 3, which represents the k-th
moment of a random volume of a convex hull of (n + 1) points. When n = 3,
the convex hull is almost surely a tetrahedron, so v

(1)
3 (K3) represents the mean

tetrahedron volume and, more generally, v(1)
n (K3) represents the mean volume of

a convex hull of (n+ 1) points.

By using the Euler polyhedral formula, Efron [26] showed how the first-order
volumetric moment v(1)

n (K3) with any n ≥ 3 and K3 being convex can be com-
puted using an integral over cutting planes. Let a sample of random points
X′ = (X′

1,X′
2,X′

3) be selected uniformly and independently from the interior of
K3, then

v
(1)
3 (K3) = 3

5 − E
[︂
Γ+

3 (X′)2 + Γ−
3 (X′)2

]︂
, (9)

where Γ+
3 (X′) = vol3 K+

3 / vol3 K3 and Γ−
3 (X′) = vol3 K−

3 / vol3 K3 are the section
volume fraction of the two parts K+

3 ⊔K−
3 into which K3 is divided by a cutting

plane σ passing through the collection X′ = (X′
1,X′

2,X′
3) of points Xj ∈ K3,

j ∈ {1, 2, 3}. We may write σ = A(X′), where A(·) represents the affine hull.
Using this formula, Buchta and Reitzner [18] calculated

v
(1)
3 (T3) = 13

720 −
π2

15015 (10)

Moreover, Buchta and Reitzner [20] derived v(1)
n (T3) for any n ≥ 3. Later, Zinanni

[78] found

v
(1)
3 (C3) = 3977

216000 −
π2

2160 (11)

Until recently, the tetrahedron and the cube were the only polyhedra for which the
value v(1)

3 (P3) was known in an exact form. Using the same Efron’s formula, the
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author of this thesis extended the list of polyhedra for which the mean tetrahedron
volume is known, first of which being the octahedron, where

v
(1)
3 (O3) = 19297π2

3843840 −
6619

184320 . (12)

The remaining polyhedra, for which the author found the exact value of v(1)
3 (P3),

are triangular prism, square pyramid, rhombic dodecahedron, cuboctahedron, tri-
akis tetrahedron and truncated tetrahedron. The exact derivation for all of those
polyhedra is rather technical. In Chapter 5 of this thesis, we show a comprehen-
sive derivation for only some of them.

Odd volumetric moments

The k-th volumetric moment v(k)
d (Kd) for odd k can no longer be solved using

combinatorial techniques. Note that v(k)
d (Kd) represents the mean simplex d-

volume and its moments, respectively. There is a natural overlap with the mean
convex hull d-volume v(1)

n (Kd) when k = 1 and n = d treated in Chapter 5. We
already know that the mean tetrahedron volume v

(1)
3 (K3) can be derived using

Efron’s formula. However, higher moments v(k)
3 (K3) (when k = 3, 5, 7, . . .) were

aparently not known prior to our work for any 3-body apart from B3.

In order to deduce higher volumetric moments (and volumetric moments in higher
dimensions), we developed a method of Canonical section integral based on base-
height splitting. The core finding is that any odd volumetric moment v(k)

d (Kd)
can be written as some integral over even volumetric moments v(k+1)

d−1 (σ ∩Kd) on
intersections of Kd with a hyperplane σ. Eventually, we found v

(k)
3 (T3), v(k)

3 (C3)
and v

(k)
3 (O3) up to k = 5.

In higher dimensions (and for higher moments of convex hulls of more than d +
1 points), there is no Efron’s formula analog. However, the Canonical section
integral can still be used to deduce various new results. For example, we found

v
(1)
4 (T4) = 97

27000 −
2173π2

52026975 ≈ 0.0031803708487 (13)

and other odd volumetric moments beyond the Blaske problem. Our new method
of Canonical section integral with comprehensive comments on deriving v(k)

d (Pd)
for various polytopes Pd is discussed in Chapter 4.

Note that, apart of some figures cross-referencing, Chapter 5 on the first-order
metric moments can be read independently from Chapter 4 on the odd volumetric
moments. We decided to put those two chapters in this order mainly because we
think our Canonical section integral approach is more elementary for readers
new to the subject unaware of Efron’s facet and section formulae. However, we
recommend the readers who would wish to read the content in its historical order
to read Chapter 5 prior to Chapter 4.
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Metric moments in radial simplices
Finally, in the last Chapter 6, we study volumetric moments of simplices whose
vertices are drawn from (special) radially symmetric (isotropic) distributions.
Apart from re-derivation of the known Miles’ results [48], we also introduce condi-
tional radial simplices, in which one vertex is pinned. Those volumetric moments
play essential role in random determinants, connecting Chapter 6 with Chapter
2.

Content overview
With all the chapters introduced, we finish the Introduction with a diagram of
dependencies of the content of the chapters and appendices and how do they
relate to each other.

1. Crofton
Reduction Technique

2. Even Moments
of Random

Determinants

3. Even Volumetric
Moments

4. Odd Volumetric
Moments

5. First-Order
Metric Moments

6. Radial
Random Simplices

A. Probability
distributions and
their stochastic
decomposition

B. Integral calculus
on real affine

subspaces

C. Symmetries and
genealogic decomposition

D. Selected
genealogies

E. Codes in
Mathematica

F. Auxiliary
integrals

Figure 1: Logical dependencies among thesis chapters and appendices.

Acknowledgments. I would like to thank Zakhar Kabluchko for a suggestion to use the base-
height splitting method in order to prove Proposition 256. I also wish to thank my supervisor
Jan Rataj for discussions which turned out to be essential to deduce the odd volumetric moments
by using affine Grassmannians with the correct distributions on γ⊥.
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1. Crofton Reduction Technique
For then P1 and P2 will lie on two distinct sides of the polygon,
and the remark we have just made shows that when on these sides
P1 and P2 are to be treated as having independent uniform distribu-
tions contributing to the shape-density with weights which are readily
calculated.

— David G. Kendall [39]

1.1 Preliminaries

1.1.1 Definitions
Definition 1. A polytope A ⊂ Rd of dimension dimA = a ∈ {0, 1, 2, . . . , d}
and a−volume volA is defined as a connected and finite union of a-dimensional
simplices (forming a pure simplical complex). We say a polytope is flat if
dimA(A) = dimA, where A(A) stands for the affine hull of A. Note that any
polytope with a = d is flat automatically.

Definition 2. We denote Pa(Rd) the set of flat polytopes of dimension a in Rd

and denote P(Rd) = ⋃︁
0≤a≤dPa(Rd) the set of all flat polytopes in Rd. Finally,

we denote P+(Rd) = P(Rd) \ P0(Rd) (flat polytopes excluding points).

Definition 3. Let A,B ∈ P(Rd) and P : Rd × Rd → R, we denote
PAB = E [P (X,Y) |X ∼ Unif(A),Y ∼ Unif(B), independent]. Whenever it is
unambiguous, we write Pab where a = dimA and b = dimB instead of PAB. If
there is still ambiguity, we can add additional letters after as superscripts to
distinguish between various mean values Pab.

Proposition 4. For any A ∈ Pa(Rd) with a > 0, there exist convex ∂iA ∈
Pa−1(R) (sides of A) such that ∂A = ⋃︁

i ∂iA with pairwise intersection of ∂iA
having (a−1)-volume equal to zero.

Remark 5. The sides of three dimensional polytopes (polyhedra) are called
faces.

Definition 6. Let A ∈ P+(Rd). Let n̂i be the outer normal unit vector of ∂iA in
A(A), then we define a signed distance hC(∂iA) from a given point C ∈ A(A)
to ∂iA as the dot product v⊤

i n̂i, where vi = xi−C and xi ∈ ∂iA arbitrary. Note
that if A is convex, the signed distance coincides with the support function
h(A−C, n̂i) defined for any convex domain B as h(B, n̂i) = supb∈B b⊤n̂i.

Remark 7. The signed distance has another geometric interpretation. Put
C = 0 (the origin) and r = 1 + ε (with ε small). Denote

∫︁
(B,A) =

∫︁
B/A−

∫︁
A/B,

by linearity
∫︁
B =

∫︁
A +

∫︁
(B,A). Hence

vol rA =
∫︂
rA

dx =
∫︂
A

dx+
∫︂

(rA,A)
dx = volA+ ε

∑︂
i

vol(∂iA)h0(∂iA) +O(ε2),

(1.1)
or in other words, d vol rA/dr|r=1 = ∑︁

i vol(∂iA)h0(∂iA) for A arbitrary (pos-
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1.1. Preliminaries

sibly non-convex).

Definition 8. Let A ∈ P+(Rd) with a = dimA. Even though ∂A /∈ P(Rd) (it
is not flat), we extend the definition of P∂iAB to P∂AB as the weighted mean

P∂AB =
∑︂
i

wiP∂iAB (1.2)

with weights wi (may be also negative) equal to

wi = vol ∂iA
a volAhC(∂iA) (1.3)

implicitly dependent on a point (called the scaling point) C ∈ A(A).

Remark 9. Note that this definition is not dependent on the number of sides
of A. That is, if we artificially splif one side ∂iA into two sides, the weighted
mean stays the same. This feature enables us to extend the definition to any
convex a-bodies (and their unions) as well. Let λa−1 be the uniform surface
measure on such body A. Then for any scaling point C ∈ A(A),

P∂AB = 1
a volA

∫︂
∂A
PxBhC(x)λa−1(dx), (1.4)

where hC(x) is the support function of A evaluated in x and centered at y
and

PxB = E [P (x,Y) | Y ∼ Unif(B)] (1.5)
by definition.

Definition 10. We say a function P : (Rd)n → R is a homogeneous functional
of order p ∈ R, if there exists P̃ : (Rd)n−1 → R such that P (x1,x2,x3, . . . ,xn) =
P̃ (x2 − x1,x3 − x1, . . . ,xn − x1) for all x1, . . . ,xn ∈ Rd and P̃ (ru2, . . . , run) =
rpP̃ (u2, . . . ,un) for all u2, . . . ,un ∈ Rd and all r > 0. We say P is symmetric
if it is invariant with respect to permutations of its arguments. Finally, if P is
a functional of two points, we say it is bivariate. If it depends of more points,
we say it is multivariate.

Remark 11. Note that if P is symmetric, then PAB = PBA for any domains A
and B.

Example 12. If P = Lp, or more precisely P (x, y) = Lp(x, y) = ∥x− y∥p, then P
is symmetric and homogeneous of dimP = p and with P̃ (x) = ∥x∥p. Whenever
P = Lp, we will use PAB and L

(p)
AB interchangeably throughout the sections on

mean distances.
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Chapter 1. Crofton Reduction Technique

1.1.2 Bivariate Crofton Reduction Technique

Lemma 13 (Bivariate Crofton Reduction Technique). Let P : Rd ×Rd → R
be homogeneous of order p and A,B ∈ P(Rd). Provided that A(A)∩A(B) is
non-empty, then for any C ∈ A(A) ∩ A(B) it holds

pPAB = a(P∂AB − PAB) + b(PA∂B − PAB). (1.6)

*
Figure 1.1: Bivariate Crofton Reduction Technique

Proof. The formula is a special case of the extension of the Crofton theorem by
Ruben and Reed [61], although it is fairly simple to derive directly. Let r = 1 + ε
and put C = 0 (the origin) without loss of generality. The key is to express
PrA,rB in two different ways:

• By definition,

PrA,rB = E [P (X,Y) |X ∼ Unif(rA),Y ∼ Unif(rB)]
= E [P (rX′, rY′) |X′ ∈ A,Y′ ∼ Unif(B)]
= rp E [P (X′,Y′) |X′ ∼ Unif(A),Y′ ∼ Unif(B)]
= rpPAB = PAB + εpPAB +O(ε2).

• On the other hand,

vol rA vol rBPrA,rB=vol rA vol rBE [P (X,Y) |X∼Unif(rA),Y∼Unif(rB)]

=
∫︂
rA

∫︂
rB
P (x, y) dxdy =

∫︂
A

∫︂
B
P (x, y) dxdy +

∫︂
(rA,A)

∫︂
B
P (x, y) dxdy

+
∫︂
A

∫︂
(rB,B)

P (x, y) dxdy +
∫︂

(rA,A)

∫︂
(rB,B)

P (x, y) dxdy

= volA volBPAB + ε volB
∑︂
i

vol(∂iA)hO(∂iA)P∂i AB

+ ε volA
∑︂
j

vol(∂jB)hO(∂jB)PA∂jB +O(ε2).

Comparing the ε terms of both expressions and using Remark 7, we get the
statement of the lemma. If either of dimA or dimB is zero, the lemma holds
too. ■

To find the expectation of P , in the first step, we choose A = K and B = K,
where K is a given d-polytope. Since the affine hulls of both A and B fill the whole
space Rd, any point in Rd can be selected for C. We then employ the reduction
technique to express PAB in PA′B′ where A′ and B′ have smaller dimensions then
A and B. The pairs of various A′ and B′ we encounter we call configurations.
The process is repeated until the affine hull intersection of A′ and B′ is empty.
In that case, we have reached an irreducible configuration.
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1.1. Preliminaries

1.1.3 Multivariate Crofton Reduction Technique
Let us instead consider multivariate functionals P (dependent on more that only
two points). One example is area, volume or obtusity. CRT naturally generalises.

Definition 14. Let P = P (x1, x2, . . . , xn) be a ho-
mogenous function of n points. We define PA1A2...An =
E [P (X1, . . . ,Xn) |X1 ∼ Unif(A1), . . . ,Xn ∼ Unif(An)], where Aj, j = 1, . . . , n
are flat domains from which the points Xj are selected randomly uniformly
(according to distribution Unif(Aj)).

Lemma 15 (Multivariate Crofton Reduction Technique). Let P : (Rd)n → R
be homogeneous of order p and A1, . . . , An ∈ P(Rd), ai = dimAi, then for
any C ∈ ⋂︁1≤i≤nA(Ai) (scaling point) it holds

pPA1A2...An = a1(P∂A1 A2...An − PA1...An) + a2(PA1∂A2...An − PA1...An)
+ · · ·+ an(PA1A2...∂An − PA1...An).

(1.7)

Remark 16. Symmetry of P in points X1, . . . ,Xn is not required for CRT to
hold. However, we often assume so. As a result, PA1,...,An will be invariant
with respect to permutations of A1, . . . , An.

1.1.4 Functional Crofton Reduction Technique
The most general version of Crofton Reduction Technique is availible for functions
of homogeneous functionals.

Definition 17. Let P be a multivariate functional of points Xi, i = 1, . . . , n
selected uniformly from domains Ai. Then for any function ψ : R → R, we
define

ψA1A2...An = E [ψ(P )] = E [ψ(P (X1, . . . ,Xn)) | Xi ∼ Unif(Ai)] . (1.8)

If ψ is moreover differentiable, we denote

ψ∗
A1A2...An = E [Pψ′(P )] = E [Pψ′(P (X1, . . . ,Xn)) | Xi ∼ Unif(Ai)] . (1.9)

Lemma 18 (Functional Crofton Reduction Technique). Let P : (Rd)n → R
be homogeneous of order p and A1, . . . , An ∈ P(Rd), ai = dimAi and there
exists C ∈ ⋂︁1≤i≤nA(Ai). Then for any differentiable function ψ : R→ R, we
have

pψ∗
A1A2...An = a1(ψ∂A1 A2...An − ψA1...An) + a2(ψA1∂A2...An − ψA1...An)

+ · · ·+ an(ψA1A2...∂An − ψA1...An).
(1.10)

Proof. We show how we can derive the the lemma for analytic functions. Let
Q = P k, then Q is homogeneous of order kp, so Equation (1.7) turns into

kpQA1,...,An = a1(Q∂A1,A2,...,An) + · · ·+ an(QA1,A2,...,∂An). (1.11)

22



Chapter 1. Crofton Reduction Technique

Note that the left hand side may be written as E
[︂
pP ∂Q

∂P
| Xi ∈ Unif(Ai)

]︂
. Any

analytic function of P can be written in the form ψ(P ) = ∑︁∞
k=0 αkP

k for some
constants αk. Multiplying Equation (1.11) by αk and summing up over all k
and by linearity, we get Equation (1.10), which finishes the proof. The lemma
however extends beyond analytic functions. See Ruben and Reed [61] for more
general treatment. ■

1.1.5 CRT for distributions, Dirac kernel method
A direct consequence of the functional Crofton Reduction Technique is the ability
of relating distributions between each other via simple differential equations. We
have the following result:

Definition 19. Let P be a multivariate functional of points Xi, i = 1, . . . , n
selected uniformly from domains Ai. Viewed as a random variable, we write
for the Cumulative Density Function (CDF) of P ,

FA1A2...An(λ)=P [P ≤ λ]=P [P (X1, . . . ,Xn) ≤ λ | Xi ∼ Unif(Ai)] (1.12)

and for its Probability Density Function (PDF), fA1A2...An(λ) = d
dλFA1A2...An(λ).

In what follows, we assume that the PDF always almost surely exists and it is
(piecewise) continuous.

Lemma 20 (Distributional Crofton Reduction Technique). Let P : (Rd)n →
R be homogeneous of order p and A1, . . . , An ∈ P(Rd), ai = dimAi and there
exist C ∈ ⋂︁1≤i≤nA(Ai). Then we have for the CDF of the random variable
P ,

−p λF ′
A1A2...An(λ) = a1(F∂A1 A2...An(λ)− FA1...An(λ))

+ a2(FA1∂A2...An(λ)− FA1...An(λ)) + · · ·
+ an(FA1A2...∂An(λ)− FA1...An(λ)),

(1.13)

or equivalently, by differentiation, we get for its PDF,

−p (λfA1A2...An(λ))′ = a1(f∂A1 A2...An(λ)− fA1...An(λ))
+ a2(fA1∂A2...An(λ)− fA1...An(λ)) + · · ·
+ an(fA1A2...∂An(λ)− fA1...An(λ)).

(1.14)

Proof. By definition, FA1,...,An(λ) = P [P (X1, . . . ,Xn) ≤ λ]. Scaling the domains
Ai by some positive r = 1 + ε and by homogeneity of P ,

FrA1,...,rAn(λ) = P [P (rX1, . . . , rXn) ≤ λ] = P
[︂
P (X1, . . . ,Xn) ≤ r−pλ

]︂
= FA1,...,An(r−pλ) = FA1,...,An(λ)− pλεF ′

A1,...,An(λ) + o(ε),
(1.15)

which gives the left-hand side of Equation (1.13) (the coefficient of ε). The right
side is obtained by expanding P [P (rX1, . . . , rXn) ≤ λ] in ε as a sum over ∂Ai
boundaries, which is an argument equivalent to the one shown in the proof of
Lemma 13. ■
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1.1. Preliminaries

Alternatively (and perhaps less rigorously), Lemma 20 is a direct consequence of
the Functional Crofton Reduction Technique. We just select ψ(P ) = 1P≤λ, then

E [ψ(P )] = E [1P≤λ] = P [P ≤ λ] = F (λ). (1.16)

The right hand side of Equation (1.13) is obvious since we now have ψA1,...,An =
FA1,...,An(λ). To show the left hand side, we have, formally

ψ∗(P ) = Pψ′(P ) = −Pδ(P − λ) = −λδ(P − λ), (1.17)

where δ is the Dirac delta function. Note that, formally, the probability density
function (PDF) f(λ) of random variable P can be written as

f(λ) = E [δ(P − λ)] (1.18)

from which E [ψ∗(P )] = −λf(λ), so ψ∗
A1A2...An = −λfA1A2...An(λ).

1.1.6 CRT for joint densities of more functionals

Definition 21. Let P = P (X1, . . . ,Xn) and P ′ = P ′(X1, . . . ,Xn) be multi-
variate functionals of points Xi, i = 1, . . . , n selected uniformly from domains
Ai. Viewed as random variables, we write fA1A2...An(λ, λ′) for their Joint Prob-
ability Density Function (JPDF). That is, for any measurable M ⊂ R2, we
have

P
[︂
(P, P ′)⊤ ∈M

]︂
=
∫︂
M
f(λ, λ′)dλdλ′. (1.19)

Similarly, for their Joint Cumulative Density Function (JCDF),

FA1A2...An(λ, λ′)=P [P ≤ λ, P ′ ≤ λ′ | Xi ∼ Unif(Ai)] . (1.20)

Note that FA1,...,An(λ, λ′) =
∫︁ λ′

−∞
∫︁ λ

−∞ fA1,...,An(t, t′) dtdt′.

Similarly as in the case of the ordinary one-variable Distributional Crofton Re-
duction Technique, we can relate the joint CDF with the CDFs containing the
boundaries. We state the following lemma (without proof)
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Chapter 1. Crofton Reduction Technique

Lemma 22 (Joint Distributional Crofton Reduction Technique). Let P, P ′ :
(Rd)n → R be homogeneous functionals of order p and p′, respectively, and
A1, . . . , An ∈ P(Rd), ai = dimAi and there exists C ∈ ⋂︁1≤i≤nA(Ai). Then
we have for the JCDF of the random variables P, P ′,

− p λFA1A2...An(λ, λ′)
∂λ

− p′ λ′FA1A2...An(λ, λ′)
∂λ′

= a1(F∂A1 A2...An(λ, λ′)− FA1...An(λ, λ′))
+ a2(FA1∂A2...An(λ, λ′)− FA1...An(λ, λ′)) + · · ·
+ an(FA1A2...∂An(λ, λ′)− FA1...An(λ, λ′)),

(1.21)

or equivalently, by differentiation, we get for its JPDF,

− p ∂(λfA1A2...An(λ, λ′))
∂λ

− p′ ∂(λ′fA1A2...An(λ, λ′))
∂λ′

= a1(f∂A1 A2...An(λ, λ′)− fA1...An(λ, λ′))
+ a2(fA1∂A2...An(λ, λ′)− fA1...An(λ, λ′)) + · · ·
+ an(fA1A2...∂An(λ, λ′)− fA1...An(λ, λ′)).

(1.22)
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1.2. Overview of functionals

1.2 Overview of functionals
What follows is an overview of the functionals treated in this thesis. Detailed
derivations are found in subsequent sections dedicated to each functional. We
also discuss which results were known and which are novel.

1.2.1 Distance

Denoted as L = L(X,Y) = ∥X −Y∥, the distance between two random points
X,Y ∼ Unif(Kd), where Kd ⊂ Rd, is among the most natural bivariate homo-
geneous symmetric functionals we might think of. Note that the order of L is
exactly one. In order to get higher order functionals, we may put P = Lp, which
has order p. In the following sections, we often just assume, if not stated differ-
ently, that P = Lp. The expected value of P is then the p-th moment of random
distance of two points X,Y. In our notation, we write for the moments

L
(p)
dd = L

(p)
KdKd

= E [L(X,Y)p|X,Y ∼ Unif(Kd)] . (1.23)

Those moments are related with the metric moments defined in the Introduction
via the following normalisation

v
(p)
1 (Kd) = L

(p)
dd

(voldKd)p/d
. (1.24)

Two dimensions

The functional of distance in two dimensions is fairly understood and has been
extensively studied (see Bäsel [4] and references therein). Recently, Uve Bäsel
[4] expressed L

(p)
22 in P2 being a regular polygon in R2 (that is, d = 2). We will

discuss how we can re-derive those results using Crofton Reduction Technique
(CRT). First-order metric moments of distance in selected K2 are shown in Table
1.1 below.

K2
numerical

value v
(1)
1 (K2)

B2 disk 0.510826 128
45π3/2

C2 square 0.521405 2
15 +

√
2

15 + 1
3 argsinh(1)

T ∗
2

equilateral
triangle 0.554364 4+3 ln 3

10 4√3

Table 1.1: Mean distance in various 2-bodies with unit area
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Three dimensions

Let K3 be a polyhedron. Even-power moments L(p)
33 are trivial to compute. When

p is odd, the value L(p)
33 has been known in the exact form only for K3 being a ball

(trivial) or (for p = 1) a unit cube [60], known as the so called Robbins constant

E [L] = 4
105 + 17

√
2

105 −
2
√

3
35 −

π

15 + 1
5 argcoth

√
2 + 4

5 argcoth
√

3 ≈ 0.66170718.
(1.25)

Recently, Bonnet, Gusakova, Thäle and Zaporozhets [12] found a sharp optimal
bound on the normalised mean distance Γ33 = L33/V1(K3) in convex and compact
K3, where V1(K3) = 2

∫︁
S2 ∥ projn̂ K3∥ dn̂ is the first intrinsic volume of K3. A

special case of their result in three dimensions gives 5
28 < Γ33 <

1
3 .

As stated in [12], although the first intrinsic volume is easy to express in any
polyhedron, number of examples for which an exact formula for L33 is available is
rather limited. We will show that this might not be the case and indeed one can
find L33 (and all natural moments L(p)

33 ) in an exact form easily for any K3 being
a polyhedron. The main result of our own investigation is thus the following
theorem:

Theorem 23. For any given polyhedron, the mean distance between two of its
inner points selected at random can always be expressed in terms of elementary
functions of the location of its vertices and sides. The same holds for all other
natural moments.

Remark 24. By elementary functions, we mean a closed field of functions
containing radicals, exponential, trigonometric, and hyperbolic functions and
their inverses.

The theorem is solely based on the Crofton Reduction Technique, see [25, 61],
which under certain conditions enables us to express L(p)

33 as some linear combina-
tion of L(p)

AB = E [Lp|X ∈ A,Y ∈ B] over domains A and B with smaller dimen-
sion than that of K3. The theorem then follows from the observation that we are
able to decompose all the corresponding terms into computable double integrals,
as we will see in Section 1.4.2. In fact, very recently, using different methods, Ci-
ccariello [21] showed that the so-called chord-length distribution, which is related
to the distribution of L, can also be expressed in terms of elementary functions
in any polyhedron K3.

Exact mean distances in regular polyhedra

The table below summarises all new results of exact mean distance in various
polyhedra. For completeness, the previously known cases of a ball and a cube have
been added as well. Each solid K3 has volK3 = 1. This normalisation ensures
the right column displays exactly the first distance metric moment v(1)

1 (K3) =
L33/

3
√

vol3 K3. As usual, ϕ = (1 +
√

5)/2 is the Golden ratio.
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K3 v
(1)
1 (K3)

ball
0.63807479

18
35

3
√︂

6
π

icosahedron
0.64131249

1
2

3
√︂

9
5 −

3√
5

(︄
197
525 + 239

525
√

5 −
44
525

√︂
2 + 2√

5 −
(17226+6269

√
5)π

157500

− (2186+1413
√

5) arccotϕ
15750 + (82−75

√
5) arccot(ϕ2)
5250 + 4(2139+881

√
5) argcschϕ

7875

+ (15969+7151
√

5) argcothϕ
12600 + (4449−1685

√
5) ln 3

42000 − (75783+37789
√

5) ln 5
252000

)︄

dodecahedron
0.64252068

1
3
√

30+14
√

5

(︄
1516
1575 + 2

√
2
5

45 −
124
√

3
5

175 − 71
√

2
1575 −

12
√

3
35 + 342

175
√

5 + 493π
23625

+ 67π
945

√
5 + (397−244

√
5) arccot 2

18900 + (24023+11788
√

5)(arccos 2
3 −arccos 1

3)
94500

− (461+212
√

5)(arccos 23
41 +arccos 39

41)
1000 − (1031+521

√
5) argcosh 13

3
75600

+ (367+163
√

5) argcosh 9
16800 + (22197+8149

√
5)(argcosh 121

41 −argcosh 57
41)

84000

+ (15763+7063
√

5)(argcosh 7
3 −argcosh 3)

21000 + (288889+129739
√

5) ln 3
378000

+ 2(423+187
√

5)(argcosh 4−argcosh 2)
875 + (109−3143

√
5) ln 5

151200

)︄

octahedron
0.65853073

3
√︂

3
4

(︂
4

105 + 13
√

2
105 −

4π
45 + 109 ln 3

630
√

2 + 16 arccot
√

2
315 + 158 argcoth

√
2

315

√
2
)︂

cube, [60]
0.66170718

4
105 + 17

√
2

105 −
2
√

3
35 −

π
15 + 1

5 argcoth
√

2 + 4
5 argcoth

√
3

tetrahedron
0.72946242

3
√

3
(︂√

2
7 −

37π
315 + 4

15 arctan
√

2 + 113 ln 3
210

√
2

)︂

Table 1.2: Mean distance in various solids of unit volume, ϕ = (1 +
√

5)/2 is the
Golden ratio.

Normalised mean distance

We could select normalisation in which V1(K3) = 1 rather than volK3 = 1. In
order to express the normalised mean distance Γ33, we just rescale our values in
Table 1.2 by 3

√
volK3/V1(K3). Both volK3 and V1(K3) can be expressed easily.

The following Table 1.3 shows the volume of the regular polyhedra with edge
length equal to l. To express V1(K3), we use the formula V1(K3) = 1

2π
∑︁
i li(π−δi),

where the sum is carried over all edges Ei of K3 having length li and dihedral angle
δi. The following table shows the value of V1(K3) for the five regular polyhedra
(Platonic solids) with common edge length li = l for all i.

When K3 is a ball, 3
√

volK3/V1(K3) = 1
6

3
√︂

π
6 trivially. Finally, performing the

scaling, in Table 1.5 we show numerical values of Γ33 for the same solids K3 as in
Table 1.2. The lower and the upper bound of Γ33 for K3 convex compact (based
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K3 tetrahedron cube octahedron dodecahedron icosahedron

volK3

l3

√
2

12 1
√

2
3

15 + 7
√

5
4

5
(︂
3 +
√

5
)︂

12

Table 1.3: First intrinsic volume of Platonic solids with unit edge length

K3 tetrahedron cube octahedron dodecahedron icosahedron

V1(K3)
l

3 arccos
(︂
−1

3

)︂
π

6
6 arccos 1

3
π

15 arctan 2
π

15 arcsin 2
3

π

Table 1.4: First intrinsic volume of Platonic solids with unit edge length

on [12]) are set to 5/28 and 1/3, respectively.

K3 lower bound tetrahedron octahedron cube

Γ33 0.17857143 0.19601928 0.21800285 0.22056906

K3 icosahedron dodecahedron ball upper bound

Γ33 0.23872552 0.23963024 0.25714286 0.33333333

Table 1.5: Normalised mean distance in Platonic solids with unit first intrinsic volume

1.2.2 Triangle area
Let X,Y,Z ∼ Unif(Kd), Kd ⊂ Rd. We denote S = S(X,Y,Z) as the area of a
triangle whose vertices are points X,Y,Z. The area functional S is trivariate,
symmetric and homogeneous of order two. For its moments, we write

S
(k)
ddd = E

[︂
S(X,Y,Z)k | X,Y,Z ∼ Unif(Kd)

]︂
. (1.26)

The question of obtaining Sddd makes sense only when d ≥ 2. Further more, we
can normalise it such that the solid from which the points are picked is of unit
d-volume. As a result, we get the metric moment of area

v
(p)
2 (Kd) = S

(p)
ddd

(voldKd)2p/d . (1.27)

First-order metric moments of area for selected Kd are shown in Table 1.6 below.
Apart from the d-ball (Miles [48]), v(1)

2 (Kd) is not known for any Kd with d ≥ 3.

1.2.3 Obtusity indicator
We can use CRT to deduce the probability η(Kd) that a random triangle whose
vertices X,Y,Z are independently selected from Unif(Kd), Kd ⊂ Rd is obtuse.
In order to do that, the only thing we need is to consider a trivariate functional
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1.2. Overview of functionals

Kd
numerical

value v
(1)
2 (Kd)

B2 disk 0.0739 35
48π2

B3 ball 0.1413 9
154

3
√︂

9π
2

T2 triangle 0.0833 1
12

Table 1.6: Mean triangle area in various bodies with unit d-volume

η = η(X,Y,Z) being equal to one when the random triangle is obtuse and zero
otherwise. We shall call this functional the obtusity indicator . It is symmetric,
trivarite and homogeneous of order zero. In our convention,

η(Kd) = ηKdKdKd = ηddd = E [η(X,Y,Z) | X,Y,Z ∼ Unif(Kd)] . (1.28)

Note that a triangle is obtuse when exactly one internal angle is obtuse. Hence,
we can decompose the obtusity indicator almost surely as follows

η(X,Y,Z) = η∗(X,Y,Z) + η∗(Y,Z,X) + η∗(Z,X,Y), (1.29)

where we denoted η∗(X,Y,Z) as the obtusity indicator that are equal to one
when the obtuse angle is located at the first vertex X. Furthermore, we can write
out this indicator in terms of a dot product as

η∗(X,Y,Z) = 1(Y−X)⊤(Z−X)<0 (1.30)

since (Y−X)⊤(Z−X) = ∥Y−X∥∥Z−X∥ cosα, where α is the angle at vertex
X of the triangle XYZ. Therefore,

η(X,Y,Z) = 1(Y−X)⊤(Z−X)<0 + 1(Z−Y)⊤(X−Y)<0 + 1(X−Z)⊤(Y−Z)<0. (1.31)

Taking expectation and by symmetry, we get for the obtusity probability

η(Kd) = 3P
[︂
(Y −X)⊤(Z−X) < 0 | X,Y,Z ∼ Unif(Kd)

]︂
. (1.32)

In a given configuration X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C), we write

ηABC = E [η(X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)] . (1.33)

Additionally, we indicate by ∗ the position of the obtuse vertex, so

ηA∗BC = E [η∗(X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)]
= P

[︂
(Y−X)⊤(Z−X) < 0 | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)

]︂
,

(1.34)
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similarly for ηAB∗C and ηABC∗ . Hence, we may write the expected value of the
obtusity indicator in any configuration as

ηABC = ηA∗BC + ηAB∗C + ηABC∗ . (1.35)

Random triangle obtusity probability ηddd = η(Kd) in selected Kd’s is shown in
Table 1.7 below. In there, G is the Catalan’s constant

G =
∞∑︂
n=0

(−1)n
(2n+ 1)2 ≈ 0.9159655941772190150546035149323841 . . . (1.36)

Kd
numerical

value η(Kd)

B2 disk, [77] 0.7197 9
8 −

4
π2

B3 ball, [34, 17] 0.5286 37
70

C2 square, [42] 0.7252 97
150 + π

40

T ∗
2 equilateral triangle 0.7482 25

4 + π
12

√
3 + 393

10 ln
√

3
2

C3 cube 0.5427
323338
385875−

13G
35 + 4859π

62720−
73π

1680
√

2

− π2

105 + 3π ln 2
224 −

3π ln(1+
√

2)
224

Table 1.7: Probability that a random triangle in Kd is obtuse

In two dimensions, there are several known results. Obtusity probability was first
solved in a disk by Woolhouse [77] as a corollary to the Silvester problem. Later,
Langford [42] found η(K2) for K2 being a general rectangle. Our table only shows
the exact result for the special case K2 = C2. Without stating a complete proof,
we believe it is easy to generalise Langford’s result to any convex polygon. This
is demonstrated in Section 1.6.1 on η(T ∗

2 ), where T ∗
2 is an equilateral triangle.

In higher dimensions, apart from the d-ball (Hall [34] and Buchta and Müller
[17]), η(Kd) was not known for any Kd with d ≥ 3. In Section 1.7.2, we newly
found the obtusity probability in the unit cube C3 (also included in Table 1.7).

1.2.4 Perimeter and related functionals of a triangle
Let us (independently) select vertices X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)
of a triangle XYZ from regions A,B,C with dimensions a, b, c as usual. We
denote L = |XY|, L′ = |XZ| and L′′ = |YZ| its (random) side-lengths and
Θ = |∠XZY|, Θ′ = |∠XYZ| and Θ′′ = |∠YXZ| the corresponding (random)
sizes of its internal angles. Then, we denote its perimeter as

Π = Π(X,Y,Z) = |XY|+ |XZ|+ |YZ| = L+ L′ + L′′. (1.37)
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1.2. Overview of functionals

The perimeter is a trivariate symmetric homogeneous functional of order one.
Correspondingly, using our notation, we write for its moments

Π(k)
ABC = E

[︂
Π(X,Y,Z)k | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)

]︂
(1.38)

The question to determine the second perimeter moment Π(2)
222 in the unit disk was

first proposed by Finch [28] who obtained its numerical estimate. Although the
problem of finding exact perimeter moments may seem natural and elementary,
there were essentially no results known (even in the case of the disk). However, by
CRT, we are able to obtain its exact value and also the higher moments (Equation
(1.420)). The exact values of perimeter moments we found in the unit disk are
shown in Table 1.8 below. In there, ζ(3) = ∑︁∞

n=1 1/n3 is the Apéry’s constant .
See Section 1.6.3 for detailed calculation.

B2
numerical

value Π(k)
222

k = −1 0.416744 64
15π −

64 ln 2
15π

k = 1 2.7162 128
15π

k = 2 8.0271 3 + 3383
72π2 + 35ζ(3)

16π2

k = 3 25.2395 93584
1225π + 1024 ln 2

245π

k = 4 83.2737 49
2 + 1029ζ(3)

32π2 + 9745549
18000π2

k = 5 285.644 62912704
72765π + 32768 ln 2

693π

Table 1.8: Random triangle perimeter moments Π(k)
222 in the unit disk B2

First moment

By symmetry, we immediately know that

E [Π] = E [L+ L′ + L′′] = 3E [L] (1.39)

in any Kd. Therefore, the first perimeter moment is trivially deduced from the
first moment of distance.

Second moment

The second perimeter moment turns out to be non-trivial. Taking expectation of

Π2 = (L+ L′ + L′′)2 = L2 + L′2 + L′′2 + 2LL′ + 2LL′′ + 2L′L′′, (1.40)

we get, by symmetry
E [Π2] = 3E [L2] + 6E [LL′] . (1.41)
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The functional LL′ = |XY||XZ| is not symmetric with respect to every permu-
tation of points X,Y,Z. However, we may define another functional, namely the
symmetric polynomial

T = T (X,Y,Z) = LL′ + LL′′ + L′L′′ (1.42)
such that E [T ] = 3E [LL′]. The functional T is symmetric and homogeneous of
order two.

Third moment

Let us consider the following symmetric and homogeneous polynomials of order
three

J = L2L′ + LL′2 + L2L′′ + LL′′2 + L′2L′′ + L′L′′2, K = LL′L′′. (1.43)
By symmetry, we have E [J ] = 6E [LL′2]. Using those polynomials, we can write
for the third power of perimeter,

Π3 = (L+ L′ + L′′)3 = L3 + L′3 + L′′3 + 3J + 6K, (1.44)
from which, taking the expectation,
E [Π3] = 3E [L3] + 3E [J ] + 6E [K] = 3E [L3] + 18E [L2L′] + 6E [LL′L′′] . (1.45)

Both E [J ] and E [K] are non-trivial to obtain.

Fourth moment

Let us consider the following symmetric and homogeneous polynomials of order
four

U = L3L′ + LL′3 + L3L′′ + LL′′3 + L′3L′′ + L′L′′3,

V = L2L′L′′ + LL′2L′′ + LL′L′′2

W = L2L′2 + L2L′′2 + L′2L′′2
(1.46)

By symmetry, we have E [U ] = 6E [L3L′], E [V ] = 3E [L2L′L′′] and E [W ] =
3E [L2L′2]. The fourth power of perimeter is then

Π4 = L4 + L′4 + L′′4 + 4U + 12V + 6W. (1.47)
Thus, the fourth moment of perimeter is then expressible as

E [Π4] = 3E [L4] + 4E [U ] + 12E [V ] + 6E [W ]
= 3E [L4] + 24E [L3L′] + 36E [L2L′L′′] + 18E [L2L′2].

(1.48)

Although E [U ] and E [V ] are non-trivial to obtain, interestingly, the first moment
of W is trivial and it can be actually obtained from the fourth moment of distance
and the second moment of area. Let R = Π/2. By Heron’s formula, we have for
the area S of the random triangle X,Y,Z with side-lengths L,L′, L′′,

S =
√︂
R(R− L)(R− L′)(R− L′′). (1.49)

Squaring this identity and by rearranging, we get
2W = 16S2 + L4 + L′4 + L′′4 (1.50)

so, taking expectation, we get
E [W ] = 8E [S2] + 3

2E [L4] or E [L2L′2] = 8
3E [S2] + 1

2E [L4]. (1.51)
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1.3. Bivariate functionals in two dimensions

1.3 Bivariate functionals in two dimensions

1.3.1 Equilateral triangle

Let us have a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked from and equilateral triangle. We put P = Lp

(assumed implicitly throughout this section). For our triangle, we can take

T ∗
2 = conv(e1, e2, e3) ⊂ R3 (1.52)

with area vol2 T ∗
2 =

√
3/2 and side-length l =

√
2. Additional, for a given

i = 1, 2, 3, we denote Ei as an edge of T ∗
2 opposite to vertex ei. For the def-

inition of various mean values Pab = L
(p)
ab , see Figure 1.2. We also included the

position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral
corresponding to a given reduction equation in the system of reduction equations.

*

*

*

*

Figure 1.2: All different L
(p)
ab configurations in an equilateral triangle

Reduction system

The full system obtained by CRT is

I : pP22 = 2 · 2(P21 − P22)
II : pP21 = 2(P11 − P21) + 1(P20 − P21),

III : pP20 = 2(P10 − P20)
IV : pP11 = 2(P10 − P11).

By the use of symmetry, the terms can be given as follows: P22 = PT ∗
2 T

∗
2
, P21 =

PT ∗
2 E1 , P20 = PT ∗

2 e1 , P11 = Pe1e2 , P10 = PE1e1 . Our linear system is solved by

P22 = 24P10

(4 + p)(3 + p)(2 + p) . (1.53)

The remaining configuration (10) is irreducible (no scaling point available).
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P10

In configuration (10), one point is drawn uniformly from an edge of T ∗
2 while the

other is fixed at one of the opposite vertices. We can parametrise the points as

X = e1,Y = e2 + t(e3 − e2), t ∈ (0, 1), (1.54)

from which L = ∥X−Y∥ =
√

2− 2t+ 2t2 and thus for P = Lp,

L
(p)
10 = E [∥X−Y∥p] =

∫︂ 1

0
(2− 2t+ 2t2)p/2 dt. (1.55)

This integral is straightforward. For example, when p = 1, we get

L10 = 4 + 3 ln 3
4
√

2
. (1.56)

P22

Substituting P10 into Equation (1.53) with P = Lp, we get for general p > −2
(not necessarily an integer),

L
(p)
22 = 24

∫︁ 1
0 (2− 2t+ 2t2)p/2 dt

(4 + p)(3 + p)(2 + p) . (1.57)

Normalising the result, we get in an equilateral triangle with unit area,

v
(p)
1 (T ∗

2 ) = L
(p)
22

(vol2 T ∗
2 )p/2 =

24
∫︁ 1

0

(︂
4√
3(1− t+ t2)

)︂p/2
dt

(4 + p)(3 + p)(2 + p) . (1.58)

For example, plugging p = 1, we obtain for the mean distance between two
random points in the unit equilateral triangle,

v
(1)
1 (T ∗

2 ) = 4 + 3 ln 3
10 4
√

3
≈ 0.554364. (1.59)

Note that, in the equilateral triangle with unit side-length, we have

L22|l=1 =
L22|l=√

2√
2

= 4 + 3 ln 3
20 . (1.60)

Distance density

The density f22(λ) of the random distance L between two interior points in T ∗
2 can

be recovered from moments using inverse Mellin transform (see appendix A.5).
It is convenient to first rescale our triangle so its side-length is one (and hence
λ ∈ (0, 1)). Rescaled Equation (1.57) yields

M[f22] = L
(p−1)
22√
2p−1 = 24

∫︁ 1
0 (1− t+ t2)p/2 dt

(4 + p)(3 + p)(2 + p) . (1.61)

35



1.3. Bivariate functionals in two dimensions

Taking the inverse Mellin transform, we get, formally,

f22(λ) = 24 I1I2I3

[︄ ∫︂ 1

0
δ(λ−

√
1− t+ t2) dt

]︄
(1.62)

From Table A.5 (see Appendix A),

I1I2I3δ(λ− α) = λ(α− λ)2

2α4 1λ<α, (1.63)

via which we can deduce

f22(λ) = 12λ
∫︂ 1

0

(
√

1− t+ t2 − λ)2

(1− t+ t2)2 1λ<
√

1−t+t2 dt. (1.64)

Note that since t ∈ (0, 1), we have
√

1− t+ t2 ∈ (
√

3/2, 1) and thus we can write
1λ<

√
1−t+t2 = 1− 1λ≥

√
1−t+t2 = 1− 1λ≥

√
1−t+t21λ≥

√
3

2
. Hence,

f22(λ) = 12λ
∫︂ 1

0

(
√

1− t+ t2 − λ)2

(1− t+ t2)2 dt

− 12λ
[︄∫︂ 1

0

(
√

1− t+ t2 − λ)2

(1− t+ t2)2 1λ<
√

1−t+t2 dt
]︄
1
λ≥

√
3

2
.

(1.65)

To calculate the integrals, we substitute t = 1
2 +

√
3

2 tan θ, by symmetry,

f22(λ) = 16λ
√

3
∫︂ π

6

0

(︂
1− 2λ cos θ√

3

)︂2
dt− 16λ

√
3
⎡⎣∫︂ arccos

√
3

2λ

0

(︂
1− 2λ cos θ√

3

)︂2
dt
⎤⎦1

λ≥
√

3
2
.

(1.66)
and hence, immediately, we finally get for the density on λ ∈ (0, 1),

f22(λ) = 8λ
[︂
π√
3

(︂
1 + 2λ2

3

)︂
− 4λ

(︂
1− λ

4

)︂]︂
+ 8λ

√
3
[︃
3
√︂

4λ2

3 − 1− 2
(︂
1 + 2λ2

3

)︂
arccos

√
3

2λ

]︃
1
λ≥

√
3

2
.

(1.67)

1.3.2 Square

Let us have a bivariate symmetric homogeneous functional P of order p depen-
dent on two random points picked from K being a square. That is, K = C2
with vertices V1[0, 0], V2[1, 0], V3[1, 1], V4[0, 1] and edges connecting them E12,
E23, E34, E41 (Eij = ViVj). Note that the edge length is a = 1 and the area
volK = 1 so the mean of P is already normalised. We put P = Lp. For the
definition of various mean values Pab = L

(p)
ab , see Figure 1.3. We also included

the position of the scaling point C in cases reduction is possible. The arrows
indicate which configurations reduce to which. Each arrow is labeled by a roman
numeral corresponding to a given reduction equation in the system of reduction
equations.
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*

*

*

*

Figure 1.3: All different L
(p)
ab configurations encountered for K being a square

Reduction system

The full system obtained by CRT is

I : pP22 = 2 · 2(P21 − P22)
II : pP21 = 2(P11 − P21) + 1(P20 − P21),

III : pP20 = 2(P10 − P20)
IV : pP11v = 2(P10 − P11v)

with
P11 = 1

2P11v + 1
2P11r.

By the use of symmetry, the terms can be given as follows: P22 = PKK , P21 =
PKE41 , P20 = PKV4 , P11v = PE34E41 , P11r = PE23E41 , P10 = PV3E41 . Our linear
system is solved by

P22 = 16P10

(4 + p)(3 + p)(2 + p) + 4P11r

(4 + p)(3 + p) . (1.68)

The remaining configurations (10) and (11r) are irreducible (no scaling point
available).

P10

In configuration (10), one point is drawn uniformly from an edge of C2 while the
other is fixed at one of the opposite vertices. We can parametrise the points as

X = [0, 1− t],Y = [1, 1], t ∈ (0, 1) (1.69)

and thus for P = Lp,

L
(p)
10 = E [∥X−Y∥p] =

∫︂ 1

0
(1 + t2)p/2 dt. (1.70)

For example, when p = 1, we get

L10 = 1√
2 + 1

2 argsinh(1). (1.71)
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P11r

In configuration (11r), one point is drawn uniformly from an edge of C2 while
the other is drawn from the opposite edge (Those edges are denoted as A and B
in Figure 1.3). We can parametrise the points as

X = [0, x],Y = [1, y], x ∈ (0, 1), y ∈ (0, 1) (1.72)

and thus for P = Lp, using this parametrization,

L
(p)
11r = E [∥X−Y∥p] =

∫︂ 1

0

∫︂ 1

0
(1 + (x− y)2)p/2 dxdy. (1.73)

Via the change of variables u = x− y, v = y and integrating out v,we get

L
(p)
11r = 2

∫︂ 1

0
(1− u)(1 + u2)p/2du = 2L(p)

10 −
2 p

2 +2 − 2
p+ 2 . (1.74)

For example, when p = 1, we get

L11r = 2
3 −
√

2
3 + argsinh(1). (1.75)

P22

Substituting P10 and P11r into Equation (1.68) with P = Lp, we get for general
p > −2 (not necessarily an integer),

v
(p)
1 (C2) = L

(p)
22 = 8(1− 2

p
2 +1)

(4 + p)(3 + p)(2 + p) + 8
∫︁ 1

0 (1 + t2)p/2dt
(3 + p)(2 + p) . (1.76)

Plugging p = 1, we obtain for the mean distance between two random points in
the unit square,

v
(1)
1 (C2) = L22 = 2

15 +
√

2
15 + 1

3 argsinh(1) ≈ 0.5214054331647207. (1.77)

Distance density

The density f22(λ) of the random distance L between two interior points in C2 can
be recovered from moments using inverse Mellin transform (see appendix A.5).
By Equation (1.76), we have

M[f22] = L
(p−1)
22 = 8(1− 2

p+1
2 )

(3 + p)(2 + p)(1 + p) + 8
∫︁ 1

0 (1 + t2) p−1
2 dt

(2 + p)(1 + p) . (1.78)

Taking the inverse Mellin transform, we get, formally,

f22(λ) = 8 I1I2I3

[︄
δ(λ− 1)− 2δ(λ−

√︂
1
2)
]︄

+ 8I1I2

[︄ ∫︂ 1

0
δ(λ−

√
1 + t2)dt

]︄
(1.79)
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From Table A.5 (see Appendix A),

I1I2δ(λ− α) = λα−3(α− λ)1λ<α, I1I2I3δ(λ− α) = λ(α− λ)2

2α4 1λ<α, (1.80)

via which we can deduce

f22(λ) = 4λ(1− λ)2
1λ<1 − 2λ(

√
2− λ)2 + 8λ

∫︂ 1

0

√
1 + t2 − λ

(1 + t2)3/2 1λ<
√

1+t2dt. (1.81)

Hence, f22(λ) is nonzero only when λ ∈ (0,
√

2). Note that since t ∈ (0, 1), we can
write for λ ∈ (0,

√
2) that 1λ<√

1+t2 = 1−1λ≥
√

1+t2 = 1−1λ≥
√

1+t21λ≥1. Similarly,
we write 1λ<1 = 1− 1λ≥1 and thus

f22(λ) = 4λ(1− λ)2 − 2λ(
√

2− λ)2 + 8λ
∫︂ 1

0

√
1 + t2 − λ

(1 + t2)3/2 dt

−
[︄
4λ(1− λ)2 + 8λ

∫︂ 1

0

√
1 + t2 − λ

(1 + t2)3/2 1λ≥
√

1+t2dt
]︄
1λ≥1.

(1.82)

To calculate the integrals, we substitute t = tan θ,

f22(λ) = 4λ(1− λ)2 − 2λ(
√

2− λ)2 + 8λ
∫︂ π/4

0
(1− λ cos θ)dθ

−
[︄
4λ(1− λ)2 + 8λ

∫︂ arccos(1/λ)

0
(1− λ cos θ)dθ

]︄
1λ≥1

(1.83)

and hence, immediately, we finally get for the density on λ ∈ (0,
√

2),

f22(λ)=2πλ−2(4−λ)λ2−4λ
[︂
(λ−1)2−2

√
λ2−1+2 arccos

(︂
1
λ

)︂]︂
1λ≥1. (1.84)

1.3.3 Disk
Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit disk B2 = {x ∈ R2 | ∥x∥ ≤
1} with area vol2 B2 = π. Additionally, we require P to be rotationally symmetric
with respect to the origin. That is, for any x,y ∈ B2 and any orthogonal matrix
R we have P (Rx, Ry) = P (x,y). This assumption is satisfied by the choice
P = Lp (which is implicitly assumed in this section). Table 1.9 below shows
various explicit L(p)

22 distance moments for selected p’s (from Equation (1.93)).

L
(−1)
22 L

(0)
22 L

(1)
22 L

(2)
22 L

(3)
22 L

(4)
22 L

(5)
22 L

(6)
22 L

(7)
22 L

(8)
22 L

(9)
22 L

(10)
22

16
3π 1 128

45π 1 2048
525π

5
3

16384
2205π

7
2

524288
31185π

42
5

4194304
99099π 22

Table 1.9: Mean distance moments L
(p)
22 between two random points in B2

39



1.3. Bivariate functionals in two dimensions

Reduction system

According to our convention, we write

Pab = E [P (X,Y) | X ∼ Unif(A),Y ∼ Unif(B)] , (1.85)

where a = dimA, b = dimB and the concrete selection of A,B is deduced from
the reduction diagram in Figure 1.4 below. In this diagram, we also included the
position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral
corresponding to a given reduction equation in the system of reduction equations.

*

*

Figure 1.4: All different Pab sub-configurations in B2

Reduction system

The full system obtained by CRT is

I : pP22 = 2 · 2(P21 − P22)
II : P21 = P20.

III : pP20 = 2(P10 − P20),

where the equation II follows from the rotational symmetry of P . The solution
of our system is

P22 = 8P10

(4 + p)(2 + p) . (1.86)

P10

In configuration (10), one point X is drawn uniformly from the boundary ∂B2
while the other Y is fixed at the boundary. Keep in mind that P10 is defined via
generalization of Remark 9 as a mean weighted by the support function

P10 = 1
2 vol2 B2

∫︂
∂B2

P (x,y)hy(x)λ1(dx), (1.87)

where the support function hy(x) of B2 evaluated in x and centered at y ∈ ∂B2
(arbitrary fixed point) is given explicitly [69, p. 58] as

hy(x) = 1
2∥x− y∥2. (1.88)

Parametrising the integral using polar coordinates with their center located at y,

x = [2 sinφ cosφ, 2 sin2 φ+ 1],y = [0,−1], φ ∈ [0, π). (1.89)
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We have dx = 2(cos(2φ), sin(2φ))dφ and hence, for the uniform measure on ∂B2,

λ1(dx) = ∥dx∥ = 2dφ. (1.90)

Next, note that ∥x − y∥ = 2 sinφ and thus hy(x) = 2 sin2 φ. Furthermore, since
P = Lp, we get

P (x,y) = ∥x− y∥p = (2 sinφ)p. (1.91)
Overall, putting everything together and by using symmetry in φ, we get

L
(p)
10 = E [∥X−Y∥p] = 1

π

∫︂ π/2

0
(2 sinφ)2+p dφ. (1.92)

P22

Substituting P10 into Equation (1.86) with P = Lp, we get for general p > −2
(not necessarily an integer),

L
(p)
22 = 8

∫︁ π/2
0 (2 sinφ)2+p dφ
π(4 + p)(2 + p) = (4+p)(1+p)!

Γ(p2 + 3)2 =
22p+6Γ(p+3

2 )2

π(2+p)(4+p)(2+p)! . (1.93)

Plugging p = 1, the mean distance between two random points in the unit disk
in various configurations is shown in Table 1.10.

L22 L21 L20 L10

128
45π

32
9π

32
9π

16
3π

Table 1.10: Mean distance in B2 in various configurations

Note that L22 can be normalised to the first metric moment as

v
(1)
1 (B2) = L22√

π
= 128

45π3/2 ≈ 0.510826. (1.94)

Distance density

The density f22(λ) of the random distance L between two interior points in B2 can
be recovered from moments using inverse Mellin transform (see appendix A.5).
By Equation (1.93), we have

M[f22] = L
(p−1)
22 = 8

∫︁ π/2
0 (2 sinφ)1+p dφ
π(3 + p)(1 + p) . (1.95)

Taking the inverse Mellin transform, we get, formally,

f22(λ) = 8
π
I1I3

[︄ ∫︂ π/2

0
(2 sinφ)2 δ(λ− 2 sinφ) dφ

]︄
. (1.96)

From Table A.5 (see Appendix A),

I1I3δ(λ− α) = λ

2α4 (α2 − λ2)1λ<α, (1.97)
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1.3. Bivariate functionals in two dimensions

via which we can deduce

f22(λ) = 4
π

∫︂ π/2

0

(︄
1− λ2

4 sin2 φ

)︄
1λ<2 sinφ dφ. (1.98)

This integral is trivial, we obtain that λ ∈ (0, 2) and we have there

f22(λ) = 4λ
π

(︃
arccos

(︂
λ
2

)︂
− λ

2

√︂
1− λ2

4

)︃
. (1.99)

1.3.4 General regular polygons
Let K be a regular n-sided polygon (n ≥ 3) with vertices Vi = [cos 2πi

n
, sin 2πk

n
],

where i = 0, 1, 2, . . . , n−1, so the polygon is circumscribed by a circle with radius
one. For edges, we write Ei = ViVi+1 with convention Vn = V0. Note that for
the area, we have volK = n

2 sin 2π
n

and for edge length l = volEi = 2 sin π
n
. Let

P = Lp, then P is symmetric and homogenous of order p. In order to express P22,
we again use the Crofton Reduction technique. First, we select C = [0, 0] as our
first scaling point. That way, pP22 = 4(P21 − P22), where P21 is a configuration
with A = K and B is an (arbitrary) edge of K, we thus choose B = E0. Our
next scaling point is C = V0 = [1, 0], we have pP21 = 2(P11 − P21) + (P20 − P11).
So far,

P22 = 4(2P11 + P20)
(4 + p)(3 + p) , (1.100)

where P20 = PKV0 and

P11 = 2
n

sec
(︃
π

n

)︃ n−2∑︂
i=1

sin
(︃
πi

n

)︃
sin

(︄
π(i+ 1)

n

)︄
PEiE0 . (1.101)

The last relation follows from Crofton Reduction Technique and Definition 8 with
hC(∂iK) = 2 sin πi

n
sin π(i+1)

n
, where ∂iK = Ei with outer normal orientation. To

reduce P20, we choose C = V0 and get pP20 = 2(P10 − P20), where (the weights
are the same)

P10 = 2
n

sec
(︃
π

n

)︃ n−2∑︂
i=1

sin
(︃
πi

n

)︃
sin

(︄
π(i+ 1)

n

)︄
PEiV0 . (1.102)

Finally, we can also reduce PEiE0 into linear combination of PEiE0 . However,
the reduction is dependent on whether n is even or odd. Formally, let us write
pPEiE0 = 2(PEi∂E0 − PEiE0) regardless of parity of n, so overall

P22 = 16 sec (π/n)
n(4 + p)(3 + p)(2 + p)

n−2∑︂
i=1

sin
(︃
πi

n

)︃
sin

(︄
π(i+ 1)

n

)︄
(2PEi∂E0 + PEiV0).

(1.103)
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Irreducible terms

First, we shall compute the irreducible terms PEiV0 . These terms can be written
as an integral over all points X selected uniformly from Ei. A natural parametri-
sation is of course X = Vi + s(Vi+1 − Vi), s ∈ (0, l). Thus

PEiV0 = 1
l

∫︂ l

0
∥Vi + s(Vi+1 − Vi)− V0∥p ds. (1.104)

However, we may parametrise X in polar coordinates centered in V0 instead. Let
us write r(φ) = ∥X − V0∥ for X ∈ Ei, given that X − V0 points in the direction
of the polar angle φ. Note that the polar angle of vertex Vi is φi = π

2 + πi
n

.
Straightforward calculation reveals that

r(φ) = 2 sin
(︃
πi

n

)︃
sin

(︄
π(i+ 1)

n

)︄
sec

(︃2πi− nφ+ π

n

)︃
(1.105)

and

ds =
√︃
r(φ)2 +

(︂
dr
dφ

)︂2
dφ = 2 sin

(︂
πi
n

)︂
sin

(︂
π(i+1)
n

)︂
sec2

(︂
2πi−nφ+π

n

)︂
dφ. (1.106)

Therefore,
PEiV0 = 2p sin1+p

(︂
πi
n

)︂
sin1+p

(︂
π(i+1)
n

)︂
csc

(︂
π
n

)︂ ∫︁ φi+1
φi

sec2+p
(︂

2πi−nφ+π
n

)︂
dφ. (1.107)

Using reparametrisation (2πi− nφ+ π)/n = ζ, we get

PEiV0 = 2p sin1+p
(︂
πi
n

)︂
sin1+p

(︂
π(i+1)
n

)︂
csc

(︂
π
n

)︂ ∫︁ π(i+1)/n
πi/n csc2+p ζ dζ. (1.108)

By definition and contrary to its usual meaning, we put PE0V0 = PEnV0 = 0.

Odd number of sides

If n is odd, we select for all i the following scaling point
Ci = A(Ei) ∩ A(E0) = cos

(︂
π
n

)︂
sec

(︂
πi
n

)︂ [︂
cos

(︂
π(i+1)
n

)︂
, sin

(︂
π(i+1)
n

)︂]︂
(1.109)

from which
PEi∂E0 = 1

2 csc
(︂
π
n

)︂
sec

(︂
πi
n

)︂ (︂
sin

(︂
π(i+1)
n

)︂
PEiV0 − sin

(︂
π(i−1)
n

)︂
PEiV1

)︂
. (1.110)

We can simplify Equation (1.103) in the following way: Note that, rotating K
by 2π/n, we see that PEiV1 = PEi−1V0 , using which we can deduce, after splitting
and then by shifting the summation from i to i+ 1,

P22 = −16 sec (π/n)
n(4 + p)(3 + p)(2 + p)

n−2∑︂
i=1

sin2 (πi/n) sin2 (π(i+ 1)/n)
cos (πi/n) cos (π(i+ 1)/n) PEiV0 , (1.111)

from which immediately in total, for odd n and p > −2 arbitrary,

P22 =
−24+p sec(π

n
) csc(π

n
)

n(4+p)(3+p)(2+p)

n−2∑︂
i=1

sin3+p(πi
n

) sin3+p(π(i+1)
n

)
cos(πi

n
) cos(π(i+1)

n
)

∫︂ π(i+1)
n

πi
n

csc2+p ζ dζ.

(1.112)
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Even number of sides

If n is even, then PEn/2E0 is irreducible since E0 and En/2 are parallel and we
need two parameters to describe the position of points which are drawn from
those sides. Nevertheless, we can always integrate out one of the parameters (or
use the overlap formula, and adaption of Proposition 27 from the next section in
two dimensions) to deduce that

PEn/2E0 = 1
l2

∫︂ l

−l
(h2 + x2)p/2|l − x| dx, (1.113)

where h = 2 cos(π/n) is the separation between En/2 and E0. Identifying 1
l

∫︁ l
0(h2+

x2)p/2 dx as PEn/2V0 and solving the remaining integral, we get

PEn/2E0 = 2PEn/2V0 −
2p+1 csc2

(︂
π
n

)︂
2 + p

(︃
1− cos2+p

(︃
π

n

)︃)︃
, (1.114)

The Equation (1.103) is still valid provided we treat PEn/2∂E0 only formally as
the solution of the equation pPEn/2E0 = 2(PEn/2∂E0 − PEn/2E0). That is,

PEn/2∂E0 = 2+p
2 PEn/2E0 = (2 + p)LEn/2V0 − 2p csc2

(︂
π
n

)︂ (︂
1− cos2+p

(︂
π
n

)︂)︂
. (1.115)

Exploiting symmetries PEiV0 = PEn−i−1V0 and PEi∂E0 = PEn−i∂E0 and and shifting
i→ i+ 1, we get from Equation (1.103) for any even n and p > −2,

P22 =
32 sec

(︂
π
n

)︂
n(4 + p)(3 + p)(2 + p)

(︄
cos

(︃
π

n

)︃(︃
3 + p+ cot2

(︃
π

n

)︃)︃
PEn/2V0

− 2p
cos(π

n
)

sin2(π
n
)

(︃
1−cos2+p

(︃
π

n

)︃)︃
−

n
2 −2∑︂
i=1

sin2 (πi/n) sin2 (π(i+1)/n)
cos (πi/n) cos (π(i+1)/n) PEiV0

)︄
.

(1.116)

Arbitrary number of sides

Alternatively, if we redefine PEi∂E0 to be equal to limx→i PEx∂E0 , where

PEx∂E0 = 1
2 csc

(︂
π
n

)︂
sec

(︂
πx
n

)︂ (︂
sin

(︂
π(x+1)

n

)︂
PExV0 − sin

(︂
π(x−1)

n

)︂
PExV1

)︂
.

(1.117)

and

PExV0 = 2p sin1+p
(︃
πx

n

)︃
sin1+p

(︄
π(x+ 1)

n

)︄
csc

(︃
π

n

)︃ ∫︂ π(x+1)/n

πx/n
csc2+p ζ dζ

(1.118)
for x ∈ R. One can show, by taking the limit, that we get the same expression for
PEn/2V0 when n is even. Thus, using this redefinition of PEi∂E0 , Equation (1.103)
is valid for n ≥ 3 regardless of n being even or odd.
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Even moments

Let us briefly discuss the case of even moments. Uwe Bäsel [4] found the values
of L(p)

22 for p = 2 and p = 4, namely

L
(2)
22 = 1

3

(︃
2 + cos 2π

n

)︃
, L

(4)
22 = 1

90

(︃
77 + 64 cos 2π

n
+ 9 cos 4π

n

)︃
. (1.119)

Using Equation (1.103) with redefinition PEi∂E0 = limx→i PEx∂E0 , we can rederive
those formulae easily. For example, when p = 2, we get from Equation (1.118),

L
(2)
ExV0 = 5

3 + 1
3 cos 2π

n
− cos 2πx

n
− cos 2π(x+ 1)

n
(1.120)

and from Equation (1.117), after simplifications,

L
(2)
Ei∂E0 = 8

3 + 4
3 cos 2π

n
− cos 2π(i− 1)

n
− 2 cos 2πi

n
− cos 2π(i+ 1)

n
. (1.121)

Therefore, plugging those into Equation (1.103) with p = 2,

L
(2)
22 = 2 sec (π/n)

15n

n−2∑︂
i=1

sin
(︃
πi

n

)︃
sin

(︄
π(i+ 1)

n

)︄(︄
7 + 3 cos 2π

n

− 2 cos 2π(i− 1)
n

− 5 cos 2πi
n
− 3 cos 2π(i+ 1)

n

)︄
.

(1.122)

Finally, we can sum this series using CAS software (Mathematica of Maple). As
a result, we are able to deduce the following simple formulae for higher even
moments (the formulae are valid for n ≥ 3 regardless of n being odd or even),

L
(6)
22 = 1

420

(︂
628 + 661 cos 2π

n
+ 164 cos 4π

n
+ 17 cos 6π

n

)︂
− δn3

50 (1.123)

L
(8)
22 = 1

1575

(︂
4921+5936 cos 2π

n
+1974 cos 4π

n
+368 cos 6π

n
+31 cos 8π

n

)︂
− 16δ3n

175 + 2δ4n
225

(1.124)
L

(10)
22 = 1

4158

(︂
30476 + 40162 cos 2π

n
+ 16072 cos 4π

n
+ 4093 cos 6π

n

+ 628 cos 8π
n

+ 45 cos 10π
n

)︂
− 15δ3n

49 + 4δ4n
63 −

2δ5n
441

(1.125)

L
(12)
22 = 1

840840

(︂
15673314 + 21975552 cos 2π

n
+ 10006023 cos 4π

n
+ 3122432 cos 6π

n

+ 661402 cos 8π
n

+ 87296 cos 10π
n

+ 5461 cos 12π
n

)︂
− 2847δ3n

3080 + 668δ4n
2205 −

17+
√

5
441 δ5n+ δ6n

392 ,

(1.126)
L

(14)
22 = 1

308880

(︂
15540360 + 22811745 cos 2π

n
+ 11429660 cos 4π

n
+ 4126221 cos 6π

n

+ 1081192 cos 8π
n

+ 198713 cos 10π
n

+ 23124 cos 12π
n

+ 1285 cos 14π
n

)︂
− 384δ3n

143 + 1816δ4n
1485 −

3057+331
√

5
14256 δ5n + 11δ6n

360 −
δ7n
648 ,

(1.127)

where δjk is the Kronecker delta. Based on the obtained results, we state the
following conjecture:
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Conjecture 25. Let K be a regular n-sided polygon (n ≥ 3) circumscribed by a
circle with unit radius. Then for p being a positive even integer,

L
(p)
22 =

p/2∑︂
j=0

(︃
ajp cos

(︃2πj
n

)︃
+ bjpδjn

)︃
(1.128)

for some numbers ajp and bjp.

Remark 26. Note that, since n ≥ 3, the values of b0p, b1p and b2p are not given
uniquely as we can subtract them from ajp’s.

Using Equation (1.103), we also found the following limit

lim
p→−2+

(2 + p)L(p)
22 = 4π

n sin 2π
n

, (1.129)

which is in agreement with general statement valid for any compact convex K,
that

lim
p→−2+

(2 + p)L(p)
22 = 2π

volK , (1.130)

which is a special case of Corollary 299.1 with d = 2.

Odd moments

When p = −1, we got

L
(−1)
EiV0 = csc(π/n)

2 ln tan(π(i+ 1)/n)
tan(πi/n) , (1.131)

from which, immediately when n is odd,

L
(−1)
22 = −4 sec (π/n) csc(π/n)

3n

n−2∑︂
i=1

sin2 (πi/n) sin2 (π(i+ 1)/n)
cos (πi/n) cos (π(i+ 1)/n) ln tan(π(i+ 1)/n)

tan(πi/n) .

(1.132)

Limit behaviour for large number of sides

In order to extract the limiting properties of P22, we let n go to infinity but at
the same time hold σi = i/n as fixed. We denote ε = 1/n. By Taylor Expansion
of Equation (1.108),

PEiV0 =2p
(︂
1+ pπε cot(πσi)

2 − pπ2ε2(3−p−(1+p) cos(2πσi))
12 csc2(πσi)

)︂
sinp(πσi)+O(ε3),

(1.133)
from which

PEi∂E0 = 2p−1(2 + p)
(︂
1− pπ2ε2(6−p−(4+p) cos(2πσi))

24 csc2(πσi)
)︂

sinp(πσi) +O(ε3).
(1.134)

All together, by Equation (1.103),

P22 = 24+pε
(4+p)(3+p)(2+p)

∑︁n−2
i=1

(︂
(3 + p) sin2+p(πσi) + 3πε

4 (2 + p) sinp(πσi) sin(2πσi)

+ pπ2ε2

24 (−12− 2p+ p2 + (4 + p)2 cos(2πσi)) sinp(πσi) +O(ε3)
)︂
.

(1.135)
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Let f(x) be any sufficiently smooth function. Note that for any n, again denoting
ε = 1/n and σi = i/n,

∫︂ 1

0
f(x) dx =

n−1∑︂
i=0

∫︂ σi+ε

σi
f(x) dx, (1.136)

so by expanding f(x) into Taylor series around x = σi and integrating, we get
∫︂ 1

0
f(x)dx=ε

n−1∑︂
i=0

(︄
f(σi)+ ε

2f
′(σi)+ ε2

6 f
′′(σi)+ ε3

24f
′′′(σi)+ ε4

120f
(4)(σi)+O(ε5)

)︄
.

(1.137)
Replacing f with f ′, f ′′ and so on, we can, by linear combination, invert this
relation to

ε
n−1∑︂
i=0

f(σi) =
∫︂ 1

0
f(x)− ε

2f
′(x) + ε2

12f
′′(x)− ε4

720f
(4)(x) +O(ε5) dx, (1.138)

which is not surprising since it is essentially the Euler-Maclaurin formula. Since
our sums run from 1 to n− 2, so by subtracting terms with i = 0 and i = n− 1
to the right hand side and performing necessary Taylor expansions, we get

ε
n−2∑︂
i=1

f(σi) =
∫︂ 1

0
f(x) dx− ε

2(f(0) + 3f(1))− ε2

12 (f ′(0)− 13f ′(1))

− ε3

2 f
′′(1) + ε4

720
(︂
f (3)(0) + 119f (3)(1)

)︂
+O(ε5).

(1.139)

Therefore, summing Equation (1.135) using this relation, we get the following
formula

P22 =
(︄

1− pπ2

3n2 +O
(︃ 1
n4

)︃)︄
P22d, (1.140)

where

P22d = L
(p)
22d =

24+pΓ
(︂

3+p
2

)︂
(2 + p)(4 + p)

√
π Γ

(︂
2 + p

2

)︂ (1.141)

is the mean distance p-th moment in a unit disk (Equation (1.93)). This approx-
imation is valid for all p > −2. Using the same technique, we are able to further
improve the estimate to

P22 =
(︄

1− pπ2

3n2 + p2(8 + 11p)π4

180(1 + p)n4 + p (16 + p (8 + p− 15p2))π6

1890(1 + p)n6 +O
(︃ 1
n8

)︃)︄
P22d

(1.142)
with the property that the expansion is valid for p > k − 5 if it is truncated at
1/nk term. The reason why the approximation is not correct there is because f
is not sufficiently smooth at the endpoints for low p. However, we can treat those
cases separately. Most notably, when p = 1, we got

L
(1)
22 =

(︄
1− π2

3n2 + 19π4

360n4 +O
(︃ 1
n6

)︃)︄
P22d. (1.143)
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1.4 Bivariate functionals in three dimensions

1.4.1 Ball
Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit ball B3 = {x ∈ R3 | ∥x∥ ≤
1} with volume vol3 B3 = 4π/3. Additionally, we require P to be rotationally
symmetric with respect to the origin. That is, for any x,y ∈ B3 and any orthog-
onal matrix R we have P (Rx, Ry) = P (x,y). This assumption is satisfied by
the choice P = Lp (which is implicitly assumed in this section). Table 1.11 be-
low shows various explicit L(p)

33 distance moments for selected p’s (from Equation
(1.148)).

L
(−2)
33 L

(−1)
33 L

(0)
33 L

(1)
33 L

(2)
33 L

(3)
33 L

(4)
33 L

(5)
33 L

(6)
33 L

(7)
33 L

(8)
33 L

(9)
33

9
4

6
5 1 36

35
6
5

32
21

72
35

32
11

64
15

4608
715

768
77

1024
65

Table 1.11: Mean distance moments L
(p)
33 between two random points in B3

Reduction system

According to our convention, we write

Pab = E [P (X,Y) | X ∼ Unif(A),Y ∼ Unif(B)] , (1.144)

where a = dimA, b = dimB and the concrete selection of A,B is deduced from
the reduction diagram in Figure 1.5 below. In this diagram, we also included the
position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral
corresponding to a given reduction equation in the system of reduction equations.

*

*

Figure 1.5: All different Pab sub-configurations in B3

The full system obtained by CRT is

I : pP33 = 2 · 3(P32 − P33)
II : P32 = P30.

III : pP30 = 3(P20 − P30),

where the equation II follows from the rotational symmetry of P . The solution
of our system is
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P33 = 18P20

(6 + p)(3 + p) . (1.145)

P20

In configuration (20), one point X is drawn uniformly from the boundary ∂B3
while the other Y is fixed at the boundary. Keep in mind that P20 is defined via
generalization of Remark 9 as a mean weighted by the support function

P20 = 1
3 vol3 B3

∫︂
∂B3

P (x,y)hy(x)λ2(dx), (1.146)

where the support function hy(x) of B3 evaluated in x and centered at y ∈ ∂B3
(arbitrary fixed point) is given explicitly as hy(x) = 1

2∥x − y∥2. Parametrising
the integral using spherical coordinates (θ, φ) with their center located at y,

x = [2 sin θ cos θ cosφ, 2 sin θ cos θ sinφ, 2 cos2 θ + 1], θ ∈ [0, π/2),
y = [0,−1], φ ∈ [0, 2π).

Note that ∥x−y∥ = 2 cos θ and thus hy(x) = 2 cos2 θ. Furthermore, since P = Lp,
we get P (x,y) = ∥x − y∥p = (2 cos θ)p. The uniform measure on ∂B3 is given
by λ2(dx) = 4 sin θ cos θdθdφ. Alternatively, integrating out the axial angle φ
(which P does not depend on), we get λ2(dx) = 8π sin θ cos θdθ. Overall,

L
(p)
20 = E [∥X−Y∥p] = 1

2

∫︂ π/2

0
(2 cos θ)3+p sin θ dθ = 2p+2

p+ 4 . (1.147)

P33

Substituting P20 into Equation (1.145) with P = Lp, we get for general p > −3
(not necessarily an integer),

L
(p)
33 = 72 · 2p

(6 + p)(4 + p)(3 + p) . (1.148)

Plugging p = 1, the mean distance between two random points in the unit disk
in various configurations is shown in Table 1.12.

L33 L32 L30 L20

36
35

6
5

6
5

8
5

Table 1.12: Mean distance in B3 in various configurations

Note that L33 can be normalised to the first metric moment as

v
(1)
1 (B3) = L33

3
√︂

4π/3
= 18

35
3

√︄
6
π
≈ 0.63807479. (1.149)
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Distance density

The density f33(λ) of the random distance L between two interior points in B3 can
be recovered from moments using inverse Mellin transform (see appendix A.5).
By Equation (1.148), we have

M[f33] = L
(p−1)
33 = 72 · 2p−1

(5 + p)(3 + p)(2 + p) . (1.150)

Taking the inverse Mellin transform, we get, formally,

f33(λ) = 72 I2I3I5δ(λ− 2). (1.151)

From Table A.5 (see Appendix A), we immediately obtain

f33(λ) = 3
16λ

2(2− λ)2(4 + λ)1λ<2. (1.152)

Interestingly, this density function is much simpler than f22(λ) in the unit disk.

1.4.2 General and special polyhedra
If K = P3 is a polyhedron, the following configurations are irreducible in R3:

• A is a polygon and B is a point
• A and B are two skew line segments
• A and B are two parallel polygons or one polygon and one line segment

parallel to it

Polygon and a point

In the first case, A is a polygon and B a point. Denote projA(·) a perpendicular
projection onto A(A). Next, denote h the distance between B and A(A). With
k = x− projAB where x ∈ A, we have that

L
(p)
AB = 1

volA

∫︂
A

(h2 + k2)p/2 dk (1.153)

is expressible in terms of elementary functions. To see this, write and ∂iA, i =
1, . . . , s for the sides of the polygon A, oriented such that the path through the
vertices of A is counterclockwise. Then, by inclusion/exclusion, and switching to
polar coordinates

L
(p)
AB = 1

volA

s∑︂
i=1

∫︂
Ti

(h2 + k2)p/2 dk = 1
volA

s∑︂
i=1

∫︂ βi

αi

∫︂ hi/ cosφ

0
(h2 + r2)p/2r drdφ

(1.154)
where Ti is a signed triangle whose one vertex is the point projB and the other
two vertices are the consecutive endpoints of ∂iA. Rescaling the vector k by h,
we can rewrite each integral in the sum in a standard way∫︂

Ti
(h2 + k2)p/2 dk = h2+p

(︂
I

(p)
00 (hi/h, βi)− I(p)

00 (hi/h, αi)
)︂

(1.155)

where αi and βi are their respective polar angles (in counterclockwise order) and
hi is the perpendicular distance from projB to ∂iA. The polar angles are defined
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Figure 1.6: Point-polygon triangle decomposition

such that the closest point on the line A(∂iA) from projB has its value equal
to zero, increasing in the clockwise direction (see Figure 1.6). The integral is
positive if the angle of consecutive vertices of the polygon increased and negative
if it decreased.
Summing all contributions, we finally get our point-polygon formula

L
(p)
AB = h2+p

volA

s∑︂
i=1

(︂
I

(p)
00 (hi/h, βi)− I(p)

00 (hi/h, αi)
)︂
. (1.156)

Two skewed line segments

The second case is in fact equivalent with the first. If A and B are two skew line
segments, write A−B = {u−v |u ∈ A, v ∈ B} (which is a parallelogram). Then,
by shifting, we get for any homogeneous P , denoting O as the origin

PAB = PO,A−B. (1.157)

So we can always reduce this problem to the polygon and a point problem treated
before.

Overlap formula

From now on, in case of no ambiguity, we often write simply proj instead of projA
for the perpendicular projection operator onto A(A).

Proposition 27. Let A,B ∈ P+(R3), a = 2, b ∈ {1, 2}, such that A(A) and
A(B) are parallel with perpendicular separation vector s having length h = ∥s∥.
Let P (x, y) be homogeneous and let k be a vector lying in the projection plane
A(A), then

PAB = 1
volA volB

∫︂
A

∫︂
B
P̃ (x− y) dxdy

= 1
volA volB

∫︂
R2
P̃ (s+ k) volA ∩ (projB + k) dk.

(1.158)

Especially, for P = Lp, we get L(p)
AB = 1

volA volB
∫︁
R2(h2+k2)p/2 volA ∩ (projB + k) dk.

51



1.4. Bivariate functionals in three dimensions

Figure 1.7: Overlap formula

Remark 28. Since volA ∩ (projB + k) is a piece-wise polynomial function of
degree at most two on polygonal domains, the double integral is expressible
in terms of elementary functions for any integer p > −3.

Proof. Let A,B ⊂ Rd be compact domains with dimensions a and b, respectively,
and P be symmetric homogeneous functional Rd → R of order p > −3. Let
AB(z) = A∩ (B+z), c = maxz∈Rd dimAB(z) and C = {z ∈ Rd | dimAB(z) = c}.
Then, by substitution y = x+ z and by Fubini’s theorem,

PAB = 1
volA volB

∫︂
A

∫︂
B
P̃ (x− y) dxdy = 1

volA volB

∫︂
C
P̃ (z) volAB(z) dz.

(1.159)
When A,B are parallel in d = 3, the proposition follows. ■

Definition 29. An overlap diagram of A (face) and B (parallel face or edge)
consists of partitions of R2 into open subdomains Di where volA ∩ (projB + k)
can be expressed as a single polynomial function in k ∈ R2 of degree at
most two. Since A and B are polygons or a polygon and a polyline (a piece-
wise straight curve), respectively. These subdomains Di are also polygonal
(polylinial, respectively). When there is no ambiguity, we denote those sub-
domains Di by numbers corresponding to the number of sides of the polygon
A∩(projB+k) of intersection in case B is a face, or the number of line segments
of the polyline A∩ (projB + k) of intersection when B is an edge, respectively

Remark 30. For brevity, we often write volA ∩ projB + k as a shorthand for
volA ∩ (projB + k).

Auxiliary integrals

Apart from rotations and reflections, integrals encountered in this section have
the following form (h > 0)

I
(p)
f (h, ζ, γ) =

∫︂
D(ζ,γ)

f(x, y)
(︂
h2 + x2 + y2

)︂p/2
dxdy, (1.160)

whereD(ζ, γ) is the fundamental triangle domain with vertices [0, 0], [ζ, 0], [ζ, ζ tan γ]
(ζ > 0, 0 < γ < π/2) and f(x, y) is a polynomial in x and y of degree at most
two (quadratic in x and y). We can write f(x, y) = a00 + a10x + a01y + a20x

2 +
a11xy + a02y

2. Based on x and y terms, we have the following

I
(p)
f (h, ζ, γ) = a00I

(p)
00 (h, ζ, γ) + a10I

(p)
10 (h, ζ, γ) + a01I

(p)
01 (h, ζ, γ)

+ a20I
(p)
20 (h, ζ, γ) + a11I

(p)
11 (h, ζ, γ) + a02I

(p)
02 (h, ζ, γ),

(1.161)

52



Chapter 1. Crofton Reduction Technique

where
I

(p)
ij (h, ζ, γ) =

∫︂
D(ζ,γ)

xiyj
(︂
h2 + x2 + y2

)︂p/2
dxdy. (1.162)

The parameters of those integrals are not optimal. We only need to consider the
case h = 1. To see this, denote

I
(p)
ij (q, γ) = I

(p)
ij (1, q, γ) =

∫︂
D(q,γ)

xiyj
(︂
1 + x2 + y2

)︂p/2
dxdy. (1.163)

By scaling x→ hx, y → hy, we can write
I

(p)
ij (h, ζ, γ) = h2+p+i+jI

(p)
ij (ζ/h, γ). (1.164)

Thus, with q = ζ/h,

I
(p)
f (h, ζ, γ) = h2+p

[︂
a00I

(p)
00 (q, γ) + a10hI

(p)
10 (q, γ) + a01hI

(p)
01 (q, γ)

+ a20h
2I

(p)
20 (q, γ) + a11h

2I
(p)
11 (q, γ) + a02h

2I
(p)
02 (q, γ)

]︂
.

(1.165)

Selected values of the auxiliary integrals I(p)
ij (q, γ) and the methods how we can

derive them are found in Appendix F.

General polyhedra

Theorem 31. Let K ∈ P(R3), Ej, Fk, j ∈ {1, . . . , e}, k ∈ {1, . . . , f}, denote
the edges and faces of K, respectively, and let P : Rd×Rd → R be symmetric
and homogeneous of order p > −3. Then

PKK = 2
(6 + p)(5 + p)

(︄ ∑︂
k<k′

PFkFk′wFkFk′ +
∑︂
j

PKEjwKEj

)︄
, (1.166)

with weights wAB (independent on P and p) given as follows: We fix C any
point in R3, Ck any point on A(Fk) and Dj any point on A(Ej). Denote
Fk(j), Fk′(j) the two faces on which lies the edge Ej, then

wFkFk′ = volFk volFk′

vol2K
(hC(Fk)hCk

(Fk′) + hC(Fk′)hCk′ (Fk)), (1.167)

wKEj = volK volEj
vol2K

(︂
hC(Fk(j))hCk(j)(Dj) + hC(Fk′(j))hCk′(j)(Dj)

)︂
. (1.168)

Proof. Use the Crofton Reduction Technique twice. ■

Remark 32. Note that the weights are not unique as they depend on the
position of scaling points.

Remark 33. Note that if P = Lp and for any polyhedron K, all terms PAB in
Equation (1.166) are either further reducible or A and B are parallel. In both
cases, we can express L(p)

AB in terms of auxiliary integrals. Theorem 23 follows.

Nonparallel polyhedra

For polyhedra which have some special properties, we are able to further reduce
Theorem 31 above.
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Definition 34. Let P∗(R3) denote the set of all polyhedra having the property
that affine hulls of any of its three faces of meet at a single point. We call them
nonparallel polyhedra. Also, we denote P∗

convex(R3) a subset of those which
are convex.

Theorem 35. Let K ∈ P∗(R3) and Vi, Ej, Fk, i ∈ {1, . . . , v}, j ∈
{1, . . . , e}, k ∈ {1, . . . , f}, denote the vertices, edges and faces of K, respec-
tively, and P be symmetric and homogeneous of order p > −3. Then

PKK = 12
(6+p)(5+p)(4+p)(3+p)

(︄ ∑︂
ik

Vi /∈A(Fk)

PViFkwViFk +
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

PEjEj′wEjEj′

)︄

(1.169)
for some weights wAB which are independent on P and p.

Proof. Since no pair of faces nor edges are parallel, we can further reduce PFkFk′

and PKEj from Theorem 31 twice. The weights are easily computable by choosing
appropriate scaling points. Note that again the weights are not unique and de-
pend on the selection of those scaling points. For example, let C ∈ A(Fk)∩A(Fk′),
k < k′. Then by CRT, we get

PFkFk′ = 2
4 + p

(︂
P∂FkFk′ + PFk∂Fk′

)︂
. (1.170)

Note that both P∂FkFk′ and PFk∂Fk′ are expressible as some linear combination
of PEiFk with A(Ei) ∩ A(Fk). Finally, we can reduce even this term. Let C′ ∈
A(Ei) ∩ A(Fk), then

PEiFk = 1
2 + p

(P∂EiFk + 2PEi∂Fk) , (1.171)

which in turn is expressible as a linear combination of PViFk and PEiEi′ with
Vi /∈ A(Fk) and A(Ei)∩A(Ei′) = ∅. The reduction of terms PKEj is similar. ■

Nonparallel convex polyhedra

In the case of convex nonparallel polyhedra, we can find very simple relations for
weights wAB. First, we start with a known formula (a special case of Proposition
298 with d = 3 and the factor of 2 absorbed into integration over the whole sphere
S2 rather than the half-sphere S2

+)

Lemma 36. Let K be a convex and compact set in R3 and P symmetric
homogeneous of order p > −3, then

PKK = 1/ vol2K
(4 + p)(3 + p)

∫︂
S2

∫︂
n̂⊥
P̃ (n̂) vol1(σ ∩K)4+p dydn̂, (1.172)

where the integration in carried over all directions n̂ on the unit sphere S2

with surface measure dn̂ having
∫︁
S2 dn̂ = 4π and over all points y on plane n̂⊥

passing through the origin and being perpendicular to n̂. Finally, vol1(σ∩K)
denotes the length of the intersection of K and the line σ passing through
point y in the direction of unit vector n̂.
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Corollary 36.1. By Fubini’s theorem,

lim
p→−3+

(3 + p)PKK = 1
volK

∫︂
S2
P̃ (n̂) dn̂ (1.173)

Remark 37. Similar formulae as the Lemma above are available in higher
dimensions as well and can be deduced from Blaschke-Petkantschin formula
(see Appendix B).

Theorem 38. Let K ∈ P∗
convex(R3) and Vi, Ej, Fk, P, wAB be defined exactly

as in Theorem 35. Denote hik the distance between Vi and A(Fk), similarly
denote hjj′ the distance between O and A(Ej−Ej′) and θjj′ the angle between
Ej and Ej′ (on the same plane under perpendicular projection). Then

PKK = 12/ volK
(6 + p)(5 + p)(4 + p)(3 + p)

(︄ ∑︂
ik

Vi /∈A(Fk)

PViFknViFk volFkhik

+
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

PEjEj′nEjEj′ volEj volEj′hjj′ sin θjj′

)︄
,

(1.174)

with weights nAB satisfying the following projection relation: Choose a di-
rection n̂ and project K onto a plane perpendicular to it. Then the weights
corresponding to vertex-face pairs which overlap and to pairs of edges which
cross add up to one. Symbolically,

1 =
∑︂
ik

Vi /∈A(Fk)

nViFk1n̂∈ViFk +
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

nEjEj′1n̂∈EjEj′ , (1.175)

where 1n̂∈AB = 1 if there are points x ∈ A, y ∈ B such that x− y is parallel
with n̂, otherwise 1n̂∈AB = 0. On top of that, the extreme case where one
of the points x, y lies on the boundary of A or B leaves the value 1n̂∈AB
undefined.

Proof. The key observation is that the weights are independent of the choice of
the function P as long it is symmetric and homogeneous. Let ε > 0 be small and
n̂ be a fixed unit vector, Ωε = πε2 + O(ε4) then denotes a solid angle with apex
half angle equal to ε. We define R(p)(ε, n̂, x, y) = ∥x− y∥p if the angle between n̂
and x − y is smaller than ε and zero otherwise. Alternatively, denote C(ε, V, n̂)
a double-cone region whose vertex is V , apex angle 2ε and the axis has direction
n̂. Then for any domains A and B,

R
(p)
AB(ε, n̂) =

∫︂
A

∫︂
B
R(p)(ε, n̂, x, y) dy dx =

∫︂
A

∫︂
B∩C(ε,x,n̂)

∥x− y∥p dy dx. (1.176)

Note that R is symmetric and homogeneous in x, y of order p. Hence, by Lemma
36,

lim
p→−3+

(3+p)R(p)
KK(ε, n̂)= 1

volK

∫︂
S2
R̃

(−3)(ε, n̂, n̂) dn̂= 2Ωε

volK+O(ε4). (1.177)
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On the other hand, via Theorem 35,

lim
p→−3+

(3 + p)R(p)
KK(ε, n̂) = 2

(︄ ∑︂
ik

Vi /∈A(Fk)

R
(−3)
ViFk

(ε, n̂)wViFk +
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

R
(−3)
EjEj′ (ε, n̂)wEjEj′

)︄
.

(1.178)
We are able to express R(−3)

ViFk
(ε, n̂) and R

(−3)
EjEj′ (ε, n̂) in the following way:

R
(−3)
ViFk

(ε, n̂) = Ωε1n̂∈ViFk
volFkhik

+O(ε4), R
(−3)
EjEj′ (ε, n̂) =

Ωε1n̂∈EjEj′

volEj volEj′hjj′ sin θjj′
+O(ε4).

(1.179)
We will prove only the first equality as the other one is get simply by shifting
(edge-edge configuration is equivalent to vertex-face configuration by means of
Equation (1.157)). Let Vi /∈ A(Fk) for some (polygonal) face Fk and vertex Vi.
We denote by r the distance between Vi and the point of intersection of A(Fk)
and the line passing through the vertex Vi in the direction of n̂. Note that the
perpendicular distance hik between Vi and A(Fk) is independent on the direction
of n̂. Since ε is small, we can write

R
(p)
ViFk

(ε, n̂) = 1
volFk

∫︂
Fk

R(p)(ε, n̂, x, Vi) dx = rp volFk ∩ C(ε, Vi, n̂)
volFk

+O(ε4)
(1.180)

Assuming n̂ ∈ ViFk, the point of intersection lies in the interior of Fk. Hence, for
sufficiently small ε, we get that Vi ∩ C(ε, Vi, n̂) is an ellipse with area

volVi ∩ C(ε, Vi, n̂) = 1n̂∈ViFk
Ωεr

3

hik
+O(ε4) (1.181)

Hence

R
(p)
ViFk

(ε, n̂) = 1
volFk

∫︂
Fk

R(p)(ε, n̂, x, Vi) dx = r3+pΩε1n̂∈ViFk
volFkhik

+O(ε4) (1.182)

when p = −3, the dependency on r vanishes. Finally, comparing this relation
with Equation (1.177), we get the equation for weights

1
volK =

∑︂
ik

Vi /∈A(Fk)

wViFk1n̂∈ViFk
volFkhik

+
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

wEjEj′1n̂∈EjEj′

volEj volEj′hjj′ sin θjj′
(1.183)

valid for any n̂ for which all the values 1n̂∈AB are well defined. Lastly, defining
auxiliary weight nAB via

wViFk = volFkhiknViFk
volK , wEjEj′ =

volEj volEj′hjj′nEjEj′ sin θjj′

volK , (1.184)

we get

1 =
∑︂
ik

Vi /∈A(Fk)

nViFk1n̂∈ViFk +
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

nEjEj′1n̂∈EjEj′ . (1.185)

This constrain alone enables us to determine admissible weights for any convex
nonparallel polyhedron via set of linear equations got by varying the direction of
n̂. ■
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Chapter 1. Crofton Reduction Technique

Tetrahedron

As an example, we express the random distance moments in the case of a tetra-
hedron. There are two possible ways how a planar projection of a tetrahedron
could look like (almost surely) with respect to the number of intersecting pairs
of edges and vertices/faces in the projection (see Figure 1.8).

Figure 1.8: Tetrahedron projection orientations

In the first case, one vertex covers one face. There are no other vertex/face
nor edge/edge coverings. Similarly, in the second case, one edge is covered by
another edge. There are again no other coverings. Thus, in order to satisfy
Equation (1.175), we can simply choose nViFk = nEjEj′ = 1 for each vertex Vi,
face Fk and edges Ej, Ej′ . Hence, by Theorem 38,

PKK = 12/ volK
(6 + p)(5 + p)(4 + p)(3 + p)

(︄ ∑︂
ik

Vi /∈A(Fk)

PViFk volFkhik

+
∑︂
j<j′

A(Ej)∩A(Ej′ )=∅

PEjEj′ volEj volEj′hjj′ sin θjj′

)︄
.

(1.186)

Regular polyhedra

To apply our general method, we shall derive the mean distance in all five regular
polyhedra (also known as Platonic solids). Among those solids, only the tetra-
hedron is nonparallel convex, so Theorem 38 applies here. Hence, we used this
theorem to find the mean distance in a general (possibly irregular) tetrahedron. In
the following sections, we calculate the mean distance in all other Platonic solids
(including the regular tetrahedron again). Since they are an example of parallel
polyhedra, we cannot use Theorem 38 due to presence of irreducible configura-
tions of type face-face and edge-face. However, we can still calculate the mean
distance. The calculation relies the Overlap formula as well as the symmetries
of those regular polyhedra which drastically reduce the number of configurations
needed to be considered. Throughout this section, we denote ν the area of (any)
face of K and l the length (any) of its edge. These values makes sense because
K is a regular polyhedron. Furthermore, ϕ = 1+

√
5

2 is the Golden ratio.

1.4.3 Regular tetrahedron
Let us have P bivariate symmetric homogeneous of order p dependent on two
random points picked from K a regular tetrahedron given by vertices V1[1, 0, 0],
V2[0, 1, 0], V3[0, 0, 1], V4[1, 1, 1], edges connecting them E12, E13, E14, E23, E24,
E34 (Eij = ViVj, where i ̸= j) and with opposite faces F1, F2, F3, F4. Note that
the edge length is a =

√
2 and the volume volK = 1/3, so if we want to express
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1.4. Bivariate functionals in three dimensions

the mean of P in a tetrahedron of unit volume, we must multiply all our results
by 3p/3. We put P = Lp. For the definition of various mean values Pab = L

(p)
ab ,

see Figure 1.9. We also included the position of the scaling point C in cases
reduction is possible. The arrows indicate which configurations reduce to which.

*

*

*

*

*

*

Figure 1.9: All different L
(p)
ab configurations encountered for K being a regular tetra-

hedron

Based on CRT, let us write our reduction system of equations:
pP33 = 6(P32 − P33)
pP32 = 3(P22 − P32) + 2(P31 − P32)
pP22 = 4(P21 − P22)
pP31 = 3(P21 − P31) + 1(P30 − P31)
pP21 = 2(P11 − P21) + 1(P20 − P21)
pP30 = 3(P20 − P30),

where P33 = PKK and by symmetry, we can put P32 = PKF1 , P31 = PKE12 , P30 =
PKV1 , P22 = PF1F2 , P21 = PF4V14 , P20 = PF4V4 , P11 = PE12E34 . This linear system
has a solution

P33 = 72(3P11 + 2P20)
(6 + p)(5 + p)(4 + p)(3 + p) . (1.187)

To demonstrate our technique for irreducible configurations, we derive the value
of L33. That means, we choose P = Lp with p = 1.

L20

By (1.156), by symmetry and using volF4 =
√

3/2, h1 = 1/
√

6, h = 2/
√

3,

P20 = L
(p)
F4V4 = 6h2+p

volF4
I

(p)
00

(︄√
2

4 ,
π

3

)︄
. (1.188)

Using the recursion relations,

I
(1)
00

(︄√
2

4 ,
π

3

)︄
= 1

16
√

2
− π

9 + 1
3 arcsin

√︄
2
3 + 25

96
√

2
argsinh 1√

3
, (1.189)

so, further using arcsin
√︂

2/3 = arctan
√

2 and argsinh(1/
√

3) = 1
2 ln 3,

L20 =
√

2
3 −

32π
27 + 32

9 arctan
√

2 + 25 ln 3
18
√

2
. (1.190)
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Chapter 1. Crofton Reduction Technique

L11

By shifting (1.157), we get L11 = LAB, where B is the origin and A is a paral-
lelogram with vertices [1, 0,−1], [0, 1,−1], [−1, 0,−1], [0,−1,−1]. Therefore, by
the point-polygon formula (1.156) with h = 1 and volA = 2,

L11 = 8h3

volAI
(1)
00

(︄√
2

2 ,
π

4

)︄
, (1.191)

where by recurrences,

I
(1)
00

(︄√
2

2 ,
π

4

)︄
= 1

6
√

2
− π

12 + 1
3 arcsin 1√

3
+ 7

12
√

2
argsinh 1√

3
. (1.192)

Hence, writing arcsin
(︂
1/
√

3
)︂

= π
2 − arctan

√
2 and argsinh(1/

√
3) = 1

2 ln 3,

L11 =
√

2
3 + π

3 −
4
3 arctan

√
2 + 7 ln 3

6
√

2
. (1.193)

L33

Substituting L20 and L11 into Equation (1.187) with P = Lp and p = 1, we get,
finally

L33 = 3
35(3L11 + 2L20) =

√
2

7 −
37π
315 + 4

15 arctan
√

2 + 113 ln 3
210
√

2
.

Or, re-scaling to the unit volume tetrahedron,

v
(1)
1 (T3)= 3

√
3
(︄√

2
7 −

37π
315 + 4

15 arctan
√

2 + 113 ln 3
210
√

2

)︄
≈ 0.72946242, (1.194)

which is an exact expression of an approximation given by Weisstein [75]. Simi-
larly, we would proceed in the case of the second moment:

v
(2)
1 (T3) = 9

10 3
√

3
. (1.195)

Alternatively, we can express the result as the normalised mean distance ΓKK .
Since V1(K) = 3

√
2 arccos

(︂
−1

3

)︂
/π (see Table 1.4 with a =

√
2), we have

ΓKK = L33

V1(K) =
π
(︂√

2
7 −

37π
315 + 4

15 arctan
√

2 + 113 ln 3
210

√
2

)︂
3
√

2 arccos
(︂
−1

3

)︂ ≈ 0.19601928. (1.196)

Of course, using the reduction technique, we could get other moments (replacing
I

(1)
ij by I(p)

ij integrals), and even for a general edge-length tetrahedron.
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1.4. Bivariate functionals in three dimensions

General moments

It is convenient to express our distance moments L(k)
33 in regular tetrahedron with

edge-length a = 1. These moments are deduced from our previous formulae via
rescaling by 2−p/2. By Equation (1.187) and by rescaling,

L
(p)
33

⃓⃓⃓
a=1

=

(︂
1
2

)︂p
2 72(3P11 + 2P20)

(6+p)(5+p)(4+p)(3+p) =
72
[︃
12
(︂

1
2

)︂p
2I

(p)
00

(︂√
2

2 ,
π
4

)︂
+ 32√

3

(︂
2
3

)︂p
2I

(p)
00

(︂√
2

4 ,
π
3

)︂]︃
(6 + p)(5 + p)(4 + p)(3 + p) .

(1.197)
Writing out the auxiliary integrals I(p)

00 explicitly, we get

L
(p)
33

⃓⃓⃓
a=1

= 24
(2+p)(3+p)(4+p)(5+p)(6+p)

[︄
−9π

(︃1
2

)︃p
2
− 32π√

3

(︃2
3

)︃p
2

+ 36
(︃1

2

)︃p
2
∫︂ π

4

0

(︂
1+ 1

2 sec2 φ
)︂p

2 +1
dφ+ 32

√
3
(︃2

3

)︃p
2
∫︂ π

3

0

(︂
1+ 1

8 sec2 φ
)︂p

2 +1
dφ
]︄
.

(1.198)

Density

The density can be recovered from moments using inverse Mellin transform (see
appendix A.5). For the density f33(λ) of the random distance between two points
in a tetrahedron with unit edge-length a = 1, we have by Equation (1.198)

M[f ]=L
(p−1)
33

⃓⃓⃓
a=1

= 24
(1+p)(2+p)(3+p)(4+p)(5+p)

[︄
−9π

(︃1
2

)︃p−1
2
− 32π√

3

(︃2
3

)︃p−1
2

+ 36
(︃1

2

)︃p−1
2
∫︂ π

4

0

(︂
1+ 1

2 sec2 φ
)︂p+1

2 dφ+ 32
√

3
(︃2

3

)︃p−1
2
∫︂ π

3

0

(︂
1+ 1

8 sec2 φ
)︂p+1

2 dφ
]︄
.

(1.199)
Taking the inverse Mellin transform, we get, formally,

f33(λ) = 24 I1I2I3I4I5

[︄
−9πδ(λ−

√︂
1
2)− 32π√

3
δ(λ−

√︂
2
3)

+ 36
∫︂ π

4

0

(︂
1+ 1

2 sec2 φ
)︂
δ
(︃
λ−

√︂
1
2

√︂
1+ 1

2 sec2 φ
)︃

dφ

+ 32
√

3
∫︂ π

3

0

(︂
1+ 1

8 sec2 φ
)︂
δ
(︃
λ−

√︂
2
3

√︂
1+ 1

8 sec2 φ
)︃

dφ
]︄ (1.200)

From Table A.5 (see Appendix A),

I1I2I3I4I5δ(λ− α) = λ(α− λ)4

24α6 1λ<α. (1.201)

via which we can deduce for λ ∈ (0, 1) that

f33(λ) = −72πλ
(︃√︂

1
2 − λ

)︃4
1
λ<
√

1
2
− 36πλ

√
3
(︃√︂

2
3 − λ

)︃4
1
λ<
√

2
3

+ 72λ
∫︂ π

4

0

⎛⎝1−
√

2λ√︂
1 + 1

2 sec2 φ

⎞⎠4

1
λ<
√

1
2

√︂
1+ sec2(φ)

2

dφ

+ 48
√

3λ
∫︂ π

3

0

⎛⎝1−

√︂
3
2λ√︂

1 + 1
8 sec2 φ

⎞⎠4

1
λ<
√

2
3

√︂
1+ 1

8 sec2 φ
dφ.

(1.202)
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Substituting l =
√︂

1
2

√︂
1 + 1

2 sec2 φ and l =
√︂

2
3

√︂
1 + 1

8 sec2 φ respectively, by in-
clusion/exclusion and after some simplifications, we get

f33(λ) = 24
√

2πλ2−72
√

3πλ3+144
(︂
2+
√

2 arctan
√

2
)︂
λ4−6

(︂
6+5
√

3π
)︂
λ5

+ 72πλ
(︃√︂

1
2 − λ

)︃4
1
λ>

√︂
1
2

+ 36πλ
√

3
(︃√︂

2
3 − λ

)︃4
1
λ>

√︂
2
3

− 1
λ>

√
3

2

∫︂ λ

√
3/2

144λ (5l2 − 3) (l − λ)4

l3 (2l2 − 1) (3l2 − 2)
√

4l2 − 3
dl.

(1.203)

Calculating the remaining integral is not hard. We got for all λ ∈ (0, 1),

f33(λ) = 24
√

2πλ2−72
√

3πλ3+144
(︂
2+
√

2 arctan
√

2
)︂
λ4−6

(︂
6+5
√

3π
)︂
λ5

+ 72πλ
(︃√︂

1
2 − λ

)︃4
1
λ>

√︂
1
2

+ 36πλ
√

3
(︃√︂

2
3 − λ

)︃4
1
λ>

√︂
2
3

− 12λ1
λ>

√
3

2

[︄
21λ2√4λ2 − 3 +

√
3
(︂
4 + 36λ2 + 9λ4

)︂
arctan

(︂√
12λ2 − 9

)︂
− 12
√

2λ
(︂
2+3λ2

)︂
arctan

(︃√︂
8− 6

λ2

)︃
−24
√

2λ
(︂
1+2λ2

)︂
arctan

(︃√︂
2− 3

2λ2

)︃
+ 6

(︂
1+12λ2+4λ4

)︂
arctan

(︂√
4λ2 − 3

)︂
− 3
√

3λ2
(︂
12+5λ2

)︂
arccos

(︂√
3

2λ

)︂ ]︄
.

(1.204)

1.4.4 Cube

We present a re-derivation of the Robbins constant for K being a cube via our
method. Here, we demonstrate the Crofton Reduction Technique including the
overlap formula. A standard way how to choose its vertices is [0, 0, 0], [1, 0, 0],
[0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]. Under this choice, the edge
length l = 1, face area ν = 1 and the volume volK = 1. We put P = Lp. For the
definition of various mean values Pab = L

(p)
ab , see Figure 1.10. Note that in L21r

configuration, we let B to be four edges (boundary of an opposite face) rather
than just one edge.
Performing the reduction, we get the set of equations, where

pP33 = 6(P32 − P33),
pP32 = 3(P22 − P32) + 2(P31 − P32),
pP22e = 4(P ′

21 − P22e),
pP31 = 3(P21 − P31) + 1(P30 − P31),
pP21v = 2(P11 − P21v) + 1(P20 − P21v),
pP30 = 3(P20 − P30)
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* * *

*

*

*

Figure 1.10: All different L
(p)
ab configurations encountered for K being a cube

with

P22 = 2
3P22e + 1

3P22r,

P21 = 1
3P21v + 2

3P21r,

P ′
21 = 1

2P21v + 1
2P21r.

Solving the system, we get

P33 = 72(P11 + P20)
(3+p)(4+p)(5+p)(6+p) + 48P21r

(4+p)(5+p)(6+p) + 6P22r

(5+p)(6+p) . (1.205)

When p = 1, we get for the mean distance

L33 = 1
35(3L11 + 3L20 + 8L21r + 5L22r). (1.206)

L20

Without loss of generality, we can write L20 = LAB, where A is the cube’s upper
face defined as a square with vertices [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1] and B is
the origin [0, 0, 0]. Domains A and B are separated by distance h = 1. The face
A is having area volA = 1. By (1.156) and by symmetry,

L20 = 2
volAI

(1)
00

(︃
1, π4

)︃
. (1.207)

Using recurrence relations (see Table F.1 in Appendix),

L20 = 1√
3
− π

18 + 4
3 argcoth

√
3. (1.208)

L11

The value L11 can be defined as a mean distance between egde E1 = [0, 0, 0][0, 1, 0]
and edge E2 = [0, 1, 1][1, 1, 1]. Shifting E1 by vector −E2 (See shifting relation
(1.157)), we can rewrite this as L11 = LAB, where again A is the upper face of
the cube and B is the origin. Hence L11 = L20.
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L21r

Since the reduction technique cannot be applied on AB being parallel, we use
the overlap formula with A being one face of the cube. In case of L21r, the other
domain B is an opposite edge. By symmetry, we can add to this edge also three
other edges opposite to A (see Figure 1.10). Hence, B is a boundary of the face
opposite to A with length volB = 4. Let k = (x, y) then projA = projB is
a square with vertices [1

2 ,
1
2 ], [−1

2 ,
1
2 ], [−1

2 ,−
1
2 ], [1

2 ,−
1
2 ]. In order to projA and

projB + k have nonzero intersection, k must be confined in the region −1 < x <
1 ∧−1 < y < 1. By symmetry, we can chose k to lie in the fundamental triangle
domain D(1, π/4) (we then multiply the values by 8).

symmetry

Figure 1.11: Overlap of the opposite face and edges of a cube

Setting up the integral,

L21r = 8
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.209)

where h = 1, volA = 1, volB = 4 and D = D(1, π/4) is a domain in Figure 1.11
on the right (labeled with the number 2). In this domain, we can write for the
length of the polyline of intersection

volA ∩ projB + k = 2− x− y, (1.210)

which gives us in terms of our auxiliary integrals

L21r = 8
volA volB

⎡⎣2I(1)
00

(︃
1, π3

)︃
− I(1)

10

(︃
1, π4

)︃
− I(1)

01

(︃
1, π4

)︃⎤⎦ (1.211)

Via recursions (see Table F.1 in Appendix), we get

L21r = 7
6
√

2
− 1√

3
− π

9 + 1
4 argcoth

√
2 + 5

3 argcoth
√

3. (1.212)

L22r

Again, we use the overlap formula for AB being opposite faces. By symmetry, we
again integrate volA ∩ projB + k over one eighth of all positions of k (see Figure
1.12).
Setting up the integral,

L22r = 8
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.213)
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symmetry

Figure 1.12: Overlap of the opposite faces of a cube

where h = 1, volA = volB = 1 and D = D(1, π/4) is a fundamental triangle
domain (labeled 2 in Figure 1.15 on the right). In this domain, we have for the
polygon of intersection

volA ∩ projB + k = (1− x)(1− y), (1.214)

and therefore

L22r = 8
volA volB

⎡⎣I(1)
00

(︃
1, π4

)︃
−I(1)

10

(︃
1, π4

)︃
−I(1)

01

(︃
1, π4

)︃
+I(1)

11

(︃
1, π4

)︃⎤⎦. (1.215)

Going through all recursions, we get, after simplifications

L22r = 4
15 +

√
2

5 −
4

5
√

3
− 2π

9 + argcoth
(︂√

2
)︂

+ 4
3 argcoth

√
3. (1.216)

L33

Putting everything together by using (1.219), we finally arrive at Robin’s constant

v
(1)
1 (C3) = L33 = 4

105 + 17
√

2
105 −

2
√

3
35 −

π

15 + 1
5 argcoth

√
2+ 4

5 argcoth
√

3

≈0.66170718.
(1.217)

1.4.5 Regular octahedron

A standard way how to select vertices of an regular octahedron the vertices is
[±1, 0, 0], [±1, 0, 0], [±1, 0, 0]. Under this choice, the edge length is l =

√
2, the

area of each face is ν =
√

3/2 and the volume of K is volK = 4/3. Again, we put
P = Lp. For the definition of various mean values Pab = L

(p)
ab , see Figure 1.13.

We also included the position of the scaling point C in cases when the reduction
is possible.
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*

*
*

*

*

*

*

Figure 1.13: All different L
(p)
ab configurations encountered for K being a regular oc-

tahedron

Performing the reduction, we get the set of equations, where

pP33 = 6(P32 − P33),
pP32 = 3(P22 − P32) + 2(P31 − P32),
pP22e = 4(P21v − P22e),
pP22v = 4(P21r − P22v),
pP31 = 3(P21 − P31) + 1(P30 − P31),
pP21v = 2(P11 − P21v) + 1(P20 − P21v),
pP30 = 3(P20 − P30)

with

P22 = 1
4P22e + 1

4P22r + 1
2P22v,

P21 = 1
2P21v + 1

2P21r.

Solving the system, we get for any bivariate functional P ,

P33 = 72(P20 + P11)
(3+p)(4+p)(5+p)(6+p) + 54P21r

(4+p)(5+p)(6+p) + 9P22r

2(5+p)(6+p) . (1.218)

When p = 1, we get for the mean length

L33 = 3
140(4L20 + 4L11 + 12L21r + 5L22r). (1.219)

L20

More precisely, we can write L20 = LAB, where face A has vertices [−1, 0, 0],
[0,−1, 0], [0, 0,−1] and B = [0, 0, 1] (see Figure 1.13). Vertex B is separated
from A(A) by distance h = 2/

√
3. By (1.156) and by symmetry,

L20 = 2h3

volA

(︄
I

(1)
00

(︄√
2

2 ,
π

3

)︄
− I(1)

00

(︄√
2

4 ,
π

3

)︄)︄
, (1.220)
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where volA = ν =
√

3/2 is the area of A. Using recurrence relations on I(1)
00 (·, ·),

I
(1)
00

(︄√
2

2 ,
π

3

)︄
= 1

4 −
π

36 + 7 argsinh 1
12
√

2
= 1

4 −
π

36 + 7 argcoth
√

2
12
√

2
. (1.221)

The other I(1)
00 integral is already given by (1.189) (we just write arcsin

√︂
2/3 =

π/2− arccot
√

2), hence

L20 = 8
9 −

√
2

9 −
8π
27 −

25 ln 3
54

√
2 + 32

27 arccot
√

2 + 28
27

√
2 argcoth

√
2 (1.222)

L11

By shifting (1.157), we get L11 = LAB, where B is the origin and A is a paral-
lelogram with vertices [1, 0, 1], [0, 1, 1], [0, 2, 0], [1, 1, 0]. Therefore, by the point-
polygon formula (1.156) with h = 2/

√
3 and volA =

√
3,

L11 = h3

volA

(︄
4I(1)

00

(︄√
2

4 ,
π

3

)︄
+ 2I(1)

00

(︄√
2

2 ,
π

3

)︄)︄
, (1.223)

Hence, since the I’s are already given by (1.189) and (1.221), we get, simplifying,

L11 = 4
9 +
√

2
9 + 4π

27 + 25 ln 3
54
√

2
− 32

27 arccot
√

2 + 14
27
√

2 argcoth
√

2 (1.224)

L21r

Since the reduction technique cannot be applied on AB being parallel, we use
the overlap formula with A being one face of the octahedron. By symmetry, we
can choose B as all three opposite edges to A instead of just one, the mean value
stays the same (see Figure 1.13). This choice makes the overlap formula simpler.
To compute volA ∩ projB + k, we slide the projection B across A. To get L21r,
we then integrate over the length of their intersection with respect to all vectors
k. By symmetry, we can integrate over just one sixth of all sliding domains (see
Figure 1.14 for our overlap diagram, in which white numbers represent the number
of line segments in the AB projection intersection with respect to position of the
shift vector k – black dot).

symmetry

Figure 1.14: Overlap of the opposite face and edges of an octahedron

Hence, setting up the integral,

L21r = 6
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.225)

66



Chapter 1. Crofton Reduction Technique

where h = 2/
√

3, volA =
√

3/2, volB = 3
√

2 and D is a domain in Figure 1.14 on
the right consisted of two subdomains Dj where j ∈ {2, 3} denotes the number
of line segments of the intersection A ∩ (projB + k), which is a polyline. We
have D = D2 ⊔D3. Let k = (x, y) with the origin coinciding with the centroid of
projA triangle with vertices [0,

√
6

3 ], [−
√

6
2 ,

√
2

2 ], [−
√

6
2 ,−

√
2

2 ] (see Figure 1.14). Let
us denote vj = volA ∩ projB + k for all k ∈ Dj, then we have for the subdomains:

• D3 is a triangle with vertices [0, 0], [
√

6
6 , 0], [

√
6

6 ,
√

2
2 ] in which v3 =

√
2

• D2 is a triangle with vertices [
√

6
6 , 0], [2

√
6

3 , 0], [
√

6
6 ,

√
2

2 ] in which v2 = 4
√

2
3 −

2x√
3

Note that in general, volA ∩ projB + k is linear in (x, y) in the subdomains. By
inclusion/exclusion, we can write our integral as

L21r = 6
volA volB

[︂∫︁∫︁
D3∪D2

v2
√
h2+x2+y2 dxdy+

∫︁∫︁
D3

(v3−v2)
√
h2+x2+y2 dxdy

]︂
= 6

volA volB

[︂∫︁∫︁
D3∪D2

(︂
4
√

2
3 −

2x√
3

)︂√
h2+x2+y2dxdy+

∫︁∫︁
D3

(︂
2x√

3−
√

2
3

)︂√
h2+x2+y2dxdy

]︂
.

(1.226)

Note that the second integral over domain 3 is already in the form of an integral
over standard fundamental triangle domain since D3 = D(

√
6

6 ,
π
3 ). The first inte-

gral over domain 3∪2 can be written in such manner after rotation and reflection.
To obtain the correct transformation, we let φ′ to start (be zero) for the half-line
connecting the origin with point [ 1√

6 ,
√

2
2 ], increasing in the clockwise direction.

That is φ = π/3−φ′ and thus x = r cos(π3 −φ
′) and y = r sin(π3 −φ

′). Expanding
out the trigonometric functions and writing x′ = r cosφ′ and y′ = r cosφ′, we get

x = r cos π3 cosφ′ + r sin π3 sinφ′ = x′ cos π3 + y′ sin π3 = 1
2x

′ +
√

3
2 y′,

y = r sin π3 cosφ′ − r cos π3 sinφ′ = x′ sin π3 − y
′ cos π3 =

√
3

2 x′ − 1
2y

′
(1.227)

and so
v2 = 4

√
2

3 − 2x√
3

= 4
√

2
3 − x′

√
3
− y′. (1.228)

Our integration domain D3 ⊔D2 in (x′, y′) is simply D(
√

6
3 ,

π
3 ). Note that x2 + y2

is invariant with respect to this transformation so x2 + y2 = x′2 + y′2. By scaling
with h, we can write L21r in terms of the auxiliary integrals as

L21r = 6h3

volA volB

[︄
4
√

2
3 I

(1)
00

(︂√
6

3h ,
π
3

)︂
− h√

3I
(1)
10

(︂√
6

3h ,
π
3

)︂
− hI(1)

01

(︂√
6

3h ,
π
3

)︂
+ 2h√

3I
(1)
10

(︂√
6

6h ,
π
3

)︂
−

√
2

3 I
(1)
00

(︂√
6

6h ,
π
3

)︂ ]︄ (1.229)

with
√

6
3h =

√
2

2 and
√

6
6h =

√
2

4 . Via recursions (see Table F.1 in Appendix), we get

L21r = −10
27 + 47

54
√

2 −
16π
81 + 143 ln 3

648
√

2 + 32
81 arccot

√
2 + 85

81

√
2 argcoth

√
2 (1.230)

L22r

Again, we use the overlap formula for A and B being opposite faces of K. By
symmetry, we again integrate volA ∩ projB + k over one sixth of all positions of
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symmetry

Figure 1.15: Overlap of the opposite faces of an octahedron

vector k (see Figure 1.15, in which white numbers represent the number of sides
of a polygon of intersection of AB projections with respect to position of the shift
vector k – black dot).
Setting up the integral,

L22r = 6
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.231)

where h = 2/
√

3, volA = volB = ν =
√

3/2 and D is a domain in Figure 1.15 on
the right consisted of two subdomains labeled 6 and 4 according to the number
of sides of the intersection (which is a polygon). That is, D = D6 ⊔ D4. Let
k = (x, y) and denote vj = volA ∩ projB + k for those k which lie in ∈ Dj, then
the subdomain

• D6 is again a triangle with vertices [0, 0], [
√

6
6 , 0], [

√
6

6 ,
√

2
2 ] in which v6 =

1√
3 −

√
3

2 x
2 −

√
3

2 y
2

• D4 is a triangle with vertices [
√

6
6 , 0], [2

√
6

3 , 0], [
√

6
6 ,

√
2

2 ] in which v4 = 4
3
√

3 −
2
√

2x
3 + x2

2
√

3 −
√

3y2

2

Domains 6, 4 coincide with 3, 2 in L21r case, that is D6 = D3 and D4 = D2. Note
that in general, volA ∩ projB + k is quadratic in (x, y) in the subdomains. By
inclusion/exclusion, we can write the integral as

L22r = 6
volA volB

[︃ ∫︁∫︁
D6∪D4

v4
√
h2+x2+y2 dxdy +

∫︁∫︁
D6

(v6 − v4)
√
h2+x2+y2 dxdy

⎤⎦
= 6

volA volB

[︃ ∫︁∫︁
D6∪D4

(︂
4

3
√

3 −
2
√

2x
3 + x2

2
√

3 −
√

3y2

2

)︂√
h2+x2+y2 dxdy

+
∫︁∫︁
D6

(︂
− 1

3
√

3 + 2
√

2x
3 − 2x2

√
3

)︂√
h2+x2+y2 dxdy

]︃
.

(1.232)

Again, the integral over domain 6 is in a standard form. The other integral must
be first transformed using x = 1

2x
′ +

√
3

2 y
′, y =

√
3

2 x
′ − 1

2y
′, which gives

v4 = 4
3
√

3
− 2
√

2x
3 + x2

2
√

3
−
√

3y2

2 = 4
3
√

3
−
√

2x′

3 −
√︄

2
3y

′ − x′ 2
√

3
+ x′y′ (1.233)
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and therefore

L22r = 6h3

volA volB

[︄
4

3
√

3I
(1)
00

(︂√
2

2 ,
π
3

)︂
−

√
2h
3 I

(1)
10

(︂√
2

2 ,
π
3

)︂
−
√︂

2
3hI

(1)
01

(︂√
2

2 ,
π
3

)︂
− h2

√
3I

(1)
20

(︂√
2

2 ,
π
3

)︂
+ h2I

(1)
11

(︂√
2

2 ,
π
3

)︂
− 1

3
√

3I
(1)
00

(︂√
2

4 ,
π
3

)︂
+ 2

√
2h

3 I
(1)
10

(︂√
2

4 ,
π
3

)︂
− 2h2

√
3 I

(1)
20

(︂√
2

4 ,
π
3

)︂ ]︄
.

(1.234)

Going through all recursions, we get, after simplifications

L22r = 8
45 +

√
2

9 −
32π
135 + 293 ln 3

270
√

2
− 64

135 arccot
√

2 + 124
135
√

2 argcoth
√

2 (1.235)

L33

Putting everything together by using (1.219), we finally arrive at

L33 = 4
105+13

√
2

105 −
4π
45 +109 ln 3

630
√

2
+16 arccot

√
2

315 +158 argcoth
√

2
315

√
2. (1.236)

Rescaling, we get our mean distance in a regular octahedron having unit volume

v
(1)
1 (O3) = 3

√︂
3
4

(︂
4

105 + 13
√

2
105 −

4π
45 + 109 ln 3

630
√

2 + 16 arccot
√

2
315 + 158 argcoth

√
2

315

√
2
)︂
≈ 0.65853073.

(1.237)

1.4.6 Regular icosahedron
Regular icosahedron shares many features with regular octahedron. We have al-
ready seen that the Crofton Reduction Technique itself is very powerful to reduce
the the mean distance until two domains from which we select two points have
empty affine hull. As a consequence, the only remaining terms in the icosahe-
dron expansion are the parallel edge-face and parallel face-face configurations.
Note that these two parallel configurations have the same overlap diagram as the
octahedron has.
Let ϕ = (1 +

√
5)/2 be the Golden ratio. A standard selection of vertices is

[±ϕ,±1, 0] and all of their cyclic permutations. That way, our edges have length
l = 2. The volume is equal to volK = 10(3 +

√
5)/3 and the face area ν =

√
3.

Again, we put P = Lp. For the definition of various mean values Pab = L
(p)
ab , see

Figure 1.16.
Performing the reduction, we get the set of equations:

pP33 = 6(P32 − P33),
pP32 = 3(P22 − P32) + 2(P31 − P32),
pP31 = 3(P21 − P31) + 1(P30 − P31),
pP22e = 4(P21v − P22e),
pP22v = 4(P21d − P22v),
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*

*

*
*

* *

*
*

***
*

*

*

Figure 1.16: All different L
(p)
ab configurations encountered for K being a regular icosa-

hedron

pP22d = 4(P ′
21 − P22d),

pP22i = 4(P ′′
21 − P22i),

pP30 = 3(P20 − P30),
pP21v = 2(P11d − P21v) + 1(P20u − P21v),
pP21w = 2(P11f − P21w) + 1(P20l − P21w),
pP21f = 2(P11 − P21f ) + 1(P ′

20 − P21f ),
pP21d = 2(P ′

11 − P21d) + 1(P ′′
20 − P21d),

pP21e = 2(P ′′
11 − P21e) + 1(P ′′′

20 − P21e),

with

P22 = 2P22d

5 + P22r

10 + P22v

5 + P22e

10ϕ2 + ϕ2P22i

10 ,

P21 = ϕP21e

5 + P21f

2ϕ
√

5
+ P21r

5 + P21d

5 + P21v

5ϕ2 + P21w

10ϕ ,

P ′
21 = P21f

2 − ϕP21d

2 + ϕ2P21e

2 ,

P ′′
21 = ϕ2P21r − ϕP21e,

P20 = P20f

2ϕ2 + P20e

2ϕ + P20r

2 ,
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P ′
20 = ϕP20r −

P20f

ϕ
,

P ′′
20 = ϕ2P20e − ϕP20f ,

P ′′′
20 = ϕ2P20r − ϕP20e,

P11 = 2P11t − P11f ,

P ′
11 = ϕ2P11f − ϕP11d,

P ′′
11 = ϕ2P11g − ϕP11t.

Solving the system, we get, after simplifications,

P33 = 18(12ϕ2P11d−12ϕ4P11f+4ϕ8P11g+12ϕ2P11t−6ϕ4P20e+4ϕ8P20r+6P20f )
5ϕ4(3 + p)(4 + p)(5 + p)(6 + p)

+ 108ϕ2P21r

5(4 + p)(5 + p)(6 + p) + 9P22r

5(5 + p)(6 + p) .

(1.238)

When p = 1, we get for the mean distance

L33 = 3L22r

70 − 9L11f

175 −
9L20e

350 + 9L20f

350ϕ4 + 9L11d

175ϕ2

+ 9L11t

175ϕ2 + 18ϕ2L21r

175 + 3ϕ4L11g

175 + 3ϕ4L20r

175 .

(1.239)

L11d

Let A′ = [1, 0, ϕ][−1, 0, ϕ] and B′ = [0, ϕ, 1][ϕ, 1, 0] be edges of K, then L11d =
LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] is the origin and A =
A′ −B′ is a polygon with vertices [1,−ϕ, 1

ϕ
], [− 1

ϕ
,−1, ϕ], [−ϕ2,−1, ϕ], [−1,−ϕ, 1

ϕ
]

(a parallelogram) having area volA =
√︂

10− 2
√

5. Projecting O onto A(A), we
obtain projAO = [0,−1 − 1√

5 ,
2√
5 ] and separation h =

√︂
2 + 2√

5 . Point-Polygon
formula yields

L11d = 2h3

volA

(︄
2I(1)

00

(︂
1

2ϕ2 ,
2π
5

)︂
− I(1)

00

(︂
1
2 ,

π
5

)︂
+ I

(1)
00

(︂
1
2 ,

2π
5

)︂⎞⎠ ≈ 2.0431430525135.

(1.240)

Explicitly, after series of simplifications on I
(1)
00 (·, ·) by recursion formulae, we

obtain

L11d = 5
6 + 1

2
√

5 + 1
15(2π)

(︂
3 +
√

5
)︂
− 8

15

(︂
3 +
√

5
)︂

arccotϕ

− 8
15

(︂
3 +
√

5
)︂

arccot (ϕ2) + 1
60

(︂
31− 3

√
5
)︂

ln 3 + 13
120

(︂
3 +
√

5
)︂

ln 5.
(1.241)

L11g

Let A′ be the same edge as in L11d and B′ = [1, 0, ϕ][−1, 0, ϕ], then L11g =
LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′ − B′ is
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a polygon with vertices [0, 0, 2ϕ], [1,−ϕ, ϕ2], [−1,−ϕ, ϕ2], [−2, 0, 2ϕ] having area
volA = 2

√
3. Projecting O onto A(A), we obtain projAO = [0,−2ϕ

3 ,
2ϕ3

3 ] and
separation h =

√︂
14
3 + 2

√
5. Point-Polygon formula yields

L11g = 2h3

volA

(︄
2I(1)

00

(︂
1

2ϕ2 ,
π
3

)︂
+ I

(1)
00

(︂
1
ϕ2 ,

π
3

)︂⎞⎠ ≈ 3.1806727116118. (1.242)

Explicitly, after series of simplifications,

L11g = 1
9 +

√
5

9 + 2
9

√︃
2
(︂
5 +
√

5
)︂

+ 4
45

(︂
9 + 4

√
5
)︂
π − 16

27

(︂
9 + 4

√
5
)︂

arccotϕ

+
(︂

43
27 + 2

√
5

3

)︂
argcothϕ+ 2

27

(︂
23 + 9

√
5
)︂

argcschϕ−
(︂

43
108 +

√
5

6

)︂
ln 5.

(1.243)

L11f

Let A′ be the same edge as in L11d and B′ = [ϕ, 1, 0][ϕ,−1, 0], then L11f = LA′B′ .
By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′ − B′ is a polygon
with vertices [− 1

ϕ
,−1, ϕ], [− 1

ϕ
, 1, ϕ], [−ϕ2, 1, ϕ], [−ϕ2,−1, ϕ] having area volA = 4.

Projecting O onto A(A), we obtain projAO = [0, 0, ϕ] and separation h = ϕ.
Point-Polygon formula yields

L11f = 2h3

volA

(︄
I

(1)
00

(︂
1
ϕ
, arctan (ϕ2)

)︂
+ I

(1)
00

(︂
ϕ, arctan

(︂
1
ϕ2

)︂)︂
− I(1)

00

(︂
1
ϕ2 , arctanϕ

)︂
− I(1)

00

(︂
1
ϕ
, arctan 1

ϕ

)︂)︄
≈ 2.3977565034445.

(1.244)

Explicitly, after series of simplifications,

L11f = 5
6 +

√
5

6 −
π
96

(︂
1 +
√

5
)︂3

+ 1
2

(︂
2 +
√

5
)︂

arccotϕ− 1
6

(︂
2 +
√

5
)︂

arccot (ϕ2)

+ 1
24

(︂
39 + 17

√
5
)︂

argcothϕ+ 1
48

(︂
1− 5

√
5
)︂

ln 3− 1
96

(︂
17 + 11

√
5
)︂

ln 5.
(1.245)

L11t

Again, let A′ be the same edge as in L11d and B′ = [1, 0,−ϕ][ϕ, 1, 0], then L11t =
LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′−B′ is a polygon
with vertices [0, 0, 2ϕ], [− 1

ϕ
,−1, ϕ], [−ϕ2,−1, ϕ], [−2, 0, 2ϕ] having area volA =√︃

2
(︂
5 +
√

5
)︂
. Projecting O onto A(A), we obtain projAO = [0,−1− 1√

5 ,
2√
5 ] and

separation h =
√︂

2 + 2√
5 . Point-Polygon formula yields

L11t = 2h3

volA

(︄
I

(1)
00

(︂
1
2 ,

π
5

)︂
− I(1)

00

(︂
1
2 ,

2π
5

)︂
+ I

(1)
00

(︂
ϕ, π5

)︂⎞⎠ ≈ 2.8940519649490. (1.246)

Explicitly, after series of simplifications,

L11t = 4
3

√︂
1 + 2√

5 −
1
6 −

√
5

6 −
8π
75

(︂
1 +
√

5
)︂

+ 8
15

(︂
1 +
√

5
)︂

arccotϕ

+ 4
15

(︂
8 + 3

√
5
)︂

argcschϕ− 13
120

(︂
1 +
√

5
)︂

ln 5.
(1.247)
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L20e

Let A be the face of K with vertices [1, 0, ϕ], [−1, 0, ϕ], [0, ϕ, 1] (an equilateral
triangle) and let B be vertex [ϕ,−1, 0], then L20e = LAB. Projecting B ontoA(A),
we obtain projAB = [ϕ,−1

3 ,
2ϕ2

3 ] and separation h = 2ϕ/
√

3. By Point-Polygon
formula,

L20e = 2h3

ν

(︄
I

(1)
00

(︄
1

2ϕ2 ,
π

3

)︄
− I(1)

00

(︄
1

2ϕ2 , arctan
(︂√

15 + 2
√

3
)︂)︄

+ I
(1)
00

(︂
ϕ2

2 , arctan
(︂√

15− 2
√

3
)︂)︂⎞⎠ ≈ 2.688729552544.

(1.248)

Explicitly, after series of simplifications,

L20e = 7
9 +

√
5

9 + 8π
27

(︂
2 +
√

5
)︂
− 16

9

(︂
2 +
√

5
)︂

arccotϕ

+ 1
27

(︂
104 + 47

√
5
)︂

argcothϕ− 1
108

(︂
112 + 61

√
5
)︂

ln 5.
(1.249)

L20r

Let A be the same face of K as in the section on L20e and let B be vertex [1, 0,−ϕ],
then L20r = LAB. Projecting B onto A(A), we obtain projAB = [1, 2ϕ

3 ,
√

5ϕ
3 ] and

separation h = 2ϕ2/
√

3. By Point-Polygon formula,

L20r = 2h3

ν

⎛⎝I(1)
00

(︂
1
ϕ2 ,

π
3

)︂
− I(1)

00

(︂
1

2ϕ2 ,
π
3

)︂⎞⎠ ≈ 3.28394367574. (1.250)

Explicitly, after series of simplifications,

L20r = 4
9

√︃
2
(︂
5 +
√

5
)︂
− 1

9 −
√

5
9 −

16π
135

(︂
9 + 4

√
5
)︂

+ 16
27

(︂
9 + 4

√
5
)︂

arccotϕ

−
(︂

43
27 + 2

√
5

3

)︂
argcothϕ+ 4

27

(︂
23 + 9

√
5
)︂

argcschϕ+
(︂

43
108 +

√
5

6

)︂
ln 5.

(1.251)

L20f

Let A be the same face of K as in the section on L20e and let B be vertex [ϕ, 1, 0],
then L20f = LAB. Projecting B onto A(A), we obtain projAB = [ϕ, ϕ3

3 ,
2ϕ
3 ] and

separation h = 2/
√

3. By Point-Polygon formula,

L20f = 2h3

ν

(︄
I

(1)
00

(︂
ϕ2

2 ,
π
3

)︂
− I(1)

00

(︂√
5

2 , arctan
√︂

3
5

)︂
− I(1)

00

(︂
ϕ2

2 , arctan
(︂√

15− 2
√

3
)︂)︂)︄

≈ 2.2472771159735.
(1.252)

Explicitly, after series of simplifications,

L20f = 10
9 + 2

√
5

9 −
8π
27 + 32

27 arccotϕ+ 16
27 arccot(ϕ2)− 17

54

√
5 ln 3 +

(︂
1
2 + 5

√
5

27

)︂
ln 5.

(1.253)
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L21r

Let A be a face of K and B be a boundary of the opposite face. In icosahedron
K, two faces are separated by the distance 2ϕ2/

√
3. Since the overlap diagram of

these faces is the same as the one associated to two opposite faces of an octahedron
(see Figure 1.14), the coefficients of the expansion of irreducible L21r term into
auxiliary integrals I(1)

ij match. However, this is only valid provided the edge length
is
√

2. Since our icosahedron K has l = 2, we first rescale our icosahedron by
1/
√

2. In the final step, since the mean distance scales linearly, we have just
rescale Lab back by multiplying it by

√
2. Hence, by using Equation (1.229),

L21r=L21r

⃓⃓⃓
l=2

=
√

2L21r

⃓⃓⃓
l=

√
2
=
√

2 6h3

volA volB

[︄
4
√

2
3 I

(1)
00

(︂√
6

3h ,
π
3

)︂
− h√

3I
(1)
10

(︂√
6

3h ,
π
3

)︂
− hI(1)

01

(︂√
6

3h ,
π
3

)︂
+ 2h√

3I
(1)
10

(︂√
6

6h ,
π
3

)︂
−

√
2

3 I
(1)
00

(︂√
6

6h ,
π
3

)︂ ]︄
≈ 3.1819213671057,

(1.254)

where h =
√

2ϕ2/
√

3, volA =
√

3/2 and volB = 3
√

2 are the rescaled icosahedron
opposite faces separation, rescaled face area and face perimeter, respectively.
Contrary to the octahedron case, we now have

√
6

3h = 1/ϕ2 and
√

6
6h = 1/(2ϕ2). Via

recursions, we get after some simplifications,

L21r = 227
108 + 107

√
5

108 −
25
27

√︂
10 + 22√

5 −
8π
135

(︂
9 + 4

√
5
)︂

+ 16
81

(︂
9 + 4

√
5
)︂

arccotϕ

+
(︂

1043
324 + 13

√
5

9

)︂
argcothϕ+

(︂
179
81 + 7

√
5

9

)︂
argcschϕ− 1043+468

√
5

1296 ln 5.
(1.255)

L22r

Again, Overlap diagram of L21r configuration matches that of an octahedron.
Immediately from Equation (1.234), by rescaling and replacing

√
2/2 by 1/ϕ2

and
√

2/4 by 1/(2ϕ2) in the first argument of I(p)
ij integrals, we get

L22r =
√

2 6h3

volA volB

[︄
4

3
√

3I
(1)
00

(︂
1
ϕ2 ,

π
3

)︂
−

√
2h
3 I

(1)
10

(︂
1
ϕ2 ,

π
3

)︂
−
√︂

2
3hI

(1)
01

(︂
1
ϕ2 ,

π
3

)︂
− h2

√
3I

(1)
20

(︂
1
ϕ2 ,

π
3

)︂
+ h2I

(1)
11

(︂
1
ϕ2 ,

π
3

)︂
− 1

3
√

3I
(1)
00

(︂
1

2ϕ2 ,
π
3

)︂
+ 2

√
2h

3 I
(1)
10

(︂
1

2ϕ2 ,
π
3

)︂
− 2h2

√
3 I

(1)
20

(︂
1

2ϕ2 ,
π
3

)︂ ]︄
≈ 3.12998447304770,

(1.256)

where h =
√

2ϕ2/
√

3 and volA = volB =
√

3/2. Explicitly, after some simplifi-
cations,

L22r = 4
9

(︂
3 + 2

√
5
)︂√︂

10 + 22√
5 −

271
45 −

119
9
√

5 + 16π
675

(︂
78 + 35

√
5
)︂

− 32
135

(︂
67 + 30

√
5
)︂

arccotϕ+
(︂

611
45 + 164

√
5

27

)︂
argcothϕ

− 28
135

(︂
9 + 5

√
5
)︂

argcschϕ−
(︂

611
180 + 41

√
5

27

)︂
ln 5.

(1.257)
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L33

Putting everything together by using (1.239), we finally arrive at

L33 = 197
525 + 239

525
√

5 −
44
525

√︂
2 + 2√

5 −
(17226+6269

√
5)π

157500 − (2186+1413
√

5) arccotϕ
15750

+ (82−75
√

5) arccot(ϕ2)
5250 + (15969+7151

√
5) argcothϕ

12600 + 4(2139+881
√

5) argcschϕ
7875

+ (4449−1685
√

5) ln 3
42000 − (75783+37789

√
5) ln 5

252000 ≈ 1.66353152568500.
(1.258)

Rescaling, we get our mean distance in a regular icosahedron having unit volume

v
(1)
1 (icosahedron) = L33

3

√︃
10
3

(︂
3 +
√

5
)︂ ≈ 0.64131248551. (1.259)

1.4.7 Regular dodecahedron
Finaly, we will calculte the mean distance in the regular dodecahedron. Let us
choose the vertices as [±ϕ,±ϕ,±ϕ], [0,±1,±ϕ2] and all their cyclic permutations
(ϕ = (1 +

√
5)/2 as usual). Under this choice, each edge has length l = 2 and

each face has area ν =
√︂

25 + 10
√

5.
Performing CRT, we get the configurations shown in Figure 1.17. Even though
there are less configurations than for the icosahedron, the dodecahedron has more
complicated overlap diagram (see Figure 1.18, there is ten-fold symmetry with re-
spect to rotation and reflection). Distance moments are again connected through
CRT via the following set of reduction equations

pP33 = 6(P32 − P33),
pP32 = 3(P22 − P32) + 2(P31 − P32),
pP31 = 3(P21 − P31) + 1(P30 − P31),
pP22e = 4(P ′

21 − P22e),
pP22i = 4(P ′′

21 − P22i),
pP30 = 3(P20 − P30),
pP21v = 1(P20e − P21v) + 2(P11 − P21v),
pP21f = 2(P ′

11 − P21f ) + 1(P ′
20 − P21f ),

pP21d = 2(P ′′
11 − P21d) + 1(P ′′

20 − P21d)

with

P22 = 1
6ϕ

(︂√
5P22e + ϕP22r + ϕ2√5P22i

)︂
,

P21 = P21r

3 + P21d

3 + ϕP21f

6 + P21v

6ϕ2 ,

P ′
21 = 1

ϕ
√

5
(︂
P21v + ϕ2P21d

)︂
,
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*

*

*
*

*

*

*

*

*

Figure 1.17: All different L
(p)
ab configurations encountered for K being a regular icosa-

hedron

P ′′
21 = 1√

5
(ϕP21f + ϕP21r − P21d) ,

P20 = 1
2ϕ2

(︂
P20e + ϕP20f + ϕ2P20r

)︂
,

P ′
20 = ϕ2P20r − ϕP20f ,

P ′′
20 = ϕ2P20f − ϕP20e,

P11 = 1
ϕ
√

5
(2P11d + ϕP11f ) ,

P ′
11 = 1√

5
(2ϕP11t − P11f ) ,

P ′′
11 = 1√

5
(ϕP11g + ϕP11f − P11d) .

Solving the system, we get, after simplifications,

P33 =
12
(︂
2
√

5P11d+5ϕP20e+2ϕ3P11g−2ϕ4√5P11f−5ϕ5P20f+4
√

5ϕ6P20r+2ϕ9P11t
)︂

ϕ4
√

5 (3 + p)(4 + p)(5 + p)(6 + p)

+ 60ϕP21r√
5(4 + p)(5 + p)(6 + p)

+ 3P22r

(5 + p)(6 + p) .

(1.260)

When p = 1, we get for the mean distance
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L33 = L11d

35ϕ4 + L20e

14
√

5ϕ3
+ L11g

35
√

5ϕ
− L11f

35

+ L22r

14 −
ϕL20f

14
√

5
+ 2ϕL21r

7
√

5
+ 2ϕ2L20r

35 + ϕ5L11t

35
√

5
.

(1.261)

L11d

Let A′ = [0, ϕ2, 1][0, ϕ2,−1] and B′ = [ϕ, ϕ,−ϕ][1, 0,−ϕ2] be edges of K, then
L11d = LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] is the origin and A =
A′−B′ is a polygon with vertices [−ϕ, 1, ϕ2], [−1, ϕ2,

√
5ϕ], [−1, ϕ2, ϕ], [−ϕ, 1, 1/ϕ]

having area volA = 2
√

3. Projecting O onto A(A), we obtain projAO = [−1 −√
5

3 ,
2
3 , 0] and separation h = (1 +

√
5)/
√

3. Point-Polygon formula yields

L11d = 2h3

volA

(︄
I

(1)
00

(︂
1

2ϕ2 ,
π
3

)︂
+ I

(1)
00

(︂√
5

2 ,
π
3

)︂
− I(1)

00

(︂
1

2ϕ2 , arctan
(︂√

3
(︂
2 +
√

5
)︂)︂)︂

− I(1)
00

(︂√
5

2 , arctan
√︂

3
5

)︂)︄
≈ 3.1367199950978.

(1.262)

Explicitly, after series of simplifications,

L11d = 10
√

2
9 −

√
5

3 + 5
√

10
9 − 5

9 −
2π
27

(︂
2 +
√

5
)︂
− 17

108

(︂
5 + 2

√
5
)︂

ln 3− (4+7
√

5) ln 5
108

+ 4
27

(︂
2 +
√

5
)︂ (︂

2 arccot 2 + 2 arccot
√

2− arccos 2
3

)︂
+ 17

108

(︂
5 + 2

√
5
)︂

argcosh 13
3 .

(1.263)

L11g

Let A′ be the same edge as in L11d and B′ = [ϕ,−ϕ, ϕ][ϕ2,−1, 0], then L11g =
LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′ − B′ is a
polygon with vertices [−ϕ, ϕ3,−1/ϕ], [−ϕ2,

√
5ϕ, 1], [−ϕ2,

√
5ϕ,−1], [−ϕ, ϕ3,−ϕ2]

having area volA =
√︂

10− 2
√

5. Projecting O onto A(A), we obtain projAO =
[−1− 3√

5 , 2 + 4√
5 , 0] and separation h =

√︂
10 + 22√

5 . Point-Polygon formula yields

L11g = 2h3

volA

(︄
2I(1)

00

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

00

(︂
1

2ϕ2 ,
π
5

)︂
+ I

(1)
00

(︂
1

2ϕ2 ,
2π
5

)︂⎞⎠ ≈ 4.60478605392525.

(1.264)

Explicitly, after series of simplifications,

L11g = 5
6 −

1
3
√

2 + 11
6
√

5 + 1√
10 −

(︂
47
5 + 21√

5

)︂
π + 1

120

(︂
219 + 97

√
5
)︂

ln 3

+ 2
15

(︂
47 + 21

√
5
)︂ (︂

arccos 2
3 + 2 arccos 1√

41 + 2 arccos 3√
41 − 2 arccot

√
2
)︂

+ 1
120

(︂
219 + 97

√
5
)︂(︃

argcosh 7
3 − argcosh 3

)︃
+ 1

60
(︂
91 + 33

√
5
)︂(︄

argcosh 9√
41
− argcosh 7√

41

)︄
.

(1.265)
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L11f

Let A′ be the same edge as in L11d and B′ = [1, 0,−ϕ2][−1, 0,−ϕ2], then L11f =
LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′ − B′ is a
polygon with vertices [−1, ϕ2,

√
5ϕ], [1, ϕ2,

√
5ϕ], [1, ϕ2, ϕ], [−1, ϕ2, ϕ] having area

volA = 4. Projecting O onto A(A), we obtain projAO = [0, ϕ2, 0] and separation
h = ϕ2. Point-Polygon formula yields

L11f = 2h3

volA

(︄
I

(1)
00

(︂
1
ϕ2 , arctan

√
5ϕ
)︂

+ I
(1)
00

(︂√
5
ϕ
, arctan 1√

5ϕ

)︂
− I(1)

00

(︂
1
ϕ2 , arctanϕ

)︂
− I(1)

00

(︂
1
ϕ
, arctan 1

ϕ

)︂)︄
≈ 3.770095521642.

(1.266)

Explicitly, after series of simplifications,

L11f = 5
3
√

2 −
1
2 +

√︂
5
2 −

√
5

6 +
(︂

3
8 +

√
5

6

)︂
π + 1

48

(︂
125 + 53

√
5
)︂

arccos 9√
41

+
(︂

3
8 +

√
5

6

)︂ (︂
2 arccos 13

3
√

41 + 2 arccot 2− arccos 1
9 − 2 arccos 3

5 − 2 arccos 1√
41

)︂
+ 1

48

(︂
23 + 9

√
5
)︂

argcosh 13
3 −

1
48

(︂
125 + 53

√
5
)︂

argcosh 7√
41

− 1
48

(︂
37 + 17

√
5
)︂

argsinh 2− 1
48

(︂
23 + 9

√
5
)︂

ln 3 + 1
96

(︂
37 + 17

√
5
)︂

ln 5.
(1.267)

L11t

Again, let A′ be the same edge as in L11d and B′ = [ϕ,−ϕ,−ϕ][0,−ϕ2,−1], then
L11t = LA′B′ . By shifting, LA′B′ = LOA, where O = [0, 0, 0] and A = A′ − B′ is
a polygon with vertices [−ϕ, ϕ3, ϕ2], [0, 2ϕ2, 2], [0, 2ϕ2, 0], [−ϕ, ϕ3, 1/ϕ] having area
volA =

√︃
2
(︂
5 +
√

5
)︂
. Projecting O onto A(A), we obtain projAO = [−1 −

3√
5 , 2 + 4√

5 , 0] and separation h =
√︂

10 + 22√
5 . Point-Polygon formula yields

L11t = 2h3

volA

(︄
I

(1)
00

(︂
1
ϕ
, π5

)︂
+ I

(1)
00

(︂
1

2ϕ2 ,
π
5

)︂
− I(1)

00

(︂
1

2ϕ2 ,
2π
5

)︂)︄
≈ 5.04162416571318.

(1.268)
Explicitly, after series of simplifications,

L11t =
√

2
5

3 −
1
2 + 2

√︂
3
5 + 2√

3 −
7

6
√

5 −
π
45

(︂
29 + 13

√
5
)︂

+ 2
15

(︂
29 + 13

√
5
)︂ (︂

2 arccot
√

2− arccos 2
3

)︂
+
(︂

61
15 + 9√

5

)︂
(argcosh 4− argcosh 2)

+ 1
120

(︂
133 + 61

√
5
)︂ (︂

argcosh 3− argcosh 7
3 − ln 3

)︂
.

(1.269)

L20e

Let A be the face of K with vertices [1, 0,−ϕ2], [ϕ, ϕ,−ϕ], [0, ϕ2,−1], [−ϕ, ϕ,−ϕ],
[−1, 0,−ϕ2] (a regular pentagon) and let B be vertex [0, ϕ2, 1], then L20e = LAB.
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Projecting B onto A(A), we obtain projAB = [0, 3
ϕ2

√
5 ,−

1√
5 ] and separation h =√︂

2 + 2√
5 . By Point-Polygon formula,

L20e = 2h3

ν

(︄
I

(1)
00

(︂
1
2 ,

π
5

)︂
− I(1)

00

(︂
1
2 ,

2π
5

)︂
− I(1)

00

(︂
ϕ2

2 ,
π
5

)︂
+ I

(1)
00

(︃
3ϕ
4 , arctan

√
5−2

√
5

3

)︃

+ I
(1)
00

(︃
ϕ2

2 , arctan
√︃

5
(︂
5− 2

√
5
)︂)︃)︄

≈ 3.346942678627.

(1.270)

Explicitly, after series of simplifications,

L20e = 7
√

2
5

3 + 13
√

2
15 −

4
15 −

4
3
√

5 + 4π
15

√
5 −

(︂
1
3 + 9

10
√

5

)︂
ln 3− 13 ln 5

30
√

5 + 8 arccos 2
3

15
√

5

+
(︂

1
3 + 9

10
√

5

)︂
argcosh 13

3 + 3
50

(︂
25 + 8

√
5
)︂

(argcosh 9√
41 − argcosh 7√

41)

− 16 arccot 2
15

√
5 + 8 arctan 9

√
2

17
15

√
5 − 8 arctan 5

√
2

7
15

√
5 − 8 arctan 3

√
10

19
15

√
5 − 8 arctan

√
10

15
√

5 .

(1.271)

L20r

Let A be the same face of K as in the section on L20e and let B be vertex
[0,−ϕ2, 1], then L20r = LAB. Projecting B onto A(A), we obtain projAB =
[0, 1

10

(︂√
5− 5

)︂
,−1 − 4√

5 ] and separation h =
√︂

10 + 22√
5 . By Point-Polygon for-

mula,

L20r = 2h3

ν

(︄
I

(1)
00

(︂
1
ϕ
, π5

)︂
+ I

(1)
00

(︂
1

2ϕ2 ,
2π
5

)︂
− I(1)

00

(︂
1

2ϕ2 ,
π
5

)︂
− I(1)

00

(︂
1

2ϕ4 ,
2π
5

)︂)︄
≈ 4.87605984948.

(1.272)

Explicitly, after series of simplifications,

L20r = 4
15 −

2
√

2
15 + 4

5
√

3 + 2
3
√

5 + 4√
15 + 16π

9 + 4π√
5 −

16
75

(︂
20 + 9

√
5
)︂

arccot
√

2

+
(︂

3
5 + 43

30
√

5

)︂
ln 3 + 8

75

(︂
20 + 9

√
5
)︂ (︂

arccos 2
3 − arccos 1√

41 − arccos 3√
41

)︂
− 2

75

(︂
85 + 37

√
5
)︂

argcosh 2 +
(︂

3
5 + 43

30
√

5

)︂ (︂
argcosh 7

3 − argcosh 3
)︂

+ 2
75

(︂
85 + 37

√
5
)︂

argcosh 4 +
(︂

1
15 + 9

10
√

5

)︂ (︂
argcosh 7√

41 − argcosh 9√
41

)︂
(1.273)

L20f

Let A be the same face of K as in the section on L20e and let B be vertex
[0,−ϕ2,−1], then L20f = LAB. Projecting B onto A(A), we obtain projAB =
[0,−5+3

√
5

10 ,−2− 3√
5 ] and separation h = 2

√︂
1 + 2√

5 . By Point-Polygon formula,

L20f = 2h3

ν

(︄
I

(1)
00

(︂
ϕ2

2 ,
π
5

)︂
− I(1)

00

(︂
1

2ϕ2 ,
2π
5

)︂
+ I

(1)
00

(︃
1

2ϕ2 , arctan
√︃

5
(︂
5 + 2

√
5
)︂)︃

− I(1)
00

(︂
1
2 ,

π
5

)︂
− I(1)

00

(︃
ϕ2

2 , arctan
√︂

85− 38
√

5
)︃)︄
≈ 4.000363965317.

(1.274)
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Explicitly, after series of simplifications,

L20f = 1 +
√

2
5

3 −
√

2
5 + 7

3
√

5 + 4π
15 + 8π

15
√

5 + 2
3

(︂
2 +
√

5
)︂

ln 3 + 13
300

(︂
5 + 2

√
5
)︂

ln 5

− 16
75

(︂
5+2
√

5
)︂

arccos 2
3 + 8

75

(︂
5+2
√

5
)︂ (︂

arccot 2+arctan 5
√

2
7 −arctan

(︂
7
√

2
)︂)︂

+
(︂

47
30 + 52

15
√

5

)︂
argcosh 7

3 −
(︂

47
30 + 52

15
√

5

)︂
argcosh 3 + 1

150

(︂
35 + 4

√
5
)︂

argcosh 13
3

− 13
150

(︂
5 + 2

√
5
)︂

argsinh 2.
(1.275)

L22r

Finally, let us take a closer look on parallel configurations L21r and L22r. We
start with the latter. Let A and B be opposite faces of dodecahedron K with
separation h =

√︂
10 + 22√

5 then L22 = LAB with overlap diagram as seen in Figure
1.18. Note that, due to symmetry, only one tenth of the diagram is sufficient
to be considered. The subdomains where volA ∩ projB + k can be written as a
single polynomial are shown in the diagram. Again, they are labeled by number
of sides of polygon of intersection A∩(projB+k), sliding projB+k across projA
by letting k to vary (vector k is shown by a black dot). Let us denote D as the
union of the labeled subdomains. Then, by Overlap formula,

L22r = 10
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.276)

Figure 1.18: Overlap diagram for opposite-faces configuration in dodecahedron

Let us express volA ∩ projB + k in the aforementioned subdomains. We de-
note vj = volA ∩ projB + k for all k ∈ Dj. Let us restrict ourselves to the
plane A(A), in which we put k = (x, y) and in which projA is a regular pen-
tagon with vertices

[︂√︂
2 + 2√

5 cos 2πi
5 ,
√︂

2 + 2√
5 sin 2πi

5

]︂
, i ∈ {0, 1, 2, 3, 4} and area

volA =
√︃

5
(︂
5 + 2

√
5
)︂
. Similarly, projB is another pentagon with vertices[︂√︂

2 + 2√
5 cos 2π(i+1/2)

5 ,
√︂

2 + 2√
5 sin 2π(i+1/2)

5

]︂
and area volB = volA =

√︃
5
(︂
5 + 2

√
5
)︂
.

Under this projection, the labeled subdomains Dj are triangles with vertices
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• (subdomainD4)
[︂√︂

5
2 + 11

2
√

5 ,
1
2

(︂
1 +
√

5
)︂]︂
,
[︂√︂

2− 2√
5 , 0

]︂
,
[︂√︂

8 + 8√
5 , 0

]︂
, in which

v4 = 1
10

(︃
8
√︂

50+22
√

5−4
(︂
5+3
√

5
)︂
x+

√︃
5
(︂
5+2
√

5
)︂
x2−5

√︂
5−2
√

5y2
)︃
,

(1.277)
• (subdomainD6)

[︂√︂
5
2 + 11

2
√

5 ,
1
2

(︂
1 +
√

5
)︂]︂
,
[︂√︂

1− 2√
5 ,
√

5− 2
]︂
,
[︂√︂

2− 2√
5 , 0

]︂
,

in which

v6 = 1
20

(︄
8
√︂

145 + 62
√

5− 4
(︂
5 + 3

√
5
)︂
x−

√︃
10
(︂
5 +
√

5
)︂
x2

− 4
√︃

10
(︂
5 +
√

5
)︂
y + 10

(︂
1 +
√

5
)︂
xy − 5

√︃
2
(︂
5 +
√

5
)︂
y2
)︄
,

(1.278)

• (subdomain D8)
[︂√︂

1− 2√
5 ,
√

5− 2
]︂
,
[︂√︂

1− 2√
5 , 0

]︂
,
[︂√︂

2− 2√
5 , 0

]︂
, in which

v8 = 1
10

(︃
4
√︂

130+58
√

5−8
√

5x−5
√︂

1+ 2√
5x

2−5
√︃

5
(︂
5+2
√

5
)︂
y2
)︃
, (1.279)

• (subdomain D10)
[︂√︂

1− 2√
5 ,
√

5− 2
]︂
, [0, 0] ,

[︂√︂
1− 2√

5 , 0
]︂
, in which

v10 = 1
2

√︂
5 + 2

√
5
(︂
4−
√

5x2 −
√

5y2
)︂
. (1.280)

In order to use the Overlap formula effectively, that is, to integrate vj = volA ∩ projB + k,
k ∈ Dj over all subdomains Dj, it is convenient to first perform appropriate ro-
tation transformations and inclusion/exclusions. First, by inclusion/exclusion,

L22r = 10
volA volB

(︄∫︂
D10

u10

√︂
h2 + x2 + y2 dxdy +

∫︂
D10∪D8

u8

√︂
h2 + x2 + y2 dxdy

+
∫︂
D10∪D8∪D6

u6

√︂
h2 + x2 + y2 dxdy +

∫︂
D10∪D8∪D6∪D4

u4

√︂
h2 + x2 + y2 dxdy

)︄
,

(1.281)

where u4 = v4, u6 = v6 − v4, u8 = v8 − v6 and u10 = v10 − v8. Explicitly

u4 =4
√

2
5

√︂
25+11

√
5− 2x

5

(︂
5+3
√

5
)︂
+ x2

10

√︃
5
(︂
5+2
√

5
)︂
− y2

2

√︂
5−2
√

5, (1.282)

u6 =− 2
5

√︂
5 + 2

√
5 + x

(︂
1 + 3√

5

)︂
− y

√︂
2 + 2√

5 + xy
2

(︂
1 +
√

5
)︂

− x2√
2

4

√︂
5 + 11√

5 −
y2√

2
4

√︂
5−
√

5,
(1.283)

u8 =− 2
5

√︂
5− 2

√
5 + x

(︂
1− 1√

5

)︂
+ y

√︂
2 + 2√

5 −
xy
2

(︂
1 +
√

5
)︂

− x2√
2

4

√︂
1− 1√

5 −
y2√

2
4

√︂
25 + 11

√
5,

(1.284)

u10 =− 2
5

√︂
5− 2

√
5 + 4x√

5 − 2x2
√︂

1 + 2√
5 . (1.285)

Note that domain D10 is already in the form of the fundamental triangle domain
D
(︂
ζ, π5

)︂
with ζ =

√︂
1− 2√

5 . Since ζ/h = 1/(2ϕ4), we immediately get in terms
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of auxiliary integrals,∫︂
D10
u10

√︂
h2+x2+y2dxdy = h3

(︄
− 2

5

√︂
5− 2

√
5I(1)

00

(︂
1

2ϕ4 ,
π
5

)︂
+ 4h√

5I
(1)
10

(︂
1

2ϕ4 ,
π
5

)︂
− 2h2

√︂
1 + 2√

5I
(1)
20

(︂
1

2ϕ4 ,
π
5

)︂)︄
.

(1.286)

Domain D = D10 ∪ D8 ∪ D6 ∪ D4 in (x, y) is transformed to the fundamental
domain D(ζ, π5 ) with ζ = 2

√︂
1 + 2√

5 in (x′, y′) via polar angle substitution φ =
π/5 − φ′, that is x = r cos(π5 − φ′) and y = r sin(π5 − φ′). Expanding out the
trigonometric functions and writing x′ = r cosφ′ and y′ = r cosφ′, we get the
following transformation relations

x = 1
4
(︂
1 +
√

5
)︂
x′ +

√︄
5
8 −
√

5
8 y′, y =

√︄
5
8 −
√

5
8 x′ − 1

4
(︂
1 +
√

5
)︂
y′ (1.287)

and so

u4 = 4
5

√︂
50 + 22

√
5−x′

(︄
2 + 4√

5

)︄
− 2y′

√︄
1 + 2√

5
+x′y′ +x′2

√︄
1− 2√

5
. (1.288)

Since ζ/h = 1/ϕ, we immediately get

∫︁
D u4
√
h2 + x2 + y2 dxdy = h3

(︄
4
5

√︂
50 + 22

√
5I(1)

00

(︂
1
ϕ
, π5

)︂
− h

(︂
2 + 4√

5

)︂
I

(1)
10

(︂
1
ϕ
, π5

)︂
− 2h

√︂
1 + 2√

5I
(1)
01

(︂
1
ϕ
, π5

)︂
+ h2I

(1)
11

(︂
1
ϕ
, π5

)︂
+ h2

√︂
1− 2√

5I
(1)
20

(︂
1
ϕ
, π5

)︂)︄
.

(1.289)

In order to express the remaining integrals, we write D10 ∪ D8 ∪ D6 = E4 \ E6
and D10 ∪D8 = E8 \ E10, where

• E4 is a triangle
[︂√︂

5
2 + 11

2
√

5 ,
1
2

(︂
1 +
√

5
)︂]︂

, [0, 0],
[︂

1
2

√︂
1 + 2√

5 ,−
1
2

]︂
,

• E6 is a triangle
[︂√︂

2− 2√
5 , 0

]︂
, [0, 0],

[︂
1
2

√︂
1 + 2√

5 ,−
1
2

]︂
,

• E8 is a triangle
[︂

1
2

√︂
5
2 −

11
2
√

5 ,
1
4

(︂√
5− 1

)︂]︂
, [0, 0],

[︂
1
2

√︂
5
2 −

11
2
√

5 ,
1
4

(︂√
5− 1

)︂]︂
,

• E10 is a triangle
[︂

1
2

√︂
5
2 −

11
2
√

5 ,
1
4

(︂√
5− 1

)︂]︂
, [0, 0],

[︂√︂
1− 2√

5 ,
√

5− 2
]︂
.

Note that E6 ⊂ E4 and E10 ⊂ E8 and thus∫︁
D10∪D8∪D6

u6
√
h2+x2+y2dxdy=

∫︁
E4
u6
√
h2+x2+y2dxdy−

∫︁
E6
u6
√
h2+x2+y2dxdy,∫︁

D10∪D8
u8
√
h2+x2+y2dxdy=

∫︁
E8
u8
√
h2+x2+y2dxdy−

∫︁
E10
u8
√
h2+x2+y2dxdy.

(1.290)

Domains E4, E6, E8 and E10 can be rotated to fundamental triangle domains after
appropriate rotations. First, let φ = φ′ − π/5, so

x = 1
4
(︂
1 +
√

5
)︂
x′ +

√︄
5
8 −
√

5
8 y′, y = −

√︄
5
8 −
√

5
8 x′ + 1

4
(︂
1 +
√

5
)︂
y′ (1.291)

and thus, after simplifications,

u6 = −2
5

√︂
5 + 2

√
5 + 2x′

(︄
1 + 1√

5

)︄
− x′2

√︄
2 + 2√

5
. (1.292)
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Suddenly in (x′, y′), we have E4 = D(ζ, 2π
5 ) and E6 = D(ζ, π5 ) with ζ =

√︂
5+

√
5

10 ,
hence ζ/h = 1/(2ϕ2) and immediately in terms of auxiliary integrals,
∫︁
D10∪D8∪D6

u6
√
h2 + x2 + y2dxdy=h3

(︂
− 2

5

√︂
5+2
√

5
(︂
I

(1)
00

(︂
1

2ϕ2 ,
2π
5

)︂
−I(1)

00

(︂
1

2ϕ2 ,
π
5

)︂)︂
+2h

(︂
1+ 1√

5

)︂ (︂
I

(1)
10

(︂
1

2ϕ2 ,
2π
5

)︂
−I(1)

10

(︂
1

2ϕ2 ,
π
5

)︂)︂
−h2

√︂
2+ 2√

5

(︂
I

(1)
20

(︂
1

2ϕ2 ,
2π
5

)︂
−I(1)

20

(︂
1

2ϕ2 ,
π
5

)︂)︂)︂
.

(1.293)

Next, let φ = 2π
5 − φ

′, from which we obtain transformation relations

x = 1
4
(︂√

5− 1
)︂
x′ +

√︄
5
8 +
√

5
8 y′, y =

√︄
5
8 +
√

5
8 x′ − 1

4
(︂√

5− 1
)︂
y′, (1.294)

so
u8 = −2

5

√︂
5− 2

√
5 + 4x′
√

5
− 2x′2

√︄
1 + 2√

5
. (1.295)

In (x′, y′), we have E8 = D(ζ, 2π
5 ) and E10 = D(ζ, π5 ) with ζ =

√︂
1− 2√

5 , hence
ζ/h = 1/(2ϕ4) and immediately in terms of auxiliary integrals,

∫︁
D10∪D8

u8
√
h2 + x2 + y2 dxdy = h3

(︄
− 2

5

√︂
5− 2

√
5
(︂
I

(1)
00

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

00

(︂
1

2ϕ4 ,
π
5

)︂)︂
+ 4h√

5

(︂
I

(1)
10

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

10

(︂
1

2ϕ4 ,
π
5

)︂)︂
− 2h2

√︂
1 + 2√

5

(︂
I

(1)
20

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

20

(︂
1

2ϕ2 ,
π
5

)︂)︂)︄
.

(1.296)

Therefore, in total,

L22r = 10h3

volA volB

(︄
2
5

√︂
5 + 2

√
5I(1)

00

(︂
1

2ϕ2 ,
π
5

)︂
− 2

5

√︂
5 + 2

√
5I(1)

00

(︂
1

2ϕ2 ,
2π
5

)︂
− 2

5

√︂
5− 2

√
5I(1)

00

(︂
1

2ϕ4 ,
2π
5

)︂
+ 4

5

√︂
50 + 22

√
5I(1)

00

(︂
1
ϕ
, π5

)︂
− 2

√︃
1
5

(︂
5 + 2

√
5
)︂
hI

(1)
01

(︂
1
ϕ
, π5

)︂
+

4hI(1)
10

(︂
1

2ϕ4 ,
2π
5

)︂
√

5 −
2hI(1)

10

(︂
1

2ϕ2 ,
π
5

)︂
√

5 − 2hI(1)
10

(︂
1

2ϕ2 ,
π
5

)︂
+

2hI(1)
10

(︂
1

2ϕ2 ,
2π
5

)︂
√

5 + 2hI(1)
10

(︂
1

2ϕ2 ,
2π
5

)︂
− 4hI(1)

10 ( 1
ϕ
,π5 )√

5 − 2hI(1)
10

(︂
1
ϕ
, π5

)︂
+ h2I

(1)
11

(︂
1
ϕ
, π5

)︂
− 2

√︂
1 + 2√

5h
2I

(1)
20

(︂
1

2ϕ4 ,
2π
5

)︂
+
√︂

2 + 2√
5h

2I
(1)
20

(︂
1

2ϕ2 ,
π
5

)︂
−
√︂

2 + 2√
5h

2I
(1)
20

(︂
1

2ϕ2 ,
2π
5

)︂
+
√︂

1− 2√
5h

2I
(1)
20

(︂
1
ϕ
, π5

)︂)︄
≈ 4.69357209587.

Or explicitly, after a lot of simplifications,

L22r = 2
√

2
5

15 −
38
75 −

4
√

2
75 + 44

25
√

3 −
88

75
√

5 + 116
25

√
15 −

8(1839+820
√

5)π
1125

+ 16
125

(︂
67 + 30

√
5
)︂

arccos 2
3 + 16

375

(︂
388 + 173

√
5
)︂ (︂

arccos 1√
41 + arccos 3√

41

)︂
+ 2

375

(︂
817 + 371

√
5
)︂

(argcosh 2− argcosh 4) + 1
250

(︂
1833 + 820

√
5
)︂

ln 3

+ 1
750

(︂
3538 + 1523

√
5
)︂ (︂

argcosh 9√
41 − argcosh 7√

41

)︂
− 32

125

(︂
67 + 30

√
5
)︂

arccot
√

2

+ 1
250

(︂
1833 + 820

√
5
)︂ (︂

argcosh 7
3 − argcosh 3

)︂
(1.297)
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L21r

By definition, L21r = LAB, where A is a face of K and B is the perimeter of its
corresponding opposite face. Again, we use the Overlap formula to deduce the
value of L21r, that is, by symmetry,

L21r = 10
volA volB

∫︂
D

√
h2 + k2 volA ∩ projB + k dk, (1.298)

where volA =
√︃

5
(︂
5 + 2

√
5
)︂

is the area of A and volB = 10 is the length
of B. The overlap diagram is the same as in the case of L22r, although the
value volA ∩ projB + k now corresponds to the total length of polyline A ∩
(projB + k) of intersection. In order to keep the naming of the subdomains Dj

and functions vj = volA ∩ projB + k, k ∈ Dj the same as in the case of L22r, we
let j, exceptionally, to denote twice the number line segments of A∩ (projB+ k)
in this section. That way, we get D = D10 ∪D8 ∪D6 ∪D4 and

v4 = 4 + 4√
5 − x

√︂
2 + 2√

5 , v6 = 4 + 2√
5
− x

2

√︄
2 + 2√

5
+ y

2
(︂
1−
√

5
)︂
,

v8 = 2 + 6√
5 − 2x

√︂
1− 2√

5 , v10 = 2
√

5.

Let u4 = v4, u6 = v6 − v4, u8 = v8 − v6, u10 = v10 − v8, that is

u4 = 4 + 4√
5 − x

√︂
2 + 2√

5 , u6 = − 2√
5 + x

2

√︂
2 + 2√

5 + y
2

(︂
1−
√

5
)︂
,

u10 = −2 + 4√
5 + 2

√︂
1− 2√

5x, u8 = −2 + 4√
5 + x

√︂
5
2 −

11
2
√

5 −
y
2

(︂
1−
√

5
)︂
.

Overall, by inclusion/exclusion,

L21r = 10
volA volB

(︄ ∫︁
D10

u10
√
h2 + x2 + y2 dxdy +

∫︁
D u4
√
h2 + x2 + y2 dxdy

+
∫︁
E4
u6
√
h2 + x2 + y2 dxdy −

∫︁
E6
u6
√
h2 + x2 + y2 dxdy

+
∫︁
E8
u8
√
h2 + x2 + y2 dxdy −

∫︁
E10

u8
√
h2 + x2 + y2 dxdy

)︄
,

(1.299)

The first integral can be immediately expressed in terms of auxiliary integrals

∫︁
D10

u10
√
h2+x2+y2 dxdy=h3

(︂(︂
4√
5−2

)︂
I

(1)
00

(︂
1

2ϕ4 ,
π
5

)︂
+ 2h

√︂
1− 2√

5I
(1)
10

(︂
1

2ϕ4 ,
π
5

)︂)︂
.

(1.300)
Performing the same set of transformations as in the previous case of L22r, that
is

• φ = π/5− φ′, we get u4 = 4 + 4√
5 − x

′
√︂

1 + 2√
5 − y

′,
• φ = φ′ − π/5, we get u6 = − 2√

5 + x′
√︂

2− 2√
5 ,

• φ = 2π
5 − φ

′, we get u8 = −2 + 4√
5 + 2x′

√︂
1− 2√

5
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and as a result, since all the subdomains are now expressed as fundamental tri-
angle domains, we get
∫︁
D u4
√
h2+x2+y2dxdy=h3

(︄(︂
4+ 4√

5

)︂
I

(1)
00

(︂
1
ϕ
, π5

)︂
−h

√︂
1+ 2√

5I
(1)
10

(︂
1
ϕ
, π5

)︂
−hI(1)

01

(︂
1
ϕ
, π5

)︂)︄
,

∫︁
D10∪D8∪D6

u6
√
h2+x2+y2 dxdy = h3

(︄
− 2√

5

(︂
I

(1)
00

(︂
1

2ϕ2 ,
2π
5

)︂
− I(1)

00

(︂
1

2ϕ2 ,
π
5

)︂)︂
+ h

√︂
2− 2√

5

(︂
1 + 1√

5

)︂ (︂
I

(1)
10

(︂
1

2ϕ2 ,
2π
5

)︂
− I(1)

10

(︂
1

2ϕ2 ,
π
5

)︂)︂)︄
,

∫︁
D10∪D8

u8
√
h2+x2+y2 dxdy = h3

(︄(︂
4√
5 − 2

)︂ (︂
I

(1)
00

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

00

(︂
1

2ϕ4 ,
π
5

)︂)︂
+ 2h

√︂
1− 2√

5

(︂
I

(1)
10

(︂
1

2ϕ4 ,
2π
5

)︂
− I(1)

10

(︂
1

2ϕ4 ,
π
5

)︂)︂)︄
.

Therefore, in total Therefore, in total,

L21r = 10h3

volA volB

(︄(︂
4√
5 − 2

)︂
I

(1)
00

(︂
1

2ϕ4 ,
2π
5

)︂
+

2I(1)
00

(︂
1

2ϕ2 ,
π
5

)︂
√

5 −
2I(1)

00

(︂
1

2ϕ2 ,
2π
5

)︂
√

5

+ 4
5

(︂
5 +
√

5
)︂
I

(1)
00

(︂
1
ϕ
, π5

)︂
− hI(1)

01

(︂
1
ϕ
, π5

)︂
+ 2

√︂
1− 2√

5hI
(1)
10

(︂
1

2ϕ4 ,
2π
5

)︂
−
√︂

2− 2√
5hI

(1)
10

(︂
1

2ϕ2 ,
π
5

)︂
+
√︂

2− 2√
5hI

(1)
10

(︂
1

2ϕ2 ,
2π
5

)︂
−
√︂

1 + 2√
5hI

(1)
10

(︂
1
ϕ
, π5

)︂)︄
≈ 4.808558828667.

Or explicitly,

L21r = 149
30 −

29
√

3
5

5 −
√

2
15 −

41
5
√

3 + 166
15

√
5 + 1

3
√

10 −
4π
225

(︂
19 + 8

√
5
)︂

− 8
75

(︂
2 +
√

5
)︂ (︂

arccos 1√
41 + arccos 3√

41

)︂
+ 1043+468

√
5

600

(︂
argcosh 7

3 − argcosh 3
)︂

+ 271+117
√

5
150 (argcosh 4− argcosh 2) + 746+283

√
5

600

(︂
argcosh 9√

41 − argcosh 7√
41

)︂
− 8

75

(︂
9 + 4

√
5
)︂

arccos 2
3 + 16

75

(︂
9 + 4

√
5
)︂

arccot
√

2 + 1
600

(︂
1043 + 468

√
5
)︂

ln 3.
(1.301)

L33

Putting everything together by using (1.261), we finally arrive, after another
series of simplifications and inverse trigonometric and hyperbolic identities, at

L33 = 1516
1575 + 2

√
2
5

45 −
124
√

3
5

175 − 71
√

2
1575 −

12
√

3
35 + 342

175
√

5 + 493π
23625 + 67π

945
√

5

+ (397−244
√

5) arccot 2
18900 + (24023+11788

√
5)(arccos 2

3 −arccos 1
3)

94500

− (461+212
√

5)(arccos 23
41 +arccos 39

41)
1000 − (1031+521

√
5) argcosh 13

3
75600

+ (367+163
√

5) argcosh 9
16800 + (22197+8149

√
5)(argcosh 121

41 −argcosh 57
41)

84000

+ (15763+7063
√

5)(argcosh 7
3 −argcosh 3)

21000 + 2(423+187
√

5)(argcosh 4−argcosh 2)
875

+ (288889+129739
√

5) ln 3
378000 + (109−3143

√
5) ln 5

151200 ≈ 2.533488631644.
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1.4. Bivariate functionals in three dimensions

Rescaling, we get our mean distance in a regular dodecahedron having unit volume

v
(1)
1 (dodecahedron) = L33

3
√︂

30 + 14
√

5
≈ 0.65853073. (1.302)

1.4.8 Unsolved problems
Weights

We believe that the equation for weights (1.183) possesses a closed form solution
in terms of geometrical properties of convex non-parallel polyhedra. However, we
were unable to deduce that.

General convex polyhedra

Let K ⊂ Rd, then for any fixed p > −d, L(p)
KK is continuous with respect to

continuous transformations ofK. Hence, in principle, we could obtain the formula
for convex parallel polyhedra by a continuous limit from some convex non-parallel
polyhedron. However, were not able to perform this limit.

Bounds on moments

Also, we believe, since the value p = 1 is not special, there could be a bound on
L

(p)
KK similar that of Bonnet, Gusakova, Thäle and Zaporozhets [12].
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1.5 Bivariate functionals in higher dimensions

1.5.1 d-Ball
Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit ball Bd = {x ∈ Rd |
∥x∥ ≤ 1} with volume vold Bd = κd = ωd/d. Additionally, we require P to be
rotationally symmetric with respect to the origin. That is, for any x,y ∈ Bd
and any orthogonal matrix R we have P (Rx, Ry) = P (x,y). This assumption is
satisfied by the choice P = Lp (which is implicitly assumed in this section).

Reduction system

According to our convention, let Pab = E [P (X,Y) | X ∼ Unif(A),Y ∼ Unif(B)],
where a = dimA, b = dimB and the concrete selection of A,B is deduced from
the reduction diagram in Figure 1.19 below. In this diagram, we also included
the position of the scaling point C in cases reduction is possible. The arrows
indicate which configurations reduce to which. Each arrow is labeled by a roman
numeral corresponding to a given reduction equation in the system of reduction
equations.

*

*

Figure 1.19: All different Pab sub-configurations in Bd

The full system obtained by CRT is

I : pPdd = 2d(Pd,d−1 − Pdd)
II : Pd,d−1 = Pd0.

III : pPd0 = d(Pd−1,0 − Pd0),

where the equation II follows from the rotational symmetry of P . The solution
of our system is

Pdd = 2d2P20

(2d+ p)(d+ p) . (1.303)

Pd-1,0

In configuration (d−1, 0), one point X is drawn uniformly from the boundary ∂Bd
while the other Y is fixed at the boundary. Keep in mind that Pd−1,0 is defined
via generalization of Remark 9 as a mean weighted by the support function

Pd−1,0 = 1
d vold Bd

∫︂
∂Bd

P (x,y)hy(x)λd−1(dx), (1.304)

where the support function hy(x) of Bd evaluated in x and centered at y ∈ ∂Bd
(arbitrary fixed point) is given explicitly as hy(x) = 1

2∥x − y∥2. Analogously
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1.5. Bivariate functionals in higher dimensions

to the 3-ball case, we parametrise the integral using hyper-spherical coordinates
with the axial angle of x − y being θ ∈ [0, π/2). We have ∥x − y∥ = 2 cos θ and
thus hy(x) = 2 cos2 θ. Furthermore, since P = Lp, we get P (x,y) = ∥x − y∥p =
(2 cos θ)p. Integrating out the axial symmetry from the uniform measure on ∂Bd,

λd−1(dx) = 2ωd−1(2 cos θ sin θ)d−2dθ (1.305)

Overall, calculating the following Beta integral and by using Legendre duplication
identity

Γ(z)Γ(z + 1
2) = 2

√
π

22z Γ(2z), (1.306)
we obtain

L
(p)
d−1,0 = ωd−1

ωd

∫︂ π/2

0
(2 cos θ)d+p sind−2 θ dθ =

2p Γ(d) Γ
(︂

1
2(d+ p+ 1)

)︂
Γ
(︂

1+d
2

)︂
Γ
(︂
d+ p

2

)︂ . (1.307)

Pdd

Substituting Pd−1,0 into Equation (1.303) with P = Lp, we get for general p > −d
(not necessarily an integer),

L
(p)
dd = 21+pd (d!)

∫︁ π
2

0 sind θ cosd+p θ dθ
(d+ p) Γ

(︂
1+d

2

)︂2 =
2pd (d!)Γ

(︂
1
2(d+p+1)

)︂
(d+p) Γ

(︂
1+d

2

)︂
Γ
(︂
1+d+ p

2

)︂ . (1.308)

Distance density

The density fdd(λ) of the random distance L between two interior points in Bd can
be recovered from moments using inverse Mellin transform (see appendix A.5).
By Equation (1.308), we have

M[fdd] = L
(p−1)
dd = 2pd (d!)

(d+p−1) Γ
(︂

1+d
2

)︂2

∫︂ π
2

0
sind θ cosd+p−1 θ dθ. (1.309)

Taking the inverse Mellin transform, we get, formally,

fdd(λ) = 2d (d!)
Γ
(︂

1+d
2

)︂2Id−1

[︄ ∫︂ π/2

0
(cos θ sin θ)d δ(λ− 2 cos θ) dθ

]︄
. (1.310)

By Equation (A.41) (see Appendix A), we immediately get

fdd(λ) = 21−dd (d!)
Γ
(︂

1+d
2

)︂2 λd−1
∫︂ arccos λ2

0
sind θ dθ. (1.311)

This result is not new, see Tu and Fischbach [72].
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1.6 Trivariate functionals in two dimensions

1.6.1 Equilateral triangle
To demonstrate the approach of CRT for trivariate functionals, we solve the
Silvester problem (c.f. [76]). The objective of the problem is to determine the
expected value of the area S of a triangle whose vertices are three points chosen
randomly from the intetrior of a given triangle T2. In our CRT notation, the
exact result is expressed as

S222 = v
(1)
2 (T2) vol2 T2 = vol2 T2

12 .

Although this result holds for any triangle T2, thanks to the scale affinity of areas
in two-dimensions, we can indeed assume that our triangle is equilateral with unit
area.

Beyond the Silvester problem, we also find higher area moments S(k)
222 for any non-

negative integer k. Table 1.13 below shows various explicit S(k)
222 area moments

for selected k’s (from Equation (1.333) or (1.334)).

S
(1)
222 S

(2)
222 S

(3)
222 S

(4)
222 S

(5)
222 S

(6)
222 S

(7)
222 S

(8)
222

1
12

1
72

31
9000

1
900

1063
2469600

403
2116800

211
2268000

13
2646000

Table 1.13: Values of volumetric moments v
(k)
2 (T2) = S

(k)
222 for selected k’s

Consequentially, from the knowledge of all moments, we deduce the probability
density function f222(s) of S using the inverse Mellin transform, a method due to
Mathai (see [45]).

Furthermore, we show how we can deduce the obtusity probability

η(T ∗
2 ) = 25

4 + π

12
√

3
+ 393

10 ln
√

3
2 ≈ 0.748197 (1.312)

in (the standard) equilateral triangle T ∗
2 . Our approach can be generalised to

obtain obtusity probability η(T2) in any other triangle T2 though.

Configurations

In general, let P be a trivariate homogeneous symmetric functional of order p (in
case of random triangle area, we have P = S and p = 2). In agreement with our
convention,

Pabc = E [P (X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)] , (1.313)
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1.6. Trivariate functionals in two dimensions

where a, b, c are dimensions of domains A,B,C, respectively, from which the
points X,Y,Z ∈ T2 are selected. In the case of ambiguity, the specific meaning
of each Pabc is deduced from the reduction technique itself or it is shown in Figure
1.20. In there, we also included the position of the scaling point C in cases
reduction is possible. The arrows indicate which configurations reduce to which.
Each arrow is labeled by a roman numeral corresponding to a given reduction
equation in the system of reduction equations. Note that the assumption the
triangle being equilateral gives us a lot of symmetries.

*

*

*

* *

Figure 1.20: All different (abc) configurations for K being a triangle

Reduction system

The full system obtained by the Multivariate Crofton Reduction Technique is

I : pP222 = 3 · 2(P221 − P222)
II : pP221 = 2 · 2(P211 − P221) + 1(P220 − P221),

III : pP211 = 2(P111 − P211) + 2 · 1(P210 − P211)
IV : pP220 = 2 · 2(P210 − P220)
V : pP110 = 2 · 1(P100 − P110)

Solving the system for P222, we get for any functional P the following result which
already appeared in Ruben and Reed [61], namely

P222 = 24(2P111 + 3P210)
(4 + p)(5 + p)(6 + p) . (1.314)

Irreducible terms

Using CRT, we have expressed P222 as a linear combination of P111 and P210.
Those terms cannot be reduced since the configurations (111) and (210) are ir-
reducible (no scaling point available). However, for specific functionals, we can
use some important symmetries to get us to even more reduced configurations
anyway (dashed arrows in Figure 1.20).

First moment of area

S111

Although the configuration (111) is irreducible (no scaling point), note that
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Chapter 1. Crofton Reduction Technique

S = 1− S ′ − S ′′ − S ′′′, (1.315)

where S ′, S ′′, S ′′′ are areas of triangles formed by fixing one vertex and picking
the other two from the adjacent sides (see Figure 1.20). Taking the expectation,

S111 = 1− 3S110

since by symmetry, E [S ′] = E [S ′′] = E [S ′′′] = S110 which is, however, reducible.

P110

One of the unreachable configurations is (110). This configuration is reducible
for general functional P by equation V in the reduction system. We get

P110 = 2P100

(2 + p) (1.316)

and therefore with P = S (and thus p = 2), we get S110 = 1
2S100.

S100

In configuration (100), the point selected from one of the sides divides T2 into two
triangles with areas S and S ′ (see Figure 1.20). Therefore, we have 1 = S + S ′.
Taking expectation and by symmetry, we get

S100 = E [S] = 1
2 . (1.317)

S210

This configuration can be solved using conditional expectations. Let P,Q,R be
vertices of T2 and we denote X as the point selected from the interior and Y
as the point selected from the side RQ (see Figure 1.20). Let us denote S ′ as
the area of the triangle PRY. The area S of the random triangle with vertices
P,X,Y can be conditioned with respect to S ′ (or Y). Since the point Y is fixed,
we split the problem into two cases by the location of point X. Either X is
above or below the line PY. However, each of those separate cases is equivalent
to configuration (200) (apart of scaling so the area of triangle PRY or PQY is
one). Writing down the correct scaling factors and by S ′ ∼ Unif(0, 1), we obtain

S210 = E [S] = E [E [S | S ′]] = E
[︂
S200S

′2 + S
(p)
200(1− S ′)2

]︂
= 2

3S200. (1.318)

S200

Note that the only point selected from the interior of T2 divides T2 into three
triangles with areas S, S ′ and S ′′ (see Figure 1.20), for which

1 = S + S ′ + S ′′, (1.319)

Taking the expectation and by symmetry, we immediatelly get S200 = 1
3 .
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S222

Therefore, we find by backtracking and by Equation (1.314) with P = S (p = 2),

v
(1)
2 (T2) = S222 = 1

14 (S111 + 3S210) = 1
12 , (1.320)

which is the resolution of the Silvester problem. To conclude, the following Table
1.14 shows the mean area of a random triangle in all configurations found along
the way.

S222 S221 S211 S220 S111 S210 S110 S200 S100

1
12

1
9

17
108

4
27

1
4

2
9

1
4

1
3

1
2

Table 1.14: Mean triangle area in T2 in various configurations

Higher moments of area

S(k)
100

For general k > −1, we have in configuration (100) that S ∼ Unif(0, 1) and thus

S
(k)
100 = E

[︂
Sk
]︂

= 1
1 + k

. (1.321)

S(k)
200

In configuration (200), since the area S is proportional with the distance of the
base of T2, we have for its density f(s) = 2(1− s) on s ∈ (0, 1). Therefore

S
(k)
200 = E

[︂
Sk
]︂

= 2
∫︂ 1

0
sk(1− s) ds = 2

(1 + k)(2 + k) . (1.322)

S(k)
210

By the same approach as in the S210 case, writing down the correct scaling factors,

S
(k)
210 = E

[︂
S

(k)
200S

′1+k + S
(k)
200(1− S ′)1+k

]︂
= 2

2+kS
(k)
200 = 4

(2+k)2(1+k) , (1.323)

since S ′ ∼ Unif(0, 1) and thus E [S ′1+k] = E [(1− S ′)1+k] = 1/(2 + k).

S(k)
111

Let X, Y, Z ∼ Unif(0, 1) be the (independent) ratios to which the vertices of the
random triangle divide each corresponding side of T2. We can write

S ′ = ZX. S ′′ = (1−X)(1− Y ), S ′′′ = Y (1− Z), (1.324)

so
S = 1− S ′ − S ′′ − S ′′′ = X −XY −XZ + Y Z. (1.325)
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Taking the expectation by integrating over X, Y, Z, we get

S
(k)
111 = E

[︂
Sk
]︂

=
∫︂ 1

0

∫︂ 1

0

∫︂ 1

0
(x− xy − xz + yz)k dxdydz. (1.326)

Integrating out z,

S
(k)
111 = 1

1 + k

∫︂ 1

0

∫︂ 1

0

(x− xy)1+k − (y − yx)1+k

x− y
dxdy. (1.327)

We may use the formula a1+k − b1+k = (a− b)(ak + ak−1b+ . . .+ abk−1 + bk), so

S
(k)
111 = 1

1+k

k∑︂
l=0

∫︂ 1

0

∫︂ 1

0
(x−xy)l(y−yx)k−ldxdy= 1

1+k

k∑︂
l=0

(︃∫︂ 1

0
xl(1−x)k−ldx

)︃2
. (1.328)

The remaining integral is a Beta integral. Straightforwardly, we finally arrive at
the explicit result which also appeared in a recent paper by Maesumi [43],

S
(k)
111 = 1

1 + k

k∑︂
l=0

(k − l)!2l!2
(1 + k)!2 . (1.329)

Alternatively, note that the integral

Ik = 1
1 + k

∫︂ 1

0

∫︂ 1

0

x1+k(1− x)1+k − y1+k(1− y)1+k

x− y
dxdy (1.330)

vanishes, since by substitution x → 1 − x and y → 1 − y, we get −Ik. Hence,
adding Ik to Equation (1.327) and by symmetry,

S
(k)
111 = 2

1 + k

∫︂ 1

0

∫︂ 1

0

(x− xy)1+k − y1+k(1− y)k
x− y

dxdy

= 2
1 + k

∫︂ 1

0

∫︂ 1

0
(1− y)1+k x

1+k − y1+k

x− y
dxdy.

(1.331)

The formula x1+k−y1+k = (x−y)(xk +xk−1y+ . . .+xyk−1 +yk) leads to another
Beta integral, but only raised to the first power, we get

S
(k)
111 = 2

1 + k

k∑︂
l=0

1
1 + l

∫︂ 1

0
(1−y)k+1yk−ldy = 2

k∑︂
l=0

k! (k − l)!
(1 + l)(2k−l+2)! . (1.332)

We do not know whether there is some simple combinatorial explanation why
those sums are equivalent.

S(2)
222

For the second moment of area, we simply put P = S2, for which p = 4. By
Equation (1.314), we get

v
(2)
2 (T2) = S

(2)
222 = 1

30
(︂
2S(2)

111 + 3S(2)
210

)︂
= 1

72 .

Table 1.15 below again summarises mean square areas of a random triangle in
various configurations.
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1.6. Trivariate functionals in two dimensions

S
(2)
222 S

(2)
221 S

(2)
211 S

(2)
220 S

(2)
111 S

(2)
210 S

(2)
110 S

(2)
200 S

(2)
100

1
72

5
216

1
24

1
24

1
12

1
12

1
9

1
6

1
3

Table 1.15: Mean square triangle area in T2 in various configurations

S(k)
222

For a general k integer, we get by Equation (1.314) with P = Sk (so p = 2k),

v
(k)
2 (T2) = S

(k)
222 = 6 2S(k)

111 + 3S(k)
210

(k + 2)(2k + 5)(k + 3) .

By the results for S(k)
111 and S

(k)
210, we get explicitly, after some simplifications,

S
(k)
222 = 12

6 + (2+k)2

(1+k)!2
∑︁k
j=0 j!2(k − j)!2

(1 + k)(2 + k)3(3 + k)(5 + 2k) =
24∑︁k+1

j=0
j!2(k+1−j)!2

(2+k)!2

(1 + k)(2 + k)2(3 + k) . (1.333)

in agreement with Mathai [46, p. 391], Reed [59] and Alagar [2]. Or equivalently,
by rearrangement of the sum as discussed earlier,

S
(k)
222 = 24

3 + (2 + k)∑︁k
j=0

(k+2)!(k−j)!
(1+j)(2k−j+2)!

(1 + k)(2 + k)3(3 + k)(5 + 2k) =
48∑︁k+1

j=0
k! (k+1−j)!

(j+1)(2k−j+4)!

(2 + k)(3 + k) . (1.334)

Either way, we get a very interesting relation between S
(k)
111 and S

(k)
222,

S
(k)
222 = 24S(k+1)

111
(1 + k)(2 + k)(3 + k) . (1.335)

Area density

f111

For the density f111(s) of the random variable S in configuration (111), we have
by Equation (1.327),

M[f111] = S
(k−1)
111 = 1

k

∫︂ 1

0

∫︂ 1

0

(x− xy)k − (y − yx)k
x− y

dx dy, (1.336)

so formally,

f111(s) = I0M−1
[︄∫︂ 1

0

∫︂ 1

0

(x− xy)k − (y − yx)k
x− y

dx dy
]︄

= I0

∫︂ 1

0

∫︂ 1

0

x(1−y)δ(s−x(1−y))−y(1−x)δ(s−y(1−x))
x− y

dxdy.
(1.337)

by Equation (A.41) (in Appendix A) with r = 1,

I0δ(s− α) = 1
α
1s<α. (1.338)
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via which we can deduce, with α = x(1− y) and α = y(1− x),

f111(s) =
∫︂ 1

0

∫︂ 1

0

1s<x(1−y) − 1s<y(1−x)

x− y
dxdy. (1.339)

We can deduce that f111(s) is nonzero only when s ∈ (0, 1). Evaluating this
integral is not complicated. By using Mathematica, we arrive at

f111(s) =
⎧⎨⎩−6

√
1− 4s argtanh 1√

1−4s − 3 ln s, 0 < s < 1/4,
√

4s− 1
(︂
π − 6 arctan 1√

4s−1

)︂
− 3 ln s, 1/4 ≤ s < 1.

(1.340)

Althought the derivation of f111 is already part of Alagar’s work [2], it is worth
to mention that the result was later independently rediscovered by Maesumi [43].

f222

For the density f222(s) of the random variable S in configuration (222), we have
by Equation (1.335),

M[f222] = S
(k−1)
222 = 24S(k)

111
k(1 + k)(2 + k) . (1.341)

Taking the inverse Mellin transform, we get

f222(s) = 24 I0I1I2M−1[S(k)
111] = 24 I0I1I2 [sf111(s)] . (1.342)

We will write sf111(s) =
∫︁ 1

0 αf111(α)δ(s − α)dα. From Table A.5 (see Appendix
A),

I0I1I2δ(s− α) = (α− s)2

2α3 1s<α, (1.343)

using which we obtain

f222(s) = 12
∫︂ 1

s

(︃
1− s

α

)︃2
f111(α) dα. (1.344)

It is very easy to carry out this integration, we get

f222(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
12(1− s)− 6(1 + 24s+ 6s ln s) ln s
−12(1+26s)

√
1−4s argtanh

√
1−4s

−144s(1 + s)(π2

9 − argtanh2√1− 4s)

⎫⎪⎪⎬⎪⎪⎭ , 0 < s < 1/4,

⎧⎪⎪⎨⎪⎪⎩
12(1− s)− 6(1 + 24s+ 6s ln s) ln s
−12(1+26s)

√
4s−1(π3−arctan

√
4s−1)

−144s(1 + s)(π3 − arctan
√

4s− 1)2

⎫⎪⎪⎬⎪⎪⎭ , 1/4 ≤ s < 1.

(1.345)

The computation of the area probablity distribution function f222(s) was first
carried out by Alagar [2], while the form shown above is due to Philip [51]. A
remarkable feature of Philip’s paper is that he also found the cumulative density
function F222(s) explicitly. Note that the methods of both authors relied crucially
on the knowledge of the relation between (111) and (210) configurations. Philip
also found the area probability density function of a random triangle for a regular
pentagon [56] and hexagon [54].
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1.6. Trivariate functionals in two dimensions

Obtusity probability

The probability a random triangle is obtuse in a given triangle T2 is no longer
affine (only scale invariant). Hence, the results of this section holds only for T2
being equilateral. We can use the following standard parametrization

T ∗
2 = conv(e1, e2, e3) = conv([1, 0, 0], [0, 1, 0], [0, 0, 1]) (1.346)

of an equilateral triangle embedded in R3 with area vol2 T ∗
2 =

√
3/2 and side

length
√

2.

η111

In configuration (111), the random points X,Y,Z are selected from (different)
sides of T ∗

2 . We may parametrise the points as

X = e1 + U(e2 − e1), Y = e1 + V (e3 − e1), Z = e2 +W (e3 − e2). (1.347)

where we introduced random variables U, V,W ∼ Unif(0, 1). Note that

(Y −X)⊤(Z−X) = V − 2U + 2U2 − UV + UW + VW. (1.348)

The probability that the triangle XYZ is obtuse is obtained by integrating the
obtusity indicators (Equation (1.31)). Moreover, by symmetry,

η111 = 3η1∗11 = 3E
[︂
1(Y−X)⊤(Z−X)<0

]︂
= 3E [1V−2U+2U2−UV+UW+VW<0] , (1.349)

which can be written as the following integral,

η111 = 3
∫︂ 1

0

∫︂ 1

0

∫︂ 1

0
1v−2u+2u2−uv+uw+vw<0 dudvdw. (1.350)

The integral was evaluated by Mathematica (see Code 1.1 below). We obtained

η111 = 9
2 + 27 ln

√
3

2 ≈ 0.616292. (1.351)

Code 1.1: Simple code to evaluate η111 in T ∗
2

1 eta111 = 3*Integrate[Boole[v-2u+2u^2-uv+uw+vw<0],
2 {u, 0, 1}, {v, 0, 1}, {w, 0, 1}];

η210

In configuration (210), the first vertex X of the inscribed random triangle XYZ is
selected from the interior of T ∗

2 , the second vertex Y is selected from its side and
the last vertex Z is fixed at the vertex of T ∗

2 opposite to Y. We may parametrise
the points as

X = e1 + U(e2 − e1) + V (e3 − e1), Y = e1 +W (e2 − e1), Z = e3. (1.352)

where we introduced random variables U, V,W such that (U, V )⊤ ∼ Unif(T2),
where T2 = conv([0, 0], [1, 0], [0, 1]) is the canonical triangle, and W ∼ Unif(0, 1).
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Additionally, in order to obtain the probability that the triangle XYZ is obtuse,
we recognize three sub-configurations (2∗10), (21∗0), (210∗) based on the exact
location of the obtuse angle (the corresponding vertex domain is indicated by ∗).
We can express the dot products in the decomposition of the obtusity indicator
(Equation (1.31)) as follows

(2∗10) : (Y −X)⊤(Z−X) = 2U2+2UV −2UW−U+2V 2−VW−2V +W,
(21∗0) : (Z−Y)⊤(X−Y) = U + 2V −W − 2UW − VW + 2W 2

(210∗) : (X− Z)⊤(Y − Z) = 2− U − 2V −W + 2UW + VW.

(1.353)

The probability η222 that the triangle XYZ is obtuse is obtained as a sum of
probabilities that the random triangle is obtuse at a specific vertex. Via the
same technique as in the previous case, we obtained for those probabilities

η2∗10 = 1
2 + 5π

36
√

3
− 1

2 ln
√

3
2 , η21∗0 = 83

12 + 48 ln
√

3
2 , η210∗ = 0. (1.354)

Summing those up, we finally get

η210 = η2∗10 + η21∗0 + η210∗ = 89
12 + 5π

36
√

3
+ 95

2 ln
√

3
2 ≈ 0.836134. (1.355)

η222

Inserting η111 and η210 into Equation (1.314) with P = η, for which p = 0,

η222 = 1
5 (2η111 + 3η210) = 25

4 + π

12
√

3
+ 393

10 ln
√

3
2 ≈ 0.748197. (1.356)

1.6.2 Square
Next, by using CRT, we rederive the result of Henze 5.1, that is the volumet-
ric moments v(k)

2 (C2) of a random triangle area. In our convention, we write
v

(k)
2 (C2) = S

(k)
222 (they are indeed equal, since we already have proper normal-

ization since vol2 C2 = 1). Table 1.16 below shows various explicit S(k)
222 area

moments for selected k’s (from Equation (1.369)).

S
(1)
222 S

(2)
222 S

(3)
222 S

(4)
222 S

(5)
222 S

(6)
222 S

(7)
222 S

(8)
222

11
144

1
96

137
72000

1
2400

363
3512320

761
27095040

7129
870912000

61
24192000

Table 1.16: Values of volumetric moments v
(k)
2 (C2) = S

(k)
222 for selected k’s

Consequentially, from the knowledge of all moments, we again deduce the prob-
ability density function f222(s) of S using the inverse Mellin transform.
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1.6. Trivariate functionals in two dimensions

Furthermore, we deduce the obtusity probability

η(C2) = 97
150 + π

40 ≈ 0.725206, (1.357)

which is a result due to Langford [42]. In fact, Langford obtained the obtusity
probability in a rectangle of any side-ratio.

Configurations

As usual, let Pabc = E [P (X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)],
where a = dimA, b = dimB, c = dimC and the concrete selection of A,B,C is
deduced from the reduction diagram in Figure 1.21 below. In this diagram, we
also included the position of the scaling point C in cases reduction is possible.
The arrows indicate which configurations reduce to which. Each arrow is labeled
by a roman numeral corresponding to a given reduction equation in the system
of reduction equations.

*

*

*

*

Figure 1.21: All different Pabc sub-configurations in C2

Reduction system

The full system obtained by the Multivariate Crofton Reduction Technique is

I : pP222 = 3 · 2(P221 − P222)
II : pP221 = 2 · 2(P211 − P221) + 1(P220 − P221),

III : pP211v = 2(P111 − P211) + 2 · 1(P210 − P211)
IV : pP220 = 2 · 2(P210 − P220)

with

P221 = 1
2P221v + 1

2P221r.

Solving the system for P222, we get for any functional P ,

P222 = 24(P111 + 2P210)
(4 + p)(5 + p)(6 + p) + 12P211r

(5 + p)(6 + p) . (1.358)
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Moments of area

S(k)
111

Let us parametrise the location of the random points in (111) configuration,

X = Ue2, Y = e2 + V e1, Z = e1 +We2, (1.359)

where U, V,W ∼ Unif(0, 1). Hence, the area is given by

S = 1
2(1− U + UV − VW ). (1.360)

Note that the expression on the right is always positive. Taking the expectation,

S
(k)
111 =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

(︃
u− v + w − uw

2

)︃k
dudwdv.

This integral is straightforward, we obtain

S
(k)
111 = 21−kHk+1

(1 + k)(2 + k) , (1.361)

where Hk = ∑︁k
j=1 1/j is the k-th harmonic number .

S(k)
210

In configuration (210), vertices X,Y,Z of the random triangle selected from C2
can be parametrised (see Figure 1.21) as

X = Ue1 + V e2, Y = We2, Z = e1 + e2, (1.362)

where U, V,W ∼ Unif(0, 1). Hence, the area is given by

S = 1
2 |U − V +W − UW |. (1.363)

Taking the expectation and splitting the integral into two cases based on X being
located above or below the line segment YZ, we obtain

S
(k)
210 =

∫︂ 1

0

∫︂ 1

0

[︃∫︂ u+w−uw

0

(︂
u−v+w−uw

2

)︂k
dv +

∫︂ 1

u−v+w−uw

(︂
−u−v+w−uw

2

)︂k
dv
]︃

dudw.

Integrating out v and u (and also w in case of the second integral), we get

S
(k)
210 = 2−k

(1+k)(2+k)2 +
2−k∫︁ 1

0
1−w2+k

1−w dw
(1 + k)(2 + k) = 2−k

(1+k)(2+k)2 + 2−kH2+k

(1+k)(2+k) . (1.364)

S(k)
211r

The last irreducible configuration (211r) is the hardest since it has an extra
degree of freedom. One point X is being selected from the interior of C2, while
the remaining two Y and Z are taken from the opposite sides. Parametrizing the
location of the points,

X = Ue1 + V e2, Y = We2, Z = e1 +Re2, (1.365)
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where U, V,W,R ∼ Unif(0, 1). Hence, the area is given by

S = 1
2 |RU − V +W − UW |. (1.366)

Taking the expectation and realizing that, by (two-fold) symmetry, we can assume
that the point X is always located above the line YZ,

S
(k)
211r = 2

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ ru+w−uw

0

(︃
ru− v + w − uw

2

)︃k
dvdudrdw.

Integrating out v and u is straightforward, we get

S
(k)
211r = 21−k

(1 + k)(2 + k)

∫︂ 1

0

∫︂ 1

0

r2+k − w2+k

r − w
drdw (1.367)

Luckily, the remaining integral is trivial, we get

S
(k)
211r = 22−kHk+2

(1 + k)(2 + k)(3 + k) . (1.368)

S(k)
222

For a general k integer, we get by Equation (1.358) with P = Sk (so p = 2k) and
after some simplifications, we get Henze’s [35] result

v
(k)
2 (T2) = S

(k)
222 = 3 · 23−kH2+k

(1 + k)(2 + k)2(3 + k)2 . (1.369)

Note that we can deduce this result independently by the Canonical section in-
tegral introduced later in this thesis (see Section 4.3.2 in Chapter 4).

Area density

See Section 4.3.2 in Chapter 4.

Obtusity probability

η111

In configuration (111), the vertices of the random triangle XYZ are selected from
three (different) sides. Let X and Z be picked from the opposite sides and Y be
picked from (one of) the remaining sides. Again, we parametrise the points as

X = e1 + U(e2 − e1) + V (e3 − e1), Y = e1 +W (e2 − e1), Z = e3. (1.370)

where U, V,W ∼ Unif(0, 1). We recognize three sub-configurations (1∗11), (11∗1),
(111∗) based on the exact location of the obtuse angle (the corresponding vertex
domain is indicated by ∗). By symmetry, configurations (1∗11) and (111∗) give
the same contribution. We can express the dot products in the decomposition of
the obtusity indicator (Equation (1.31)) as follows

(1∗11) : (Y −X)⊤(Z−X) = U2 − UW − U + V +W,

(11∗1) : (Z−Y)⊤(X−Y) = UW − U + V 2 − V −W + 1.
(1.371)
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The probability η222 that the triangle XYZ is obtuse is obtained as a sum of
probabilities that the random triangle is obtuse at a specific vertex. Taking
expectations and by Mathematica (Integrate with Boole as an argument),

η1∗11 = 1
24 , η11∗1 = 4

9 , η111∗ = η1∗11 = 1
24 . (1.372)

Summing those up, we get

η111 = η1∗11 + η11∗1 + η111∗ = 19
36 ≈ 0.527778. (1.373)

η210

Recall that in the (210) configuration, the first vertex X of the inscribed random
triangle XYZ is selected from the interior of C2, the second vertex Y is selected
from its side and the last vertex Z is fixed at the vertex of C2 opposite to Y. We
may parametrise the points as

X = Ue1 + V e2, Y = We2, Z = e1 + e2, (1.374)

where U, V,W ∼ Unif(0, 1). We recognize three sub-configurations (2∗10), (21∗0),
(210∗) based on the exact location of the obtuse angle. We can express the
dot products in the decomposition of the obtusity indicator (Equation (1.31)) as
follows

(2∗10) : (Y −X)⊤(Z−X) = U2 − U + V 2 − VW − V +W,

(21∗0) : (Z−Y)⊤(X−Y) = U − VW + V +W 2 −W
(210∗) : (X− Z)⊤(Y − Z) = 2− U + VW − V −W.

(1.375)

Taking expectations of the corresponding indicators and evaluating the integrals
by Mathematica, we get

η2∗10 = 13
18 , η21∗0 = 1

24 , η210∗ = 0. (1.376)

Summing those up, we get

η210 = η2∗10 + η21∗0 + η210∗ = 55
72 ≈ 0.763889. (1.377)

η211r

In the last irreducible configuration (211r), X is being selected from the interior
of C2, while the remaining two Y and Z are taken from the opposite sides.
Parametrizing the location of the points,

X = Ue1 + V e2, Y = We2, Z = e1 +Re2, (1.378)

where U, V,W,R ∼ Unif(0, 1). We get three corresponding sub-configurations
(2∗11r), (21∗1r), (211∗r), out of which (21∗1r) and (211∗r) give the same contri-
bution by symmetry. For the dot products, we have

(2∗11r) : (Y −X)⊤(Z−X) = (R− V )(W − V )− U(1− U),
(21∗1r) : (Z−Y)⊤(X−Y) = (R−W )(V −W ) + U.

(1.379)
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The probabilities that those dot products are negative can be computed by first
grouping the random variables, this is the method of Langford [42]. Let

Λ = (R− V )(W − V ), Ω = U(1− U), (1.380)

then Λ ∼ Lang with CDF (see Appendix A.1)

FΛ(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, λ < −1
4

1
3(1− 8λ)

√
1 + 4λ+ 4λ argtanh

√
1 + 4λ, −1

4 ≤ λ < 0
1
3

(︂
1− 6λ+ 8λ3/2

)︂
− 2λ ln λ, 0 ≤ λ < 1,

1, λ ≥ 1.

(1.381)

and, trivially, with PDF of Ω being fΩ(ω) = 2√
1−4ω1ω∈(0,1/4) (see Example 278).

We can write the obtusity probability in (2∗11r) sub-configuration as

η2∗11r=P
[︂
(Y−X)⊤(Z−X)<0

]︂
=P [Λ<Ω]=

∫︂ 1/4

0

∫︂ ω

−1/4
fΛ(λ)fΩ(ω) dλdω

=
∫︂ 1/4

0
FΛ(ω)fΩ(ω) dω=

∫︂ 1/4

0

2
3

(︂
1−6ω+8ω3/2

)︂
−4ω lnω

√
1− 4ω

dω = 5
9 + π

16 .
(1.382)

Similarly in (21∗1r) configuration, we have fU(u) = 1u∈(0,1) and thus

η21∗1r=P
[︂
(X−Y)⊤(Z−Y)<0

]︂
=P [Λ+U <0]=

∫︂ 1/4

0

∫︂ −u

−1/4
fΛ(λ) dλdu

=
∫︂ 1/4

0
FΛ(−u) du=

∫︂ 1/4

0

1+8u
3
√

1−4u− 4u argtanh
√

1−4u du= 1
60 .

(1.383)

Lastly, by symmetry, η211∗r = η21∗1r = 1/60. Summing up three obtusity proba-
bilities we have found so far, we get

η211r = η2∗11r + η21∗1r + η211∗r = 53
90 + π

16 ≈ 0.785238. (1.384)

η222

Inserting η111, η210 and η211r into Equation (1.358) with P = η, for which p = 0,

η222 = 1
5(η111 + 2η210 + 2η211r) = 97

150 + π

40 ≈ 0.725206 (1.385)

as obtained by Langford [42].

1.6.3 Disk
Consider a trivariate symmetric homogeneous functional P of order p dependent
on three random points picked uniformly from the unit disk B2 = {x ∈ R2 | ∥x∥ ≤
1} with area vol2 B2 = π. Additionally, we require P to be rotationally symmetric
with respect to the origin. That is, for any x,y, z ∈ B2 and any orthogonal matrix
R we have P (Rx, Ry, Rz) = P (x,y, z). Table 1.17 below shows various explicit
S

(k)
222 area moments for selected k’s (from Equation (1.426)).
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S
(1)
222 S

(2)
222 S

(3)
222 S

(4)
222 S

(5)
222 S

(6)
222 S

(7)
222 S

(8)
222 S

(9)
222 S

(10)
222

35
48π

3
32

1001
6400π

1
32

138567
2007040π

275
16384

1062347
24772608π

1911
163840

86822723
2664431616π

2499
262144

Table 1.17: Mean triangle area moments S
(k)
222 in B2

So far, the only known (higher) perimeter moments Π(k)
222 are available in the unit

disk (our result in this thesis, see Table 1.18, in which ζ(3) = ∑︁∞
n=1 1/n3 is the

Apéry’s constant ). Apparently, to our knowledge, the second and also any higher
perimeter moments are still unknown and yet to be determined in any other Kd.

Π(−1)
222 Π(1)

222 Π(2)
222 Π(3)

222 Π(4)
222

64
15π −

64 ln 2
15π

128
15π 3 + 3383

72π2 + 35ζ(3)
16π2

93584
1225π + 1024 ln 2

245π
49
2 + 1029ζ(3)

32π2 + 9745549
18000π2

Table 1.18: Random triangle perimeter moments Π(k)
222 in the unit disk B2

Also, we are able to deduce statistics for the smallest and the largest internal
angle. As a consequence, we get for the probability a random triangle in a disk
is obtuse (a famous result of Woolhouse [77]),

η(B2) = 9
8 −

4
π2 ≈ 0.719715. (1.386)

Configurations

As usual, let Pabc = E [P (X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)],
where a = dimA, b = dimB, c = dimC and the concrete selection of A,B,C
is deduced from the reduction diagram in Figure 1.22 below. In this diagram,
we also included the position of the scaling point C in cases reduction is pos-
sible. The arrows indicate which configurations reduce to which. Each arrow
is labeled by a roman numeral corresponding to a given reduction equation in
the system of reduction equations. Recall that the vertices X ∼ Unif(A),Y ∼
Unif(B),Z ∼ Unif(C) of triangle XYZ are selected independently and we denote
L = |XY|, L′ = |XZ| and L′′ = |YZ| its (random) side-lengths and Θ = |∠XZY|,
Θ′ = |∠XYZ| and Θ′′ = |∠YXZ| the corresponding (random) sizes of its internal
angles.
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1.6. Trivariate functionals in two dimensions

*

*

Figure 1.22: All different Pabc sub-configurations in B2

Reduction system

The full system obtained by CRT is

I : pP222 = 3 · 2(P221 − P222)
II : P221 = P220.

III : pP220 = 2 · 2(P210 − P220),

where the equation II follows from the rotational symmetry of P . The solution
of our system is

P222 = 24P210

(6 + p)(4 + p) . (1.387)

Note that when p = 0, we get P222 = P210, which is essentially Proposition 8.1 of
Sullivan [69, p. 65].

P210

In configuration (210), one point X is drawn uniformly from the interior of B2,
the second point Y is drawn uniformly from the boundary ∂B2 and the last one
Z is fixed at the boundary. Keep in mind that P210 is defined via generalization
of Remark 9 as a mean weighted by the support function

P210 = 1
2(vol2 B2)2

∫︂
B2

∫︂
∂B2

P (x,y, z)hz(y)λ2(dx)λ1(dy), (1.388)

where the support function hz(y) of B2 evaluated in y and centered at z ∈ ∂B2
(arbitrary fixed point) is given explicitly as

hz(y) = 1
2∥y− z∥2. (1.389)

Let us parametrise our integral using angular coordinates (α, β, ε), where α, β
are internal angles of the random triangle XYZ located at vertex Z and Y,
respectively. We denote γ as the remaining internal angle at vertex X, but keep
in mind that γ implicitly depends on α, β since α + β + γ = π. The angle ε is
the angle between the chord ZY and the tangent lines (see Figure 1.23). Also,
we define local perpendicular unit vectors e1, e2 as shown in the figure.
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Chapter 1. Crofton Reduction Technique

Figure 1.23: Parametrisation of points in (210) disk configuration

By (twofold) symmetry, we can only consider the case where the point X is
located above the chord ZY (as shown in the figure above). Hence, we get the
following set of inequalities for our angular variables

0 < α < ε, 0 < β < ε, α+ β < ε < π. (1.390)

The (half-)domain of integration in (α, β, ε) is therefore a tetrahedron

conv([0, 0, 0], [π, 0, 0], [π, 0, π], [0, π, π], [0, 0, π]). (1.391)

The parametrization of our points x,y, z (Figure 1.23) is given by

x− z = x1e1 + x2e2, y− z = 2 sin ε (cos ε e1 + sin ε e2) (1.392)

with

x1 = 2 sin β sin ε cos(ε− α)
sin γ , x2 = 2 sin β sin ε sin(ε− α)

sin γ , (1.393)

from which

∥x− z∥ = 2 sin β sin ε
sin γ , ∥y− z∥ = 2 sin ε, hz(y) = 2 sin2 ε. (1.394)

Calculating the Jacobian, we get the transformation of measures

λ2(dx) = dx1dx2 = 4 sinα sin β sin2 ε

sin3 γ
dα dβ, λ1(dy) = 2dε. (1.395)

Therefore, we may write for our integral (including the twofold symmetry factor),

P210 =
∫︂ π

0

∫︂ π−α

0

∫︂ π

α+β
P (x,y, z) ρ210(α, β | ε) dεdβdα, (1.396)

where we introduced the internal angle trivariate density

ρ210(α, β | ε) = 2λ2(dx)λ1(dy)hz(y)
2(vol2 B2)2 dεdβdα = 16 sinα sin β sin4 ε

π2 sin3 γ
. (1.397)
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1.6. Trivariate functionals in two dimensions

Angle-only dependent functionals

When the original functional P depends on integral angles α, β only, we can
integrate out ε to obtain

P210 =
∫︂ π

0

∫︂ π−α

0
P (x,y, z) ρ210(α, β) dβdα, (1.398)

where we introduced the (210) configuration internal angle bivariate density

ρ210(α, β)=
∫︂ π

α+β
ρ210(α, β | ε) dε= sinα sin β (12γ−8 sin(2γ)+sin(4γ))

2π2 sin3 γ
, (1.399)

which is the PDF of two internal angles Θ (at Z) and Θ′ (at Y). Moreover,
such functional P must have p = 0 (it cannot depend on the scale of the random
triangle) and thus, by the solution of the reduction equations,

P222 = P210. (1.400)

Bivariate internal angle distribution

As a simple consequence, we can identify the probability denity function of in-
ternal angles in configuration (222) with that of configuration (210). This is
essentially Proposition 8.1 of Sullivan [69, p. 65]. However, keep in mind that
while α, β and γ are permutable, this is not the case in (210) configuration. In
order to obtain the correct function for the distribution of internal angles in (222)
configuration, we must first select two vertices whose corresponding internal an-
gles would play the role of α and β in (210) configuration. Symbolically, this
corresponds to the following symmetrization construction of the (222) configura-
tion internal angle bivariate density

ρ222(α, β) = 1
3 [ρ210(α, β) + ρ210(α, π − α− β) + ρ210(π − α− β, β)]

= sinα sin β sin γ
6π2

[︄
12γ − 8 sin(2γ) + sin(4γ)

sin4 γ

+ 12β − 8 sin(2β) + sin(4β)
sin4 β

+ 12α− 8 sin(2α) + sin(4α)
sin4 α

]︄
,

(1.401)

where γ = π − α− β.

Univariate internal angle distribution

Finally, integrating out β from ρ222(α, β), we get the (222) configuration internal
angle univariate density (PDF of a random internal angle)

ρ222(α) =
∫︂ π−α

0
ρ222(α, β) dβ = csc3 α

24π2

[︂
(24(π − α)α− 2) cos(α)

+ 2 cos(5α) + 8(π + 2α) sin(α)− (π − α)(9 sin(3α) + sin(5α))
]︂
.

(1.402)

from which we get the CDF of the (222) random internal angle Θ of XYZ triangle

R222(α) = P [Θ ≤ α] =
∫︂ α

0
ρ222(α′) dα′ = 1

12π2

[︂
11 + 24πα− 12α2

− 5 cos(2α) + 6(π − 2α) cotα− 2(π − α)
(︂
3α csc2 α− sin(2α)

)︂ ]︂ (1.403)
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Internal angle order statistics

Our goal is to determine CDF of the largest internal angle Ω = max{Θ,Θ′,Θ′′} of
a random triangle XYZ picked from the unit disk, that is the function G222(ω) =
P [Ω ≤ ω] and its corresponding probability density function g222(ω) = G′

222(ω).
Clearly, the PDF is non-zero only when π/3 < ω < π. Moreover, trivially [29],

g222(ω) = 3ρ222(ω) and G222(ω) = 1− 3(1−R222(ω)), ω ∈ [π/2, π). (1.404)

This fact alone enables us to deduce the probability a random triangle is obtuse

η222 = 1−G222(π/2) = 3(1−R222(π/2)) = 9
8 −

4
π2 ≈ 0.719715 (1.405)

as derived by Woolhouse [77]. Finch [29] wrote that the probability density
g222(ω) when ω < π/2 is not known. However, Sullivan already found some
partial results with CRT [69, Lemma 8.2]. In Eisenberg & Sullivan [27, p. 318],
they also derived g222(ω) when ω ≥ π/2 but did not give a solution for ω < π/2.
We finished their calculation and concluded that

g222(ω) = 1
2π2

[︂
36ω − 12π + 6(π − 6ω − (π − 3ω)ω cotω) csc2 ω

− 2(π + 9ω) cos(2ω) + 18 cotω + 3(π − 2ω) sec2 ω

+ 2 sin(2ω) + 2 sin(4ω)− 6 tanω
]︂
, ω ∈ (π/3, π/2],

(1.406)

which matches the numerical result of Small [65, Fig. 1]. In order to derive this
result, note that we can write using the (222) bivariate density function

G222(ω) =
∫︂ π

0

∫︂ π−α

0
ρ222(α, β)1max{α,β,γ}≤ω dαdβ (1.407)

for all ω ∈ (π/3, π). When ω ∈ (π/3, π/2), this integral becomes

G222(ω) =
∫︂ ω

π−2ω

∫︂ ω

π−ω−α
ρ222(α, β) dβdα. (1.408)

Differentiating this double integral with respect to ω, we get

g222(ω) = 3
∫︂ ω

π−2ω
ρ222(α, ω) dα, (1.409)

which is straightforward. Moreover, integrating back, we got for the CDF,

G222(ω) = csc2 ω secω
32π2

[︂ (︂
8π2 − 11− 72ω2

)︂
cosω − 8(π − 3ω)2 cos(3ω)

+ 10 cos(5ω) + cos(7ω) + (20π − 36ω) sinω − 26π sin(3ω)
+ 78ω sin(3ω) + 2π sin(5ω) + 18ω sin(5ω)

]︂
, ω ∈ [π/3, π/2).

(1.410)

Similarly, the CDF of the smallest internal angle Ξ = min{Θ,Θ′,Θ′′} is given by

H222(ξ) = P [Ξ ≤ ξ] =
∫︂ π

0

∫︂ π−α

0
ρ222(α, β)1min{α,β,γ}≤ξ dαdβ, (1.411)
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hence ξ ∈ (0, π/3). Writing out the complement of this integral,

H222(ξ) = 1− P [Ξ > ξ] = 1−
∫︂ π−2ξ

ξ

∫︂ π−ξ−α

ξ
ρ(α, β). (1.412)

Immediately, recognizing that the integral on the right was already calculated,

H222(ξ) = 1− csc2 ξ sec ξ
32π2

[︂ (︂
8π2 − 11− 72ξ2

)︂
cos ξ − 8(π − 3ξ)2 cos(3ξ)

+ 10 cos(5ξ) + cos(7ξ) + (20π − 36ξ) sin ξ − 26π sin(3ξ)
+ 78ξ sin(3ξ) + 2π sin(5ξ) + 18ξ sin(5ξ)

]︂
, ξ ∈ (0, π/3)

(1.413)

and for the PDF given as h222(ξ) = H ′
222(ξ), we get

h222(ξ) = − 1
2π2

[︂
36ξ − 12π + 6(π − 6ξ − (π − 3ξ)ξ cot ξ) csc2 ξ

− 2(π + 9ξ) cos(2ξ) + 18 cot ξ + 3(π − 2ξ) sec2 ξ

+ 2 sin(2ξ) + 2 sin(4ξ)− 6 tan ξ
]︂
, ξ ∈ (0, π/3).

(1.414)

Perimeter moments

Π(k)
210

Let P = Πk. In (210) configuration using (α, β, ε) parametrization (see Figure
1.23), we have for the triangle XYZ side lengths

L = 2 sinα sin ε
sin(α + β) , L′ = 2 sin β sin ε

sin(α + β) , L′′ = 2 sin ε, (1.415)

from which, by using a known formula sinα + sin β + sin γ = 4 cos α
2 cos β

2 cos γ
2 ,

Π(x,y, z)=L+ L′+ L′′ = 2 sin ε (sinα+sin β+sin γ)
sin γ =

4 cosα2 cosβ2 sin ε
sin γ

2
. (1.416)

Therefore, by Equation (1.396),

Π(k)
210 =

∫︂ π

0

∫︂ π−α

0

∫︂ π

α+β

(︄
4 cos α

2 cos β
2 sin ε

sin γ
2

)︄k
ρ210(α, β | ε) dεdβdα. (1.417)

e It is convenient to change our independent variables from (α, β) to (α, γ). Triv-
ially dαdβ = dαdγ is the transformation of measure and for the integral, substi-
tuting ρ210(α, β | ε), we get

Π(k)
210 =

∫︂ π

0

∫︂ π−γ

0

∫︂ π

π−γ

42+k sinα sin β sin4+k ε

π2 sin3 γ

(︄
cosα2 cosβ2

sinγ
2

)︄k
dεdαdγ, (1.418)

where β = π − α− γ.
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Π(k)
222

Substituting Π(k)
210 into Equation (1.387) with P = Πk (and thus p = k), we get

Π(k)
222 = 24Π(k)

210
(6 + k)(4 + k) , (1.419)

so for general k > −2 (not necessarily an integer),

Π(k)
222 =6

∫︂ π

0

∫︂ π−γ

0

∫︂ π

π−γ

43+k sinα sin β sin4+k ε

(6 + k)(4 + k) π2 sin3 γ

(︄
cosα2 cosβ2

sinγ
2

)︄k
dεdαdγ, (1.420)

where β = π−α−γ. We do not know whether there is a way how we can simplify
this integral for general k’s. However, for any given selected k, the integral can
be computed in an exact form.

Π(2)
222

For example, when k = 2, we can integrate out ε and α in Equation (1.420),

Π(2)
222 =

∫︂ π

0

csc5 γ
2 sec3 γ

2
2304π2

[︂
45 sin(2γ)− 9 sin(4γ) + sin(6γ)− 60γ

]︂
×

×
[︂
6(π − γ) cos(2γ)− 56 sin γ − cos γ(24(π − γ) + 26 sin γ)

]︂
dγ,

(1.421)

which can be solved using Mathemtica or by using derivatives of the Beta function,

Π(2)
222 = 3 + 3383

72π2 + 35ζ(3)
16π2 . (1.422)

Area moments

S(k)
210

Let P = Sk. In (210) configuration, we have for the area (see Figure 1.23),

S(x,y, z) = 2 sinα sin β sin2 ε

sin γ . (1.423)

Therefore, by Equation (1.396),

S
(k)
210 =

∫︂ π

0

∫︂ π−α

0

∫︂ π

α+β

(︄
2 sinα sin β sin2 ε

sin γ

)︄k
ρ210(α, β | ε) dεdβdα. (1.424)

Integrating out β first, we get the following neat result

S
(k)
210 = 4

2 + k

∫︂ π

0

∫︂ ε

0

(2 sin(ε− α) sin ε sinα)2+k

π2 sin2 α
dα dε. (1.425)
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S(k)
222

Substituting S(k)
210 into Equation (1.387) with P = Sk (and thus p = 2k), we get

for general k > −1 (not necessarily an integer),

S
(k)
222 = 6S(k)

210
(2 + k)(3 + k) =24

∫︂ π

0

∫︂ ε

0

(2 sin(ε− α) sin ε sinα)2+k

(2 + k)2(3 + k) π2 sin2 α
dαdε. (1.426)

Remarkably, this integral possesses a closed form solution in terms of Gamma
functions. This follows from a result by Miles [48, p. 363, Eq. (29)] (Theorem
220 in this thesis). We get for any k > −1,

S
(k)
222 =

(3/2) Γ(3 + 3k
2 )

4k(1+k)(3+k)Γ(2+ k
2 )3 . (1.427)

After appropriate normalization, we get for the k-th volumetric moment,

v
(k)
2 (B2) = S

(k)
222

(vol2 B2)k
=

(3/2) Γ(3 + 3k
2 )

(4π)k(1+k)(3+k)Γ(2+ k
2 )3 . (1.428)

Area density

The density f222(s) of the random area S can be recovered from moments using
inverse Mellin transform (see appendix A.5). By using the Gamma function
triplication identity

Γ(z)Γ(z + 1
3)Γ(z + 2

3) = 2π
√

3
33z Γ(3z) (1.429)

with z = 1 + k/2, we can rewrite Equation (1.427), in terms of a product of two
Beta integrals as follows

S
(k)
222 = 81

4π2(1+k)(2+k)(3+k)

∫︂ 1

0

∫︂ 1

0

(︂
3
4
√

3yz
)︂k
y1/3z2/3

(1− y)1/3(1− z)2/3 dydz (1.430)

Taking the inverse Mellin transform of S(k−1)
222 , we get, formally,

f222(s) = 81
4π2 I0I1I2

[︄ ∫︂ 1

0

∫︂ 1

0

δ
(︂
s− 3

4
√

3yz
)︂
y1/3z2/3

(1− y)1/3(1− z)2/3 dydz
]︄
. (1.431)

From Table A.5 (see Appendix A),

I0I1I2δ(s− α) = (α− s)2

2α3 1s<α, (1.432)

via which we can deduce that in the unit disk s ∈ (0, 3
√

3/4) and

f222(s) = 8√
3 π2

∫︂ 1

0

∫︂ 1

0

(︂
3
4
√

3yz − s
)︂2
y1/3z2/3

(yz)3/2(1− y)1/3(1− z)2/31s<3
4

√
3yz

dydz. (1.433)

Unfortunately, this integral is nontrivial. There exists a closed form expression
in terms of generalised hypergeometric functions due to Mathai [45], but we are
not showing it here since it is not particularly illuminating.
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1.7 Trivariate functionals in three dimensions

1.7.1 Ball

See Finch [29, p. 694] and refferences therein.

1.7.2 Cube

Consider a trivariate symmetric homogeneous functional P of order p dependent
on three random points picked uniformly from the unit cube C3 with volume
vol3 C3 = 1. Nothing is known about area moments (Finch [29, p. 691–692]).
However, we are able to deduce the obtusity probability,

η(C3)= 323338
385875−

13G
35 + 4859π

62720−
73π

1680
√

2
− π2

105 + 3π ln 2
224 −

3π ln(1+
√

2)
224

≈ 0.54265928142722907450111187258177267165716732602495,
(1.434)

where G = ∑︁∞
n=0

(−1)n
(2n+1)2 ≈ 0.9159655941 is the Catalan’s constant. This result is

new as far as we know [29].

Configurations

As usual, let Pabc = E [P (X,Y,Z) | X ∼ Unif(A),Y ∼ Unif(B),Z ∼ Unif(C)],
where a = dimA, b = dimB, c = dimC and the concrete selection of A,B,C is
deduced from the reduction diagram in Figure 1.24 below.

*
*

*

*

*

*

*

Figure 1.24: All different Pabc sub-configurations in C3
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Reduction system

The full system obtained by CRT is

I : pP333 = 3 · 3(P332 − P333)
II : pP332 = 2(P331 − P332) + 2 · 3(P322 − P332),

III : pP331 = 1(P330 − P331) + 2 · 3(P321 − P331),
IV : pP322v = 2 · 2(P ′

321 − P322v) + 3(P222 − P322v),
V : pP330 = 2 · 3(P320 − P330),

VI : pP321v = 1(P320 − P321v) + 2(P311 − P321v) + 3(P221 − P321v),
VII : pP222v = 3 · 2(P221e − P222v)

with

P322 = 1
3P322r + 2

3P322v,

P321 = 2
3P321r + 1

3P321v,

P ′
321 = 1

2P321r + 1
2P321v,

P222 = 2
3P222r + 1

3P222v,

P221 = 1
3P221r + 2

3P221e.

The solution of our system is

P333 = 108(4P221e + P221r + 2P311 + 2P320)
(6 + p)(7 + p)(8 + p)(9 + p)

+ 72(P222r + 2P321r)
(7 + p)(8 + p)(9 + p) + 18P322r

(8 + p)(9 + p) .
(1.435)

Obtusity probability

In order to decuce η(C3), it is convenient to introduce the auxiliary Langford
random variables (see Appendix A.2). Let U,U ′, U ′′ ∼ Unif(0, 1) (independent),
we define those random variables as having the same distribution as the functions
of U,U ′, U ′′ on the right of the following equalities:

Λ = (U ′ − U)(U ′′ − U), Σ = (U − U ′)U, Ξ = UU ′, Ω = U(1− U). (1.436)

Moreover, we write Λ ∼ Lang (Langford distribution). Probability and cumula-
tive density functions of Λ,Σ,Ξ and Ω are shown in Table A.2. By symmetry, we
get for the obtusity probability in C3

η(C3) = 3η3∗33 = 3P
[︂
(Y −X)⊤(Z−X) < 0 | X,Y,Z ∼ Unif(C3)

]︂
. (1.437)

We can rewrite η(C3) in terms auxiliary variables introduced above. This is the
method used by Langford [42] to deduce η(C2). In configuration (333), we may
parametrise the random points X,Y,Z as

X =
3∑︂
i=1

Xiei, Y =
3∑︂
i=1

Yiei, Z =
3∑︂
i=1

Ziei, (1.438)
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where Xi, Yi, Zi ∼ Unif(0, 1), i = 1, 2, 3. Hence, for the scalar product of the
(3∗33) configuration (obtuse vertex at X),

(3∗33) : (Y −X)⊤(Z−X) =
3∑︂
i=1

(Yi −Xi)(Zi −Xi) (1.439)

and thus, using our auxiliary random variables,

η(C3)=3P [Λ+Λ′+Λ′′<0]=3
∫︂
λ1+λ2+λ3<0

fΛ(λ)fΛ(λ′)fΛ(λ′) dλdλ′dλ′′, (1.440)

where Λ,Λ′,Λ′′ ∼ Lang are independent random variables following the Langford
distribution. Unfortunately, we were not able to find the closed form expression of
the integral in Equation (1.440) with d = 3 straightaway. The intermediate result
involves dilogarithms with intricate arguments. However, there is a workaround
– CRT.

η322r

In configuration (332r), the first vertex X of the inscribed random triangle XYZ
is selected from the interior of C3, while the other two Y and Z are picked from
(any fixed) opposite faces. We may parametrise the points as

X = X1e1 +X2e2 +X3e3, Y = Y1e1 + Y2e2, Z = Z1e1 + Z2e2 + e3, (1.441)

where X1, X2, X3, Y1, Y2, Z1, Z2 ∼ Unif(0, 1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (3∗22r), (32∗2r) and (322∗r),
out of which the last two give the same contribution by symmetry. Expressing the
dot products in the decomposition of the obtusity indicator (Equation (1.31)),
we get

(3∗22r) : (Y−X)⊤(Z−X)=(Y1−X1)(Z1−X1)+(Y2−X2)(Z2−X2)−X3(1−X3),
(32∗2r) : (Z−Y)⊤(X−Y)=(X1−Y1)(Z1−Y1)+(X2−Y2)(Z2−Y2)+X3.

(1.442)

The probabilities that those dot products are negative can be computed by the
method of Langford [42]. The method relies on noticing that the dot product
can be written as linear combinations of auxiliary Langford random variables
Λ,Λ′ ∼ Lang (two independent copies). We can write the obtusity probability in
(3∗22r) sub-configuration as

η3∗22r = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [Λ + Λ′ − Ω < 0]

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4

∫︂ ω−λ

−1/4
fΛ(λ)fΛ(λ′)fΩ(ω) dλ′dλdω

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4
fΛ(λ)FΛ(ω − λ)fΩ(ω) dλdω.

(1.443)

Unfortunately, the leftover integral is far from trivial and even Mathematica is
unable to find its closed form solution straightaway. Nevertheless, via simple
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Weierstrass substitution, the integral can be decomposed into linear combination
of special integrals recently discussed on MSE website [47, 74], via which

η3∗22r= 6739
6750 −

8G
15 + 211π

1440 −
17π

252
√

2
− π

2

45 −
π ln(1+

√
2)

24 + π ln 2
24 ≈ 0.576363509,

(1.444)
where G = ∑︁∞

n=0
(−1)n

(2n+1)2 ≈ 0.9159655941 is the Catalan’s constant. Somehow, the
situation is much more elementary in (32∗2r) configuration. We have

η32∗2r = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [Λ + Λ′ + U < 0]

=
∫︂ 1/4

−1/4

∫︂ −λ

−1/4

∫︂ −λ−λ′

0
fΛ(λ)fΛ(λ′)fU(u) dudλ′dλ

=
∫︂ 1/4

−1/4
FΛ(−λ)FΛ(λ) dλ = 121

7350 + π

2688 ≈ 0.0176313323.

(1.445)

Lastly, by symmetry, η322∗r = η32∗2r. Summing up the three obtusity probabilities,

η322r = η3∗22r+η32∗2r+η322∗r=η3∗22r+2η32∗2r= 341101
330750−

8G
15 + 2969π

20160

− 17π
252
√

2
−π

2

45 + π ln 2
24 −

π ln(1+
√

2)
24 ≈0.611626173665235356686.

(1.446)

η321r

In configuration (321r), vertex X is selected from the interior of C3 and Y and Z
are picked from one face and its opposite edge, respectively. We may parametrise
the points as

X = X1e1 +X2e2 +X3e3, Y = Y1e1 + Y2e2, Z = Z1e1 + e3, (1.447)

where X1, X2, X3, Y1, Y2, Z1 ∼ Unif(0, 1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (3∗21r), (32∗1r) and (321∗r).
Expressing the dot products in the decomposition of the obtusity indicator (Equa-
tion (1.31)), we get

(3∗21r) : (Y−X)⊤(Z−X)=(Y1−X1)(Z1−X1)+(X2−Y2)X2 −X3(1−X3),
(32∗1r) : (Z−Y)⊤(X−Y)=(X1−Y1)(Z1−Y1)+(Y2−X2)Y2+X3,

(321∗r) : (X−Z)⊤(Y−Z)=(X1−Z1)(Y1−Z1) +X2Y2 + 1−X3.

(1.448)

Using auxiliary Langford random variables, we can write the obtusity probability
in (3∗21r) sub-configuration as

η3∗21r = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [Λ + Σ− Ω < 0]

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4

∫︂ ω−λ

−1/4
fΛ(λ)fΣ(σ)fΩ(ω) dσdλdω

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4
fΛ(λ)FΣ(ω − λ)fΩ(ω) dλdω.

(1.449)
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By using the MSE integrals, we get

η3∗21r= 49043
54000 −

8G
15 +1567π

11520−
67π

720
√

2
− π2

240+π ln 2
192 −

π ln(1+
√

2)
96 ≈0.5816795685,

(1.450)
Next, in (32∗1r) configuration,

η32∗1r = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [Λ + Σ + U < 0]

=
∫︂ 1/4

−1/4

∫︂ −λ

−1/4

∫︂ −λ−σ

0
fΛ(λ)fΣ(σ)fU(u) dudσdλ

=
∫︂ 1/4

−1/4
FΛ(−λ)FΣ(λ) dλ = 37

1176 + π

1344 ≈ 0.03380008.

(1.451)

At last, in (321∗r), configuration, since 1−X3 ∼ Unif(0, 1), we get

η321∗r = P
[︂
(X− Z)⊤(Y − Z) < 0

]︂
= P [Λ + Ξ + U < 0]

=
∫︂ 0

−1/4

∫︂ −λ

0

∫︂ −λ−ξ

0
fΛ(λ)fΞ(ξ)fU(u) dudξdλ

=
∫︂ 1/4

0
FΛ(−λ)FΞ(λ) dλ = 43

14700 ≈ 0.00292517.

(1.452)

Summing up the three obtusity probabilities we obtained in all sub-configurations,

η321r = η3∗21r + η32∗1r + η321∗r = 2494097
2646000 −

8G
15 + 11029π

80640 −
67π

720
√

2

− π2

240 + π ln 2
192 −

π ln(1 +
√

2)
96 ≈ 0.61840481814327429018.

(1.453)

η222r

In configuration (222r), vertices Y and Z are selected from opposite faces of C3
and X is selected from another face in between the two. We may parametrise the
points as

X = X2e2 +X3e3, Y = Y1e1 + Y2e2, Z = Z1e1 + Z2e2 + e3, (1.454)

where X2, X3, Y1, Y2, Z1, Z2 ∼ Unif(0, 1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (2∗22r), (22∗2r) and (222∗r),
the last last two of which give the same contribution by symmetry. Expressing
the dot products in the decomposition of the obtusity indicator, we get

(2∗22r) : (Y−X)⊤(Z−X)=Y1Z1+(Y2−X2)(Z2−X2)−X3(1−X3),
(22∗2r) : (Z−Y)⊤(X−Y)=(Y1−Z1)Y1+(X2−Y2)(Z2−Y2)+X3.

(1.455)

Using auxiliary Langford random variables, we can write the obtusity probability
in (2∗22r) sub-configuration as

η2∗22r = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [Ξ + Λ− Ω < 0]

=
∫︂ 1/4

0

∫︂ ω

−1/4

∫︂ ω−λ

0
fΞ(ξ)fΛ(λ)fΩ(ω) dξdλdω

=
∫︂ 1/4

0

∫︂ ω

−1/4
FΞ(ω − λ)fΛ(λ)fΩ(ω) dλdω.

(1.456)
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By using the MSE integrals, we get

η2∗22r = 14393
27000 −

2G
15 + 11π

1152 −
π2

72 + π ln 2
96 ≈ 0.326548524. (1.457)

Next, in (22∗2r) configuration,

η22∗2r = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [Σ + Λ + U < 0] = η32∗1r

= 37
1176 + π

1344 ≈ 0.03380008.
(1.458)

At last, η222∗r = η22∗2r by symmetry. Summing up the three obtusity probabilities,

η222r = η2∗22r + η22∗2r + η222∗r = η2∗22r + 2η22∗2r

= 788507
1323000 −

2G
15 + 89π

8064 −
π2

72 + π ln 2
96 ≈ 0.39414868337494.

(1.459)

η320

In configuration (320), X is selected from the interior of C3, Y is selected from a
face and Z in one of the vertices opposite to the selected face. We may parametrise
the points as

X = X1e1 +X2e2 +X3e3, Y = Y1e1 + Y2e2, Z = e3, (1.460)

where X1, X2, X3, Y1, Y2 ∼ Unif(0, 1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (3∗20), (32∗0) and (320∗). Expressing
the dot products in the decomposition of the obtusity indicator, we get

(3∗20) : (Y−X)⊤(Z−X)=(X1 − Y1)X1 + (X2 − Y2)X2 −X3(1−X3),
(32∗0) : (Z−Y)⊤(X−Y)=(Y1 −X1)Y1 + (Y2 −X2)Y2 +X3,

(320∗) : (X−Z)⊤(Y−Z)=X1Y1 +X2Y2 + 1−X3,

(1.461)

Using auxiliary Langford random variables, we can write the obtusity probability
in (3∗20) sub-configuration as

η3∗20 = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [Σ + Σ′ − Ω < 0]

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4

∫︂ ω−σ

−1/4
fΣ(σ)fΣ(σ′)fΩ(ω) dσ′dσdω

=
∫︂ 1/4

0

∫︂ ω+1/4

−1/4
fΣ(σ)FΣ(ω − σ)fΩ(ω) dσdω.

(1.462)

By using the MSE integrals, we get

η3∗20 = 42977
54000 −

7G
30 −

π2

1440 ≈ 0.575291173117. (1.463)

Next, in (32∗0) configuration,

η32∗0 = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [Σ + Σ′ + U < 0]

=
∫︂ 1/4

−1/4

∫︂ −σ

−1/4

∫︂ −σ−σ′

0
fΣ(σ)fΣ(σ′)fU(u) dudσ′dσ

=
∫︂ 1/4

−1/4
FΣ(−σ)FΣ(σ) dσ = 23

450 ≈ 0.0511111.

(1.464)
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At last, in (320∗), configuration, since 1−X3 ∼ Unif(0, 1) and both independent
copies Ξ and Ξ′ are positive, we get trivially

η320∗ = P
[︂
(X− Z)⊤(Y − Z) < 0

]︂
= P [Ξ + Ξ′ + U < 0] = 0. (1.465)

Summing up the three obtusity probabilities we got,

η320 = η3∗20 + η32∗0 + η320∗ = 45737
54000 −

7G
30 −

π2

1440 ≈ 0.6264022842. (1.466)

η311

In configuration (311), X is selected from the interior of C3 and Y and Z are
selected from perpendicular edges which do not share a common vertex. We may
parametrise the points as

X = X1e1 +X2e2 +X3e3, Y = Y3e3, Z = e1 + Z2e2, (1.467)

where X1, X2, X3, Y3, Z2 ∼ Unif(0, 1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (3∗11), (31∗1) and (311∗), out of
which the last two give the same contribution. Expressing the dot products in
the decomposition of the obtusity indicator, we get

(3∗11) : (Y−X)⊤(Z−X) = −(1−X1)X1 + (X2−Z2)X2 − (X3−Y3)X3,

(31∗1) : (Z−Y)⊤(X−Y) = X1 +X2Z2 + (Y3 −X3)Y3,
(1.468)

Using auxiliary Langford random variables, we can write the obtusity probability
in (3∗20) sub-configuration as

η3∗11 = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [−Ω + Σ + Σ′ < 0] = η3∗20

= 42977
54000 −

7G
30 −

π2

1440 ≈ 0.575291173117.
(1.469)

Next, in (31∗1) configuration,

η31∗1 = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [U + Ξ + Σ < 0]

=
∫︂ 0

−1/4

∫︂ −σ

0

∫︂ −σ−ξ

0
fU(u)fΞ(ξ)fΣ(σ) dudξdσ

=
∫︂ 1/4

0
FΣ(−σ)FΞ(σ) dσ = 17

1800 ≈ 0.00944444.

(1.470)

At last, by symmetry, η311∗ = η31∗1. Summing up the three obtusity probabilities,

η320 = η3∗20 + η32∗0 + η320∗ = 43997
54000 −

7G
30 −

π2

1440 ≈ 0.5941800620. (1.471)

η221r

In configuration (221r), X and Y are selected from opposite faces of C3 while
Z is selected from one of the edges connecting them. We may parametrise the
points as

X = X1e1 +X2e2, Y = Y1e1 + Y2e2 + e3, Z = Z3e3, (1.472)
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where X1, X2, Y1, Y2, Z3 ∼ Unif(0, 1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (2∗21r), (22∗1r) and (221∗r), out of
which the first two give the same contribution by symmetry. Expressing the dot
products in the decomposition of the obtusity indicator, we get

(2∗21r) : (Y−X)⊤(Z−X) = (X1−Y1)X1 + (X2−Y2)X2 + Z3,

(221∗r) : (X−Z)⊤(Y−Z) = X1Y1 +X2Y2 + Z3(1− Z3),
(1.473)

Using auxiliary Langford random variables, we can write the obtusity probability
in (2∗21r) sub-configuration as

η2∗21r = P
[︂
(Y−X)⊤(Z−X) < 0

]︂
= P [Σ + Σ′ − U < 0] = η32∗0 = 23

450 . (1.474)

By symmetry, η22∗1r = η2∗21r. Finally, in (221∗r) configuration,

η221∗r = P
[︂
(X− Z)⊤(Y − Z) < 0

]︂
= P [Ξ + Ξ′ − Ω < 0]

=
∫︂ 1

4

0

∫︂ 1
4 −ξ

0

∫︂ 1
4

ξ+ξ′
fΞ(ξ)fΞ(ξ′)fΣ(σ)dσdξ′dξ=

∫︂ 1
4

0

∫︂ 1
4 −ξ

0
ln ξ ln ξ′

√︂
1−4(ξ+ξ′) dξ′dξ

=
∫︂ 1

4

0

(1−4ξ)3/2

18 (3 ln(1−4ξ)−8) ln ξ dξ = 788
3375−

π2

120 ≈ 0.151234778.
(1.475)

Summing up the three obtusity probabilities,

η221r = η2∗21r + η22∗1r + η221∗r = 1133
3375 −

π2

120 ≈ 0.2534570004. (1.476)

η221e

In the last irreducible configuration (221e), X and Y are selected from adjacent
faces of C3 while Z is selected from an edge opposite to the face on which Y
reside. We may parametrise the points as

X = X1e1 +X2e2, Y = e1 + Y2e2 + Y3e3, Z = Z3e3, (1.477)

where X1, X2, Y2, Y3, Z3 ∼ Unif(0, 1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (2∗21e), (22∗1e) and (221∗e). Ex-
pressing the dot products in the decomposition of the obtusity indicator, we get

(2∗21e) : (Y−X)⊤(Z−X) = −X1(1−X1) + (X2 − Y2)X2 + Y3Z3,

(22∗1e) : (X−Y)⊤(Z−Y) = 1−X1 + (Y2 −X2)Y2 + (Y3 − Z3)Y3,

(221∗e) : (X−Z)⊤(Y−Z) = X1 +X2Y2 + (Z3 − Y3)Z3,

(1.478)

Using auxiliary Langford random variables, we can write the obtusity probability
in (2∗21e) sub-configuration as

η2∗21e = P
[︂
(Y −X)⊤(Z−X) < 0

]︂
= P [−Ω + Σ + Ξ < 0]

=
∫︂ 1/4

0

∫︂ ω

−1/4

∫︂ ω−σ

0
fΩ(ω)fΣ(σ)fΞ(ξ) dξdσdω

=
∫︂ 1/4

0

∫︂ ω

−1/4
fΩ(ω)fΣ(σ)FΞ(ω − σ) dσdω.

(1.479)
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By using the MSE integrals, we get

η2∗21e = 32629
54000 −

7G
30 −

π2

360 ≈ 0.3630998677. (1.480)

Next, in (22∗1e) configuration, we have since 1−X1 ∼ Unif(0, 1),

η22∗1e = P
[︂
(X−Y)⊤(Z−Y) < 0

]︂
= P [U+Σ+Σ′<0] = η32∗0 = 23

450 . (1.481)

Finally, in (221∗e) configuration,

η221∗e = P
[︂
(X−Z)⊤(Y−Z) < 0

]︂
= P [U+Ξ+Σ<0] = η31∗1 = 17

1800 . (1.482)

Summing up the three obtusity probabilities,

η221r = η2∗21r + η22∗1r + η221∗r = 35899
54000 −

7G
30 −

π2

360 ≈ 0.4236554232. (1.483)

η333

Inserting η221e, η221r, η222r, η311, η320, η321r and η322r into Equation (1.435) with
P = η, for which p = 0, we finally obtain

η(C3) = η333 = 1
28(4η221e+η221r+4η222r+2η311+2η320+8η321r+7η322r)

= 323338
385875−

13G
35 + 4859π

62720−
73π

1680
√

2
− π2

105 + 3π ln 2
224 −

3π ln(1+
√

2)
224

≈ 0.54265928142722907450111187258177267165716732602495 . . . ,

(1.484)

which is a natural generalization of Langford’s η(C2) [42].
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2. Even Moments of Random
Determinants
In this chapter, we study the moments of random determinants. It turns out that
they are closely related with moments of volumes of random simplices. We will
see this correspondence later in Chapter 3. For now, we shall study the moments
of random matrices on their own, the usefulness of which will be apparent later
on.

2.1 Preliminaries

2.1.1 Definitions
Definition 39. Let Xij’s be independent and identically distributed (i.i.d.)
random variables with (non-central) moments mr = EXr

ij, from which we
construct two (random) matrices A = (Xij)n×n and U = (Xij)n×p. Let
fk(n) = E (detA)k and fk(n, p) = E (detU⊤U)k/2 be their k−th determinant
moment and k-th Gram moment, respectively. By definition, we set fk(0) = 1
and fk(n, 0) = 1 (we put det(U⊤U) = 1 when p = 0). Also, we define their
corresponding generating functions

Fk(t) =
∞∑︂
n=0

tn

n!2fk(n), Fk(t, ω) =
∞∑︂
n=0

n∑︂
p=0

(n− p)!
n!p! tpωn−pfk(n, p). (2.1)

Remark 40. This definition of generating functions makes sense only for k ≤ 5,
otherwise it does not in general define an analytic function of t on any interval.
Although, we can still treat them formally.

Remark 41. Notice that, when n = p, that is when U = A, we get by the
multiplicative property of determinant, det(U⊤U) = (detA)2. Therefore,
fk(n, n) = fk(n) and thus Fk(t, 0) = Fk(t).

Example 42. When n = 2 and k = 4, we have

f4(2) = E (detA)4 = E
⃓⃓⃓⃓
⃓X11 X12
X21 X22

⃓⃓⃓⃓
⃓
4

= E (X11X22 −X12X21)4 = E (X4
11X

4
22

− 4X3
11X

3
22X12X21 + 6X2

11X
2
22X

2
12X

2
21 − 4X11X22X

3
12X

3
21 +X4

12X
4
21)

= m2
4 − 4m2

3m
2
1 + 6m4

2 − 4m2
1m

2
3 +m2

4 = 2m2
4 − 8m2

3m
2
1 + 6m4

2.

(2.2)

Definition 43. Sometimes, we restrict the distribution of Xij’s:
• We say Xij’s follow a symmetrical distribution, if the odd moments are

equal to zero up to the order k (that is, m2l+1 = 0 for 2l + 1 ≤ k).
We denote f sym

k (n) and F sym
k (t) the corresponding k-th moment of the

random determinant formed by those random variables, and its generating
function, respectively. Similarly, fk(n, p) = f sym

k (n, p) and Fk(t, ω) =
F sym
k (t, ω) if m1 = m3 = m5 = . . . = m2⌈k/2⌉−1 = 0.

• We say Xij’s follow a centered distribution (or equivalently, we say Xij’s
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are centered random variables) if m1 = 0. For those variables, we consider
f cen
k (n) and F cen

k (t) in the same way. Similarly, fk(n, p) = f cen
k (n, p) and

Fk(t, ω) = F cen
k (t, ω) if m1 = 0.

2.1.2 Polynomial nature and scalability
We present some general statements about the random determinant moments.

Proposition 44. Let k be even, then

fk(n) = φk(n,m1,m2,m3, . . . ,mk−1,mk), (2.3)

where φk is a polynomial in m1, . . . ,mk. Equivalently, there exists a function Φk

whose expansion coefficients are polynomials in m1, . . . ,mk, we can write

Fk(t) = Φk(t,m1, . . . ,mk). (2.4)

Similarly, fk(n, p) is also some polynomial φk(n, p,m1, . . . ,mk) and Fk(t, ω) =
Φk(t, ω,m1, . . . ,mk) for some functions Φk with polynomial expansion coefficients.

Corollary 44.1.

f sym
k (n) = φk(n, 0,m2, 0,m4, 0,m6, . . .), (2.5)
F sym
k (t) = Φk(t, 0,m2, 0,m4, 0,m6, . . .), (2.6)
f cen
k (n) = φk(n, 0,m2,m3,m4,m5,m6, . . .), (2.7)
F cen
k (t) = Φk(t, 0,m2,m3,m4,m5,m6, . . .), (2.8)

similarly for fk(n, p) and Fk(t, ω).

The following proposition allow us to fix one mr and still retain the full generality:

Proposition 45. Let φk and Φk be defined as in Proposition 44, then for any
β ∈ R and k even,

φk(n, βm1, β
2m2, β

3m3, . . . , β
kmk) = βnkφk(n,m1,m2,m3, . . . ,mk) (2.9)

and as a consequence,

Φk(t, βm1, β
2m2, . . . , β

kmk) = Φk(βkt,m1,m2, . . . ,mk). (2.10)

Similarly for the non-symmetric case,

φk(n, p, βm1, β
2m2, β

3m3, . . . , β
kmk) = βpkφk(n,m1,m2,m3, . . . ,mk) (2.11)

and
Φk(t, βm1, β

2m2, . . . , β
kmk) = Φk(βkt,m1,m2, . . . ,mk). (2.12)

Proof. Let X∗
ij = βXij, m∗

r = E (X∗
ij)r = βrmr, A = (X∗

ij)n×n, U = (X∗
ij)n×p. On

one hand, by definition,

E (detA∗)k = φk(n,m∗
1, . . . ,m

∗
k) = φk(n, βm1, . . . , β

kmk) (2.13)
E (detU∗⊤U∗)k/2 = φk(n, p,m∗

1, . . . ,m
∗
k) = φk(n, p, βm1, . . . , β

kmk). (2.14)
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On the other hand, by linearity of determinants,

E (detA∗)k = βnkE (detA)k = βnkφk(n,m1, . . . ,mk) (2.15)
E (detU∗⊤U∗)k/2 = βpkE (detU⊤U)k/2 = βpkφk(n, p,m1, . . . ,mk). (2.16)

The assertion for the generating functions follows simply by plugging those results
into Definition 39. ■

Corollary 45.1. Assume we know fk(n) and Fk(t) with m2 = 1, that is

fk(n)|m2=1 = φk(n,m1, 1,m3,m4, . . . ,mk), (2.17)
Fk(t)|m2=1 = Φk(t,m1, 1,m3,m4, . . . ,mk), (2.18)

then

fk(n) = m
nk/2
2 φk

(︄
n,

m1

m
1/2
2
, 1, m3

m
3/2
2
,
m4

m
4/2
2
, . . . ,

mk

m
k/2
2

)︄
, (2.19)

Fk(t) = Φk

(︄
m
k/2
2 t,

m1

m
1/2
2
, 1, m3

m
3/2
2
,
m4

m
4/2
2
, . . . ,

mk

m
k/2
2

)︄
. (2.20)

Similarly

fk(n, p) = m
pk/2
2 φk

(︄
n,

m1

m
1/2
2
, 1, m3

m
3/2
2
,
m4

m
4/2
2
, . . . ,

mk

m
k/2
2

)︄
, (2.21)

Fk(t, ω) = Φk

(︄
m
k/2
2 t, ω,

m1

m
1/2
2
, 1, m3

m
3/2
2
,
m4

m
4/2
2
, . . . ,

mk

m
k/2
2

)︄
. (2.22)

2.1.3 Permutations and derangements
Definition 46. Let Pn be the set of all permutations (that is, bijections) of
order n on [n] = {1, 2, 3, . . . , n}. An inversion is a permutation which only
switches two elements. We define the sign sgn π of a permutation π to be the
number of inversion necessary to get π from the identity. This definition is
unambiguous.

A permutation can be represented in the Cauchy notation. It is well known
that the permutation can be decomposed in cycles. This is becomes obvious by
showing the same π in the previous example in its cycle representation of π. Both
representations are shown on Figure 2.1.

(︄
1 2 3 4 5 6 7 8 9
3 6 1 9 4 7 2 5 8

)︄ 1

3

2 6

7

4

9

8

5

Figure 2.1: A permutation π ∈ P9 being represented in (tabular) Cauchy notation
(left panel) and the cycle notation (right panel)

Let C(π) be the number of cycles which π decomposes to, then sgn π = (−1)n−C(π),
where n is the order of the permutation π. We can write this formula as the prod-
uct over cycles. Let π = π1⊔π2⊔ · · · ⊔πm be (disjoint) decomposition into cycles
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πr, r = 1, . . . ,m, where we denoted m = C(π). Then

sgn π = (−1)n
m∏︂
r=1

(−1) =
m∏︂
r=1

(−1)|πr|−1, (2.23)

where |πr| is the order of πr (that is, the length of the cycle πr). Note that,
technically, πr are not permutations since they are not bijections on {1, . . . , |πr|},
but rather on a subset of n. In fact, our permutation π from Figure 2.1 is also a
special special case of another set of permutations called derangements.

Lemma 47. Let Dn be the set of all derangements of order n on [n]. That
is, Dn are permutations in Pn which have no fixed points (cycles of leghth
one). If we let C(π) denote the number of cycles in a permutation π and take
Cn(u) = ∑︁

π∈Dn u
C(π), then

Cn(u) = (n− 1)(Cn−1(u) + uCn−2(u))

and ∞∑︂
n=0

xn

n!Cn(u) = e−ux

(1− x)u .

Proof. See the chapter on Bivariate generating functions in the textbook “An-
alytic Combinatorics” by Flajolet and Sedgewick [30]. For completeness, we
present our own derivation. We proceed recursively based on the position of
the node n in the cycle representation of π. We can create a derangement π ∈ Dn

by either:
1. Adding the node n to one of the cycles of a derangement π′ ∈ Dn−1. That

is, if i → π(i), then we insert n as i → n → π(i). Since there are n − 1
nodes in π′, there are n − 1 different π ∈ Dn we can create. In this case,
the number of cycles is unchanged, i.e., C(π) = C(π′).

2. Adding a cycle (n, n− 1) of length two to π′′ ∈ Dn−2. We can then replace
n − 1 by any i ∈ π′′. This gives n − 1 new derangements π ∈ Dn created
from π′′, all of them having C(π) = C(π′′) + 1.

We can obtain all derangements Dn in this way. These two possibilities are shown
in the figures below.

Dn−1 n

Figure 2.2: Dn−1 → Dn.

Dn−2

n

i

Figure 2.3: Dn−2 → Dn.

In terms of Cn(u), we get the desired recurrence relation

Cn(u) =
∑︂
π∈Dn

uC(π) = (n− 1)
∑︂

π′∈Dn
uC(π′) + (n− 1)

∑︂
π′′∈Dn−2

uC(π′′)+1

= (n− 1)(Cn−1(u) + uCn−2(u)),
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from which one can deduce its generating function easily. ■

2.1.4 Analytic combinatorics
We follow the notation from the textbook Analytic combinatorics [30] by Flajolet
and Sedgewick. Let A be a combinatorial structure with weight wA : A → N0.
The structure is said to be labeled if any of its members α ∈ A (an object of
structureA) is composed of atoms numbered by [wA(α)] = {1, 2, 3, 4, . . . , wA(α)}.
Moreover, we assume that An = {α ∈ A | wA(α) = n} is finite for any natural
n ≥ 0. We also define ân = |An| as the number of objects with weight equal
to n. Combinatorial structures can be composed together. If a structure C is
composed out of structures A and B, we can depict this dependency in a form of
a structural relation (or structural equation)

C = Φ(A,B) (2.24)

One common composition of labeled structures is the star product. Note that a
tuple (α, β) cannot represent a labeled object of any structure, since the atoms
of α and β are labeled by [wA(α)] and [wB(β)], respectively. Relabeling our α,
β into α′, β′, so every number from 1 to wA(α) + wB(β) appears once, we get
a correctly labeled object. There are of course many ways how to re-label the
objects. The canonical way is to use the star product. We say (α′, β′) ∈ α ⋆ β
if the new labels in both α′ and β′ increase in the same order as in α and β
separately. An example is illustrated below in Figure 2.4.

⎛⎝ α′
6 5

2 4
, β′

3

1

⎞⎠ ∈ α
4 3

1 2
⋆ β

2

1

Figure 2.4: Star product

The key concept in labeled structures is their generating function (EGF for short)
defined as

Â(t) =
∑︂
α∈A

tw(α)

wA(α)! =
∞∑︂
n=0

ân
tn

n! . (2.25)

Generating functions encode the relation between combinatorial structures (i.e.
how are they composed). In general, there is often a relation in the form

Ĉ(t) = ϕ(Â(t), B̂(t)) (2.26)

for some function (or an operator) ϕ. The following Table 2.1 enlists the most
common constructions.
Let us make some further comments of the constructions in the table above.

• Seqk(A) is a shorthand for a sequence and indeed it can be represented as
(re-labeled) k-tuples of objects taken from A. Note that since everything is
re-labeled, even though αi, αj might be the same for different i, j, the cor-
responding α′

i, α′
j are always distinct. Formally, Seqk(A) = {(α′

1, . . . , α
′
k) |

αi ∈ A, i ∈ [k]}, where (α′
1, . . . , α

′
k) ∈ α1 ⋆ · · · ⋆ αk.
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C representation of C wC(γ), γ ∈ C Ĉ(t)

A+ B A ∪ B

⎧⎨⎩wA(γ) if γ ∈ A,
wB(γ) if γ ∈ B

Â(t) + B̂(t)

A ⋆ B {γ | γ ∈ α ⋆ β, α ∈ A, β ∈ B} wA(α)wB(β) Â(t)B̂(t)

Seqk(A) Ak def.= A ⋆A ⋆ · · · ⋆A⏞ ⏟⏟ ⏞
k

Â
k(t)

Setk(A) 1
k!A

k 1
k!Â

k(t)

Cyck(A) 1
k
Ak 1

k
Â
k(t)

Seq(A) ∑︁∞
k=0 Seqk(A) 1

1−Â(t)

Set(A) ∑︁∞
k=0 Setk(A) exp Â(t)

Cyc(A) ∑︁∞
k=1 Cyck(A) ln 1

1−Â(t)

Table 2.1: Composition of combinatorial structures and the corresponding expo-
nential generating functions

• Setk(A) is a structure of sets of k relabeled elements, that is, the order of
objects α′

i is irrelevant. Formally, Setk(A) = {{α′
1, . . . , α

′
k} | αi ∈ A, i ∈

[k]}. Alternatively, Setk(A) can be represented as the structure of classes
of k-tuples in Seqk(A) which differ up to some permutation.

• Cyck(A) represents the structure of classes of k-tuples in Seqk(A) which
differ up to some cyclical permutation.

For completeness, we briefly explain these results. To see that the exponential
generating function for A ⋆ B is Â(t)B̂(t), let ân, b̂n, and ĉn be the number of
elements of weight n in A, B, and A ⋆ B. We have that

ĉn =
n∑︂
j=0

(︄
n

j

)︄
âj b̂n−j

so
Ĉ(t) =

∞∑︂
n=0

ĉnt
n

n! =
∞∑︂
n=0

n∑︂
j=0

âjt
j

j! ·
b̂n−jt

n−j

(n− j)! = Â(t)B̂(t)

The generating functions for Seq(A), Set(A), and Cyc(A) come from the Taylor
series 1

1−t = ∑︁∞
k=0 t

k, et = ∑︁∞
k=0

tk

k! and ln
(︂

1
1−t

)︂
= ∑︁∞

k=1
xk

k
.

Tagging

Often, we asign a parameter (real or complex) when a given combinatorial sub-
structure appears in a more general construction. Let us say that each time a
substructure α ∈ A appears, we multiply the weight by µA. The generating func-
tion for a labeled combinatorial structure Aµ = µA ×A is then Âµ(t) = µAÂ(t).
Similarly, let us attach a parameter µB to a substructure B and let us create the
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following construction
Cµ = Φ(µA ×A, µB × B). (2.27)

In terms of EGF’s, this translates to

Ĉ(t) = ϕ(µAÂ(t), µBB̂(t)). (2.28)

Example 48. Let us denote D as the combinatorial structure of all derangements.
Any derangement can be decomposed into cycles of length at least two. Attaching
a tag u to each cycle, we get a structure Du, which can be also constructed as
follows

Du = Set
(︂
uCyc≥2

(︂
1
)︂)︂

(2.29)
and thus immediately in terms of generating functions,

D̂u(t) = exp(−ut− u ln(1− t)) = e−ut

(1− t)u . (2.30)

This is an alternative proof of Lemma 47.

2.2 Permutation tables
We can express the value of fk(n) = E (detA)k as a sum of terms over permutation
tables. Permutation tables are well known and have been used to find older
results [50][24]. However, they have never been used as a tool, but merely as a
visualisation. The main ingredient how to obtain random determinant moments
thus still remained a plain recursion. Although recursions are versatile (the author
of this thesis found F4(t) and F4(t, ω) in his original work [8] by recursions only),
they have a major disadvantage – they hide the underlining structure. Simply
because there are so many of them and they are connected nontrivialy (see Figure
1 in [8]). After finding F4(t) and F4(t, ω), the author begun a collaboration
with Zelin Lv and Aaron Potechin, who found f sym

6 (n) earlier the same year.
Together, we are able to deduce a slight generalisation, namely f cen

6 (n), using a
clever handling of generation functions. In our paper [5], the bijection between
random determinants and permutation tables is used extensively. For the first
time, the overall structure of permutation tables played a crucial role in obtaining
the moment of a random determinant. Nevertheless, the paper still relied only
on recursions (coupled with exclusion/inclusion technique), which again made the
derivation incredibly technical and hided some crucial insights. It was only later
after publishing our work that we realised that each block of our final generating
functions F4(t) and F cen

6 (t) have a concrete combinatorial meaning. Rather then
top to bottom, the natural question is how we can build our permutation tables
from bottom up from generating functions. The new approach is thus to view
permutation tables as a standalone combinatorial structure on which we can
perform analytic calculations in the spirit of Flajolet and Sedgewick [30]. This
is the method of permutation tables in its present form as it arose from the
collaboration with the aforementioned authors. We will show how the method
works in the remaining sections.

Definition 49. We say τ is a k by n permutation table, if its rows are permu-
tations πj, j = 1, . . . , k of order n. We denote Fk,n the set of all such tables.
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2.2. Permutation tables

Definition 50. We define the sign of a table τ ∈ Fk,n as the product of signs
of permutations which form its rows.
Definition 51. We define the weight of the i-th column of τ ∈ Fk,n as the
expectation E ∏︁k

j=1 Xiπj(i) Then, we define the weight w(τ) of the whole table
τ as the product of weights of its individual columns.
Definition 52. Finally, we denote Fk as the set of all permutation tables with
k rows with the above weights and signs. That is, structurallyFk,

Fk =
∞⋃︂
n=0

Fk,n. (2.31)

Example 53. The following example in Figure 2.5 shows a permutation table
τ ∈ F4,9 with weight w(τ) = m12

1 m
7
2m

2
3m4. Weight of each individual column

is shown below each column. For instance, the second column corresponds to
term X26X22X26X23, whose expectation is obviously m2

1m2 since EX2
26 = m2 and

EX22 = EX23 = m1.

1 6 3 9 5 2 7 8 4 +
3 2 1 9 4 6 7 5 8 +
4 6 1 9 3 2 7 5 8 +
2 3 1 5 4 6 7 8 9 −

m4
1 m2

1m2 m1m3 m1m3 m2
1m2 m2

2 m4 m2
2 m2

1m2

Figure 2.5: A permutation table τ ∈ F4,9 with w(τ) = m12
1 m7

2m2
3m4 and sgn τ = −1.

Proposition 54. For any distribution Xij,

fk(n) = E (detA)k =
∑︂

τ∈Fk,n
w(τ) sgn(τ). (2.32)

Proof. Follows directly from the expansion detA = ∑︁
π∈Pn sgn π∏︁i∈[n] Xiπ(i) raised

to k-th power and by taking expectation. ■

Example 55. The correspondence between fk(n) and permutation tables is shown
below in Figure 2.6 for n = 2 and k = 2 showing f2(2) = 2(m2

2 −m4
1) = 2!(m2 +

m2
1)(m2 −m2

1) by summing the contributions from all permutation tables.

(detA)2 = X2
11X

2
22 − X11X22X12X21 − X12X21X11X22 + X2

12X
2
21

F2,2 : 1 2
1 2

1 2
2 1

2 1
1 2

2 1
2 1

Weight: m2m2 m2
1m

2
1 m2

1m
2
1 m2m2

Sign: + − − +

Figure 2.6: Correspondence between determinant moment f2(2) and permutation
tables F2,2
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2.2.1 Exponential generating function and analytic com-
binatorial nature of permutation tables

Note that our generating functions (see Definition 39) are double exponential,
meaning they have a factor n! squared in the denominator, where the usual expo-
nential generating function (EGF) has only first power of n! in the denominator.
It turns out there is a simple way how the tables so their generating functions
are EGF. In order to achieve this, we relax the assumptions of knowing the order
of the columns.

Definition 56. Let Ak,n be some set of k × n nontrivial tables with usual
weight defined as a product of weights of its columns. We denote Ak,n as tables
formed from Ak,n in which the order of the columns is irrelevant. That is, Ak,n
is split into equivalent classes of tables which differ only by some permutation
of columns. The set Ak,n can be then viewed as the set of representats (one per
each class). Or equivalently, in Ak,n, tables which differ up to permutation of
columns are treated as the same table. Accordingly, we define

ak(n) =
∑︂

τ∈Ak,n
w(τ) sgn τ, âk(n) =

∑︂
τ∈Ak,n

w(τ) sgn τ

and their corresponding generating functions

Ak(t) =
∞∑︂
n=0

tn

n!2ak(n), Âk(t) =
∞∑︂
n=0

tn

n! âk(n). (2.33)

Lemma 57. Let ak(n), âk(n), Ak(t) and Âk(t) be defined as above, then

ak(n) = n!âk(n) and Âk(t) = Ak(t). (2.34)

Proof. Let τ ∈ Ak,n. Since k is even (otherwise ak(n) is zero), permutation of
columns of τ does not change the sign nor weight of τ . Select one representant τ ′

from each class of tables whose columns differ only by permutation of columns.
Since there are n! ways how we can arrange the columns,

ak(n) =
∑︂

τ∈Ak,n
w(τ) sgn τ =

∑︂
τ ′∈Ak,n

n!w(τ) sgn τ = n!âk(n), (2.35)

from which immediately

Ak(t) =
∞∑︂
n=0

tn

n!2ak(n) =
∞∑︂
n=0

tn

n! âk(n) = Âk(t). (2.36)

■

Definition 58. Finally, we denote Ak as the combinatorial structure of all
permutation tables with k rows with the above weights and signs (whose column
order is irrelevant). That is, structurally,

Ak =
∞∑︂
n=0
Ak,n. (2.37)
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Definition 59 (Tables Fk). According to the above definition, we write Fk,n
for the set of all permutation tables with k rows and n columns with irrelevant
order. Similarly, Fk = ∑︁∞

n=0Fk,n is the combinatorial structure of all such
tables regardless of the number of columns (including zero columns).

Example 60. Let us compute f2(3). We may write f2(3) = 3!f̂ 2(3), where f̂ 2(3) =∑︁
τ∈F2,3 w(τ) sgn τ . Figure 2.7 enlists all elements of F2,3 and shows their weights

and signs. Summing the contribution, we get f̂ 2(3) = m3
2 − 3m2m

4
1 + 2m6

1 =
(m2 + 2m2

1)(m2 −m2
1)2 and thus f2(3) = 3!(m2 + 2m2

1)(m2 −m2
1)2.

F2,3 : 1 2 3
1 2 3

1 2 3
1 3 2

1 2 3
3 2 1

1 2 3
2 1 3

1 2 3
3 1 2

1 2 3
2 3 1

Weight: m2m2m2 m2m
2
1m

2
1 m2

1m2m
2
1 m2

1m
2
1m2 m2

1m
2
1m

2
1 m2

1m
2
1m

2
1

Sign: + − − − + +

Figure 2.7: Correspondence between f̂2(3) and permutation tables F2,3

Remark 61. Since the order of the columns in any τ ∈ Fk is irrelevant by
definition, we often sort them by the first permutation (the first row in the
given table τ).

Sub-table factorization

Let n(τ) denote the number of columns (which is the same as the number of
elements) of a table τ ∈ Ak. Using this definition, we can write the exponential
generating function from Equation (2.33) more compactly as

Ak(t) =
∑︂
τ∈Ak

tn(τ)

n(τ)!w(τ) sgn τ, (2.38)

Any table τ can be viewed as being build up by smaller constituents. Those
constituents are sub-tables, which we define as the smallest subsets of columns
not sharing any element which cannot be further divided. The following propo-
sition underlines the property of tables with irrelevant column order Ak being a
combinatorial structure with the usual property of the star product, namely that
the (exponential) generating functions factorise over sub-tables.

Definition 62. Let τ be a Ak table. We denote EGF [τ ] as the contribution
of τ to Ak(t) (Equation (2.38)). By definition,

EGF [τ ] = tn(τ)

n(τ)!w(τ) sgn τ. (2.39)

Similarly, if B ⊂ Ak is a subset of tables from Ak, then EGF [B] =∑︁
τ∈B EGF [τ ].
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Proposition 63 (sub-table factorization). Let τ be a Ak table build up from
exactly two disjoint sub-tables τ1 and τ2, then

EGF [τ1 ⋆ τ2] = EGF [τ1]EGF [τ2]. (2.40)

Proof. Let n1 and n2 be the number of columns of τ1 and τ2, respectively. We
also denote n = n1 + n2 as the total number of columns of τ (See Figure 2.8).

τ =

n =

τ1

n1 columns

τ2

n2 columns+

⊔

Figure 2.8: Table τ consisted of two dis-joint sub-tables τ1 and τ2.

Any τ from the set τ1 ⋆ τ2 (with elements shuffled) gives the same contribution to
Ak(t). Since there are

(︂
n
n1

)︂
ways how can we select elements for τ1 and τ2,

EGF [τ1 ⋆ τ2] =
(︄
n

n1

)︄
EGF [τ ] =

(︄
n

n1

)︄
tn

n!w(τ) sgn τ = tn

n1!n2!
w(τ) sgn τ. (2.41)

On the other hand, we already know that both weight and sign factorises over
sub-tables, that is w(τ) sgn τ = w(τ1)w(τ2) sgn τ1 sgn τ2. Hence,

EGF [τ1]EGF [τ2] = tn1

n1!
w(τ1) sgn τ1

tn2

n2!
w(τ2) sgn τ2 = tn1+n2

n1!n2!
w(τ) sgn τ, (2.42)

which concludes the proof. ■

2.2.2 Highest moment recursion formulae
The following statement and its proof due to Prékopa [57] enables us to replace
mk with any arbitrary value and still not loose any generality:

Proposition 64.
∂Fk(t)
∂mk

= tFk(t), (2.43)

from which, for m∗
k ∈ R arbitrary,

Fk(t) = e(mk−m∗
k)t(Fk(t)|mk→m∗

k
), (2.44)

or equivalently

Φk(t,m1, . . . ,mk−1,mk) = e(mk−m∗
k)tΦk(t,m1, . . . ,mk−1,m

∗
k) (2.45)
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Proof. For each factor of mk, there must be one column filled with the same
elements in a given permutation table (a k-column). The columns of Fk can be
depicted in the diagram below.

Type: k-column other columns

Fk :
a
...
a

...

Weight: mk · · ·

Crucially, these k-columns are disjoint from the rest of the table. If we denote F̃k
as the structure of tables not containing k-columns, we can write the following
structural equation

Fk = Set

⎛⎜⎜⎝
1
...
1

⎞⎟⎟⎠ ⋆ F̃k. (2.46)

Note that the star product arises naturally, since it handles relabeling. The first
term in the star product is precisely the structure of k-columns with EGF equal
to exp(mkt), where mkt is the EGF of a single k-column. For the second term,
we have for its EGF that F̃ k(t) = Fk(t)|mk→0, since we can erase the k-columns
by setting mk = 0. Combining those generating functions together,

Fk(t) = emkt(Fk(t)|mk→0), (2.47)

which is equivalent to the assertion of the proposition. ■

Dembo (Lemma 2 in [24]) showed that a similar result holds also for Fk(t, ω),
namely

Proposition 65.
∂Fk(t, ω)
∂mk

= tFk(t, ω), (2.48)

from which, for m∗
k ∈ R arbitrary,

Fk(t, ω) = e(mk−m∗
k)t(Fk(t, ω)|mk→m∗

k
), (2.49)

or equivalently

Φk(t, ω,m1, . . . ,mk−1,mk) = e(mk−m∗
k)tΦk(t, ω,m1, . . . ,mk−1,m

∗
k) (2.50)

Remark 66. There is a general pattern found throughout the thesis. Namely,
if a table is composed of two disjoint sub-tables, its EGF is a product of those
EGF’s for the two sub-tables. This is because not only weights decompose
into product over sub-tables, but also the signs (as shown in Proposition 63).
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2.2.3 Second moment general
The following formula for f2(n) was derived by Fortet [32] as a special case of a
more general setting by recursions, although it could be derived in a much more
elementary way [68]. In this thesis, however, we shall prove this formula using
permutation tables and their corresponding combinatorial constructions.

Proposition 67 (Fortet [32]). For any distribution of Xij,

f2(n) = n!(m2 +m2
1(n− 1))(m2 −m2

1)n−1, (2.51)
F2(t) = (1 +m2

1t)e(m2−m2
1)t. (2.52)

Proof. In order to deduce f2(n), we can add up weights and signs in tables F2.
Let us examine their structure. Let a, b be different integers, then there are two
types of columns in F2 (see the diagram below).

Type: 2-column 1-column

F2 : a
a

a
b

Weight: m2 m2
1

A crucial observation is as follows: Each table τ ∈ F2 can be decomposed into
sub-tables (disjoint sets of columns). This should be obvious since any τ can
be associated with a corresponding permutation π in the Cauchy notation. The
fixed points of π correspond to 2-columns and the cycles of π are created by
connecting the 1-columns (first row to second row). An example of τ ∈ F2 with
its corresponding permutation is shown in Figures 2.9 and 2.10 – since the order
of columns in τ is irrelevant, we grouped the columns into sub-tables right away.

1 4 7
4 7 1

2
2

3
3

5 9
9 5

6 8
8 6

Figure 2.9: τ ∈ F2,9 with two 2-columns
and seven 1-columns (5 sub-tables)

2

3

5

9

6

8

1 4

7

Figure 2.10: The corresponding permu-
tation π ∈ F9 for table τ

As a consequence, we can write down a structural equation for the structure of
all 2-tables F2 as follows

F2 = Set
(︄

1
1

)︄
⋆ Set

(︂
−Cyc≥2

(︂
−m2

1 1
)︂)︂
. (2.53)

That is, the second term in the star product is exactly the structure F̃2. Based
on analytical combinatorics, we immediately get in terms of generating functions,

F2(t) = exp(m2t) exp(−m2
1t+ ln(1 +m2

1t)) = (1 +m2
1t)e(m2−m2

1)t. (2.54)
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2.2. Permutation tables

This concludes the proof. By using Taylor expansion, we immediately recover
also f2(n). For completeness, let us discuss how the signs are handled in the
EGF of F̃2. Those tables are decomposable into sub-tables, each sub-table of τ is
identified with a corresponding cycle. Each cycle π of length n has the sign equal
to (−1)n−1 and this must be the same sign of the sub-table of τ of the same size
(n columns). We can therefore write for the EGF of all tables composed of one
cycle only

−
(︄
m2

1(−t) +m4
1
(−t)2

2! +m6
1
(−t)3

3! +m8
1
(−t)4

4! + · · ·
)︄

= ln(1 +m2
1t). (2.55)

Note that the power of the minus sign at tn is exactly (−1)n−1 as it should be.
Finally, since the cycle of length one is impossible (a single 1-column can never
be disjoint), we have to subtract the first term in the series expansion above.

■

2.2.4 Fourth moment central
Note that when m1 = 0, the number of tables with nontrivial weight is reduced
significantly. As a consequence, we can easily derive the result of Nyquist, Rice
and Riordan [50], namely F sym

4 (t) and the corresponding f sym
4 (n).

Proposition 68 (Nyquist, Rice and Riordan [50]).

F sym
4 (t) = et(m4−3m2

2)

(1−m2
2t)3 , (2.56)

Corollary 68.1.

f sym
4 (n) = (n!)2m2n

2

n∑︂
j=0

1
j!

(︄
m4

m2
2
− 3

)︄j (︄
n− j + 2

2

)︄
. (2.57)

Remark 69. In fact, those formulae hold even if Xij’s follow just a centered
distribution. That is, f cen

4 (n) = f sym
4 (n) and F cen

4 (t) = F sym
4 (t). This is due to

the fact that m3 appears always as a product m1m3 in the f4(n) polynomial.

Proof of Proposition 68. Let a, b be different integers, then there are two types
of columns we need to consider which give rise to tables with nontrivial weights
(see the diagram below). It is convenient to denote those tables as F sym

4 (or F sym
4

if we do not care about the order of columns).

Type: 4-column 2-column

F sym
4 :

a
a
a
a

a
a
b
b

Weight: m4 m2
2
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By definition
f sym

4 (n) = n!f̂ sym
4 (n) = n!

∑︂
τ∈Fsym

4,n

w(τ) sgn τ. (2.58)

Again, we can write down a structural equation for the 4-tables F sym
4 as follows

F sym
4 = Set

⎛⎜⎜⎜⎝
1
1
1
1

⎞⎟⎟⎟⎠ ⋆ Q4. (2.59)

The first part of the star product corresponds to tables with 4-columns only. Its
EGF is equal to exp(m4t). The second term Q4 denote the tables with 2-columns
only. Let us further examine how we can construct the latter tables using disjoint
sub-tables. Let b be a number in the first row of a given column of table τ ∈ Q4.
Since it is a 2-column, we denote the other number in the column as b′. We
construct a permutation π to a given table τ as composed from all those pairs
b → b′. Note that since b and b′ are always different, the set off all admissible
permutations corresponds to the set of all derangements. On top of that, since
the first row of τ can be assumed to be fixed to identity (we simply reorder the
columns), there are 3 possibilities how to arrange the leftover numbers in the
2-columns of a given cycle of π as the number in the first row of each 2-column
can reappear either in the second, third or in the fourth row. For each possibility,
we draw a vertical box with four slots filled with two dots representing in which
rows the number in the first row appears (see Figure 2.11).

1 3
1 3
3 1
3 1

2 6 7
6 7 2
2 6 7
6 7 2

4 5 8 9
9 4 5 8
9 4 5 8
4 5 8 9

1

3

2 6

7

4

9

8

5

Figure 2.11: One-to-one correspondence between a table τ inQ4,9 with nine 2-columns
decomposable into three disjoint sub-tables, and its associated derangement π with
cycles labeled according to the repetitions of the number in the first row of τ

Any derangement can be decomposed into cycles of length at least two. Those
cycles correspond to disjoint sub-tables of τ . Since each permutation appears
twice in any sub-table, the sign of those sub-tables is always positive. Hence,

Q4 = Set
(︂
3 Cyc≥2

(︂
m2

2 1
)︂)︂

(2.60)

and thus immediately in terms of generating functions,

F sym
4 (t) = exp(m4t) exp(−3m2

2t− ln(1−m2
2t)) = e(m4−3m2

2)t

(1− 3m2
2t)3 . (2.61)

This concludes the proof. By using Taylor expansion, we immediatelly recover
also f sym

4 (n). ■
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2.2. Permutation tables

Remark 70. By considering all tables, one could theoretically tackle also the
case m1 ̸= 0. However, this approach is rather ineffective since it turns out
the problem drastically simplifies if we shift the random variables Xij by their
first moment m1, as we will see later on in the section on marked permutation
tables (Section 2.4).

2.2.5 Normal moments
In the case of Xij being normally distributed, we know much more. In fact we
know all determinant moments (even for the Gram case as we will see later).
For now, we focus only on the special case of the standard normal distribution
Xij ∼ N(0, 1).

Definition 71. If Xij ∼ N(0, 1), we denote fk(n) as nk(n) and Fk(t) as Nk(t).

Proposition 72 (Prékopa 1967). For any even k = 2m,

n2m(n) =
m−1∏︂
r=0

(n+ 2r)!
(2r)! . (2.62)

For now, we take this proposition as granted. It was first derived in this form
by Nyquist, Rice and Riordan (Equation (3.12) in [50], their treatment even
covers the case of arbitrary complex moment), although much more elementary
derivation of this result was later given by Prékopa (Section 3 in [57]). Both proofs
rely on a deep connection of random determinants with volumetric moments of
random polytopes (see Chapter 6). The proposition is also a special case of
Lemma 143 with µ = 0.

Fourth normal moment

When k = 4, we get n4(n) = n!(n+ 2)!/2 and thus

N4(t) = 1
2

∞∑︂
n=0

(n+ 2)(n+ 1) tn = 1
(1− t)3 . (2.63)

Alternatively, we can deduce N4(t) independently from Proposition 72 by us-
ing the general formula for F sym

4 (t) (Proposition 68), since the standard normal
distribution is modeled by plugging its moments m2 = 1 and m4 = 3 into F sym

4 (t).

Sixth normal moment

When k = 6, the function

N6(t) = 1
48

∞∑︂
n=0

(n+ 1)(n+ 2)(n+ 4)! tn. (2.64)

is no longer analytic. In fact, it diverges everywhere except t = 0, however,
we can still treat it formally. Note that in this case, there also exists a fully
combinatorial proof (independent from Proposition 72) due to Potechin and Lv
(see Appendix A of [5]).
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2.2.6 Sixth moment central

The proof of the following theorem was already established by B., Potechin and
Lv [5]. In this section, we provide a more compact version of the proof, based
on inclusion/exclusion, analytic combinatorics and the fact we know the EGF for
the special case Xij being normally distributed.

Theorem 73 (B., Lv, Potechin 2023). For any central distribution of Xij,

F cen
6 (t) = (1 +m2

3t)10 e
t(m6−15m4m2−10m2

3+30m3
2)

(1 + 3m3
2t−m4m2t)15 N6

(︄
m3

2t

(1 + 3m3
2t−m4m2t)3

)︄
.

Furthermore, via Taylor expansion,

f cen
6 (n)=(n!)2m3n

2

n∑︂
j=0

j∑︂
i=0

n−j∑︂
k=0

(1+i)(2+i)(4+i)!
48(n− j − k)!

(︄
10
k

)︄(︄
14+j+2i
j − i

)︄
qn−j−k

6 qj−i4 qk3 ,

where q6 = m6

m3
2
− 10m

2
3

m3
2
− 15m4

m2
2

+ 30, q4 = m4

m2
2
− 3, q3 = m2

3
m3

2
.

Proof. Without the loss of generality, we assume m2 = 1 throughout the proof.
The fact we have m1 = 0 reduces the number of tables with nontrivial weight. It
is convenient to denote F cen

6 as the set of those tables (irrelevant column order),
which in turn contribute to the sum f cen

6 (n). These tables can be constructed out
of the following columns (apart from permutation of rows):

Type: 6-column 4-column 2-column 3-column

F cen
6 :

a
a
a
a
a
a

a
a
a
a
b
b

a
a
b
b
c
c

a
a
a
b
b
b

Weight: m6 m4 1 m2
3

First, we examine the special case when also m3 = 0. It is convenient to denote
F sym

6 ⊆ F cen
6 as the set of tables which contribute only to the sum f sym

6 (n). These
are precisely those tables which are composed out of 6-, 4- and 2-columns only.
In order to utilise inclusion/exclusion, we further divide the columns into two
types known and unknown. An unknown column is a column where the numbers
are, in addition, paired up (only the same ones). Let a, b, c be distinct integers
different from integers a′, b′, c′ (which themselves are not necessarily distinct,
so we might have a′ = b′). We construct our new structure of tables F∗

6 build
up from the following columns (apart from permutation of rows) with carefully
designed weights:

137



2.2. Permutation tables

Type: known
6-column

known
4-column

unknown
column

F∗
6 : a

a

b′

b′

a′

c′

Weight: m6−15 m4−3 1

Example 74. Below, in Figure 2.12, there is an example of a table τ ∈ F∗
6,9 with

two known four-columns (each having weight m4−3) and one known six-column.

3
1

9
4

4

4
7

5

2 2

6

58

7 7

1

8 9

6 5

2

86

Figure 2.12: A table τ ∈ F∗
6,9 with weight w(τ) = (m6 − 15)(m4 − 3)2.

Note that since a 4-column in any τ ∈ F sym
6 can either be known (weight m4− 3)

or unknown (there are 3 ways how we can pair up the four identical elements), the
total contribution from all F sym

6 columns is m4 − 3 + 3 = m4, which is precisely
as in plain F sym

6 . This decomposition is shown in Figure 2.13.

b
b

a
a
a
a

=
a

b

+

b

a

a

+

b

aa

+

b

a
a

m4 m4−3 1 1 1

Figure 2.13: Inclusion/Exclusion of 4-columns

Similarly, the weights add up to m6 from each known and unknown 6-column.
To see this, note that there are in total 15 pairings of the six identical elements,
this gives us the factor of m6−15 + 15 = m6 again (known 4-columns with a = b′

are forbidden!). Overall, we must get the following matching

f sym
6 (n) = n!

∑︂
τ∈Fsym

6,n

w(τ) sgn τ = n!
∑︂

τ∈F∗
6,n

w(τ) sgn τ. (2.65)
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Even though the set F∗
6 is much larger, we will see how it can be constructed out

of N6 we saw earlier (tables constructed out of unknown columns only). First,
notice that the the known 6-columns are disjoint from the other columns, we can
therefore write

F∗
6 = Set

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ ⋆ F̃∗

6, (2.66)

where we denoted F̃∗
6 as the tables constructed out of known 4-columns and

unknown columns only. In terms of EGF’s,

F ∗
6 (t) = exp((m6 − 15)t)F̃ ∗

6(t). (2.67)

Let τ ∈ F̃∗
6, we construct its associated oriented graph g using the following rules:

Let a be the number which appears four times in a known 4-column of τ , this
number must appear elsewhere in table τ as a pair of connected a’s, then in g,

• there will be a vertex associated to each known 4-column labeled by the
number a.

• Apart of that, our graph will have one special vertex ν.
• If the remaining pair of a’s is located in a known 4-column, we draw an

oriented edge a → b, where b is the number which appears four times in
that known 4-column,

• else if the remaining pair of a’s is not located in some known 4-column,
then we draw an edge a→ ν.

An example how the graph is constructed is shown in Figure 2.14.

11
9 10

10 9
2 3 7

7 2 3

4 6

5
1 4 6

8

1

85

8

1

9

10

23

7
ν

6

5

4

Figure 2.14: A table τ ∈ F̃∗
6,11 with its associated graph g of known 4-columns

(columns in the core ν are shown in grey)

Upon seeing an example above, we discover the following structure – any graph
g must be composed out of

• disjoint cycles of length at least two
• a (single) tree whose root is ν

Disjoint cycles of g directly correspond to disjoint sub-tables found in τ . This
correspondence is not a bijection. Luckily, for a given cycle, there are exactly(︂

6
2

)︂
= 15 ways how a sub-table corresponding to a given cycle can look like based

on the location of the remaining pair in the known 4-columns. These ways can
be depicted using the following diagram in Figure 2.15.
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2.2. Permutation tables

Figure 2.15: Positions of the remaining pair in a given cycle of known 4-columns

We may write the following structural equation

F̃∗
6 = Set

⎛⎜⎜⎜⎜⎝15 Cyc≥2

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ⋆R6, (2.68)

where we denoted R6 as the set of all F̃∗
6 tables whose graph contains no cycles

of known 4-columns. In terms of generating functions, we must have

F̃
∗
6(t) = exp(−15(m4 − 3)t− 15 ln(1− (m4 − 3)t))R6(t). (2.69)

Although the known 4-columns in some τ ∈ R6 do not form sub-tables since they
are not disjoint from the remaining unknown columns, they are still very tightly
associated with them. We can consider the following operation of collapse

• each chain of 4-columns attached to ν in g corresponds to a subset of 4-
columns in τ .

• These columns contain an unmatched pair of a’s not equal to any number
tagging the chain.

• By deleting those columns and inserting the unmatched pairs into the known
columns, we get a collapsed table τ ′ on unknowns columns only.

An example how a table is collapsed is shown in Figure 2.16.

2
3

7
ν

6
4

5

2 3 7 4 6

5
8 2 3

1 4 6
8

9

9

91

8 5

7

1
−→ 1

8

9

9

91

8 1

8

Figure 2.16: A table τ ∈ R6,9 with its associated collapsed table τ ′ ∈ N6,3.

In order to create (any) τ from τ ′, notice that we can mount a chain of 4-columns
to a pair in the collapsed τ ′. The chains stem out of τ ′ almost like branches
out of a trunk. A chain (with length including zero) of known 4-columns can be
described as a structure (we always have positive signs)

Seq

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ (2.70)

with the corresponding EGF equal to
1

1− (m4 − 3)t . (2.71)
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Each unknown column has three pairs to which we can attach a chain of known 4-
columns. Since it is also equipped with the factor of t in the generating function,
we can simply replace t in N6(t) with

t

(1− (m4 − 3)t)3 . (2.72)

Structurally,

R6 = N6

⎛⎜⎜⎜⎜⎝ ⋆ Seq

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠ ⋆ Seq

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠ ⋆ Seq

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ . (2.73)

In terms of generating functions

R6(t) = N6

(︄
t

(1− (m4 − 3)t)3

)︄
. (2.74)

All together, by Equations (2.65), (2.67), (2.69) and (2.74)

F sym
6 (t) = F ∗

6 (t) = e(m6−15m4+30)t

(1−(m4−3)t)15N6

(︄
t

(1−(m4−3)t)3

)︄
. (2.75)

Finally, we generalise our approach to deduce F cen
6 (t). Relaxing the condition

m3 = 0 by making m3 arbitrary, we get one extra column type which appears in
the structure of all tables F cen

6 with nontrivial weight and that is the 3-column.
These 3-columns, however, form a disjoint set of sub-tables. This is because they
are the only columns in which a number can appear in a triplet. Denote Q6 as the
set of all tables constructed out of 3-columns only (with column order irrelevant),
then

F cen
6 = F sym

6 ⋆Q6 (2.76)

Our goal is to find the construction relation for Q6. The triplets in 3-columns
can be connected in a similar way as the columns in tables F̃2. Hence, we can
associate a derangement π whose cycles correspond to disjoint sub-tables into
which τ ∈ Q6 decomposes. This association, however, is no longer a bijection.

Figure 2.17: Positions of the number which appears in the first row

To make it a bijection, notice that for a given cycle, there are
(︂

5
2

)︂
= 10 ways

(see Figure 2.17) how we can arrange the remaining numbers in 3-columns in the
sub-table corresponding to that cycle. The correspondence is shown in Figure
2.18.
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1 3
1 3
1 3
3 1
3 1
3 1

2 6 7
2 6 7
6 7 2
2 6 7
6 7 2
6 7 2

4 5 8 9
9 4 5 8
9 4 5 8
4 5 8 9
9 4 5 8
4 5 8 9

1

3

2 6

7

4

9

8

5

Figure 2.18: One-to-one correspondence between a table τ inQ6,9 with nine 3-columns
decomposable into three disjoint sub-tables, and its associated derangement π with
cycles labeled according to the repetitions of the number in the first row of τ

For a given sub-table of size n, there are three rows which are themselves cycles
of size n and sign (−1)n−1, so the overall sign of a sub-table is again (−1)n−1. All
together, we can write the following construction relation

Q6 = Set
(︂
−10 Cyc≥2

(︂
−m2

3 1
)︂)︂
. (2.77)

Hence, the EGF of Q6 must be

exp(−10m2
3t+ 10 ln(1 +m2

3t)) =
(︂
1 +m2

3t
)︂

10e−10m2
3t (2.78)

and therefore, restating Equation (2.76) in terms of generating functions,

F cen
6 (t) =

(︂
1 +m2

3t
)︂

10e−10m2
3t F sym

6 (t). (2.79)

This concludes the proof (see Corollary 45.1 how we can get from m2 = 1 to m2
arbitrary). By using Taylor expansion, we immediately recover also f cen

6 (n). ■

2.2.7 Mounting argument for higher moments
Note that the previous approach enables us to generalise the result of Dembo
[24] (Note that we present a slightly extended version since in fact, the result is
correct for any value of mk−1 as it always appears in a product with m1 which
vanishes).

Definition 75. Denote mq the moments of a N(0, 1) variable, that is mq =
(q − 1)!! when q is even and mq = 0 otherwise.

Proposition 76 (Dembo 1989). Let k ≥ 2 be even and let Xij have moments
mq which coincide with moments mq of the Normal distribution upto q ≤ k − 2.
That is, mq = mq for q ≤ k−2 (we thus have two free parameters mk and mk−1).
Then

Fk(t) = e(mk−mk)tNk(t), (2.80)
where

Nk(t) =
∞∑︂
n=0

tn

(n!)2

k
2 −1∏︂
r=0

(n+ 2r)!
(2r)! (2.81)

is the generating function Fk(t) for the full normal distribution Xij ∼ N(0, 1).

However, by mounting to tables which have normal weights (unknown columns
only), we can extend this result so mk−2 can attain any value. From a corre-
sponding functional equation, we deduced:
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Proposition 77. Let k ≥ 4 be even and let Xij have moments mq which coincide
with moments mq of the Normal distribution upto q ≤ k − 3 (we thus have three
free parameters mk, mk−1 and mk−2). Then

Fk(t)=
exp

[︂(︂
mk−

(︂
k
2

)︂
mk−2−mk+

(︂
k
2

)︂
mk−2

)︂
t
]︂

(1 + mk−2t−mk−2t)(
k
2)

Nk

(︄
t

(1+mk−2t−mk−2t)k/2

)︄
,

(2.82)
where Nk(t) as before.

Proof. The same argument as in the case of the sixth moment. Even though we
assume m1 = 0, the structure of all nontrivial tables F sym

k still contains a lot of
types of columns. However, when the condition imposed on moments enables us
to make the same inclusion/exclusion argument by carefully designing the weights
for their known/unknown counterparts. As a result, we replace the structure F sym

k

with the structure F∗
k of tables build up from the following columns (a, b distinct):

Type: known
k-column

known
(k − 2)-column

unknown
column

F∗
k : a

a

b

...

Weight: mk−mk mk−2−mk−2 1

The matching of columns assures that generating functions F sym
k (t) and F ∗

k (t)
coincide. The known k-columns are disjoint (each), so we get the factor exp((mk−(︂
k
2

)︂
mk−2−mk+

(︂
k
2

)︂
mk−2)t). There are

(︂
k
2

)︂
of known (k− 2)-columns based on the

position of the only pair in this column. These columns can either form cycles of
length at least two, from those we get the factor exp(−

(︂
k
2

)︂
(mk−2 −mk−2)t)/(1−

(mk−2−mk−2)t)(
k
2). Or, they could be mounted to pairs of Nk tables. In each

column of Nk, there are k/2 pairs, from which we can grow a chain of known
(k − 2)-columns. This gives us the last factor in EGF of F∗

k . ■

Remark 78. Note that when k = 6 this result has enough freedom to give us
the value of F6(t) for any symmetrical distribution – the condition m2 = 1 can
be relaxed by scaling and m4 and m6 are already free. For k ≥ 8, that’s not
the case though since m4 is no longer free (it must be equal to 3 in order the
argument to work).

2.2.8 Direct mounting without inclusion/exclusion
Notice how the inclusion/exclusion turned out to be crucial in the proof above.
Without is, the collapse would not work since we could not guarantee that the
collapse is surjective. However, by carefully working with structural compositions,
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2.2. Permutation tables

we can avoid the inclusion/exlusion entirely. Although at a cost of getting a
functional relation for F sym

6 (t) rather than a direct expression. See the proof
below.

Alternative proof of Theorem 73. Let us consider all F sym
6 tables with their usual

6-, 4- and 2-columns (weights m6, m4m2 and m3
2, respectively). We denote F tree

6
as the subset of all tables F sym

6 which lack 6-columns and whose 4-columns do
not form cycles. Those tables are composed out of the following columns:

Type: 4-column 2-column

F tree
6 :

a
a
a
a
b
b

a
a
b
b
c
c

Weight: m4m2 1

However, not all compositions of columns are allowed in F tree
6 since we must

ensure there are no cycles of 4-columns. Note that now the cycles of 4-columns in
F sym

6 must be of length at least two (otherwise we would end up with a 6-column).
Considering this, we can write down the following structural relation

F sym
6 = Set

⎛⎜⎜⎜⎜⎝
a
a
a
a
a
a
⎞⎟⎟⎟⎟⎠ ⋆ Set

⎛⎜⎜⎜⎜⎝15 Cyc≥2

⎛⎜⎜⎜⎜⎝
b
b
a
a
a
a
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ⋆ F tree

6 . (2.83)

From the structural equation, we get immediately in terms of EGFs,

F sym
6 (t)=em6te−15m4m2t−15 ln(1−m4m2t)F tree

6 (t)= e(m6−15m4m2)t

(1−m3
2t)15 F

tree
6 (t). (2.84)

Analogously, we can collapse all of the 4-columns in τ ∈ F tree
6 to get a new table

τ ′. An example of this procedure is shown in Figure 2.19.

4 3 7 2 5 1 9 6 8
2 4 7 3 8 1 9 5 6
2 4 1 3 8 7 9 5 6
4 3 1 2 5 7 9 6 8
4 3 1 5 6 9 7 8 2
4 3 1 5 6 9 7 8 2

−→

2 5 7 6 8
2 8 7 5 6
2 8 7 5 6
2 5 7 6 8
5 6 7 8 2
5 6 7 8 2

Figure 2.19: A correspondence between table τ ∈ F tree
6,9 and its collapsed τ ′ ∈ F sym

6,5 .

Notice that, although τ does not contain any 6-columns, the corresponding col-
lapsed table τ ′ can. Similarly, τ ′ can contain 4-columns which form cycles. Hence,
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Chapter 2. Even Moments of Random Determinants

in general, τ ′ must be a F sym
6 table. In fact, we can get any F sym

6 table by collaps-
ing a larger F tree

6 table so the operation is surjective. This observation suggests
we can construct F tree

6 tables out of F sym
6 tables by mounting a chain of 4-columns

to appropriate pairs of identical elements. Unlike in the previous proof, we dis-
tinguish between 4-column chains of length at least one and at least zero. We
will call the former as improper chain structure and the latter as proper chain
structure. The improper chain structure is constructed as follows

Seq

⎛⎜⎜⎜⎜⎝
b
b
a
a
a
a
⎞⎟⎟⎟⎟⎠ , (2.85)

so its EGF is equal to 1/(1−m4m2t). The proper chain structure is given by

Seq≥1

⎛⎜⎜⎜⎜⎝
b
b
a
a
a
a
⎞⎟⎟⎟⎟⎠ (2.86)

and its EGF equals ∑︁∞
n=1(m4m2t)n = m4m2t/(1−m4m2t). Now, we are ready to

construct any F tree
6 table by enlarging a specific (collapsed) F sym

6 table. Note that
the generating function F sym

6 (t) is in general a function of parameters (t,m6,m4,m2).
In fact, we can write it as a function of only three combinations of those param-
eters, namely

F sym
6 (t) = Ω(m6t,m4m2t,m

3
2t) (2.87)

for some function Ω. This is because we have the following options for the con-
tribution of a column in the overall generating function:

• 6-column, factor m6t,
• 4-column, factor m4m2t,
• 2-column, factor m3

2t.
Alternatively, assuming m2 = 1, we can write

F sym
6 (t) = Λ(t,m6,m4) (2.88)

for some function Λ. Now, we proceed to actual mounting. In order to get a
larger F tree

6 tables from a smaller F sym
6 table, we must

• turn each 6-column of the F sym
6 table into 2-column by mounting three

proper chains in 15 ways or by mounting two proper chains in 1
2!

(︂
6
2

)︂(︂
4
2

)︂
= 45

ways. There cannot be just one proper chain as the column would become
a 4-column. Overall, we get the following replacement rule

m6t→
[︄
15
(︃

m4m2t

1−m4m2t

)︃3
+45

(︃
m4m2t

1−m4m2t

)︃2]︄
m3

2t = 15m2
4m

5
2t

3 (3−2m4m2t)
(1−m4m2t) 3

(2.89)
• turn each 4-column of an F sym

6 table into 2-column by mounting either
two or one proper chains to four copies of a single number in the column.
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2.2. Permutation tables

Remember that we can mount an improper chain to the remaining pair in
both cases. Overall,

m4m2t→
[︄
3
(︃

m4m2t

1−m4m2t

)︃2
+ 6

(︃
m4m2t

1−m4m2t

)︃]︄(︃ 1
1−m4m2t

)︃
m2

3t

= 3m4m
4
2t

2 (2−m4m2t)
(1−m4m2t) 3

(2.90)

• turn a 2-column into another 2-column, but this time we mount an improper
chain to each of the three pairs in the column, so

m3
2t→

(︃ 1
1−m4m2t

)︃3
m3

2t = m3
2t

(1−m4m2t)3 . (2.91)

Note that, we can rewrite this set of replacement rules as

m6

m3
2
m3

2t→
[︂
15m2

4m
2
2t

2 (3− 2m4m2t)
]︂ m3

2t

(1−m4m2t) 3 ,

m4

m2
2
m3

2t→ [3m4m2t (2−m4m2t)]
m3

2t

(1−m4m2t) 3 ,

m3
2t→

m3
2t

(1−m4m2t) 3 .

(2.92)

Thus, by dividing the first two rules by the last m3
2t rule and letting m2 = 1, we

get the following corresponding set of rules for all valid chain mountings

m6 → 15m2
4t

2 (3− 2m4m2t) ,
m4 → 3m4t (2−m4t) ,

t→ t

(1−m4t) 3 .

(2.93)

In terms of generating functions, we get

F tree
6 (t) = Λ

(︄
t

(1−m4t)3 , 15m2
4t

2 (3− 2m4t) , 3m4t (2−m4t)
)︄
. (2.94)

Together with Equation (2.84), we get the following function equation

Λ(t,m6,m4)= e(m6−15m4)t

(1−m4t)15 Λ
(︄

t

(1−m4t)3 , 15m2
4t

2 (3−2m4t) , 3m4t (2−m4t)
)︄
.

(2.95)
We can check this functional equation is satisfied by

F sym
6 (t) = Λ(t,m6,m4) = et(m6−15m4+30)

(1 + 3t−m4t)15 Λ
(︄

t

(1 + 3t−m4t)3 , 15, 3
)︄
. (2.96)

However, note that Λ(t, 15, 3) = N6(t) and thus

Λ(t,m6,m4) = F sym
6 (t) = et(m6−15m4+30)

(1 + 3t−m4t)15N6

(︄
t

(1 + 3t−m4t)3

)︄
. (2.97)
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Expressing F sym
6 (t) in terms of N6(t) = F sym

6 (t)|m6=15,m4=3 essentially solves the
problem as we can now take advantage of the fact we can express N6(t) exactly
(normally distributed entries Xij). The remaining argument how we can obtain
F cen

6 (t) from F sym
6 (t) by attaching cycles of 3-columns to F sym

6 remains the same.
■

2.2.9 Chain counting generating function
We consider the following generalisation of the problem of finding the sixth mo-
ment of a random determiant: Let us select a table τ randomly uniformly out of
the set of all F sym

6 tables. We can then ask the following questions:
• What is the probability of τ having a chain?
• What is the mean number of chains in τ?

Those questions are at heart of analytic combinatorics. In order to answer them,
we can attach a tag z (a variable) to each proper chain and then we can just either
determine if there is a label to answer the first question or collect the labels in
order to answer the second question. We are interested in finding the following
quantities which generalise the notion of a moment

Definition 79. Let τ ∈ F sym
6 (or F sym

6 ), we denote p(τ) as the number of chains
of 4-columns found in it. We define the chain-tagged moments as

f̂
sym
6 (n)z =

∑︂
τ∈Fsym

6,n

zp(τ)w(τ) sgn τ, f̂
tree
6 (n)z =

∑︂
τ∈Ftree

6,n

zp(τ)w(τ) sgn τ.

(2.98)
Correspondingly, we write for their generating functions

F sym
6 (t)z =

∞∑︂
n=0

tn

n! f̂
sym
6 (n)z, F tree

6 (t)z =
∞∑︂
n=0

tn

n! f̂
tree
6 (n)z. (2.99)

We can consider another generalisation of the sixth moment problem as follows

Definition 80. We define the chain moment p̂6(n) = ∑︁
τ∈Fsym

6,n
p(τ)w(τ) sgn τ

and P6(t) = ∑︁∞
n=0

tn

n! p̂6(n) its exponential chain counting generating function.
As usual, we can sum over tables with distinguishable column position and get
p6(n) = ∑︁

τ∈F sym
6,n

p(τ)w(τ) sgn τ = n!p̂6(n).

Lemma 81. For any symmetric distribution Xij,

F tree
6 (t)z= e30t(1−m4t)15

(1+(3−m4) t−3(1−z)m4t2) 15N6

(︄
t (1− t(1− z)m4) 3

(1+(3−m4) t−3(1−z)m4t2) 3

)︄

and

F sym
6 (t)z= e(m6−15m4+30)t

(1+(3−m4) t−3(1−z)m4t2) 15N6

(︄
t (1− t(1− z)m4) 3

(1+(3−m4) t−3(1−z)m4t2) 3

)︄
.

Proof. Since we are working with generating functions, we can build up the struc-
ture of tagged tables (F sym

6 )z from bottom to top simply by the rules of combinato-
rial constructions and deduce its corresponding EGF. That is, the corresponding
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exponential generating function F sym
6 (t)z is obtained by attaching z to each in-

stance where a chain appeared in the original construction of non-tagged F sym
6 (t).

Separating 6-columns and closed loops of 4-columns (they contain no chains), we
can write

F sym
6 (t)z = e(m6−15m4m2)t

(1−m3
2t)15 F

tree
6 (t)z, (2.100)

where F tree
6 (t)z is the EGF of chain-tagged F tree

6 tables. These tagged loop-free
tables (we can denote them as (F tree

6 )z) can be composed out of chain-free F sym
6

tables by mounting chains to their pairs of identical elements. Dependent on
the type of a chain (proper or improper), their EGF’s get updated accordingly.
Attaching a tag z, the tagged proper chain generating function will be now

z
∞∑︂
s=1

(m4m2t)s = zm4m2t

1−m4m2t
. (2.101)

Next, for the tagged improper chain generating function, we get

1 + z
∞∑︂
s=1

(m4m2t)s = 1− (1− z)m4m2t

1−m4m2t
. (2.102)

Notice that the first term in the sum did not receive the tag z as we did not
increase the number of chains (no chain was mounted). By mounting the chains,
we then build up (F tree

6 )z from F sym
6 by the following updated replacement rules:

m6t→
[︄
15
(︃

zm4m2t

1−m4m2t

)︃3
+ 45

(︃
zm4m2t

1−m4m2t

)︃2]︄
m3

2t

m4m2t→
[︄
3
(︃
zm4m2t

1−m4m2t

)︃2
+6
(︃
zm4m2t

1−m4m2t

)︃]︄(︄1−(1−z)m4m2t

1−m4m2t

)︄
m2

3t

m3
2t→

(︄
1− (1− z)m4m2t

1−m4m2t

)︄3

m3
2t

(2.103)

By dividing the first two rules by the last m3
2t rule and setting m2 = 1, we get,

after simplification, the following corresponding set of rules

m6 →
15z2m2

4t
2 (3− (3− z)m4t)

(1− (1− z)m4t) 3

m4 →
3zm4t (2− (2− z)m4t)

(1− (1− z)m4t) 2

t→ t

(︄
1− (1− z)m4t

1−m4t

)︄3

(2.104)

Hence, in terms of generating functions

F tree
6 (t)z=Λ

⎛⎝t(︄1−(1−z)m4t

1−m4t

)︄3

,
15z2m2

4t
2 (3−(3−z)m4t)

(1− (1− z)m4t)3 ,
3zm4t (2−(2−z)m4t)

(1− (1− z)m4t)2

⎞⎠.
Since we already know Λ(t,m6,m4), we can substitute for it from Equation (2.97)
and get F tree

6 (t)z and F sym
6 (t)z by Equation (2.100). ■
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Proposition 82. For any symmetric distribution of Xij with m2 = 1,

P6(t)=m4t
et(m6−15m4+30)

(1+3t−tm4)16

[︄
(1−m4t)N2

6

(︄
t

(1+3t−tm4)3

)︄
−45tN0

6

(︄
t

(1+3t−tm4)3

)︄]︄
.

where N2
6 (t) is an auxiliary function defined as

N2
6 (t) = 3t d

dtN
0
6 (t) = 1

16

∞∑︂
n=0

n(n+ 1)(n+ 2)(n+ 4)! tn. (2.105)

Proof. Clearly, p̂6(n) = ∂f̂
sym
6 (n)z/∂z |z→1 and thus P6(t) = ∂F sym

6 (t)z/∂z |z→1.
Differentiating F sym

6 (t)z from Lemma 81 gives the desired result. ■

We will establish the precise combinatorial connection of N2
6 (t) to permutation

tables later.

2.2.10 Position approach
We will introduce another approach to tables. Instead of treating each col-
umn separately (column-approach), we focus on individual numbers (position-
approach).

Definition 83. Let τ ∈ F sym
6,n (or F sym

6,n ), we denote Ij(t) as the set of numbers
i ∈ [n] which appear in j different columns of τ .

Proposition 84. Let τ ∈ F sym
6,n (or F sym

6,n ) have c 6-columns and d 4-columns.
Then [n] = I1(t)⊔I2(t)⊔I3(t) and #I1(t) = c, #I2(t) = d and #I3(t) = n−c−d,
where # denotes the number of elements in a set.
Proof. In each table τ , there are three types of numbers. Either number i appears
in three different columns (and thus belongs to set I3(t)), or it appears in two
different columns (and belongs to I2(t)) or it appears alone in a column (and
belongs to I1(t)). These sets are disjoint. Obviously, numbers in #I1(t) are
the ones that form 6-columns, thus #I1(t) = c. Similarly, numbers in I2(t) are
precisely those which appear in exactly four copies in some column (the remaining
pair is displaced in some other column of τ). This forms a bijection between 4-
columns and numbers in I2(t), thus #I2(t) = d. Finally, from the disjoint union
property, #I3(t) = n− c− d. ■

Definition 85. Let τ ∈ F sym
6 (or F sym

6 ). We denote νi(t) the number of 4-
columns in τ in which i appears.

Example 86. To see how the definition works, consider the following table τ ∈
F sym

6,11 in the figure below. In here, we have I1(t) = {10}, I2(t) = {1, 3, 4, 7, 9, 11, 12}
and I3(t) = {2, 5, 6, 8}. Next, νi(t) = 0 if i ∈ {5, 10}, νi(t) = 1 if i ∈ {1, 2, 3, 4, 7, 9, 12},
νi(t) = 2 if i ∈ {6, 11} and νi(t) = 3 if i ∈ {8}.

12 4 8 2 3 5 1 9 6 7 11 10
12 4 8 2 3 5 1 9 6 7 11 10
12 6 3 5 2 4 1 8 9 7 11 10
12 6 3 5 2 4 1 8 9 7 11 10
6 4 3 1 5 7 8 9 12 11 2 10
6 4 3 1 5 7 8 9 12 11 2 10
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Proposition 87. Let τ ∈ F sym
6,n (or F sym

6,n ) have c 6-columns and d 4-columns,
then νi(t) = 0 if i ∈ I1(t), νi(t) ∈ {1, 2} if i ∈ I2(t) and νi(t) ∈ {0, 1, 2, 3} if
i ∈ I3(t). Moreover, ∑︂

i∈[n]
νi(t) = 2d. (2.106)

Proof. If i ∈ I1(t), νi(t) = 0 as this number i automatically forms a 6-column (six
copies of i’s). If i ∈ I2(t), then one of the columns is automatically a 4-column as
it has four copies of i’s. The other column with displaced pair of i’s can be either
a 4-column or a 2-column depending on the remaining numbers in the column. If
i appears in three different columns, each of this column is either a 4-column or a
2-column. To prove ∑︁i∈[n] νi(t) = 2d, note that each 4-column is counted twice in
the sum (there are two different numbers in any 4-column). Alternatively, denote

χij =
⎧⎨⎩1 j-th column contains i

0 otherwise
(2.107)

and fj = 1j-th column is a four-column. On one hand, νi(t) = ∑︁
j∈[n] χijfj, on the other∑︁

i∈[n] χijfj = 2fj since there are two numbers in each 4-column. Immediately,
by changing the order of summation ∑︁

i∈[n] νi(t) = ∑︁
i,j∈[n] χijfj = 2∑︁j∈[n] fj =

2d. ■

Lemma 88. Let τ ∈ F sym
6,n (or F sym

6,n ) with c 6-columns and d 4-columns out
of which p(τ) form chains of 4-columns (the remaining d− p(τ) of 4-columns
form cycles). Then∑︂

i∈I2(t)
νi(t) = 2d− p(τ) and

∑︂
i∈I3(t)

νi(t) = p(τ).

Proof. First, notice the sum ∑︁
i∈I3(t) νi(t) increases by one if it encounters a 4-

column, but when the residual pair forms 4-column elsewhere, it does not con-
tribute to the sum. Adding all occurrences of pairs in 4-columns, we get d
(this is precisely the number of 4 columns). This number is then reduced by
the number of numbers in those four-columns which form four-columns them-
selves. Let τ have p total chains of lengths j1, j2, . . . , jp (each jq ≥ 1) and denote
j = j1 + j2 + · · · + jp. The total number of cycles is then d − j. The number
of pairs which form 4-columns themselves is then equal to the number of cycles
d− j plus ∑︁p

q=1(jq − 1) = j − p, that is d− p. Hence,∑︂
i∈I3(t)

νi(t) = d− (d− p) = p.

Finally, using Proposition 87 and since νi(t) = 0 if i ∈ I1(t), we have immediately∑︁
i∈I3(t) νi(t)+∑︁i∈I2(t) νi(t) = 2d, from which ∑︁i∈I2(t) νi(t) = 2d−p(τ) follows. ■

Example 89. In Example 86, we have d = 7 of 4-columns, which form p = 6
chains, out of which 4 have length one and one has length two. There are no
loops of 4-columns. We have ∑︁i∈I2(t) νi(t) = 8 = 2d−p and ∑︁i∈I3(t) νi(t) = 6 = p.
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2.3 Gram moment and permutation tables
So far, we only considered determinant moments for square matrices. Recall
the generalization we introduced earlier (see Definition 39), restating its relevant
part:

Definition 90. Let U = (Xij)n×p be rectangular random matrix and
fk(n, p) = E (detU⊤U)k/2 be its k-th Gram moment. We may rewrite the
Gram moment using scalar product of random vectors as follows: Let Xj =
(X1j, X2j, . . . , Xnj)⊤, so U = (X1 | X2 | · · · | Xp) and for the Gram ma-
trix J = U⊤U = (X⊤

j Xj′)p×p, that is Jjj′ = X⊤
j Xj′ . By definition, we set

fk(n, 0) = 1 (we put det(U⊤U) = 1 when p = 0). Note that if p > n, det(U⊤U)
vanishes, that means that fk(n, p) = 0 whenever p > n. Also, we define the
corresponding generating function

Fk(t, ω) =
∞∑︂
n=0

n∑︂
p=0

(n− p)!
n!p! tpωn−pfk(n, p). (2.108)

Again, restricting the distribution of Xij’s, we write
• (centered distribution) fk(n, p) = f cen

k (n, p) and Fk(t, ω) = F cen
k (t, ω) if

m1 = 0; and similarly
• (symmetrical distribution) fk(n, p) = f sym

k (n, p) and Fk(t, ω) = F sym
k (t, ω)

if m1 = m3 = m5 = . . . = 0.
The fact that fk(n, p) is a polynomial inmj leads to the important instant equality

f cen
k (n, p) = f sym

k (n, p) valid for k = 2, 4. (2.109)

Therefore, we also have F cen
2 (t, ω) = F sym

2 (t, ω) and F cen
4 (t, ω) = F sym

4 (t, ω). When
k ≥ 6, f cen

k (n, p) contains extra products of even powers of odd mj moments
(m2

3,m
4
3,m

2
5, . . .).

Example 91. When n = 3 and p = 2, we have Xj = (X1j, X2j, X3j)⊤, j = 1, 2

and thus J =
(︄
J11 J12
J21 J22

)︄
with J11 = X2

11 + X2
21 + X2

31, J22 = X2
12 + X2

22 + X2
32

and J12 = J21 = X11X12 +X21X22 +X31X32. For example when k = 6, we get

f6(3, 2) = E (det J)3 = E
⃓⃓⃓⃓
⃓J11 J12
J21 J22

⃓⃓⃓⃓
⃓
3

= E (J11J22 − J2
12)3

= E (J3
11J

3
22 − 3J2

11J
2
22J

2
12 + 3J11J22J

4
12 − J6

12).
(2.110)

Computing the expectations of individual terms is straightforward, but tedious.
We only show how the term E [J3

11J
3
22] is obtained: Expanding J3

11, we get

J3
11 =X6

11 +X6
21 +X6

31 + 3X2
11X

4
21 + 3X4

11X
2
21 + 3X2

11X
4
31

+ 3X4
11X

2
31 + 3X2

21X
4
31 + 3X4

21X
2
31 + 6X2

11X
2
21X

2
31.

(2.111)

Taking expectation, we get E [J3
11] = 3 (m6 + 6m2m4 + 2m3

2) and by indepen-
dence, E [J3

11J
3
22] = E [J3

11]E [J3
22] = E2 [J3

11] = 9(m6 + 6m2m4 + 2m3
2)2. Overall,

f6(3, 2) = 6m2
6 + 36m2m4m6 + 162m2

2m
2
4 + 216m4

2m4 − 36m6
2 − 60m4

3

− 144m2
1m

2
2m

2
3 − 144m1m2m

3
3 + 288m3

1m2m3m4 − 72m2
1m

2
3m4

− 144m2
1m2m3m5 − 72m3

1m4m5 − 36m2
1m

2
5.

(2.112)
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2.3. Gram moment and permutation tables

For centrally distributed Xij’s, we get simply by putting m1 = 0,
f cen

6 (3, 2) = 6m2
6 + 36m2m4m6 + 162m2

2m
2
4 + 216m4

2m4 − 36m6
2 − 60m4

3. (2.113)
Similarly, letting also m3 = m5 = 0, we get

f sym
6 (3, 2) = 6m2

6 + 36m2m4m6 + 162m2
2m

2
4 + 216m4

2m4 − 36m6
2. (2.114)

Notice that f cen
6 (3, 2) ̸= f sym

6 (3, 2) which we indeed expect for k ≥ 6.
The aim of this section is to present a combinatorial construction associated
with the Gram moments defined above. Again, the central role is played by
permutation tables. We will see how they naturally arise in the Gram case via
Cauchy-Binet formula.

Lemma 92 (Cauchy-Binet formula). Let L = (lij)n×p and M = (mij)n×p
be real n by p matrices and let C = {i1, i2, . . . , ip} denotes a subset of [n] =
{1, 2, 3, . . . , n} with p elements ij taken from [n] such that i1 < i2 < · · · < ip.
Denote LC and MC to be square matrices formed from matrices L and M by
selecting the rows i1, i2, . . . ip, respectively. Then

det(L⊤M) =
∑︂
C⊂[n]
|C|=p

det(LC) det(MC). (2.115)

2.3.1 Gram second moment
Cauchy-Binet formula offers an elementary derivation of f2(n, p), generalizing
Fortet’s f2(n) (Proposition 67).
Proposition 93. For any distribution of Xij,

f2(n, p) =
(︄
n

p

)︄
p!(m2 +m2

1(p− 1))(m2 −m2
1)p−1, (2.116)

F2(t, ω) = 1 +m2
1t

1− ω e(m2−m2
1)t. (2.117)

Proof (Stanley [67]). Choosing L = M = U in Cauchy-Binet formula,
det(U⊤U) =

∑︂
C⊂[n]
|C|=p

det(UC)2. (2.118)

Taking the expectation and by linearity, we get
(︂
n
p

)︂
identical terms, each attending

the value E det(UC)2 = f2(p) from which f2(n, p) follows immediately. ■

2.3.2 Pair-tables
In general, taking k/2-power of Cauchy-Binet formula with L = M = U and
taking expectation,

fk(n, p) = E det(U⊤U)k/2 = E
[︄ ∑︂
C⊂[n]
|C|=p

(detUC)2
]︄k/2

. (2.119)

This formula has a nice permutation tables interpretation due to Dembo [24]:
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Chapter 2. Even Moments of Random Determinants

Definition 94. We define F⟨k⟩,n,p as the set of all k (even number) by p pair-
tables on n numbers. We say τ ∈ F⟨k⟩,n,p is a pair-table, if there are subsets
C1, C2, . . . , Ck/2 ⊂ [n] with |C1| = |C2| = · · · = |Ck/2| = p, such that τ is a
k by p table whose first two rows are permutations of numbers from C1, next
two rows are permutations of numbers from C2, and so on. As in the case
of regular tables, we define weight w(τ) of table τ as the product of weights
of its individual columns (we multiply corresponding Xij’s) and sgn(τ) as the
product of sign of the corresponding permutations. Correspondingly, we also
define F⟨k⟩ as the pair-tables on n numbers with k rows and p columns whose
column order is irrelevant and we denote F⟨k⟩ = ⋃︁

k≥0F⟨k⟩,n,p to be the set of
all irrelevant column order pair-tables (with k rows).

We state the following analogue of Proposition 54:
Proposition 95. For any distribution of Xij, assuming k even,

fk(n, p) = E det(U⊤U)k/2 =
∑︂

τ∈F⟨k⟩,n,p

w(τ) sgn(τ) (2.120)

or alternatively, defining f̂k(n, p) = fk(n, p)/p!
f̂k(n, p) =

∑︂
τ∈F⟨k⟩,n,p

w(τ) sgn(τ) (2.121)

Proof. The right hand side of Equation (2.119) can be expanded as

fk(n, p) = E
k/2∏︂
j=1

∑︂
Cj⊂[n]
|Cj |=p

det(UCj)2. (2.122)

The proof follows simply from realization that the square of det(UCj) possesses
the meaning of two identical rows of (permuted) elements Cj. ■

Example 96. Let us compute f4(3, 2). We may write f4(3, 2) = 2!f̂4(3, 2), where
f̂4(3, 2) = ∑︁

τ∈F⟨4⟩,3,2
w(τ) sgn τ . Let a, b, c be distinct elements of {1, 2, 3}, Figure

2.20 enlists all members of F⟨4⟩,3,2 and shows their weights and signs.

C1: {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b}
C2: {a, b} {a, b} {a, b} {a, c} {a, c} {a, c} {a, c}

F⟨4⟩,3,2 :

a b
a b
a b
a b

a b
b a
b a
a b

a b
b a
b a
b a

a b
a b
a c
a c

a c
a c
b a
b a

a b
b a
c a
a c

a b
b a
a c
a c

Weight: 3m2
4 9m4

2 12m2
1m

2
3 6m4m

2
2 6m4

2 12m4
1m

2
2 24m2

1m2m3
Sign: + + − + + + +

Figure 2.20: Correspondence between f̂4(3, 2) and permutation tables F⟨4⟩,3,2

Each member is displayed apart of (valid) permutation of rows and selections
of a, b, c. The first three members build up tables F4,2. Since there are three
ways how we can select for a, b from {1, 2, 3}, their contribution is 3f̂4(2). The
remaining terms are only found in F⟨4⟩,3,2 tables. Summing the contribution up,
we get f̂4(3, 2) = 3m2

4 + 15m4
2 − 12m2

1m
2
3 + 6m2

2m4 + 12m4
1m

2
2 − 24m3

1m2m3.
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2.3. Gram moment and permutation tables

2.3.3 Sub-table factorization
The choice of the EGF for F⟨k⟩ (which is the same as for F⟨k⟩), namely

Fk(t, ω)=
∞∑︂
n=0

n∑︂
p=0

(n− p)!
n!p! tpωn−pfk(n, p)=

∞∑︂
n=0

n∑︂
p=0

(n−p)!
n! tpωn−pf̂k(n, p) (2.123)

as introduced by Dembo [24] may seem arbitrary. Because of the additional
variable ω, it seems we are no longer able to use the factorization property of the
star product. However, we will see that the unique feature of Fk(t, ω) is, after
appropriate transformation in ω, that it again factorises over sub-tables. First,
let us introduce a few definitions.

Definition 97. For a given subset A⟨k⟩ ⊂ F⟨k⟩ of pair-tables with k rows and
irrelevant column order, let A⟨k⟩,n,p be the subset of A⟨k⟩ with p columns and
elements selected from the set [n] = {1, 2, 3, . . . , n} of the so called potential
elements. As usual, we define âk(n, p) = ∑︁

τ∈A⟨k⟩,n,p
w(τ) sgn τ with the corre-

sponding exponential generating function

Ak(t, ω) =
∞∑︂
n=0

n∑︂
p=0

(n−p)!
n! tpωn−pâk(n, p)

=
∑︂

τ∈A⟨k⟩

(n(τ)− p(τ))! tp(τ)ωn(τ)−p(τ)

n(τ)! w(τ) sgn τ,
(2.124)

where we denoted p(τ) as the number of columns of τ and n(τ) as the number
of potential elements.

Note that the number of potential elements n(τ) one chooses from to fill table τ
may be arbitrarily large and it is always at least equal to the number of actual
elements in τ (the number of distinct elements in τ), which we will denote as
q(τ). With this said, we construct another generating function of A⟨k⟩ (modified
generating function) as follows

Definition 98 (Modified generating function). Let A⟨k⟩ ⊂ F⟨k⟩, then we define

Ãk(t, ω) =
∑︂

τ∈A⟨⟨k⟩⟩

tp(τ)ωq(τ)−p(τ)

q(τ)! w(τ) sgn τ, (2.125)

where A⟨⟨k⟩⟩ ⊂ A⟨k⟩ are pair-tables with all of their potential elements being
used up (all potential elements are in fact actual elements).

There is a simple connection between Ak(t, ω) and Ãk(t, ω).

Definition 99. Let τ be a A⟨k⟩ pair-table. We denote EGF [τ ] as the contri-
bution of τ to Ak(t, ω) and MGF [τ ] as the contribution of τ to Ãk(t, ω). By
definition,

EGF [τ ] = (n(τ)− p(τ))!
n(τ)! tp(τ)ωn(τ)−p(τ)w(τ) sgn τ,

MGF [τ ] = tp(τ)ωq(τ)−p(τ)

n(τ)! w(τ) sgn τ.
(2.126)

Similarly for subsets B ⊂ A⟨k⟩.
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Chapter 2. Even Moments of Random Determinants

Definition 100. Let Ω be a linear operator acting on formal power series in
ω such that for any integer r, we have Ω[ωr] = r!ωr.

Proposition 101.
Ak(t, ω) = Ω[eωÃk(t, ω)]. (2.127)

Proof. Applying Ω−1, where Ω−1[ωr] = ωr/r!, to Equation (2.124), we get

Ω−1[Ak(t, ω)] =
∑︂

τ∈A⟨k⟩

tp(τ)ωn(τ)−p(τ)

n(τ)! w(τ) sgn τ. (2.128)

In a given table τ ∈ A⟨⟨k⟩⟩, we can replace its q actual elements [q] = {1, 2, 3, . . . , q}
by another q actual elements from a larger set [n] = {1, 2, 3, . . . , n} forming a
general table τ ∈ A⟨k⟩ with n ≥ q potential elements (all of which have the same
weight and sign). Hence, A⟨k⟩ is split into classes of tables which only differ by
selection of actual elements. Since there are

(︂
n
q

)︂
ways how we can substitute for

the actual elements from the potential ones, we get that the total contribution of
τ ∈ A⟨⟨k⟩⟩ to Ω−1[Ak(t, ω)] is

∞∑︂
n=q

(︄
n

q

)︄
tpωn−p

n! w(τ) sgn τ = eω
tpωq−p

q! . (2.129)

Summing over all τ ∈ A⟨⟨k⟩⟩, we get Ãk(t, ω) = e−ωΩ−1[Ak(t, ω)], which is equiva-
lent to the statement of the proposition. ■

Moreover, it is exactly the modified generating function Ãk(t, ω) which satisfies
the star-product factorization property (an analogue of Proposition 63), turning
A⟨k⟩ into proper combinatorial structure.

Proposition 102 (sub-table factorization in pair-tables). Let τ be a A⟨⟨k⟩⟩ pair-
table build up from exactly two disjoint sub-tables τ1 and τ2, then

MGF [τ1 ⋆ τ2] = MGF [τ1]MGF [τ2]. (2.130)

Proof. Let p1 and p2 be the number of columns and q1 and q2 be the number of
actual elements of τ1 and τ2, respectively. We also denote p = p1 +p2 as the total
number of columns of τ and q = q1 + q2 as the total number of actual elements
of τ (See Figure 2.21).

τ = τ1 ⊔ τ2

q = q1 elements + q2 elements

p = p1 columns + p2 columns

Figure 2.21: Pair-table τ consisted of two dis-joint sub-tables τ1 and τ2.

155



2.3. Gram moment and permutation tables

Any τ from the set τ1 ⋆ τ2 (with elements shuffled) gives the same contribution to
Ãk(t, ω). Since there are

(︂
q
q1

)︂
ways how can we select elements for τ1 and τ2,

MGF [τ1 ⋆ τ2] =
(︄
q

q1

)︄
MGF [τ ] =

(︄
q

q1

)︄
tpωq−p

q! w(τ) sgn τ = tpωq−p

q1!q2!
w(τ) sgn τ.

(2.131)
On the other hand, since w(τ) sgn τ = w(τ1)w(τ2) sgn τ1 sgn τ2,

MGF [τ1]MGF [τ2] = tp1ωq1−p1

q1!
w(τ1) sgn τ1

tp2ωq2−p2

q2!
w(τ2) sgn τ2

= tp1+p2ωq1+q2−p1−p2

q1!q2!
w(τ) sgn τ,

(2.132)

which concludes the proof. ■

2.3.4 Gram fourth moment central
Note that when m1 = 0, the number of pair-tables with nontrivial weights is
reduced significantly. As a consequence, we can easily derive the result of Dembo
[24], namely F sym

4 (t, ω) and the corresponding f sym
4 (n, p).

Proposition 103 (Dembo, 1989). For any distribution Xij,

F sym
4 (t, ω) = et(m4−3m2

2)

(1−m2
2t)2(1− ω −m2

2t)
. (2.133)

Corollary 103.1.

f sym
4 (n, p) = p!2

(︄
n

p

)︄
m2p

2

p∑︂
j=0

1
j!

(︄
m4

m2
2
− 3

)︄j (︄
n− j + 2
n− p+ 2

)︄
. (2.134)

Remark 104. Note that, letting ω = 0 (or p = n), we recover the formulae of
Nyquist, Rice and Riordan (Proposition 68) we saw earlier

F sym
4 (t) = et(m4−3m2

2)

(1−m2
2t)3 , f sym

4 (n) = (n!)2m2n
2

n∑︂
j=0

1
j!

(︄
m4

m2
2
− 3

)︄j (︄
n− j + 2

2

)︄
.

Proof of Proposition 103. Let a, b be different integers, then there are again only
two types of columns in tables with nontrivial weights assuming m1 = 0 (see the
diagram below). It is convenient to denote those tables as F sym

⟨4⟩ (or F sym
⟨4⟩ if we

do not care about the order of columns).

Type: 4-column 2-column

F sym
⟨4⟩ :

a
a
a
a

a
a
b
b

Weight: m4 m2
2
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Chapter 2. Even Moments of Random Determinants

By definition

f sym
4 (n, p) = p!f̂ sym

4 (n, p) = p!
∑︂

τ∈Fsym
⟨4⟩,n

w(τ) sgn τ. (2.135)

Let us consider only tables F sym
⟨⟨4⟩⟩ ⊂ F

sym
⟨4⟩ which use up all their potential elements

as actual elements and whose modified generating function F̃
sym
4 (t, ω) factorises

over sub-tables. Based on Exmaple 96, it is not hard to see that any τ is composed
out of single 4-columns, closed cycles of 2-columns and open chains of 2-columns
(see Figure 2.22 below).

MGF [τi] tm4 tm4
1
2!t

2m4
2

1
3!t

3m6
2

1
2!tωm

2
2

1
3!t

2ωm4
2

τ :
5
5
5
5

8
8
8
8

4 7
4 7
7 4
7 4

10 3 12
3 12 10
3 12 10
10 3 12

11
11
6
6

9 1
9 1
1 2
1 2

4-columns cycles of 2-columns open chains of
2-columns

Figure 2.22: Table τ ∈ F⟨⟨4⟩⟩ with C1 = {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, C2 =
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12} and its decomposition into sub-tables τi

In general, we can write the following structural relation

F sym
⟨⟨4⟩⟩ = F sym

4 ⋆ L⟨⟨4⟩⟩, (2.136)

where we denote L⟨⟨4⟩⟩ as the structure of open chains with modified generating
function L̃4(t, ω). Since we already know that the generating function of all 4-
columns and cycles of 2-columns is F sym

4 (t) this follows immediately from the fact
that q = p for those sub-tables and thus MGF [ · ] coincide with EGF [ · ]. The
only remaining part is to deduce the modified generating function of open chains
of 2-columns. However, there is one to one correspondence between a single
open chain and a permutation of its (actual) elements (in Figure 2.22 above, the
permutations are 11→ 6 and 9→ 1→ 2). Hence, the single open chain modified
generating function is given by, summing all MGF [τ ] terms,

∞∑︂
q=2

tq−1ωq−(q−1)

q! q!m2(q−1)
2 = ωm2

2t

1−m2
2t

(2.137)

Since the structure L⟨⟨4⟩⟩ is merely a concatenation of all possible chains (in view
of the Set operation), we immediately get

L̃4(t, ω) = exp
(︄

ωm2
2t

1−m2
2t

)︄
(2.138)

and thus

F̃
sym
4 (t, ω) = F sym

4 (t)L̃sym
4 (t, ω) = et(m4−3m2

2)

(1−m2
2t)3 exp

(︄
ωm2

2t

1−m2
2t

)︄
. (2.139)
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2.3. Gram moment and permutation tables

Finally, by using definition of Ω,

F sym
4 (t, ω) = Ω[eωF̃ sym

4 (t, ω)] = Ω
[︄
et(m4−3m2

2)

(1−m2
2t)3 exp

(︄
ω

1−m2
2t

)︄]︄

= Ω
[︄
et(m4−3m2

2)

(1−m2
2t)3

∞∑︂
r=0

ωr/r!
(1−m2

2t)r

]︄
= et(m4−3m2

2)

(1−m2
2t)3

∞∑︂
r=0

ωr

(1−m2
2t)r

.

(2.140)

This concludes the proof. By using Taylor expansion, we immediatelly recover
also f sym

4 (n, p). ■

Remark 105. Somewhat similarly to the f2(n, p) case, we can derive Dembo’s
f sym

4 (n, p) = E det(U⊤U)2 by taking expectation of Equation (2.119) directly.
What we obtain are recursion relations (based on the overlap of C1 and C2)
which are trivial to solve using Binomial transform (see Section 3.3 of our
older work [8]).

2.3.5 Normal Gram moments
We have the following generalization of Prékopa’s result for n2m(n) (Proposition
72) due to Dembo [24].

Definition 106. When Xij ∼ N(m1, 1), we denote fk(n, p) as nk(n, p) and
Fk(t, ω) as Nk(t, ω).

Proposition 107 (Dembo 1989). For any even k = 2m,

n2m(n, p) =
m−1∏︂
r=0

(n+ 2r)!
(n− p+ 2r)! . (2.141)

Dembo’s proof is an adaptation of the simplified proof of n2m(n) by Prékopa [57].
It relies again on a correspondence with Gaussian random polytopes. Hence,
the proposition t is also equivalent to the well known result of Miles [48, p. 377,
(70)] – see Proposition 254 in Chapter 6 of this thesis and its proof (our own).
Proposition 107 is also special case of Theorem 181 with µ = 0.

Fourth normal Gram moment

When k = 4, we get

n4(n, p) = n!(n+ 2)!
(n− p)!(n− p+ 2)! (2.142)

and thus

N4(t, ω) =
∞∑︂
n=0

n∑︂
p=0

n!(n+ 2)!tpωn−p

p!(n− p+ 2)! = 1
(1− t)2(1− ω − t) . (2.143)

Alternatively, we can deduce N4(t, ω) independently from Proposition 107 by
using the general formula for F sym

4 (t, ω) (Proposition 103) with m2 = 1 and
m4 = 3.
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Sixth normal Gram moment

When k = 6, we obtain

n6(n, p) = n!(n+ 2)!(n+ 4)!
(n− p)!(n− p+ 2)!(n− p+ 4)! . (2.144)

However, its generating function

N6(t, ω) =
∞∑︂
n=0

n∑︂
p=0

tpωn−p(n+ 2)!(n+ 4)!
p!(n− p+ 2)!(n− p+ 4)! . (2.145)

is no longer analytic.

2.3.6 Gram sixth moment central

Theorem 108. For any distribution Xij with m1 = 0 and m2 = 1,

F6(t, ω) = (1 +m2
3t)10 e

t(m6−10m2
3−15m4+30)

(1 + 3t−m4t)15 N6

(︃
t

1 + 3t−m4t
,

ω

1 + 3t−m4t

)︃
.

Expanding, we get for any distribution Xij with m1 = 0,m2 = 1, that

f6(n, p) = n!p!
(n−p)!

p∑︂
j=0

j∑︂
i=0

p−j∑︂
k=0

(2+i+n−p)!(4+i+n−p)!
i!(n−p+2)!(n−p+4)!(p−j−k)!

×
(︄

10
k

)︄(︄
14+3n−3p+j+2i

j − i

)︄
qp−j−k

6 qj−i4 qk3 ,

where q6 = m6 − 10m2
3 − 15m4 + 30, q4 = m4 − 3, and q3 = m2

3.

The proof is rather technical and rely on decomposing tables into disjoint sub-
tables. Any table τ ∈ F⟨6⟩ contains sub-tables already present in F6 (cycles of
3-columns, cycles of 4-columns and a core of 2-columns with attached chains of 4-
columns) and also extra sub-tables consisted of open chains of 4-columns similar
as in F⟨4⟩.

2.4 Marked permutation tables

2.4.1 Shifted basis

Instead of expressing determinant moments in mr, there exists another basis
which turns out to be much more convenient.

Definition 109. Let Yij = Xij −m1 with moments µr = EY r
ij.
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Remark 110. By expanding Y r
ij = (Xij −m1)r and taking expectation, we get

µ2 = m2 −m2
1,

µ3 = m3 − 3m1m2 + 2m3
1,

µ4 = m4 − 4m1m3 + 6m2
1m2 − 3m4

1

µ5 = m5 − 5m1m4 + 10m2
1m3 − 10m3

1m2 + 4m5
1,

µ6 = m6 − 6m1m5 + 15m2
1m4 − 20m3

1m3 + 15m4
1m2 − 5m6

1.

Note that µ1 = 0 always.

Proposition 111. Let k be even, then

fk(n) = ψk(n,m1, µ2, µ3, . . . , µk−1, µk), (2.146)

where ψk is a polynomial in m1, µ2, . . . , µk. Equivalently, there exists a function
Ψk whose expansion coefficients are polynomials in m1, µ2, . . . , µk such that

Fk(t) = Ψk(t,m1, µ2, µ3 . . . , µk−1, µk). (2.147)

Similarly, fk(n, p) is also some polynomial ψk(n, p,m1, µ2, . . . , µk) and Fk(t, ω) =
Ψk(t, ω,m1, µ2, . . . , µk) for some function Φk with polynomial expansion coeffi-
cients.

Proposition 112. Let ψk and Ψk be defined as in Proposition 111, then for any
β ∈ R and k even,

ψk(n, βm1, β
2µ2, β

3µ3, . . . , β
kµk) = βnkψk(n,m1, µ2, µ3, . . . , µk) (2.148)

and as a consequence,

Ψk(t, βm1, β
2m2, . . . , β

kmk) = Ψk(βkt,m1,m2, . . . ,mk). (2.149)

Similarly for the non-symmetric case,

ψk(n, p, βm1, β
2µ2, β

3µ3, . . . , β
kµk) = βpkψk(n,m1, µ2, µ3, . . . , µk) (2.150)

and
Ψk(t, βm1, β

2µ2, . . . , β
kµk) = Ψk(βkt,m1, µ2, . . . , µk). (2.151)

Proof. We only show the statement for the symmetric case. Write X∗
ij = βXij,

m∗
r = E (X∗

ij)r, A∗ = (X∗
ij)n×n. Note that µ∗

r = E (X∗
ij−m∗

1)r = βrE (Xij−m1)r =
βrµr. Therefore, on one hand,

E (detA∗)k = ψk(n,m∗
1, µ

∗
2, . . . , µ

∗
k) = ψk(n, βm1, β

2µ2, . . . , β
kµk), (2.152)

on the other hand, by linearity of determinants,

E (detA∗)k = βnkE (detA)k = βnkψk(n,m1, µ2, . . . , µk). (2.153)

■
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Corollary 112.1. Assume we know fk(n) and Fk(t) with µ2 = 1, that is

fk(n)|µ2=1 = ψk(n,m1, 1, µ3, µ4, . . . , µk), (2.154)
Fk(t)|µ2=1 = Ψk(t,m1, 1, µ3, µ4, . . . , µk), (2.155)

then

fk(n) = µ
nk/2
2 ψk

(︄
n,

m1

µ
1/2
2
, 1, µ3

µ
3/2
2
,
µ4

µ
4/2
2
, . . . ,

µk

µ
k/2
2

)︄
, (2.156)

Fk(t) = Ψk

(︄
µ
k/2
2 t,

m1

µ
1/2
2
, 1, µ3

µ
3/2
2
,
µ4

µ
4/2
2
, . . . ,

µk

µ
k/2
2

)︄
. (2.157)

Similarly

fk(n, p) = µ
pk/2
2 ψk

(︄
n,

m1

µ
1/2
2
, 1, µ3

µ
3/2
2
,
µ4

µ
4/2
2
, . . . ,

µk

µ
k/2
2

)︄
, (2.158)

Fk(t, ω) = Ψk

(︄
µ
k/2
2 t, ω,

m1

µ
1/2
2
, 1, µ3

µ
3/2
2
,
µ4

µ
4/2
2
, . . . ,

µk

µ
k/2
2

)︄
. (2.159)

Remark 113. Without loss of generality, we put µ2 = 1 from now on (if not
stated differently).

It is convenient to extend the definition of random matrix moments to Yij vari-
ables:

Definition 114. From Y ′
ijs, we construct two (random) matrices B = (Yij)n×n

and V = (Yij)n×p. Let gk(n) = E (detB)k and gk(n, p) = E (detV ⊤V )k/2 be
their k−th determinant moment and k-th Gram moment, respectively. By
definition, we set gk(0) = 1 and gk(n, 0) = 1 (we put det(V ⊤V ) = 1 when
p = 0). Also, we define their corresponding (formal) generating functions

Gk(t) =
∞∑︂
n=0

tn

n!2 gk(n), Gk(t, ω) =
∞∑︂
n=0

n∑︂
p=0

(n− p)!
n!p! tpωn−pgk(n, p). (2.160)

Proposition 115. For any distribution of Xij,

Gk(t) = Fk(t)|m1=0,mr→µr = F cen
k (t)|mr→µr ,

Gk(t, ω) = Fk(t, ω)|m1=0,mr→µr = F cen
k (t, ω)|mr→µr .

Proof. We only show the square matrix case, since the Gram case is analogous.
Since Yij’s are independent and identically distributed (i.i.d.), we may replace
Xij by Yij and mr = EXr

ij by µr = EY r
ij in the definition of Fk(t). Hence

Gk(t) = Φk(t, µ1, µ2, . . . , µk−1, µk), (2.161)

which is equal to the right hand side of the proposition as µ1 = 0. ■

2.4.2 Finite decomposition
Crucial observation, which appeared in our previous work [8], states
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Proposition 116. Let ψk and Ψk as in Proposition 111, then ψk and Ψk are
polynomials in m1 upto order k only. That is, there exist functions trk(n) and
T rk (t), r = 0, . . . k whose only parameters are µ2, . . . , µk, such that

Fk(t) =
k∑︂
r=0

mr
1T

r
k (t) or equivalently, fk(n) =

k∑︂
r=0

mr
1t
r
k(n). (2.162)

The fact that the expansion of Ψk in m1 is finite enabled us to deduce F4(t) and
F4(t, ω) in general (see B. [8]). The former was deduced using recursions for T rk (t).
The latter, however, was much harder to deduce because we thought there is no
analogue of Proposition 116 applicable for F6(t, ω). Instead, we showed that the
Binomial expansion of F4(t, ω), that is

F4(t, ω) =
∞∑︂
j=0

ωj
(︄

1− µ2
2t

1− ω − µ2
2t

)︄j+1

Φj(t) (2.163)

with expansion functions Φj(t) (not related with Φk introduced earlier), has in fact
finitely many terms. The proof of this assertion is highly nontrivial and combines
the Cauchy-Binet formula with the Binomial transform, which we showed they
are in fact closely related, as well as various recursion relations. For an interested
reader, we reffer to our original work [8]. In this thesis, we show a much simpler
proof based on marked permutation tables. It turned out that the functions
T rk (t) in the Fk(t) expansion are generating functions associated to some kind of
combinatorial construction similar to that of Niquist, Rice and Riordan [50].

In this thesis, we shall interpret the combinatorial meaning of functions T rk (t)
using permutation tables construction, we first show that detA is in fact linear
in m1. To see this, we use the following lemma.

Lemma 117.
∑︂
π∈Pn

sgn π =
⎧⎨⎩1, n ∈ {0, 1}

0, n ≥ 2

Proposition 118.

detA =
∑︂
π∈Pn

sgn π
∏︂
i∈[n]

Yiπ(i) + m1
∑︂
j∈[n]

∑︂
π∈Pn

∏︂
i∈[n]\{j}

Yiπ(i). (2.164)

Proof. Write Xij = Yij +m1 in the definition of determinant. Multiplying every-
thing out,

detA =
∑︂
π∈Pn

sgn π
∏︂
i∈[n]

Xiπ(i)

=
∑︂
π∈Pn

sgn π
∏︂
i∈[n]

(Yiπ(i) +m1) =
∑︂
π∈Pn

sgn π
∑︂
M⊆[n]

∏︂
i∈[n]\M

m#M
1 Yiπ(i),

where #M denotes the number of elements in M . However, by Lemma 117, the
terms with #M ≥ 2 vanish. ■

Note that the proposition is actually a special case of the Matrix Determinant
Lemma
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Lemma 119 (Matrix Determinant Lemma). Let C = (cij)n×n be any real
matrix, u = (ui)n×1, v = (vi)n×1 real (column) vectors and λ ∈ R, then

det
(︂
C + λuv⊤

)︂
= (detC) + λv⊤Cadju, (2.165)

where (Cadj)ij = (−1)i+j detCji is called the adjugate matrix of C and Cji
denotes a matrix formed from C by deleting its j-th row and i-th column, as
usual.

In fact, we have

Proposition 120.

detA = det(B) +m1S, where S =
∑︂
ij

(−1)i+j det(Bij). (2.166)

Proof. By the definition of Yij’s and B, we can write

A = B +m1uu
⊤, (2.167)

where u is a column vector with n rows having all components equal to one.
Hence, by Lemma 117,

detA = det(B +m1uu
⊤) = (detB) +m1u

⊤Badju

= (detB) +m1
∑︂
ij

ui(−1)i+j det(Bji)uj = det(B) +m1S.
(2.168)

■

Remark 121. Also note that S can be expressed as S = ∑︁n
s=1 detB[s], where

we define

B[s] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y11 Y12 . . . Y1,n−1 Y1n
... ... . . . ... ...

Ys−1,1 Ys−1,2 . . . Ys−1,n−1 Ys−1,n
1 1 . . . 1 1

Ys+1,1 Ys+1,2 . . . Ys+1,n−1 Ys+1,n
... ... . . . ... ...
Yn1 Yn2 . . . Yn,n−1 Ynn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.169)

Corollary 121.1. Rising Proposition 120 to the k-th power and taking expecta-
tion, we get

fk(n) = E (detA)k = E (det(B) +m1S)k =
k∑︂
r=0

(︄
k

r

)︄
mr

1 E (detB)k−rSr. (2.170)

This statement already proves Proposition 116, we take

trk(n) =
(︄
k

r

)︄
E (detB)k−rSr, T rk (t) =

∞∑︂
n=0

tn

n!2 t
r
k(n). (2.171)
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2.4. Marked permutation tables

2.4.3 Marked permutations and tables
In this section, we uncover combinatorial nature of the functions trk(n) and T rk (n).

Definition 122. We say σ is a marked permutation if it was formed from some
π ∈ Pn in which we replaced at most one element by the mark “×”. We define
sgn σ = sgn π and Y ×

iσ(i) = m1 if i is marked and Y ×
iσ(i) = Yiπ(i) otherwise. We

write P×
n for the set of all marked permutations.

Proposition 123. Restating Proposition 118 in terms of marked permutations.

detA =
∑︂
σ∈P×

n

sgn σ
n∏︂
i=1

Y ×
iσ(i).

Definition 124. We say t is a k by n marked table, if its rows are marked
permutations σj, j = 1, . . . , k of order n. We denote G×

k,n the set of all such
tables (in the case the order of columns is irrelevant, we write G×

k,n instead). We
define the marked weight w× of the i-th column of τ ∈ G×

k,n as the expectation
E ∏︁k

j=1 Y
×
iσj(i). Similarly, we define the sign sgn(τ) of table τ as the product of

signs of σj, j = 1, . . . , k. Also, we define the marked weight w×(t) of the whole
table τ as the product of weights of its individual columns. Finally, we define
another weight w(τ) as w×(t) in which we put m1 = 1.

Example 125. The following figures show two example marked permutation tables.

1 × 3 4 5 2 7 8 9
3 2 1 9 4 6 7 5 8
1 × 3 9 4 2 7 5 8
3 2 1 4 5 6 7 8 9

Figure 2.23: An example of a table τ ∈
G2

4,9 with weights w×(t) = m2
1µ15

2 µ4 and
w(τ) = µ15

2 µ4,

× 2 3 4 5 6 7 8 9
× 2 1 9 4 6 7 5 8
2 × 1 9 4 6 7 5 8
2 × 3 4 5 6 7 8 9

Figure 2.24: An example of a table τ ∈
G4

4,9 with weights w×(t) = m4
1µ12

2 µ2
4 and

w(τ) = µ12
2 µ2

4.

Remark 126. Note that since only one number is marked in any row, we can
recover the original permutation in the row uniquely. That is, a column of
a table τ ∈ G×

k,n is created by marking an (unmarked) original column of a
corresponding table in Fk,n. Alternatively, we can show the numbers covered
by marks in a special curly bracket column alongside tables. The same tables
as above would look like
⎧⎪⎪⎪⎨⎪⎪⎪⎩

6

6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1 × 3 4 5 2 7 8 9
3 2 1 9 4 6 7 5 8
1 × 3 9 4 2 7 5 8
3 2 1 4 5 6 7 8 9

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3
3
1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
× 2 3 4 5 6 7 8 9
× 2 1 9 4 6 7 5 8
2 × 1 9 4 6 7 5 8
2 × 3 4 5 6 7 8 9

Proposition 127. For any distribution Xij,

fk(n) = E (detA)k =
∑︂

τ∈G×
k,n

w×(t) sgn(τ). (2.172)
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2.4.4 Nontrivial marked tables

Since µ1 = 0, it turns out that most tables in G×
k,n have zero weight.

Definition 128. We say a table τ ∈ G×
k,n is trivial if its weight vanishes,

otherwise the table is nontrivial. The set all all nontrivial tables form a subset
T×
k,n ⊆ G×

k,n. Similarly for tables with irrelevant column order, we write T ×
k,n ⊆

G×
k,n.

Proposition 129. For any distribution Xij,

fk(n) = E (detA)k =
∑︂

τ∈T×
k,n

w×(t) sgn(τ). (2.173)

Example 130. The correspondence between fk(n) and marked permutation tables
is shown below in Figure 2.25 for n = 2 and k = 2 showing once again f2(2) =
2(m2

2 −m4
1). Note that in the expansion of detA, only terms which give nonzero

expectation are listed.

(detA)2 = Y 2
11Y

2
22 + Y 2

12Y
2

21 + m2
1Y

2
22 + m2

1Y
2

21 + Y 2
11m

2
1 + Y 2

12m
2
1

T×
2,2 : 1 2

1 2
2 1
2 1

× 2
× 2

× 1
× 1

1 ×
1 ×

2 ×
2 ×

w×: µ2µ2 µ2µ2 m2
1µ2 m2

1µ2 µ2m
2
1 µ2m

2
1

Sign: + + + + + +

Figure 2.25: Correspondence between determinant moment f2(2) and marked per-
mutation tables T ×

2,2

By summing the contribution from all marked tables, we get

f2(2) = 2µ2(µ2 + 2m2
1) = 2!(m2 −m2

1)(m2 +m2
1), (2.174)

where we have used µ2 = m2 −m2
1.

Remark 131. In terms of tables with irrelevant column order, Proposition 129
can be written alternatively fk(n) = n!f̂k(n), where by definition

f̂k(n) =
∑︂

τ∈T ×
k,n

w×(t) sgn(τ). (2.175)

Example 132. Let us derive f4(2). We may write f4(2) = 2!f̂4(2) and sum the
contribution from tables T ×

4,2 with irrelevant column order. Figure 2.26 below
shows the members of T ×

4,2 with the corresponding sign and weight including
multiplicity (#) as the members are displayed apart of permutation of rows and
substitution of {1, 2} for elements {a, b}.
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T ×
4,2 :

a b
a b
a b
a b

a b
a b
b a
b a

× b
a b
a b
a b

× b
× b
a b
a b

× b
× b
b a
b a

× b
a ×
a b
a b

× b
a ×
a ×
a b

× b
× b
× b
× b

× b
× b
× a
× a

× b
× b
b ×
b ×

× b
× b
a ×
a ×

w×: µ2
4 µ4

2 m1µ3µ4m
2
1µ2µ4 m

2
1µ

3
2 m2

1µ
2
3m

3
1µ2µ3 m

4
1µ4 m4

1µ
2
2 m4

1µ
2
2 m4

1µ
2
2

Sign: + + + + + + + + + + +
# 1 3 8 12 12 12 24 2 6 6 6

Figure 2.26: Correspondence between determinant moment f4(2) and marked per-
mutation tables T ×

4,2

By summing the contribution from all marked tables, we get

f̂4(2) =µ2
4 + 3µ4

2 + 8m1µ3µ4 + 12m2
1µ2µ4 + 12m2

1µ
3
2

+ 12m2
1µ

2
3 + 24m3

1µ2µ3 + 2m4
1µ4 + 18m4

1µ
2
2.

(2.176)

Plugging µ2 = m2−m2
1, µ3 = m3−3m2m1+2m3

1, µ4 = m4−4m3m1+6m2m
2
1−3m4

1
and expanding, we get

f4(2) = 2!f̂4(2) = 2(m2
4 − 4m2

1m
2
3 + 3m4

2), (2.177)

which coincides with the introductory Example 42.

Definition 133. Let T rk,n ⊆ T×
k,n be the subset of those tables which have

exactly r marks.

Definition 134. In accordance with Beck, Lv and Potechin [5], we write Tk,n =
T 0
k,n for nontrivial permutation tables (with no marks). More generally, we often

omit r when we have r = 0.
Definition 135. We define

trk(n) =
∑︂

τ∈T r
k,n

w(τ) sgn(τ) (2.178)

and its corresponding generation function

T rk (t) =
∞∑︂
n=0

tn

n!2 t
r
k(n). (2.179)

Proposition 136. For any distribution Xij,

fk(n) =
k∑︂
r=0

mr
1t
r
k(n) and thus Fk(t) =

k∑︂
r=0

mr
1T

r
k (t). (2.180)

Proof. Write

∑︂
τ∈T×

k,n

w×(t) sgn(τ) =
k∑︂
r=0

∑︂
τ∈T r

k,n

w×(t) sgn(τ) =
k∑︂
r=0

mr
1
∑︂

τ∈T r
k,n

w(τ) sgn(τ). (2.181)

■
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2.4.5 Second moment general (alternative proof)
We are ready to rederive Fortet’s formula (Proposition 67) in by means of marked
permutations tables. Restating the proposition,

Proposition 137 (Fortet [32]). For any distribution of Xij,

f2(n) = n!(m2 +m2
1(n− 1))(m2 −m2

1)n−1, (2.182)
F2(t) = (1 +m2

1t)e(m2−m2
1)t. (2.183)

Proof. We consider writing f2(n) as a sum over all (nontrivial) marked permuta-
tions tables T×

2,n with two rows and n columns. Note that T×
2,n = T 0

2,n ⊔T 1
2,n ⊔T 2

2,n
and thus

f2(n) = t02(n) +m1t
1
2(n) +m2

1t
2
2(n). (2.184)

However, as µ1 = 0, we get t12(n) = 0 since T 1
2,n is empty. In fact, there are only

two types of columns which give rise to nontrivial weights, namely the 2-column
(the same two numbers a) and the ×2-column (the same two numbers marked).

Type: 2-column ×2-column

T×
2 : a

a
×
×

w×: µ2 m2
1

There are n! possibilities how the permutation in the first row of a table can look
like. Since tables T 0

2,n only contain 2-columns, the second row must be filled with
the same permutation (thus the sign is always positive). This gives us the factor

t02(n) = n!µn2 (2.185)

to the overall sum f2(n) = ∑︁
τ∈T×

2,n
w×(t) sgn τ . As a consequence,

T 0
2 (t) =

∞∑︂
n=0

tn

n!2 t
0
2(n) = eµ2t. (2.186)

Let τ ′ ∈ T 0
2,n have c two-columns. The weight of this table is given as w(τ ′) = µc2.

Note that for the weights w(τ) of a marked table τ ∈ T 2
2,n created from τ ′ by

marking one of its two-columns by two marks, we have w(τ) = µc−1
2 . Thus, from

τ ′, we get the following contribution to t22(n) = ∑︁
τ∈T 2

2,n
w(τ) sgn τ ,

cµc−1
2 . (2.187)

Summing up this contribution over all tables τ ′ ∈ T 0
2,n, we get

t22(n) = ∂t02(n)
∂µ2

= n!nµn−1
2 (2.188)

or in terms of generating functions,
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T 2
2 (t) = ∂T 0

2 (t)
∂µ2

= teµ2t, (2.189)

from which

F2(t) = T 0
2 (t)+m1T

1
2 (t)+m2

1T
2
2 (t) = (1+m2

1t)eµ2t = (1+m2
1t)e(m2−m2

1)t. (2.190)

Alternatively, since there can be only one mark per row, there can be only one
×2-column. For a given permutation of the first row, there are n positions for
this marked column and thus we get the factor

n!nµn−1
2 m2

1. (2.191)

In other words, t22(n) = n!nµn−1
2 . Summing the two factors together, we get

f2(n) = n!µn2 + n!nµn−1
2 m2

1 = n!(µ2 + nm2
1)µn−1

2 , (2.192)

from which follows the first assertion by putting µ2 = m2−m2
1. Note that we can

also get F2(t) by directly inserting f2(n) into the definition of generating function
F2(t).

Yet another, the shortest proof is given by analytic combinatorics. Note that we
can formally write the following construction relation for the set T ×

2 of all marked
tables (with column order irrelevant)

T ×
2 = T 0

2 + T 0
2 ⋆
×
× = Set

(︄
1
1

)︄
⋆

(︄
∅ + ×

×

)︄
(2.193)

from which immediatelly, in terms of generating functions,

F2(t) = exp(µ2t)(1 +m2
1t). (2.194)

■

2.4.6 Even marked tables
Definition 138. We denote S×

k,n as the subset of tables T×
k,n which have still

nonzero weight when µ3 = µ5 = · · · = 0. As a consequence, their columns
have only even number of marks (since k is even). We call these tables even
(marked) tables or simply S tables.

Definition 139. For any distribution of Xij, we write

srk(n) =
∑︂

τ∈Sr
k,n

w(τ) sgn(τ) (2.195)

and its corresponding generation function

Srk(t) =
∞∑︂
n=0

tn

n!2 s
r
k(n). (2.196)
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Remark 140. Summing over S×
k,n is equivalent of summing over T×

k,n and then
putting µ3 = µ5 = · · · = 0. That is srk(n) = trk(n)|µ3=µ5=···=0 and Srk(t) =
T rk (t)|µ3=µ5=···=0.

Remark 141. In the case of the sixth moment, even marked tables are the
notrivial tables under intermedial distribution of entries (with µ3 = 0).

2.4.7 Shifted normal moments
In the case Yij ∼ N(0, 1), or equivalently Xij ∼ N(m1, 1), we can find fk(n) and
thus trk(n) and T rk (t) explicitely for all r and k.

Definition 142. When Yij ∼ N(0, 1), we denote trk(n) as nrk(n) and T rk (t) as
N r
k (t).

Lemma 143 (Square matrix Wishart expansion). Let Xij ∼ N(µ, σ2) and
k = 2m be an even integer, then

f2m(n) = σ2mn

⎛⎝m−1∏︂
j=0

(n+ 2j)!
(2j)!

⎞⎠ m∑︂
s=0

(︄
m

s

)︄
(n− 2)!!

(n+ 2s− 2)!!

(︃
nµ

σ

)︃2s
. (2.197)

The lemma is a special case of Theorem 181 with n = p and follows from known
properties of the non-central Wishart distribution (see Theorem 10.3.7 in [49]).

Corollary 143.1. Selecting µ = m1 and σ = 1, and comparing m1 powers, we
get that when k or r is odd, then nrk(n) and N r

k (t) vanish. Otherwise, if k = 2l
and r = 2s for some integers m, s, then

n2s
2l (n) =

(︄
l

s

)︄
n2s(n− 2)!!

(n+ 2s− 2)!!

l−1∏︂
j=0

(n+ 2j)!
(2j)! . (2.198)

Proposition 144. When Yij ∼ N(0, 1), then srk(n) = nrk(n). Or in terms of
generating functions, Srk(t) = N r

k (t).

Proof. We already know that by definition for any distribution of Xij,

trk(n) =
∑︂
τ∈T rn

w(τ) sgn(τ). (2.199)

However, since µ3 = µ5 = · · · = 0 in the case of the normal distribution, we have
that all tables in T rk,n/S

r
k,n are trivial (their weight equals zero), as the weight

w(τ) of each column with odd number of marks vanishes. ■

Fourth shifted normal moment

We will examine two special cases. First, when, k = 4, we have the following:

Proposition 145.

n0
4(n) = n!(n+ 2)!

2 , n2
4(n) = n!(n+ 2)!n, n4

4(n) = n3n!(n+ 1)!
2 .

n1
4(n) = 0, n3

4(n) = 0,
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2.4. Marked permutation tables

Corollary 145.1. By summing the series,

N0
4 (t) = 1

(1− t)3 , N2
4 (t) = 6t

(1− t)4 , N4
4 (t) = t (1 + 7t+ 4t2)

(1− t)5 .

N1
4 (t) = 0, N3

4 (t) = 0,

Sixth shifted normal moment

Next, when k = 6,

Proposition 146.

n0
6(n) = n!(n+2)!(n+4)!

48 , n2
6(n) = n!(n+2)!(n+4)!n

16 ,

n4
6(n) = n3n!(n+1)!(n+4)!

16 , n6
6(n) = n5n!(n+1)!(n+3)!

48 ,

n1
6(n) = n3

6(n) = n5
6(n) = 0.

Proof. Directly from Corollary 143.1 or by Lemma 143 with µ = m1 and σ = 1,

f6(n)= n!(n+1)!(n+3)!
48 ((n+2)(n+4) + 3m2

1n(n+2)(n+4) + 3m4
1n

3(n+4) +m6
1n

5) .

Comparing m1 powers, we get nr6(n) for r = 0, . . . , 6. ■

Corollary 146.1. By summing the series

N0
6 (t) = 1

48

∞∑︂
n=0

(n+ 1)(n+ 2)(n+ 4)! tn,

N2
6 (t) = 1

16

∞∑︂
n=0

n(n+ 1)(n+ 2)(n+ 4)! tn,

N4
6 (t) = 1

16

∞∑︂
n=0

n3(n+ 1)(n+ 4)! tn,

N6
6 (t) = 1

48

∞∑︂
n=0

n5(n+ 1)(n+ 3)! tn,

N1
6 (t) = N3

6 (t) = N5
6 (t) = 0.

Remark 147. Note that those series (with even r) have zero radius of conver-
gence, so they have to be treated formally.

Remark 148. Note that those auxiliary series are not independent. For exam-
ple, it holds

N2
6 (t) = 3t d

dtN
0
6 (t), (2.200)

t2
d
dtN

2
6 (t) = (1− 8t)N2

6 (t)− 45tN0
6 (t), (2.201)

tN4
6 (t) =

(︂
4t2 − 10t+ 1

)︂
N2

6 (t) + 15t(4t− 3)N0
6 (t), (2.202)

3t2N6
6 (t) =

(︂
1− 23t+ 125t2 − 120t3

)︂
N2

6 (t)− 3t
(︂
15− 210t+ 344t2

)︂
N0

6 (t).
(2.203)
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Note that these are not the only relations between N r
6 (t)’s. For example, N2

6 (t)
can be also expressed using N0

6 (t) but the relation involves rather complicated
rational functions.

2.4.8 Odd-end marked tables
Definition 149. We say a marked column is ×1

k−1, when it is consisted of one
mark and k − 1 copies of some identical number.

Definition 150. We denote O×
k,n as the subset of nontrivial tables T×

k,n which
lack ×1

k−1 columns. Equivalently, O×
k,n are the tables which stays nontrivial

when µk−1 = 0. We call these tables as odd-end marked tables or simply O
tables.
Definition 151. For any distribution of Xij, we write

ork(n) =
∑︂

τ∈Or
k,n

w(τ) sgn(τ) (2.204)

and its corresponding generation function

Or
k(t) =

∞∑︂
n=0

tn

n!2 o
r
k(n). (2.205)

Remark 152. Summing over O×
k,n is equivalent of summing over T×

k,n if we
put µk−1 = 0, that is, ork(n) = trk(n)|µk−1=0 and Or

k(t) = T rk (t)|µk−1=0. Note
that, however, as µk−1 always appear alongside with µ1 in unmarked tables,
o0
k(n) = t0k(n) and O0

k(t) = T rk (t).

Remark 153. In any nontrivial table, every ×1
k−1 column must be originally a

column with k identical copies of the same number a that gets covered by a
mark. The other option would be that the covered number is different. That
would mean, however, these is a single displaced number a elsewhere in the
table. But since µ1 = 0, this would turn the table to be trivial (zero weight).

2.4.9 Decomposition into odd-end marked tables
It turns out that instead of all marked tables T×

k,n, we can only consider the tables
O×
k,n as there exists a natural decomposition.

Proposition 154. For any distribution of Xij with µ2 = 1,

trk(n) =
r∑︂
s=0

(︄
k − r + s

s

)︄
n!2µsk−1
(n− s)!2 o

r−s
k (n− s). (2.206)

Proof. We collect the terms according to the number of ×1
k−1 columns. Let there

be r marks out of which s form ×1
k−1 columns. According to Remark 153, they

are disjoint from other columns (they do not share any numbers). We can select(︂
n
s

)︂
positions for those columns. Also,

(︂
n
s

)︂
is the number of selections of concrete

numbers from [n] = {1, 2, 3, . . . , n} to fill in those ×1
k−1 columns, there are then

s! permutations of those numbers. Erasing ×1
k−1 columns, what we are left with
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is a table τ ′ ∈ Or−s
k,n−s (lacking ×1

k−1 columns). To construct a table τ ∈ T rk,n from
τ ′, we select rows where the marks of ×1

k−1 columns will be. Since r − s marks
are already placed, there are

(︂
k−(r−s)

s

)︂
ways how to place our s marks. Thus

∑︂
τ∈T r

k,n

w(τ) sgn(τ) =
r∑︂
s=0

(︄
n

s

)︄2(︄
k − r + s

s

)︄
s!2µsk−1

∑︂
τ ′∈Or−s

n−s

w(τ ′) sgn(τ ′). (2.207)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6
7
6
3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
3 × 1 4 5 2 7 8 9
3 2 1 9 4 6 × 5 8
3 × 1 9 4 2 7 5 8
× 2 1 4 5 6 7 8 9

←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6

6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
× 1 4 5 2 8 9
2 1 9 4 6 5 8
× 1 9 4 2 5 8
2 1 4 5 6 8 9

Example: n = 9, r = 4, s = 2

■

Corollary 154.1. In terms of generating functions, we have for any distribution
Xij with µ2 = 1,

T rk (t) =
r∑︂
s=0

(︄
k − r + s

s

)︄
tsµsk−1O

r−s
k (t). (2.208)

Proof. Changing the order of summation, we get from the definition of T rk (t),

T rk (t) =
∞∑︂
n=0

tn

n!2 t
r
k(n) =

∞∑︂
n=0

r∑︂
s=0

(︄
k − r + s

s

)︄
tnµsk−1

(n− s)!2 o
r−s
k (n− s)

=
r∑︂
s=0

(︄
k − r + s

s

)︄
tsµsk−1O

r−s
k (t).

(2.209)

■

Corollary 154.2. In terms of generating functions, we have for any distribution
Xij with µ2 = 1,

Fk(t) =
k∑︂
r=0

mr
1(1 +m1µk−1t)k−rOr

k(t), (2.210)

Proof. Using Proposition 136 and by substitution r = s + j in the previous
corollary,

Fk(t) =
k∑︂
r=0

mr
1T

r
k (t) =

k∑︂
r=0

r∑︂
s=0

(︄
k − r + s

s

)︄
mr

1t
sµsk−1O

r−s
k (t)

=
k∑︂
j=0

k−j∑︂
s=0

(︄
k − j
s

)︄
ms+j

1 tsµsk−1O
j
k(t).

(2.211)

■

To finish this section, let us state an inverse relations between tables T rk,n and
Or
k,n.
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Proposition 155. In terms of generating functions, we have for any distribution
Xij with µ2 = 1,

Os
k(t) =

s∑︂
r=0

(−1)r
(︄
k − s+ r

r

)︄
trµrk−1T

s−r
k (t). (2.212)

One can deduce a generalisation of Corollary 154.2, connecting generating func-
tions for distributions with two different µk−1.

Corollary 155.1. In terms of generating functions, we have for any distribution
Xij,

[ms
1]Fk(t)|µk−1=µ′′

k−1
=

k∑︂
r=0

mr
1(1 +m1(µ′′

k−1 − µ′
k−1)t)k−r[mr

1]Fk(t)|µk−1=µ′
k−1
.

(2.213)

2.5 Fourth moment general
In this section, we derive the general fourth determinant moment:

Theorem 156 (B. 2022). For any distribution Xij,

F4(t)= et(µ4−3µ2
2)

(1− µ2
2t)3

(︄
(1+m1µ3t)4+6m2

1µ2t
(1+m1µ3t)2

1− µ2
2t

+m4
1t

1+7µ2
2t+4µ4

2t
2

(1− µ2
2t)2

)︄
.

Corollary 156.1. For any distribution Xij,

f4(n) = (n!)2
2∑︂

w=0

4−2w∑︂
s=0

n−s∑︂
c=0

(︄
4− 2w
s

)︄
(1 + c)ms+2w

1 µ2c−w
2 µs3 (µ4 − 3µ2

2) n−c−s

(n− c− s)!(2− w)!w! dw(c),

where
d0(c) = (2 + c), d1(c) = c(2 + c), d2(c) = c3.

When m1 = 0, we recover the original special case F sym
4 (t) derived by Nyquist,

Rice and Riordan (Proposition 68).
Example 157 (General Gaussian distribution). IfXij ∼ N(µ, σ2), we havem1 = µ,
(µ2, µ3, µ4) = (σ2, 0, 3σ4), from which we get

f4(n) = 1
2(n!)2(1 + n)σ4(n−1)

(︂
n3µ4 + (2 + n)σ2

(︂
2nµ2 + σ2

)︂)︂
. (2.214)

Example 158. ((0, 2) matrices). Let Xij = 0, 2 with equal probability, thus
(m1,m2,m3,m4) = (1, 2, 4, 8) and (µ2, µ3, µ4) = (1, 0, 1). As pointed out by Ter-
ence Tao [70], the determinant of a random n×n (−1,+1) matrix is equal to the
determinant of a random n−1×n−1 (0, 2) matrix for which (m1,m2,m3,m4) =
(0, 1, 0, 1). In terms of generating functions, that means

F4(t) = ∂

∂t

(︄
t
∂F sym

4 (t)
∂t

)︄
= ∂

∂t

(︄
t
∂

∂t

e−2t

(1− t)3

)︄
= e−2t (1 + 5t+ 2t2 + 4t3)

(1− t)5 ,

(2.215)
where in F sym

4 (t) we put (m1,m2,m3,m4) = (0, 1, 0, 1). This result coincides
exactly with our general formula for F4(t) with (m1,m2,m3,m4) = (1, 2, 4, 8).
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Example 159 (Exponential distribution). If Xij ∼ Exp(1), that is if mj = j!, we
have (µ2, µ3, µ4) = (1, 2, 9). For n large, we get an asymptotic behavior

f4(n) = 1
2e

6(n!)2
(︂
n4 − 5n3 − 27n2 + 141n+ 450 +O(1/n)

)︂
. (2.216)

The first seven exact moments are shown in Table 2.2 below.

n 1 2 3 4 5 6 7
f4(n) 24 960 51840 3511872 287953920 27988001280 3181325414400

Table 2.2: Fourth moment of a random determinant with entries exponentially dis-
tributed

2.5.1 Structure of marked tables

Let a, b denote different numbers selected from [n] = {1, 2, 3, . . . , n}. Up to
permutation of rows, the only way how the columns of 4 by n tables with nonzero
weight could look like is the following:

Type: 4-column 2-column ×1-column ×2-column ×4-column

T ×
4 :

a
a
a
a

a
a
b
b

×
a
a
a

×
×
a
a

×
×
×
×

Weight w×: µ4 1 m1µ3 m2
1 m4

1

Figure 2.27: Structure of T ×
4 tables

See Example 132 showing the full T ×
4,2 for better illustration.

2.5.2 Odd-end tables decomposition

Since the odd-end and even marked tables coincide when k = 4, we can only
consider the sums over even marked tables S×

4 ⊂ T×
4 . By Corollary 154.2,

F4(t) = (1 +m1µ3t)4S0
4(t) + (1 +m1µ3t)2m2

1S
2
4(t) +m4

1S
4
4(t). (2.217)

As the only nonzero terms are S0
4(t), S2

4(t) and S4
4(t) in the expansion of F4(t)

(see Equation (2.217)), we have the following options (upto permutations of rows)
how to nontrivially place marks in a table τ ∈ S×

4,n.
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×
×

Figure 2.28: Marked columns S2
4,n

×
×
×
×

×
×
×
×

Figure 2.29: Marked columns S4
4,n

Definition 160. We define tables Sr/s4,n ⊆ Sr4,n such that their r marks occupy
s columns. Accordingly, we define

s
r/s
4 (n) =

∑︂
τ∈Sr/s4,n

w(τ) sgn(τ) and S
r/s
4 (t) =

∞∑︂
n=0

tn

n!2 s
r/s
4 (n). (2.218)

Remark 161. Note that S2
4,n = S

2/1
4,n and S4

4,n = S
4/1
4,n ⊔ S

4/2
4,n disjoint union as

shown below in Figure 2.30.

S×
4 :

×
×

×
×
×
×

×
×
×
×

S0
4 S2

4 S4/1
4 S4/2

4

Figure 2.30: Structure of S×
4 tables

2.5.3 Covering technique
Zero marks

The generating function S0
4(t) coincides with the already obtained F sym

4 (t) of
Nyquist, Rice and Riordan (see Proposition 68) replacing mk with µk, that is

S0
4(t) = G4(t) = et(µ4−3)

(1− t)3 . (2.219)

Two marks

Proposition 162. Tables S2
4,n are formed by marking one pair of numbers S4,n

in a given column.
Proof. Let τ ∈ S2

4,n, then the numbers which are covered by one pair of marks are
the same numbers. If they were different, say a, b there would have been another
a elsewhere in the table, making the table trivial in S2

4,n (since we would have
odd number of a’s uncovered). ■

Corollary 162.1. For any distribution Xij with µ2 = 1,

S2
4(t) = (6− 2µ4)

∂S0
4(t)
∂µ4

+ 2t ∂S
0
4(t)
∂t

= 6t
(1− t)4 e

t(µ4−3). (2.220)
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Proof. Let τ ′ ∈ S4,n have c four-columns. Thus, there are n − c two-columns.
The weight of this table is given as w(τ ′) = µc4. Let us find the weights w(τ) of
all marked tables τ ∈ S2

4,n created from τ ′ by marking. There are the following
possibilities where we can put those two marks:

• in 4-column of τ ′ in 6 ways, creating a table τ with weight µc−1
4 ,

• in 2-column of τ ′ in 2 ways, creating a table τ with weight µc4,

S2
4,n ← S0

4,n :

×
×
a
a

←

a
a
a
a

×
×
b
b

←

a
a
b
b

6 ways 2 ways

Thus, from τ ′, we get the following contribution to s2
4(n) = ∑︁

τ∈S2
4,n
w(τ) sgn(τ),

6cµc−1
4 + 2(n− c)µc4. (2.221)

Grouping the terms, this is equal to

cµc−1
4 (6− 2µ4) + 2nµc4. (2.222)

Summing up this contribution over all tables τ ′ ∈ S4,n, we get,

s2
4(n) = (6− 2µ4)

∂s0
4(n)
∂µ4

+ 2ns0
4(n) (2.223)

or in terms of generating functions,

S2
4(t) = (6− 2µ4)

∂S0
4(t)
∂µ4

+ 2t ∂S
0
4(t)
∂t

. (2.224)

By substituting Equation (2.219), we get, by computing the derivatives, the state-
ment of the corollary. ■

Four marks

Proposition 163. Similarly, by marking, tables S4/1
4,n are formed from S4,n by

marking one of its columns with four marks.

Corollary 163.1. For any distribution Xij with µ2 = 1,

S
4/1
4 (t) = (1− µ4)

∂S0
4(t)
∂µ4

+ t
∂S0

4(t)
∂t

= t(1 + 2t)
(1− t)4 e

t(µ4−3). (2.225)

Proof. Again let τ ′ ∈ S4,n have c four-columns and thus n − c two-columns. Its
weight is then w(τ ′) = µc4. To create a table τ ∈ S4/1

4,n , we can put four marks
• in 4-column of τ ′ in 1 way, creating a table τ with weight µc−1

4 ,
• in 2-column of τ ′ in 1 way, creating a table τ with weight µc4,
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S
4/1
4,n ← S0

4,n :

×
×
×
×

←

a
a
a
a

×
×
×
×

←

a
a
b
b

Thus, from τ ′, we get the following contribution to s4/1
4 (n) = ∑︁

τ∈S4/1
4,n
w(τ) sgn(τ),

cµc−1
4 + (n− c)µc4. (2.226)

Grouping the terms, this is equal to

cµc−1
4 (1− µ4) + nµc4. (2.227)

Summing up this contribution over all tables τ ′ ∈ S4,n, we get,

s
4/1
4 (n) = (1− µ4)

∂s0
4(n)
∂µ4

+ ns0
4(n) (2.228)

or in terms of generating functions,

S
4/1
4 (t) = (1− µ4)

∂S0
4(t)
∂µ4

+ t
∂S0

4(t)
∂t

. (2.229)

■

Proposition 164. Tables S4/2
4,n are formed from S

4/1
4,n by swapping two marks in

×4 column with a pair of numbers in some other column. Via this swapping, each
table from S

4/2
4,n is counted twice.

Proof. Let τ ∈ S4/2
4,n . There are two options how the table can look like based on

the uncovered numbers in ×2 columns. Either they are the same (a) or they are
different (a, b). In the first case, by swapping two marks with two a’s, we get a
corresponding table τ ′ ∈ S4/1

4,n with a four-column filled with a’s. In the second
option, by swapping, we get a two-column with numbers a and b (see figures
below).

× a
× a
a ×
a ×

←

× a
× a
× a
× a

Figure 2.31: First option for S
4/2
4,n

× a
× a
b ×
b ×

←

× a
× a
× b
× b

Figure 2.32: Second option for S
4/2
4,n

■

Corollary 164.1. For any distribution Xij with µ2 = 1,

S
4/2
4 (t) = (3− µ4)

∂S
4/1
4 (t)
∂µ4

+ t
∂S

4/1
4 (t)
∂t

− S4/1
4 (t) = 6t2(1 + t)

(1− t)5 et(µ4−3). (2.230)
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Proof. Let τ ′ ∈ S4/1
4,n have c four-columns, its weight is then w(τ ′) = µc4. However,

now there are only n − c − 1 two-columns as one column is covered with four
marks. To create a table τ ∈ S4/2

4,n , we can swap two marks of ×4-column with
• a 4-column of τ ′ in 6 ways, creating a table τ with weight µc−1

4 ,
• a 2-column of τ ′ in 2 ways, creating a table τ with weight µc4,

2S4/2
4,n ← S

4/1
4,n :

× a
× a
a ×
a ×

←

× a
× a
× a
× a

× a
× a
b ×
b ×

←

× a
× a
× b
× b

6 ways 2 ways

Thus, from τ ′, we get the following contribution to s4/2
4 (n) = ∑︁

τ∈S4/2
4,n
w(τ) sgn(τ),

6cµc−1
4 + 2(n− c− 1)µc4. (2.231)

Grouping the terms, this is equal to

cµc−1
4 (6− 2µ4) + 2nµc4 − 2µc4. (2.232)

Summing up this contribution over all tables τ ′ ∈ S4/1
4,n (note that as each table

in S
4/2
4,n is counted twice, we get twice the sum),

2s4/2
4 (n) = (6− 2µ4)

∂s
4/1
4 (n)
∂µ4

+ 2ns4/1
4 (n)− 2s4/1

4 (n) (2.233)

or in terms of generating functions,

2S4/2
4 (t) = (6− 2µ4)

∂S
4/1
4 (t)
∂µ4

+ 2t ∂S
4/1
4 (t)
∂t

− 2S4/1
4 (t). (2.234)

■

Corollary 164.2. For any distribution Xij with µ2 = 1,

S4
4(t) = t(1 + 7t+ 4t2)

(1− t)5 et(µ4−3). (2.235)

Proof. As S4
4,n = S

4/1
4,n ⊔ S

4/2
4,n disjoint union, we have that S4

4(t) = S
4/1
4 (t) +

S
4/2
4 (t). ■

Corollary 164.3. For any distribution of Xij, we get the statement of Theorem
156 with µ2 = 1, that is

F4(t) = et(µ4−3)

(1−t)3

(︂
(1 +m1µ3t) 4 + 6m2

1t
(1+m1µ3t)2

1−t +m4
1t

1+7t+4t2
(1−t)2

)︂
. (2.236)

Proof. As all S0
4(t), S2

4(t) and S4
4(t) have been found, we use Equation (2.217). ■
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Corollary 164.4. By Corollary 154.1 or by T r4 (t) = [mr
1]F4(t), we get explicitly

T 0
4 (t) = S0

4(t) = et(µ4−3)

(1− t)3 ,

T 1
4 (t) = 4µ3tS

0
4(t) = 4µ3t

et(µ4−3)

(1− t)3 ,

T 2
4 (t) = 6µ2

3t
2S0

4(t) + S2
4(t) = et(µ4−3)

(1− t)3

(︃
6µ2

3t
2 + 6t

1− t

)︃
,

T 3
4 (t) = 6µ3

3t
3S0

4(t) + 2µ3tS
2
4(t) = et(µ4−3)

(1− t)3

(︄
6µ3

3t
3 + 12µ3t

2

1− t

)︄
,

T 4
4 (t) = µ4

3t
4S0

4(t)+µ2
3t

2S2
4(t)+S4

4(t) = et(µ4−3)

(1− t)3

(︄
µ4

3t
4+ 6µ2

2t
3

1− t +t1+7t+4t2
(1− t) 2

)︄
.

Remark 165. Note that we get F4(t) in its full generality (Theorem 156) by
simply using the scalability property given by Corollary 112.1.

2.5.4 Addition technique
We present an alternative technique how to obtain S2

4(t) and S4
4(t) by finding

a correspondence between marked tables with n columns and unmarked tables
with one extra added column.
Let τ ∈ S2

4,n. Then, we construct τ ′ ∈ S0
4,n+1 in such a way we replace two ×’s

by the number “n + 1” and add an extra column filled with “n + 1”’s and the
covered numbers (see Figure 2.33 below). The crucial observation is that these
two covered numbers must be the same, so the added column is always nontrivial.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6

6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
4 × 5 2 7 3 1
1 2 4 6 7 5 3
1 × 4 2 7 5 3
4 2 5 6 7 3 1

←→

4 8 5 2 7 6 3 1
1 2 4 6 7 8 5 3
1 8 4 2 7 6 5 3
4 2 5 6 7 8 3 1

Figure 2.33: A correspondence between table τ ∈ S2
4,7 and table τ ′ ∈ S0

4,8

Given a table τ ′ ∈ S0
4,n+1 with c 4-columns and thus weight µc4, there are 2(n+1−c)

ways how we can select one 2-column and one pair of numbers in this 2-column.
We then erase this column and turn the other pair found in τ ′ into two marks.
As there are n+ 1 ways how we can place back the erased column and n+ 1 ways
how we can select n numbers from n+ 1 numbers, each table τ ∈ S2

4,n is counted
(n+ 1)2 times, thus

s2
4(n) =

∑︂
τ∈S2

4,n

w(τ) sgn τ =
∑︂

τ ′∈S0
4,n+1

2(n+ 1− c)
(n+ 1)2 µc4 sgn τ ′

= 2s
0
4(n+ 1)
n+ 1 − 2µ4

(n+ 1)2
∂s0

4(n+ 1)
∂µ4

.

Or in terms of generating functions,

S2
4(t) = 2∂S

0
4(t)
∂t

− 2µ4

t

∂S0
4(t)
∂µ4

= 6t
(1− t)4 e

t(µ4−3).
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2.5. Fourth moment general

Similarly, there is a correspondence between S
4/1
4,n and S0

4,n+1 as shown in Figure
2.34 below.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6
2
6
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
4 × 5 2 7 3 1
1 × 4 6 7 5 3
1 × 4 2 7 5 3
4 × 5 6 7 3 1

←→

4 8 5 2 7 6 3 1
1 8 4 6 7 2 5 3
1 8 4 2 7 6 5 3
4 8 5 6 7 2 3 1

Figure 2.34: A correspondence between table τ ∈ S
4/1
4,7 and table τ ′ ∈ S0

4,8

Now it depends whether previously covered numbers (in the gray column above)
form a 4-column or a 2-column. Let τ ′ ∈ S0

4,n+1 have c 4-columns. To count the
number of tables τ ∈ S4/1

4,n , first, we select one 4-column in c ways and mark all
of its entries, next, either we select

• one 2-column in n + 1− c ways and erase it, creating table τ with w(τ) =
w(τ ′)/µ4

• or one 4-column in c − 1 ways and erase it, creating table τ with w(τ) =
w(τ ′)/µ2

4
In total,

s
4/1
4 (n) =

∑︂
τ∈S4/1

4,n

w(τ) sgn τ =
∑︂

τ ′∈S0
4,n+1

c(n+1−c)
µ4

+ c(c−1)
µ2

4

(n+ 1)2 µc4 sgn τ ′

= n

(n+ 1)2
∂s0

4(n+ 1)
∂µ4

− 1− µ4

(n+ 1)2
∂2s0

4(n+ 1)
∂µ2

4
.

In terms of generating functions,

S
4/1
4 (t) = ∂2S0

4(t)
∂µ4∂t

− 1
t

∂S0
4(t)
∂µ4

+ 1− µ4

t

∂2S0
4(t)

∂µ2
4

= t(1 + 2t)
(1− t)4 e

t(µ4−3).

And finally, there is a correspondence between S4/2
4,n and S0

4,n+1 as shown in Figure
2.35 below. Again, a column formed by covered numbers must have nonzero
weight.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6
6
6
6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
4 × 5 2 7 3 1
1 2 4 × 7 5 3
1 × 4 2 7 5 3
4 2 5 × 7 3 1

←→

4 8 5 2 7 6 3 1
1 2 4 8 7 6 5 3
1 8 4 2 7 6 5 3
4 2 5 8 7 6 3 1

Figure 2.35: A correspondence between table τ ∈ S
4/2
4,7 and table τ ′ ∈ S0

4,8

Again it depends whether covered numbers form a 4-column or a 2-column. Let
τ ′ ∈ S0

4,n+1 have c 4-columns. To count the number of tables τ ∈ S4/1
4,n , first, we

select one 2-column in n + 1 − c ways and one pair of numbers in it. We then
mark those numbers and the other pair found elsewhere. By symmetry, however,
there is only n+ 1− c pairs which can be marked. Next, either we select

• one 2-column (other than the two with marked numbers) in n− 1− c ways
and then erase it, creating table τ with w(τ) = w(τ ′)
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• or one 4-column in c ways and erase it, creating table τ with w(τ) =
w(τ ′)/µ4

In total,

s
4/2
4 (n) =

∑︂
τ∈S4/2

4,n

w(τ) sgn τ =
∑︂

τ ′∈S0
6,n+1

(n+ 1− c)(n− 1− c) + (n+1−c)c
µ4

(n+ 1)2 µc4 sgn τ ′

= (n+1)(n−1)
(n+ 1)2 s0

4(n+1) + µ4−2nµ4+n
(n+ 1)2

∂s0
4(n+1)
∂µ4

+µ4(µ4−1)
(n+ 1)2

∂2s0
4(n+1)
∂µ2

4
.

In terms of generating functions,

S
4/2
4 (t) = t

∂2S0
4(t)

∂t2
− ∂S0

4(t)
∂t

+ (1− 2µ4)
∂2S0

4(t)
∂µ4∂t

+ 3µ4 − 1
t

∂S0
4(t)
∂µ4

+ µ4(µ4 − 1)
t

∂2S0
4(t)

∂µ2
4

= 6t2(1 + t)
(1− t)5 et(µ4−3).

2.5.5 Inclusion/Exclusion

Finally, we show yet another derivation whose only ingredient to deduce F4(t) is
the Wishart expansion (Lemma 143). The method of inclusion/exlusion shown
here was introduced in the context of permutation tables by Lv and Potechin in
[5].

Definition 166. Denote Sr4,n,C the subset of tables Sr4,n such that if τ ∈ Sr4,n,C
then C ⊆ [n] are numbers which only appear in 4 columns of τ with no marks.
Those 4-columns are reffered to as known 4-column. The other columns of τ
can be also 4 columns or other columns, marked or unmarked. In contrast, we
denote S̄r4,n,C′ a subset of Sr4,n,C′ , such that if τ ∈ S̄r4,n,C′ , then C ′ is the set of
all numbers appearing in unmarked 4 columns of τ .

Remark 167. Clearly, we can write the following disjoint union representation

Sr4,n,C =
⋃︂

C′⊇C
S̄
r

4,n,C′ . (2.237)

Remark 168. As all columns other than C ′ have weight w(·) equal to one, we
have for any τ ∈ S̄r4,n,C′ that w(τ) = µ#C′

4 , where #C ′ denotes the number of
elements of set C ′.

Definition 169. We define the residual normal weight wC(t) of a table τ ∈
Sr4,n,C as the product of weights w(·) in columns other than C in which we treat
Yij ∼ N(0, 1).

Proposition 170 (Inclusion/exclusion). For any distribution of Xij with µ2 = 1,

sr4(n) =
∑︂

τ∈Sr4,n

w(τ) sgn(τ) =
∑︂
C⊆[n]

∑︂
τ∈Sr4,n,C

(µ4 − 3)#CwC(t) sgn(τ). (2.238)
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2.5. Fourth moment general

Proof. Directly, via a chain of equalities and by using Remark 168,∑︂
τ∈Sr4,n

w(τ) sgn(τ) =
∑︂

C′⊆[n]

∑︂
τ∈S̄r4,n,C′

µ#C′

4 sgn(τ)

=
∑︂

C′⊆[n]

∑︂
τ∈S̄r4,n,C′

∑︂
C⊆C′

(µ4 − 3)#C3#C′/C sgn(τ)

=
∑︂

C′⊆[n]

∑︂
C⊆C′

∑︂
τ∈S̄r4,n,C′

(µ4 − 3)#CwC(t) sgn(τ)

=
∑︂
C⊆[n]

∑︂
C′⊇C

∑︂
τ∈S̄r4,n,C′

(µ4 − 3)#CwC(t) sgn(τ)

=
∑︂
C⊆[n]

∑︂
τ∈Sr4,n,C

(µ4 − 3)#CwC(t) sgn(τ).

■

Corollary 170.1. For any distribution of Xij with µ2 = 1,

sr4(n) =
n∑︂
c=0

n!2(µ4 − 3)c
(n− c)!2c! n

r
4(n− c). (2.239)

Proof. There are
(︂
n
c

)︂
ways how we can select C ∈ [n]. As the sum depends only

on #C,

sr4(n) =
∑︂
C⊆[n]

∑︂
τ∈Sr4,n,C

(µ4−3)#CwC(t) sgn(τ) =
n∑︂
c=0

(︄
n

c

)︄
(µ4−3)c

∑︂
τ∈Sr4,n,C

wC(t) sgn(τ)

(2.240)
for C ∈ [n] arbitrary. Next, since the columns C in τ ∈ Sr4,n,C are disjoint from
other columns, we can write, as there are

(︂
n
c

)︂
c! ways how we can arrange the

corresponding unmarked 4 columns in a table,

∑︂
τ∈Sr4,n,C

wC(t) sgn(τ) =
(︄
n

c

)︄
c!

∑︂
τ∈Sr4,n−c

w∅(t) sgn(τ) =
(︄
n

c

)︄
c!nr4(n− c). (2.241)

■

Corollary 170.2. In terms of generating functions, for any distribution of Xij

with µ2 = 1,
Sr4(t) = et(µ4−3)N r

4 (t). (2.242)

Proof. By definition and using the previous corollary,

Sr4(t) =
∞∑︂
n=0

tn

n!2 s
r
4(n) =

∞∑︂
n=0

n∑︂
c=0

tn(µ4 − 3)c
(n− c)!2c! n

r
4(n− c) =

∞∑︂
c=0

tc

c! (µ4 − 3)cN r
4 (t).

(2.243)
■

Corollary 170.3. For any distribution of Xij, we get the statement of Theorem
156 with µ2 = 1 (Corollary 164.3).
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Proof. Directly from Equation (2.217),

F4(t) =
4∑︂
r=0

mr
1(1 +m1µ3t)4−rSr4(t) = et(µ4−3)

4∑︂
r=0

mr
1(1 +m1µ3t)4−rN r

4 (t)

= et(µ4−3)
(︂
(1 +m1µ3t)4N0

4 (t) +m2
1(1 +m1µ3t)2N2

4 (t) +m4
1N

4
4 (t)

)︂
.

■

Remark 171. Note that, in this new derivation of the general fourth moment,
we do not require the knowledge of the formula for F4(t)|m1=0 of Nyquist, Rice
and Riordan [50].

Remark 172. Tracing back the definitions of auxiliary variables, we can write
the following expression for any distribution Xij with µ2 = 1,

f4(n) =
4∑︂
r=0

r∑︂
s=0

n−s∑︂
c=0

(4− r + s)!mr
1n!2µs3(µ4 − 3)c

(4− r)!(n− s− c)!2c!s! nr−s4 (n− s− c), (2.244)

which is equivalent to Corollary 156.1 using scalability property again.

2.6 Paired Marked Permutation Tables

2.6.1 Marked pair-tables

Shifting the random entries by their first moment, we can again find a simplifi-
cation in terms of marked permutation pair-tables.

Definition 173. We define G×
⟨k⟩,n,p as the set of all marked pair-tables with

at most one mark per row. For them, we define marked weight accordingly as
in the previous non-Gram case (expectation over products of Y ×

ij ’s). Also, we
denote T×

⟨k⟩,n,p as the subset of all tables G×
⟨k⟩,n,p which are nontrivial (having

nonzero marked weight). Finally, we define T r⟨k⟩,n,p as the subset of tables T×
⟨k⟩,n,p

having r marks.
Proposition 174. For any distribution of Xij, assuming k even,

fk(n, p) = E det(U⊤U)k/2 =
∑︂

τ∈T×
⟨k⟩,n,p

w×(t) sgn(τ). (2.245)

Remark 175. In the case of marked pair-tables, as the selection in pairs of rows
is a subset of [n], there could be ambiguity if what numbers are covered if we
would depicted the tables using just marks. Thus, instead of just using “×”
for marks, we always append a column showing the numbers hidden under
marks alongside our tables (in curly brackets).
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
6
6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1 × 4 5 7 8 9
1 × 9 4 7 5 8
3 2 9 4 7 5 8
3 2 4 5 7 8 9

Figure 2.36: An example of nontrivial ta-
ble τ ∈ T 2

⟨4⟩,9,7 with weights w×(t) = m2
1µ4

and w(τ) = µ4, C1 = {1, 4, 5, 6, 7, 8, 9},
C2 = {2, 3, 4, 5, 7, 8, 9}.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
4
9
9

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2 × 3 6 7 8 9
× 2 3 6 7 8 9
× 2 1 6 7 5 8
2 × 1 6 7 5 8

Figure 2.37: An example of nontrivial ta-
ble τ ∈ T 4

⟨4⟩,9,7 with weights w×(t) = m4
1µ2

4
and w(τ) = µ2

4, C1 = {2, 3, 4, 6, 7, 8, 9},
C2 = {1, 2, 5, 6, 7, 8, 9}.

Definition 176. We define

trk(n, p) =
∑︂

τ∈T r⟨k⟩,n,p

w(τ) sgn(τ) (2.246)

and its corresponding generation function

T rk (t, ω) =
∞∑︂
n=0

tn

n!2 t
r
k(n, p). (2.247)

Proposition 177. For any distribution Xij with µ2 = 1,

fk(n, p) =
k∑︂
r=0

mr
1t
r
k(n, p) and thus Fk(t, ω) =

k∑︂
r=0

mr
1T

r
k (t, ω). (2.248)

2.6.2 Even marked pair-tables

Definition 178. We denote S×
⟨k⟩,n,p as the subset of nontrivial tables T×

⟨k⟩,n,p
whose weight does not vanish when µ3 = µ5 = · · · = 0. As a consequence, the
columns of those tables must have only even number of marks. We write Sr⟨k⟩,n,p
as the subset of tables S×

⟨k⟩,n,p having r marks.

Definition 179. For any distribution of Xij, we write

srk(n, p) =
∑︂

τ∈Sr⟨k⟩,n,p

w(τ) sgn(τ) (2.249)

and its corresponding generation function

Srk(t, ω) =
∞∑︂
n=0

tn

n!2 s
r
k(n, ω). (2.250)

2.6.3 Shifted normal Gram moments

The case of Normal distribution is the only one for which we know fk(n, p) exactly
for any k, n and p. We have the following generalization of Dembo’s result for
n2m(n, p) (Proposition 107).

Definition 180. When Xij ∼ N(m1, 1), we denote tr4(n, p) as nr4(n, p) and
T r4 (t, ω) as N r

4 (t, ω).
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Chapter 2. Even Moments of Random Determinants

Theorem 181 (Wishart expansion). Let Xij ∼ N(µ, σ2) and k = 2m be an
even integer, then

f2m(n, p)=σ2mp
(︄
m−1∏︂
r=0

(n+ 2r)!
(n−p+2r)!

)︄
m∑︂
s=0

(︄
m

s

)︄
(n− 2)!!

(n+2s−2)!!

(︄
npµ2

σ2

)︄s
. (2.251)

The assertion follows from the properties of the Wishart distribution, see Theorem
10.3.7 in [49]. For completeness, we will show our own derivation later in Chapter
6 on Random simplices (see Proposition 256 and Remark 257).

Proposition 182. When Xij ∼ N(m1, 1), then sr4(n, p) = nr4(n, p). Also, in
terms of generating functions, Sr4(t, ω) = N r

4 (t, ω).

Proof. Since any table τ ∈ T r⟨4⟩,n,p/S
r
⟨4⟩,n,p has weight zero when Xij ∼ N(m1, 1),

we can replace T r⟨4⟩,n,p by Sr⟨4⟩,n,p in Proposition 177. ■

Fourth shifted normal Gram moment

Proposition 183. Selecting µ = m1, σ = 1 and k = 4, we get when Xij ∼
N(m1, 1).

f4(n, p) = n!(n+ 1)! (np2m4
1 + (2 + n) (2pm2

1 + 1))
(n− p)!(n− p+ 2)! . (2.252)

Corollary 183.1.

n1
4(n, p) = n3

4(n, p) = 0, n2
4(n, p) = 2n!(n+ 2)! p

(n− p)!(n− p+ 2)! ,

n0
4(n, p) = n!(n+ 2)!

(n− p)!(n− p+ 2)! , n4
4(n, p) = np2n!(n+ 1)!

(n− p)!(n− p+ 2)! .

Proof. Comparing m1 powers in Proposition 177 with Proposition 183. ■

Proposition 184. By summing the series,

N1
4 (t, ω) = N3

4 (t, ω) = 0,

N0
4 (t, ω) = 1

(1− t)2(1− ω − t) ,

N2
4 (t, ω) = 1

(1− t)3

(︄
6t

1− ω − t + 2tω
(1− ω − t)2

)︄
,

N4
4 (t, ω) = 1

(1− t)4

(︄
t (1 + 7t+ 4t2)

1− ω − t + t (1 + 5t+ 2t2)ω
(1− ω − t)2 + 2t2ω2

(1− ω − t)3

)︄
.

2.7 Gram fourth moment (general)
Surprisingly, using the method of marked tables and inclusion/exclusion, we can
derive the full F4(t, ω) in an elementary way, thus generalizing both Nyquist’s,
Rice’s and Riordan’s F sym

4 (t) (Proposition 68) and Dembo’s F sym
4 (t, ω) (Proposi-

tion 103). We show that:
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2.7. Gram fourth moment (general)

Theorem 185 (B. 2022). For any distribution Xij,

F4(t, ω) = et(µ4−3µ2
2)

(1−µ2
2t)2(1−ω−µ2

2t)

[︃
(1 +m1µ3t)4 + 6m2

1µ2t(1+m1µ3t)2

1−µ2
2t

+ m4
1t(1+7µ2

2t+4µ4
2t

2)
(1−µ2

2t)2

+ ωm2
1t

1−ω−µ2
2t

(︃
2µ2(1+m1µ3t)2

1−µ2
2t

+ m2
1(1+5tµ2

2+2t2µ4
2)

(1−µ2
2t)2

)︃
+ 2t2ω2m4

1µ
2
2

(1−ω−µ2
2t)2(1−µ2

2t)2

]︃
.

Remark 186. Letting ω = 0, we recover F4(t). On the other hand, letting
m1 = 0, we get F sym

4 (t, ω).

Corollary 186.1. Defining qi and µj as above, we get, by Taylor expansion,

f4(n, p) = p!2
(︂
n
p

)︂
µ2p

2
p∑︁
j=0

1
j!

(︂
µ4
µ2

2
− 3

)︂j 4∑︁
i=−2

(qi+ q̃i(n−p)+˜︁˜︁qi(n−p)(n−p+7))
(︂
n−j+i
n−p+i

)︂
,

where

q̃0 = −2m4
1µ

2
3

µ5
2
, q̃1 = 2m3

1(2µ2
2µ3+3m1µ2

3−m1µ3
2)

µ5
2

, q̃2 = m2
1(3m2

1µ
3
2−2µ4

2−8m1µ2
2µ3−6m2

1µ
2
3)

µ5
2

,

q̃3 = m2
1(2µ4

2+4m1µ2
2µ3+2m2

1µ
2
3−m2

1µ
3
2)

µ5
2

, ˜︁˜︁q2 = m4
1

µ2
2
, ˜︁˜︁q3 = −2m4

1
µ2

2
, ˜︁˜︁q4 = m4

1
µ2

2

and q̃i, ˜︁˜︁qi otherwise zero.

Example 187 (General Gaussian distribution). IfXij ∼ N(µ, σ2), we havem1 = µ,
(µ2, µ3, µ4) = (σ2, 0, 3σ4), which gives, after series of simplifications,

f4(n, p) = n!(n+ 1)!σ4(p−1)

(n− p)!(n− p+ 2)!
(︂
np2µ4 + (n+ 2)

(︂
2pµ2σ2 + σ4

)︂)︂
. (2.253)

This formula agrees with the general case given by Theorem 181.
Example 188 (Exponential distribution). If Xij ∼ Exp(1), that is if mj = j!, we
have (µ2, µ3, µ4) = (1, 2, 9) and (q−2, q−1, q0, q1, q2, q3, q4, q̃0, q̃1, q̃2, q̃3,˜︁˜︁q2,˜︁˜︁q3,˜︁˜︁q4) =
(16,−96,192,−124,−26,27,12,−8,30,−39,17,1,−2,1). The exact moments f4(n, p)
for low n and p are shown in Table 2.3 below.

f4(n, p)
p

1 2 3 4 5

n− p

0 24 960 51840 3511872 287953920
1 56 3744 297216 27708480 3004024320
2 96 9432 1022400 124675200 17182609920
3 144 19320 2724480 419207040 71341240320
4 200 34920 6189120 1169602560 240336875520
5 264 57960 12579840 2858913792 696776048640
6 336 90384 23538816 6325119360 1801876285440
7 416 134352 41299200 12939696000 4256462960640

Table 2.3: Fourth moment of a random Gram determinant with entries exponen-
tially distributed
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From now on, we assume µ2 = 1 in this section. What follows is the proof of
Theorem 185.

2.7.1 Structure of marked pair-tables
From now on, we put k = 4. As columns of τ ∈ T r⟨4⟩,n,p do not see what resides
in other columns, the column types there must be the same as in τ ∈ T r4,n. The
structure of all nontrivial (nonzero weight) tables T r⟨4⟩,n,p is however cumbersome,
as there might be many nontrivial marked pair-tables formed by marking trivial
unmarked pair-tables.

Remark 189. If τ is nontrivial, there is again only one possibility for a column
to have odd number of marks, and that is it is a ×1 column (all number were
the same before marking).

2.7.2 Decomposition over even marked columns
Proposition 190. For any distribution of Xij with µ2 = 1,

tr4(n, p) =
r∑︂
s=0

(︄
4− r + s

s

)︄
n!p!µs3

(n− s)!(p− s)!s
r−s
4 (n− s, p− s). (2.254)

Proof. The proof is a modification of Proof of Proposition 154. This time, how-
ever, if we assume the number of ×1 columns is s, we can select for them

(︂
p
s

)︂
numbers (with s! permutations), but only

(︂
n
s

)︂
column positions. To create a table

τ ∈ T r⟨4⟩,n,p, we start with a table τ ′ ∈ Sr−s⟨4⟩,n−s,p−s as we decreased the number of
possible positions and numbers by s. Thus

∑︂
τ∈T r⟨4⟩,n,p

w(τ) sgn(τ) =
r∑︂
s=0

∑︂
τ ′∈Sr−s

⟨4⟩,n−s,p−s

(︄
4− r + s

s

)︄(︄
n

s

)︄(︄
p

s

)︄
s!2µs3w(τ ′) sgn(τ ′).

(2.255)
■

Corollary 190.1. In terms of generating functions, for any distribution Xij with
µ2 = 1,

T r4 (t, ω) =
r∑︂
s=0

(︄
4− r + s

s

)︄
tsµs3S

r−s
4 (t, ω) and thus (2.256)

F4(t, ω) =
4∑︂
r=0

mr
1(1 +m1µ3t)4−rSr4(t, ω). (2.257)

2.7.3 Inclusion/Exclusion
Definition 191. Similarly as in Section 2.5.5, we define Sr⟨4⟩,n,p,C the subset of
tables Sr⟨4⟩,n,p with numbers which are in C ⊆ [n] are in 4 columns of τ with
no marks. The other columns of τ can be also 4 columns or other columns,
marked or unmarked. In contrast, we denote S̄r⟨4⟩,n,p,C′ a subset of Sr⟨4⟩,n,p,C′ so
that C ′ contains all numbers of unmarked 4 columns.
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2.7. Gram fourth moment (general)

Remark 192. As all other columns have weight one, we have for any τ ∈
S̄
r

⟨4⟩,n,p,C′ ,
w(τ) = µ#C′

4 . (2.258)

Definition 193. We define the residual normal weight wC(t) of a table τ ∈
Sr⟨4⟩,n,p,C as the product of weights in columns other than C in which we assume
normal distribution.

Proposition 194 (Inclusion/exclusion).∑︂
τ∈Sr⟨4⟩,n,p

w(τ) sgn(τ) =
∑︂
C⊆[n]

∑︂
τ∈Sr⟨4⟩,n,p,C

(µ4 − 3)#CwC(t) sgn(τ). (2.259)

Corollary 194.1. For any distribution Xij with µ2 = 1,

sr4(n, p) =
∑︂

τ∈Sr⟨4⟩,n,p

w(τ) sgn(τ) =
p∑︂
c=0

n!p!(µ4 − 3)c
(n− c)!(p− c)!c!n

r
4(n− c, p− c). (2.260)

Proof. There are
(︂
n
c

)︂
ways how we can select C ∈ [n]. As the sum depends only

on #C,

∑︂
C⊆[n]

∑︂
τ∈Sr⟨4⟩,n,p,C

(µ4 − 3)#CwC(t) sgn(τ) =
n∑︂
c=0

(︄
n

c

)︄
(µ4 − 3)c

∑︂
τ∈Sr⟨4⟩,n,p,C

wC(t) sgn(τ)

(2.261)
for C ∈ [n] arbitrary. Next, since the columns C in τ ∈ Sr⟨4⟩,n,p,C are disjoint
from other columns, we can write, as there are

(︂
p
c

)︂
c! ways how we can arrange

the corresponding unmarked 4 columns in a table,

∑︂
τ∈Sr⟨4⟩,n,p,C

wC(t) sgn(τ) =
(︄
p

c

)︄
c!

∑︂
τ∈Sr⟨4⟩,n−c,p−c,C

w∅(t) sgn(τ) =
(︄
p

c

)︄
c!nr4(n−c, p−c).

(2.262)
■

Corollary 194.2. In terms of generating functions, for any distribution Xij with
µ2 = 1,

Sr4(t, ω) = et(µ4−3)N r
4 (t, ω). (2.263)

Proof. By definition, and then by consecutive summation (we first extend the c
summation to ∞, as negative factorials in the denominator force the terms to
vanish after finitely many c’s),

Sr4(t, ω) =
∞∑︂
n=0

n∑︂
p=0

(n− p)!
n!p! tpωn−psr4(n, p)

=
∞∑︂
n=0

n∑︂
p=0

p∑︂
c=0

(n− p)!tpωn−p(µ4 − 3)c
(n− c)!(p− c)!c! nr4(n− c, p− c)

=
∞∑︂
c=0

tc

c! (µ4 − 3)cN r
4 (t, ω) = et(µ4−3)N r

4 (t, ω).

(2.264)

■

188



Chapter 2. Even Moments of Random Determinants

Corollary 194.3. For any distribution of Xij, we get the statement of Theorem
185 with µ2 = 1, that is

F4(t, ω)= et(µ4−3)

(1−t) 2 (1− ω−t)

[︄
(1+m1µ3t)4+ 6m2

1t (1+m1µ3t) 2

1− t +m4
1t (1+7t+4t2)

(1− t) 2

+ ωm2
1t

1− ω − t

(︄
2 (1 +m1µ3t) 2

1− t + m2
1 (1 + 5t+ 2t2)

(1− t) 2

)︄
+ 2t2ω2m4

1
(1− ω − t) 2 (1− t) 2

]︄
.

Proof. Directly from Corollary 190.1,

F4(t, ω) = et(µ4−3)
[︂
(1+m1µ3t)4N0(t, ω) +m2

1(1+m1µ3t)2N2(t, ω) +m4
1N4(t, ω)

]︂
.

■

By scaling, we get for any distribution Xij the statement of Theorem 185 for any
µ2.

2.7.4 Covering technique
The fact the column types of tables Sr⟨4⟩,n,p are the same as in Sr4,n tables enables
us to find F4(t, ω) in elementary way. By Dembo [24], we already know S0

4(t, ω),

S0
4(t, ω) = et(µ4−3)

(1− t)2(1− ω − t) . (2.265)

Next, per analogy, we must have

Proposition 195. For any distribution Xij with µ2 = 1,

S2
4(t, ω) = (6− 2µ4)

∂S0
4(t, ω)
∂µ4

+ 2t ∂S
0
4(t, ω)
∂t

, (2.266)

S
4/1
4 (t, ω) = (1− µ4)

∂S0
4(t, ω)
∂µ4

+ t
∂S0

4(t, ω)
∂t

, (2.267)

S
4/2
4 (t, ω) = (3− µ4)

∂S
4/1
4 (t, ω)
∂µ4

+ t
∂S

4/1
4 (t, ω)
∂t

− S4/1
4 (t, ω), (2.268)

S4
4(t, ω) = S

4/1
4 (t, ω) + S

4/2
4 (t, ω). (2.269)

Corollary 195.1. For any distribution Xij with µ2 = 1,

S2
4(t, ω) = et(µ4−3)

(1− t)3

(︄
6t

1− ω − t + 2tω
(1− ω − t)2

)︄
, (2.270)

S
4/1
4 (t, ω) = et(µ4−3)

(1− t)3

(︄
t(1 + 2t)
1− ω − t + tω

(1− ω − t)2

)︄
, (2.271)

S
4/2
4 (t, ω) = et(µ4−3)

(1− t)4

(︄
6t2(1 + t)
1− ω − t + 2t2(3 + t)ω

(1− ω − t)2 + 2t2ω2

(1− ω − t)3

)︄
, (2.272)

S4
4(t, ω) = et(µ4−3)

(1− t)4

(︄
t (1 + 7t+ 4t2)

1− ω − t + t (1 + 5t+ 2t2)ω
(1− ω − t)2 + 2t2ω2

(1− ω − t)3

)︄
.

(2.273)
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2.7. Gram fourth moment (general)

Corollary 195.2. For any distribution of Xij, we get the statement of Theorem
185 with µ2 = 1.

Proof. By combining this result with Corollary 190.1, we get

F4(t, ω) = (1 +m1µ3t)4S0
4(t, ω) +m2

1(1 +m1µ3t)2S2
4(t, ω) +m4

1S
4
4(t, ω). (2.274)

■
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2.8 Ordinary sixth moment (intermedial)

In the last section of this chapter, we show how to obtain the sixth determinant
moment F6(t) when µ3 = 0 and m1 arbitrary.

Theorem 196 (B., 2023). For Xij with m1 = 0, µ2 = 1 and µ3 = 0, we have

F6(t) = et(30−15µ4+µ6)

3t2(1+3t−tµ4)17

(︂
N2

6

(︂
t

(1+3t−tµ4)3

)︂
(m6

1 (1− 8t− 4t2 + 72t3 − 216t4

+243t5 − t (5− 13t− 23t2 − 129t3 + 81t4)µ4 + t2 (10 + t− 37t2 − 54t3)µ2
4

−t3 (10 + 9t− 18t2)µ3
4 + t4(5 + 3t)µ4

4 − t5µ5
4) + 3tm4

1 (1 + 3t− tµ4) (1− 4t
t2 − 2t(1 + t)µ4 + t2µ2

4) (1 + tm1µ5) 2 + 3t2m2
1 (1 + 3t− tµ4) (1 + tm1µ5) 4)

+ 3tN0
6

(︂
t

(1+3t−tµ4)3

)︂
(m6

1 (−15 + 120t+ 106t2 − 1659t3 + 2304t4

+t (30− 105t+ 598t2 − 1536t3)µ4 + t2 (−15− 15t+ 256t2)µ2
4)

−15tm4
1 (1 + 3t− tµ4) (3− 13t+ 3tµ4) (1 + tm1µ5) 2

+15t2m2
1 (µ4 − 3) (1+3t−tµ4) (1+tm1µ5)4+ t (1+3t−tµ4)2 (1+tm1µ5)6)

)︂

What follows is the proof of this theorem.

2.8.1 Structure of marked tables

In T6,n, the only nontrivial tables are the ones consisted of four types of columns:
• 6 column: six identical copies of the same number, weight µ6
• 4 column: four identical copies of the same number and a pair of another

number, weight µ4
• 3 column: two triplets of two distinct numbers, weight µ3
• 2 column: three pairs of three distinct numbers, weight 1

Additional columns with nonzero weight in marked tables, based on number of
marks, are

• ×1 column: two marks, we distinguish two sub-types:
∗ ×1

5 column: one mark and five identical copies of the same number,
weight µ5
∗ ×1

3 column: two marks, three same numbers and one pair of distinct
numbers, weight µ3

• ×2 column: two marks, we distinguish two sub-types:
∗ ×2

4 column: two marks and four identical numbers, weight µ4
∗ ×2

2 column: two marks and two pairs of two distinct numbers, weight
1

• ×3 column: three marks and one triplet of the same number, weight µ3
• ×4 column: four marks and one pair of the same number, weight 1
• ×6 column: six marks, weight 1

In general case, S×
6,n is a proper subset of O×

6,n. However, assuming µ3 = 0, we get
that ×1

3 and 3-columns vanish. In that case, corresponding nontrivial tables from
O×

6,n coincide with S×
6,n, which only contain the following columns (with weight

w×):
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6-column 4-column 2-column ×2
4-column ×2

2-column ×4-column ×6-column

a
a
a
a
a
a

a
a
a
a
b
b

a
a
b
b
c
c

×
×
a
a
a
a

×
×
a
a
b
b

×
×
×
×
a
a

×
×
×
×
×
×

µ6 µ4 1 µ4m
2
1 m2

1 m4
1 m6

1

Note that, based on our earlier result (Theorem 73), we can determine the fol-
lowing

Proposition 197. For any distribution Xij with µ2 = 1,

O0
6(t) = G6(t) =

(︂
1 + µ2

3t
)︂

10 e
t(µ6−10µ2

3−15µ4+30)

(1 + 3t− µ4t)15

∞∑︂
i=0

(1 + i)(2 + i)(4 + i)!ti
(1 + 3t− µ4t) 3i .

=
(︂
1 + µ2

3t
)︂

10 e
t(µ6−10µ2

3−15µ4+30)

(1 + 3t− µ4t)15 N0
6

(︄
t

(1 + 3t− µ4t)3

)︄
.

(2.275)

From now on, assume that µ3 = 0. In this case, or6(n) = sr6(n) and Or
6(t) = Sr6(t)

as nontrivial tables of O×
6,n contain marked columns with even number of marks

only (marked column types with odd number of marks disappear). That is,
nontrivial O×

6,n|µ3=0 = S×
6,n (which additionally do not contain 3-columns).

Corollary 197.1. For any distribution Xij with µ2 = 1, µ3 = 0,

S0
6(t) = et(µ6−15µ4+30)

(1 + 3t− µ4t)15N
0
6

(︄
t

(1 + 3t− µ4t)3

)︄
. (2.276)

Proposition 198. In terms of generating functions, we have for any distribution
Xij with µ2 = 1 and µ3 = 0,

F6(t) =
6∑︂
r=0

mr
1(1 +m1µ5t)6−rSr6(t), (2.277)

2.8.2 Displacement of marks in S tables

We use the covering technique described in the fourth moment scenario. As
the only nonzero terms are S0

6(t), S2
6(t), S4

6(t), S6
6(t) in the expansion of F6(t)

when µ3 = 0, we have the following options (upto permutations of rows) how to
nontrivially place marks in a table τ ∈ S×

6,n:
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×
×

S
2/1
6,n

Figure 2.38: Marked
columns S2

6,n

×
×
×
×

S
4/1
6,n

×
×
×
×

S
4/2
6,n

Figure 2.39: Marked
columns S4

6,n

×
×
×
×
×
×

S
6/1
6,n

×
×
×
×
×
×

S
6/2
6,n

×
×
×
×
×
×

S
6/3
6,n

Figure 2.40: Marked columns
S6

6,n

Definition 199. We define tables Sr/s6,n ⊆ Sr6,n such that their r marks occupy
s columns. Accordingly, we define

s
r/s
6 (n) =

∑︂
τ∈Sr/s6,n

w(τ) sgn(τ) and S
r/s
6 (t) =

∞∑︂
n=0

tn

n!2 s
r/s
6 (n). (2.278)

Remark 200. Note that S2
6,n = S

2/1
6,n , and S4

6,n = S
4/1
6,n ⊔ S

4/2
6,n disjoint union and

S6
6,n = S

6/1
6,n ⊔ S

6/2
6,n ⊔ S

6/3
6,n disjoint union (see figures above and Figure 2.41).

S×
6 :

×
×

×
×
×
×

×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×
×
×

S0
6 S2

6 S4/1
6 S4/2

6 S6/1
6 S6/2

6 S6/3
6

Figure 2.41: Structure of S×
6 tables

2.8.3 Zero marks
We already know S0

6(t) since it equals G6(t) with µ3 = 0. That is,

S0
6(t) = G6(t)|µ3=0 = et(µ6−15µ4+30)

(1 + 3t− µ4t)15N
0
6

(︄
t

(1 + 3t− µ4t)3

)︄
. (2.279)

Expanding the right hand side (see [5]), we get

s0
6(n) = (n!)2

n∑︁
j=0

j∑︁
i=0

(1+i)(2+i)(4+i)!
48(n−j)!

(︂
14+j+2i
j−i

)︂
(µ6−15µ4+30)n−j (µ4−3)j−i . (2.280)

2.8.4 Two marks
Proposition 201. Tables S2

6,n are formed by marking one pair of numbers in
S6,n in a single column.
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Proof. Let τ ∈ S2
6,n, then the numbers which are covered by one pair of marks are

the same numbers. If they were different, say a, b there would have been another
a elsewhere in the table, making the table trivial in S2

6,n (since we would have
odd number of a’s uncovered). ■

Corollary 201.1. For any distribution Xij with µ2 = 1, µ3 = 0,

S2
6(t) = et(µ6−15µ4+30)

(1+3t−µ4t)16

[︄
N2

6

(︄
t

(1+3t−µ4t)3

)︄
+ 15t(µ4 − 3)N0

6

(︄
t

(1+3t−µ4t)3

)︄]︄
,

(2.281)
from which, via Taylor expansion,

s2
6(n)=n!2

n∑︂
j=0

j∑︂
i=0

(j+2i)(1+i)(2+i)(4+i)!
48(n−j)!

(︂
14+j+2i
j−i

)︂
(µ6−15µ4+30)n−j(µ4−3)j−i . (2.282)

Proof. Let τ ′ ∈ S6,n have c six-columns d four-columns. Thus, there are n− c−d
two-columns. The weight of this table is given as w(τ ′) = µc6µ

d
4. Let us find the

weights w(τ) of all marked tables τ ∈ S2
6,n created from τ ′ by marking. There are

the following possibilities where we can put those two marks:
• in 6-column of τ ′ in 15 ways, creating a table τ with weight µc−1

6 µd+1
4 ,

• in 4-column of τ ′ in 6 ways by covering one pair of four identical numbers,
creating a table τ with weight µc6µd−1

4 ,
• in 4-column of τ ′ in 1 way by covering the remaining pair of two numbers,

creating a table τ with weight µc6µd4
• in 2-column of τ ′ in 3 ways, creating a table τ with weight µc6µd4.

Thus, from τ ′, we get the following contribution to s2
6(n) = ∑︁

τ∈S2
6,n
w(τ) sgn(τ),

15cµc−1
6 µd+1

4 + 6dµc6µd−1
4 + dµc6µ

d
4 + 3(n− c− d)µc6µd4. (2.283)

Grouping the terms, this is equal to

cµc−1
6 µd4(15µ4 − 3µ6) + dµc6µ

d−1
4 (6− 2µ4) + 3nµc6µd4. (2.284)

Summing up this contribution over all tables τ ′ ∈ S6,n, we get

s2
6(n) = (15µ4 − 3µ6)

∂s0
6(n)
∂µ6

+ (6− 2µ4)
∂s0

6(n)
∂µ4

+ 3ns0
6(n) (2.285)

or in terms of generating functions,

S2
6(t) = (15µ4 − 3µ6)

∂S0
6(t)
∂µ6

+ (6− 2µ4)
∂S0

6(t)
∂µ4

+ 3t ∂S
0
6(t)
∂t

. (2.286)

Using Remark 148, we get the statement of the corollary. ■

Remark 202. Note that when µ4 = 3 and µ6 = 15, then S2
6(t) = N2

6 (t) as
expected.
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Alternative proof of Corollary 201.1. Another derivation of S2
6(t) can be done via

the addition technique described earlier in section devoted to F4(t). In this way,
we would get a very simple relation S2

6(t) = 1
t

∂S0
6(t)
∂µ4

. To see how it is derived, let
τ ∈ S2

6,n. We then construct τ ′ ∈ S0
6,n+1 in such a way we replace two ×’s in τ by

the number “n+1” and add an extra column filled with “n+1”’s and the covered
numbers in τ . The crucial observation is that these two now exposed numbers
must be the same, so the added column is always a (nontrivial) 4-column (see
Figure 2.42 below).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

3 8 1 4 2 7 5 6
3 8 1 4 2 7 6 5
3 6 1 × 4 7 8 5
4 6 2 1 3 7 8 5
3 8 1 × 4 7 6 5
4 8 2 1 3 7 5 6

←→

3 8 1 4 2 9 7 5 6
3 8 1 4 2 9 7 6 5
3 6 1 9 4 2 7 8 5
4 6 2 1 3 9 7 8 5
3 8 1 9 4 2 7 6 5
4 8 2 1 3 9 7 5 6

Figure 2.42: A correspondence between table τ ∈ S2
6,8 and table τ ′ ∈ S0

6,9

Vice versa, given a table τ ′ ∈ S0
4,n+1 with c 6-columns and d 4-columns (and thus

with weight µc6µd4), there are d ways how we can select one of its 4-columns. We
then erase this column and turn the remaining pair other pair found in τ ′ into
two marks. That way, we get back our original τ (after appropriate shifting the
names of all elements so the missing element is “n+1”). Since each table τ ∈ S2

6,n
is counted (n+ 1)2 times, thus

s2
6(n) =

∑︂
τ∈S2

6,n

w(τ) sgn τ = 1
(n+ 1)2

∑︂
τ ′∈S0

6,n+1

dµc6µ
d−1
4 sgn τ ′ = 1

(n+ 1)2
∂s0

6(n+ 1)
∂µ4

.

(2.287)
Or in terms of generating functions,

S2
6(t) = 1

t

∂S0
6(t)
∂µ4

. (2.288)

Equation (2.282) is obtained from Equation (2.287) and by differentiating Equa-
tion (2.280) by µ4.

■

Corollary 202.1. For any distribution of Xij with µ2 = 1,

P6(t) = µ4t
(︂
(1− µ4t)S2

6(t)− 15µ4tS
0
6(t)

)︂
.

Proof. Straightforwardly, as we already know from Proposition 82 that we have
the following: P6(t)=µ4t

et(µ6−15µ4+30)

(1+3t−tµ4)16

[︂
(1−µ4t)N2

6

(︂
t

(1+3t−tµ4)3

)︂
−45tN0

6

(︂
t

(1+3t−tµ4)3

)︂]︂
.

Alternatively, we could use Equations (2.286) and (2.288) and differentiate chain
generating function P6(t)z (see proof of Proposition 82). ■

2.8.5 Four marks
Proposition 203. Similarly, tables S4/1

6,n are formed from S6,n by marking one of
its columns with four marks.
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2.8. Ordinary sixth moment (intermedial)

Corollary 203.1. For any distribution Xij with µ2 = 1, µ3 = 0,

S
4/1
6 (t) = (1 + t− µ4t)S2

6(t)− 15 (µ4 − 1) t S0
6(t)

= et(µ6−15µ4+30)

(1+3t−µ4t)16

[︄
(1+t−µ4t)N2

6

(︄
t

(1+3t−µ4t)3

)︄
−30tN0

6

(︄
t

(1+3t−µ4t)3

)︄]︄
.

Proof. Again let τ ′ ∈ S6,n have c six-columns d four-columns. Thus, there are
n− c− d two-columns. The weight of this table is given as w(τ ′) = µc6µ

d
4. Let us

find the weights w(τ) of all marked tables τ ∈ S4/1
6,n created from τ ′ by marking.

There are the following possibilities where we can put those four marks:
• in 6-column of τ ′ in 15 ways, creating a table τ with weight µc−1

6 µd4,
• in 4-column of τ ′ in 1 way by covering its four identical numbers, creating

a table τ with weight µc6µd−1
4 ,

• in 4-column of τ ′ in 6 ways by covering one pair of its four identical numbers
and the two different numbers, creating a table τ with weight µc6µd−1

4 ,
• in 2-column of τ ′ in 3 ways, creating a table τ with weight µc6µd4.

Thus, from τ ′, we get the following contribution to s4/1
6 (n) = ∑︁

τ∈S4/1
6,n
w(τ) sgn(τ),

15cµc−1
6 µd4 + 7dµc6µd−1

4 + 3(n− c− d)µc6µd4. (2.289)

Grouping the terms, this is equal to

cµc−1
6 µd4(15− 3µ6) + dµc6µ

d−1
4 (7− 3µ4) + 3nµc6µd4. (2.290)

Summing up this contribution over all tables τ ′ ∈ S6,n, we get

s
4/1
6 (n) = (15− 3µ6)

∂s0
6(n)
∂µ6

+ (7− 3µ4)
∂s0

6(n)
∂µ4

+ 3ns0
6(n) (2.291)

or in terms of generating functions,

S
4/1
6 (t) = (15− 3µ6)

∂S0
6(t)
∂µ6

+ (7− 3µ4)
∂S0

6(t)
∂µ4

+ 3t ∂S
0
6(t)
∂t

. (2.292)

Using Remark 148 and/or Equations (2.286) and (2.288), we get the statement
of the corollary. ■

Remark 204. There is an alternative way how we can express s4/2
6 (n) (will be

useful later). We use the addition technique and the correspondence estab-
lished in Figure 2.43.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
1
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 3 × 7 8 1 5 6
4 5 × 7 2 3 8 6
7 3 × 8 6 2 5 4
7 5 × 8 6 3 1 4
3 5 6 7 2 1 8 4
3 5 6 7 8 2 1 4

←→

4 3 9 7 8 1 5 2 6
4 5 9 7 2 3 8 1 6
7 3 9 8 6 2 5 1 4
7 5 9 8 6 3 1 2 4
3 5 6 7 2 1 8 9 4
3 5 6 7 8 2 1 9 4

Figure 2.43: A correspondence between table τ ∈ S
4/1
6,8 and table τ ′ ∈ S0

6,9
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Chapter 2. Even Moments of Random Determinants

Let τ ′ ∈ S6,n+1 has c 6-columns and d 4-columns (and thus weight w(τ ′) =
µc6µ

d
4). In order to get a table τ ∈ S4/1

6,n , we start by selecting a number i which
appears in two different columns of τ ′. These numbers form a set I2(t′) (there
are d such numbers). Note that in one column i appears in fours. The other
column with two displaced i’s can be either a 4-column or a 2-column. Next,
we erase this other column and turn the remaining four i’s into marks. That
way, we get a table τ ∈ S4/1

6,n . The weight of τ is given as w(τ) = µc6µ
d−νi(t′)
4 .

However, since νi(t′) equals to one or two only, it is convenient to write it as

w(τ) = µc6µ
d−1
4

(︄
2− 1

µ4
+ νi(t′)

(︄
1
µ4
− 1

)︄)︄
. (2.293)

Thus, by adding all contributions,

s
4/1
6 (n) =

∑︂
τ∈S4/1

6,n

w(τ) sgn τ =
∑︂

τ ′∈S0
6,n+1

sgn τ ′ µc6µ
d−1
4

(n+1)2

∑︂
i∈I2(t′)

(︂
2− 1

µ4
+ νi(t′)

(︂
1
µ4
− 1

)︂)︂

=
∑︂

τ ′∈S0
6,n+1

µc6µ
d−1
4

(n+1)2 sgn τ ′

⎡⎣d(︄2− 1
µ4

)︄
+
(︂

1
µ4
− 1

)︂ ∑︂
i∈I2(t′)

νi(t′)
⎤⎦ .

(2.294)

Proposition 205. For any distribution Xij with µ2 = 1, µ3 = 0,

S
4/2
6 (t) =

(︃1
t
− 5− (2 + t)µ4 + µ2

4t
)︃
S2

6(t)− 15S0
6(t)µ4 (1 + t− µ4t)

= et(µ6−15µ4+30)

t (1 + 3t− µ4t) 16

[︄ (︂
1− 5t− 2µ4t− µ4t

2 + µ2
4t

2
)︂
N2

6

(︄
t

(1 + 3t− µ4t) 3

)︄

− 45t (1− 5t+ µ4t)N0
6

(︄
t

(1 + 3t− µ4t) 3

)︄]︄
.

Proof. We use the addition technique described in section on F4(t). First, we
seek the correspondence between S

4/2
6,n and S0

6,n+1 (see Figure 2.44 below). The
crucial observation is that no matter which table τ ∈ S4/2

6,n we select, if we put the
covered (under marks) numbers into a single column together with two (n+ 1)’s
(the column in grey), then this column has nonzero weight.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
1
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 3 × 7 8 1 5 6
4 5 × 7 2 3 8 6
7 3 6 8 × 2 5 4
7 5 6 8 × 3 1 4
3 5 6 7 2 1 8 4
3 5 6 7 8 2 1 4

←→

4 3 9 7 8 1 5 2 6
4 5 9 7 2 3 8 1 6
7 3 6 8 9 2 5 1 4
7 5 6 8 9 3 1 2 4
3 5 6 7 2 1 8 9 4
3 5 6 7 8 2 1 9 4

Figure 2.44: A correspondence between table τ ∈ S
4/2
6,8 and table τ ′ ∈ S0

6,9

Let τ ′ ∈ S0
6,n+1 have c 6-columns and d 4-columns. Hence, w(τ ′) = µc6µ

d
4. Count-

ing the number of tables τ ∈ S4/2
6,n is rather intricate. First, we select a number
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2.8. Ordinary sixth moment (intermedial)

which appears in three different columns (three pairs). As the number of 6-
columns is c and 4-columns is d, there is n + 1 − c − d numbers satisfying that
criterion. However, we don’t know whether those pairs are in 4-columns or 2-
columns. Say the number i was selected and denote νi(t′) the number of pairs of
i’s which lie in 4-columns. In the example above, νi(t′) = 1. We mark every oc-
currence of i and then erase one of the columns with pairs of i’s (in three ways as
there are three such columns). The contribution of τ ′ to (n+1)2∑︁

τ∈S4/2
6,n
w(τ) sgn τ

for a given i is then

µc6µ
d−1
4 νi(t′) + µc6µ

d
4(3− νi(t′)) = µc6µ

d
4

(︄
3 + νi(t′)

(︄
1
µ4
− 1

)︄)︄
. (2.295)

In total,

s
4/2
6 (n) =

∑︂
τ∈S4/2

6,n

w(τ) sgn τ =
∑︂

τ ′∈S0
6,n+1

µc6µ
d
4

(n+ 1)2 sgn τ ′ ∑︂
i∈I3(t′)

(︄
3 + νi(t′)

(︄
1
µ4
− 1

)︄)︄

=
∑︂

τ ′∈S0
6,n+1

µc6µ
d
4

(n+ 1)2 sgn τ ′

⎡⎣3(n+ 1− c− d) +
(︄

1
µ4
− 1

)︄ ∑︂
i∈I3(t′)

νi(t′)
⎤⎦ .

(2.296)

where I3(t′) is the set of numbers of τ ′ which appear in three different columns.
To sum the series exactly, we use Lemma 88. We get

s
4/2
6 (n) =

∑︂
τ ′∈S0

6,n+1

µc6µ
d
4 sgn τ ′

(n+ 1)2

[︄
3(n+ 1− c− d) + p(τ ′)

(︄
1
µ4
− 1

)︄]︄
. (2.297)

where p(τ ′) is the total number of 4-column chains in τ ′. This can be written as

s
4/2
6 (n) = 3

n+1s
0
6(n+1)− 3µ6

(n+1)2
∂s0

6(n+1)
∂µ6

− 3µ4
(n+1)2

∂s0
6(n+1)
∂µ4

+
1
µ4

−1
(n+1)2p6(n+1), (2.298)

where p6(n) = ∑︁
τ ′∈S6,n p(τ ′)w(τ ′) sgn τ ′. In terms of generating functions,

S
4/2
6 (t) = 3∂S

0
6(t)
∂t

− 3µ6

t

∂S0
6(t)
∂µ6

− 3µ4

t

∂S0
6(t)
∂µ4

+
1
µ4
− 1
t

P6(t)

Since by Corollary 202.1 we know the value of P6(t), we are done (in the end we
also employ Remark 148 and/or previous propositions). ■

Alternative proof of Proposition 205. There is another derivation of S4/2
6 (t) not

involving knowing the value of P6(t). Let τ ′ ∈ S6,n+1 have c 6-columns and d
4-columns. Since ∑︂

i∈I3(t′)
νi(t′) +

∑︂
i∈I2(t′)

νi(t′) = 2d, (2.299)

by combining Equations (2.294) and (2.296), we get the following remarkable
connection

s
4/1
6 (n)+ 1

µ4
s

4/2
6 (n) =

∑︂
τ ′∈S0

6,n+1

µc6µ
d−1
4

(n+1)2 sgn τ ′
[︂
d
(︂
2− 1

µ4

)︂
+ 3(n+1−c−d) +

(︂
1
µ4
−1

)︂
2d
]︂

= 3
(n+ 1)µ4

s0
6(n+ 1)−

3− 1
µ4

(n+ 1)2
∂s0

6(n+ 1)
∂µ4

− 3µ6

(n+ 1)2µ4

∂s0
6(n+ 1)
∂µ6

(2.300)
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which in terms of generating functions gives

S
4/1
6 (t) + 1

µ4
S

4/2
6 (t) = 3

µ4

∂S0
6(t)
∂t

−
3− 1

µ4

t

∂S0
6(t)
∂µ4

− 3µ6

µ4t

∂S0
6(t)
∂µ6

(2.301)

which gives, after simplifications of derivatives of S0
6(t) (see Equations (2.286)

and (2.288)),

S
4/1
6 (t) + 1

µ4
S

4/2
6 (t) = (1− µ4t− 5t)

µ4t
S2

6(t)− 15S0
6(t). (2.302)

Rearranging the terms and using the already known value for S4/1
6 (t), we get

S
4/2
6 (t) =

(︂
1
t
− 5− (2 + t)µ4 + µ2

4t
)︂
S2

6(t)− 15S0
6(t)µ4 (1 + t− µ4t) (2.303)

as before. ■

Corollary 205.1. Summing S4/1
6 (t) and S4/2

6 (t), we get

S4
6(t) = 15

(︂
t− (1 + 2t)µ4 + tµ2

4

)︂
S0

6(t) +
(︂

1
t
− 4 + t− 2µ4 − 2tµ4 + tµ2

4

)︂
S2

6(t)

= et(µ6−15µ4+30)

t (1 + 3t− µ4t) 16

[︄
− 15t (3− 13t+ 3µ4t)N0

6

(︄
t

(1 + 3t− µ4t) 3

)︄

+
(︂
1− 4t+ t2 − 2µ4t− 2µ4t

2 + µ2
4t

2
)︂
N2

6

(︄
t

(1 + 3t− µ4t) 3

)︄]︄
.

Remark 206. Note that the previous result gives N4
6 (t) for µ6 = 15 and µ4 = 3

since
tN4

6 (t) =
(︂
4t2 − 10t+ 1

)︂
N2

6 (t) + 15t(4t− 3)N0
6 (t).

2.8.6 Six marks
Proposition 207. Similarly, by marking, tables S6/1

6,n are formed from S6,n by
marking one of its columns with six marks.

Corollary 207.1. For any distribution Xij with µ2 = 1, µ3 = 0,

S
6/1
6 (t) = (1− 5µ4) t S0

6(t) + 1
3 (1− 3t− µ4t)S2

6(t)

= et(µ6−15µ4+30)

3(1+3t−µ4t)16

[︂
(1−3t−µ4t)N2

6

(︂
t

(1+3t−µ4t)3

)︂
−6t (7−24t+8µ4t)N0

6

(︂
t

(1+3t−µ4t)3

)︂]︂
.

Proof. Again let τ ′ ∈ S6,n have c six-columns and d four-columns and thus n−c−d
two-columns. Its weight is then w(τ ′) = µc6µ

d
4. To create a table τ ∈ S6/1

6,n , we can
put six marks

• in 6-column of τ ′ in 1 way, creating a table τ with weight µc−1
6 µd4,

• in 4-column of τ ′ in 1 way, creating a table τ with weight µc6µd4,
• in 2-column of τ ′ in 1 way, creating a table τ with weight µc6µd4,

Thus, from τ ′, we get the following contribution to s6/1
6 (n) = ∑︁

τ∈S6/1
6,n
w(τ) sgn(τ),

cµc−1
6 µd4 + dµc6µ

d−1
4 + (n− c− d)µc6µd4. (2.304)
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Grouping the terms, this is equal to
cµc−1

6 µd4(1− µ6) + dµc6µ
d−1
4 (1− µ4) + nµc6µ

d
4. (2.305)

Summing up this contribution over all tables τ ′ ∈ S6,n, we get

s
6/1
6 (n) = (1− µ6)

∂s0
6(n)
∂µ6

+ (1− µ4)
∂s0

6(n)
∂µ4

+ ns0
6(n) (2.306)

or in terms of generating functions,

S
6/1
6 (t) = (1− µ6)

∂S0
6(t)
∂µ6

+ (1− µ4)
∂S0

6(t)
∂µ4

+ t
∂S0

6(t)
∂t

. (2.307)

■

Corollary 207.2. After some simplification, we have for any distribution Xij

with µ2 = 1,

s
6/1
6 (n) = (n!)2

n∑︂
j=0

j∑︂
i=0

(1+i)(2+i)(4+i)!
48(n− j)!

(︄
14+j+2i
j − i

)︄(︂
2(7 + 2i+ j)(j − n)

+ i (µ6 − 15µ4 + 30)
)︂

(µ6−15µ4+30)n−j−1 (µ4−3)j−i .
(2.308)

Proposition 208. Tables S6/2
6,n are formed from S

6/1
6,n by swapping two marks in

×6 column with a pair of numbers in some other column. Via this swapping, each
table from S

6/2
6,n is counted once.

Proof. Let τ ∈ S6/2
6,n . There are four options how the table can look like based on

the uncovered numbers in ×4 and ×2 columns. Either
• Identical number a everywhere in both ×4 and ×2

• Number a in ×4 column and numbers a, b in ×2 column
• Number a in ×4 column and four numbers b in ×2 column
• Number a in ×4 column and numbers b, e in ×2 column

Swapping two marks in ×2 column with numbers in ×4 column, we get a corre-
sponding table τ ′ ∈ S6/1

6,n (see figures below).

× a
× a
× a
× a
a ×
a ×

←

× a
× a
× a
× a
× a
× a

Figure 2.45: First option for S
6/2
6,n

× b
× b
× a
× a
a ×
a ×

←

× b
× b
× a
× a
× a
× a

Figure 2.46: Second option for S
6/2
6,n

× b
× b
× b
× b
a ×
a ×

←

× b
× b
× b
× b
× a
× a

Figure 2.47: Third option for S
6/2
6,n

× b
× b
× e
× e
a ×
a ×

←

× b
× b
× e
× e
× a
× a

Figure 2.48: Fourth option for S
6/2
6,n
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■

Corollary 208.1. For any distribution Xij with µ2 = 1, µ3 = 0,

S
6/2
6 (t) = et(µ6−15µ4+30)

t (1+3t−µ4t) 17

[︄
N2

6

(︄
t

(1+3t−µ4t) 3

)︄(︂
1−3t−11t2+36t3−81t4−4tµ4

−3t2µ4−12t3µ4+ 54t4µ4+6t2µ2
4+12t3µ2

4−4t3µ3
4−6t4µ3

4+t4µ4
4

)︂
−15tN0

6

(︄
t

(1+3t−µ4t) 3

)︄(︂
3−9t−48t2+144t3−3µ4t+16t2µ4−96t3µ4+16t3µ2

4

)︂]︄

Proof. Let τ ′ ∈ S
6/1
6,n have c six-columns and d four-columns, its weight is then

w(τ ′) = µc6µ
d
4. However, now there are only n − c − d − 1 two-columns as one

column is covered with six marks. To create a table τ ∈ S6/2
6,n , we can swap two

marks of ×6-column with
• a 6-column of τ ′ in 15 ways, creating a table τ with weight µc−1

6 µd+1
4 ,

• a 4-column of τ ′ in 6 ways, swapping marks with one pair of four identical
numbers, creating a table τ with weight µc6µd−1

4 ,
• a 4-column of τ ′ in 1 way, swapping marks with the remaining two numbers,

creating a table τ with weight µc6µd4,
• a 2-column of τ ′ in 3 ways, creating a table τ with weight µc6µd4,

Thus, from τ ′, we get the following contribution to s6/2
6 (n) = ∑︁

τ∈S6/2
6,n
w(τ) sgn(τ),

15cµc−1
6 µd+1

4 + 6dµc6µd−1
4 + dµc6µ

d
4 + 3(n− c− d− 1)µc6µd4. (2.309)

Grouping the terms, this is equal to

cµc−1
6 µd4(15µ4 − 3µ6) + dµc6µ

d−1
4 (6− 2µ4) + 3nµc6µd4 − 3µc6µd4. (2.310)

Summing up this contribution over all tables τ ′ ∈ S6/1
6,n , we get

s
6/2
6 (n) = (15µ4−3µ6)

∂s
6/1
6 (n)
∂µ6

+(6−2µ4)
∂s

6/1
6 (n)
∂µ4

+3ns6/1
6 (n)−3s6/1

6 (n) (2.311)

or in terms of generating functions,

S
6/2
6 (t) = (15µ4 − 3µ6)

∂S
6/1
6 (t)
∂µ6

+ (6− 2µ4)
∂S

6/1
6 (t)
∂µ4

+ 3t ∂S
6/1
6 (t)
∂t

− 3S6/1
6 (t).
(2.312)

Using Corollary 207.1 and Remark 148, we get the statement of our corollary.
Note that in this proof we rely on the already derived S

6/1
6 (t) thus we need to

compute the second derivative of N0
6 (t). ■

Remark 209. If we instead used the addition technique, we would have found
another relation for S6/2

6 (t). First, we develop a correspondence between S
6/2
6,n

and S0
6,n+1 (see Figure 2.49 below). The crucial observation is that if we put

the covered number into a single column (in white), this column has nonzero
weight.
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2.8. Ordinary sixth moment (intermedial)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
1
1
2
3
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 3 × 7 8 1 5 6
4 5 × 7 2 3 8 6
7 3 × 8 6 2 5 4
7 5 × 8 6 3 1 4
× 5 6 7 2 1 8 4
× 5 6 7 8 2 1 4

←→

4 3 9 7 8 1 5 2 6
4 5 9 7 2 3 8 1 6
7 3 9 8 6 2 5 1 4
7 5 9 8 6 3 1 2 4
9 5 6 7 2 1 8 3 4
9 5 6 7 8 2 1 3 4

Figure 2.49: A correspondence between table τ ∈ S
6/2
6,8 and table τ ′ ∈ S0

6,9

Let τ ′ ∈ S0
6,n+1 have c 6-columns and d 4-columns. Hence, w(τ ′) = µc6µ

d
4. We

now count the number of tables τ ∈ S6/2
6,n . First, we select a number i which

appears in two different columns. There is d such numbers (they form a set
I2(t′)). In the one of the columns, there are always four copies of i (making
it a four column). The other column with two i’s is either a 4-column or a
2-column. It is convenient to define νi(t′) again as the number of four columns
in which the selected number i appears (it is either one or two for i ∈ I2(t′)).
We then select a column other that these two and erase it. Finally, we turn
the selected number i to marks. That way, we get our table τ ∈ S

6/2
6,n . To

count the overall contribution of τ ′ to w(τ) sgn τ , we could either select
• one 2-column (not the ones in which i’s lie) in n− 1− c− d+ νi(t′) ways

and erase it, creating table τ with w(τ) = w(τ ′)/µ4 (remember all i’s
are turned into marks which have weight one)

• or one 4-column in d − νi(t′) ways and erase it, creating table τ with
w(τ) = w(τ ′)/µ2

4
• or one 6-column in c ways and erase it, creating table τ with w(τ) =
w(τ ′)/(µ6µ4)

In total,

s
6/2
6 (n) =

∑︂
τ∈S6/2

6,n

w(τ) sgn τ=
∑︂

τ ′∈S0
6,n+1

µc6µ
d−1
4 sgn τ ′

(n+1)2

∑︂
i∈I2(t′)

n−1−c−d+νi(t′)+ d−νi(t′)
µ4

+ c
µ6

=
∑︂

τ ′∈S0
6,n+1

µc6µ
d−1
4 sgn τ ′

(n+1)2

⎡⎣d (︂n−1−c−d+ d
µ4

+ c
µ6

)︂
+
(︂
1− 1

µ4

)︂ ∑︂
i∈I2(t′)

νi(t′)
⎤⎦ .

(2.313)

This can be written as

s
6/2
6 (n) =

n− 1
µ4

(n+ 1)2
∂s0

6(n+ 1)
∂µ4

+ 1− µ4

(n+ 1)2
∂2s0

6(n+ 1)
∂µ2

4
−

1− 1
µ4

(n+ 1)2µ4
p6(n+ 1).

(2.314)

This relation will be useful later.
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Chapter 2. Even Moments of Random Determinants

Proposition 210. For any distribution Xij with µ2 = 1, µ3 = 0,

S
6/3
6 (t) = et(µ6−15µ4+30)

3t2 (1 + 3t− tµ4) 17

[︄
(1− 11t+ 4t2 + 105t3 − 315t4 + 486t5 − 5tµ4

+ 25t2µ4 + 34t3µ4 + 165t4µ4 − 243t5µ4 + 10t2µ2
4 − 17t3µ2

4 − 74t4µ2
4

− 54t5µ2
4 − 10t3µ3

4 + 3t4µ3
4 + 36t5µ3

4 + 5t4µ4
4 − t5µ5

4)N2
6

(︄
t

(1+3t−µ4t) 3

)︄
− 45t(1− 11t+ t2 + 159t3 − 288t4 − 2tµ4 + 10t2µ4 − 56t3µ4

+ 192t4µ4 + t2µ2
4 + t3µ2

4 − 32t4µ2
4)N0

6

(︄
t

(1+3t−µ4t) 3

)︄]︄
.

Proof. We use the addition technique described in section on F4(t). First, we
seek the correspondence between S

6/3
6,n and S0

6,n+1 (see Figure 2.50 below). The
crucial observation is that if we put the covered number into a single column (in
grey), this column has nonzero weight.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
1
1
2
3
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

4 3 × 7 8 1 5 6
4 5 × 7 2 3 8 6
7 3 6 8 × 2 5 4
7 5 6 8 × 3 1 4
× 5 6 7 2 1 8 4
× 5 6 7 8 2 1 4

←→

4 3 9 7 8 1 5 2 6
4 5 9 7 2 3 8 1 6
7 3 6 8 9 2 5 1 4
7 5 6 8 9 3 1 2 4
9 5 6 7 2 1 8 3 4
9 5 6 7 8 2 1 3 4

Figure 2.50: A correspondence between table τ ∈ S
6/3
6,8 and table τ ′ ∈ S0

6,9

It depends on whether previously covered numbers (in the gray column above)
form a 6-column, a 4-column or a 2-column. Let τ ′ ∈ S0

6,n+1 have c 6-columns and
d 4-columns. Hence, w(τ ′) = µc6µ

d
4. We now count the number of tables τ ∈ S6/3

6,n .
First, we select a number which appears in three columns (three pairs). As the
number of 6-columns is c and 4-columns is d, there is n + 1 − c − d numbers
satisfying that criterion. However, we don’t know whether those pairs themselves
lie in 4-columns of 2-columns. Say the number i was selected and denote νi(t′) the
number of pairs of i’s which lie in 4-columns. In the example above, νi(t′) = 1.
We mark every occurrence of i and then select either

• one 2-column (not the ones in which i’s lie) in n+ 1− c− 3 + νi(t)− d ways
and erase it, creating table τ with w(τ) = w(τ ′)

• or one 4-column in d−νi(t′) ways and erase it, creating table τ with w(τ) =
w(τ ′)/µ4

• or one 6-column in c ways and erase it, creating table τ with w(τ) =
w(τ ′)/µ6

In total,

s
6/3
6 (n) =

∑︂
τ∈S6/3

6,n

w(τ) sgn τ=
∑︂

τ ′∈S0
6,n+1

µc6µ
d
4 sgn τ ′

(n+1)2

∑︂
i∈I3(t′)

n−2−c−d+νi(t′) + d−νi(t′)
µ4

+ c
µ6

=
∑︂

τ ′∈S0
6,n+1

µc6µ
d−1
4 sgn τ ′

(n+1)2

⎡⎣(n+1−c−d)
(︂
n−2−c−d+ d

µ4
+ c
µ6

)︂
+
(︂
1− 1

µ4

)︂ ∑︂
i∈I3(t′)

νi(t′)
⎤⎦ .

(2.315)
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2.8. Ordinary sixth moment (intermedial)

where i is summed over all numbers which lie in three different columns (there are
n+1−c−d such numbers forming the set I3(t′)). By Lemma 88, ∑︁i∈I3(t′) νi(t′) =
p(τ ′), where p(τ ′) is the total number of chains of 4-columns in τ ′, thus

s
6/3
6 (n)=

∑︂
τ ′∈S0

6,n+1

µc6µ
d
4 sgn τ ′

(n+1)2

[︂
(n+ 1− c− d)

(︂
n−2−c−d+ d

µ4
+ c
µ6

)︂
+p(τ ′)

(︂
1− 1

µ4

)︂]︂
(2.316)

Note that

(n+ 1− c− d)
(︂
n−2−c−d+ d

µ4
+ c
µ6

)︂
= c(c− 1)

(︂
1− 1

µ6

)︂
+ d(d− 1)

(︂
1− 1

µ4

)︂
+ cd

(︂
2− 1

µ4
− 1

µ6

)︂
+ c

(︂
2− 2n+ n

µ6

)︂
+ d

(︂
2− 2n+ n

µ4

)︂
+ (n+ 1)(n− 2)

(2.317)

Thus, by Corollary 202.1,

s
6/3
6 (n)=

∑︂
τ ′∈S0

6,n+1

µc6µ
d
4 sgn τ ′

(n+1)2

[︂
(n+ 1− c− d)

(︂
n−2−c−d+ d

µ4
+ c
µ6

)︂
+p(τ ′)

(︂
1− 1

µ4

)︂]︂

= µ6(µ6−1)
(n+1)2

∂2s0
6(n+1)
∂µ2

6
+ µ4(µ4−1)

(n+1)2
∂2s0

6(n+1)
∂µ2

4
+ 2µ6µ4−µ6−µ4

(n+1)2
∂2s0

6(n+1)
∂µ6∂µ4

+ (2−2n)µ6+n
(n+1)2

∂s0
6(n+1)
∂µ6

+ (2−2n)µ4+n
(n+1)2

∂s0
6(n+1)
∂µ4

+ n−2
n+1s

0
6(n+1) +

1− 1
µ4

(n+1)2p6(n+1).

Or in terms of generating functions,

S
6/3
6 (t) = µ6(µ6 − 1)

t

∂2S0
6(t)

∂µ2
6

+ µ4(µ4 − 1)
t

∂2S0
6(t)

∂µ2
4

+ 2µ6µ4 − µ6 − µ4

t

∂2S0
6(t)

∂µ6∂µ4

+ 4µ6 − 1
t

∂S0
6(t)
∂µ6

+ (1− 2µ6)
∂2S0

6(t)
∂µ6∂t

+ 4µ4 − 1
t

∂S0
6(t)
∂µ4

+ (1− 2µ4)
∂2S0

6(t)
∂µ4∂t

+ t
∂2S0

6(t)
∂t2

− 2∂S
0
6(t)
∂t

+
1− 1

µ4

t
P6(t)

This finishes the calculation of S6/3
6 (t). Simplification of derivatives is cumber-

some, but straightforward. ■

Corollary 210.1. Summing S6/1
6 (t), S6/2

6 (t) and S6/3
6 (t), we get

S6
6(t) = et(µ6−15µ4+30)

3t2 (1 + 3t− tµ4) 17

[︄(︂
1− 8t− 4t2 + 72t3 − 216t4 + 243t5 − 5tµ4 + 13t2µ4

+ 23t3µ4 + 129t4µ4 − 81t5µ4 + 10t2µ2
4 + t3µ2

4 − 37t4µ2
4 − 54t5µ2

4 − 10t3µ3
4

− 9t4µ3
4 + 18t5µ3

4 + 5t4µ4
4 + 3t5µ4

4 − t5µ5
4

)︂
N2

6

(︂
t

(1+3t−tµ4)3

)︂
− 3t

(︂
15− 120t

− 106t2 + 1659t3 − 2304t4 − 30tµ4 + 105t2µ4 − 598t3µ4 + 1536t4µ4 + 15t2µ2
4

+ 15t3µ2
4 − 256t4µ2

4

)︂
N0

6

(︂
t

(1+3t−tµ4)3

)︂ ]︄
.

Remark 211. Note that the previous result indeed gives N6
6 (t) for µ6 = 15 and

µ4 = 3 since

3t2N6
6 (t) =

(︂
1− 23t+ 125t2 − 120t3

)︂
N2

6 (t)− 3t
(︂
15− 210t+ 344t2

)︂
N0

6 (t).

204
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2.8.7 Complete sixth moment and its generating function
Proposition 212. For any distribution of Xij with µ2 = 1, µ3 = 0, we get the
statement of Theorem 196.

Proof. Follows directly from Proposition 198, which states

F6(t) = (1+m1µ5t)6S0
6(t)+m2

1(1+m1µ5t)4S2
6(t)+m4

1(1+m1µ5t)2S4
6(t)+m6

1S
6
6(t).

wherein we insert S0
6(t), S2

6(t), S4
6(t) and S6

6(t) as expressed before. ■
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3. Even Volumetric Moments
As we will see, the problem of finding v(k)

n (Kd) when k is even can be treated as a
purely combinatorial problem. For even k and any n ≤ d, volumetric moments are
trivial to obtain, especially for polytopes. First, note that ∆n can be expressed as
an absolute value of a determinant of the coordinates of the n+ 1 points forming
the vertices of the convex hull Hn (or as a square root of Gram determinant
when n < d). Rising this determinant to some (even) power k, we obtain some
polynomial in coordinates. This is then integrated over the original polytope Pd.
For completeness, we enlist in Table 3.1 the first three even moments v(k)

d (Pd) for
the families of polytopes Td, Cd and Od and the unit ball Bd upto d = 5.

v
(k)
d (Td) k = 2 k = 4 k = 6

d = 1 1
6

1
15

1
28

d = 2 1
72

1
900

403
2116800

d = 3 3
4000

871
123480000

2797
11202105600

d = 4 1
33750

2083
96808320000

28517
264649744800000

d = 5 5
5445468

24995
682923373461504

11490716929
618668393733836328960000

v
(k)
d (Cd) k = 2 k = 4 k = 6

d = 2 1
96

1
2400

761
27095040

d = 3 1
2592

701
839808000

29563
7466363412480

d = 4 5
497664

887
1146617856000

6207797
38533602917272780800

d = 5 1
4976640

2899
7166361600000000

3591192719
1348676102104547328000000000

v
(k)
d (Od) k = 2 k = 4 k = 6

d = 3 3
8000

4259
5268480000

7200523
1835352981504000

d = 4 1
108000

3959
5664669696000

74002087
462508951339008000000

d = 5 5
29042496

228685
699313534424580096

7261177207
405955079162673083006928814080000

v
(k)
d (Bd) k = 2 k = 4 k = 6

d = 2 3
32π2

1
32π4

275
16384π6

d = 3 3
1000π2

117
2744000π4

17
14817600π6

d = 4 5
7776π4

475
191102976π8

161
7644119040π12

d = 5 45
4302592π4

325
401483464704π8

3875
24632119418683392π12

Table 3.1: Selected values of v
(k)
d (Pd) with Pd = Td, Cd, Od,Bd, even k and d ≤ 5.
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3.1. d-Cube even volumetric moments

3.1 d-Cube even volumetric moments

As a simple application of the results on moments of random determinants, we
deduce a general formula for v(k)

d (Cd) when k = 2, 4, 6 and d ≥ 2 arbitrary for the
unit d-cube defined as Cd = [0, 1]d.

v
(2)
d (Cd) = d+ 1

12d d! . (3.1)

Table 3.2 shows the second volumetric moments v(2)
d (Cd) for low values of d.

d 2 3 4 5 6 7 8

v
(2)
d (Cd) 1

96
1

2592
5

497664
1

4976640
7

2149908480
1

22574039040
1

1926317998080

Table 3.2: Second volumetric moment in d-cube

We are able to deduce the fourth moment

v
(4)
d (Cd) = d+ 1

144d(d!)2

d∑︂
j=0

(︃
−6

5

)︃d−j (j+1)2(j+2)
2 (d− j)! , (3.2)

Table 3.3 shows the fourth volumetric moments v(4)
d (Cd) for low values of d.

d 2 3 4 5 6

v
(4)
d (Cd) 1

2400
701

839808000
887

1146617856000
2899

7166361600000000
24257989

180551034077184000000000

Table 3.3: Fourth volumetric moment in d-cube

The case k = 6 with Pd = Cd is somehow clearer than for Pd = Td as we will see
later. In fact, we can find a relatively simple formula for v(6)

d (Cd) for any d,

v
(6)
d (Cd) = d+ 1

252d(d!)4

d+1∑︂
j=0

j∑︂
i=0

(1 + i)(2 + i)(4 + i)!
168 (d+ 1− j)!

(︃
− 7

40

)︃j (︃
−5

6

)︃i
×

(︄
14 + 2i+ j

j − i

)︄
(24i+ 7(j − 1− d)(7 + 2i+ j)).

(3.3)

Table 3.4 shows the sixth volumetric moments v(6)
d (Cd) for low values of d.
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d 2 3 4 5

v
(6)
d (Cd) 761

27095040
29563

7466363412480
6207797

38533602917272780800
3591192719

1348676102104547328000000000

Table 3.4: Sixth volumetric moment in d-cube

3.1.1 Shifted determinant formula
Let X = (X0, . . . ,Xd) be a collection of (d+1) random points Xj = (X1j, . . . Xdj)⊤ ∈
Rd with Xij ∼ Unif(0, 1) i.i.d. and let Hd = convX be their convex hull and
∆d = voldHd its volume, then

∆d = ± 1
d! det (X1 −X0 | X2 −X0 | · · · | Xd −X0) (3.4)

and from which (voldCd = 1) we get v(k)
d (Cd) = E∆k

d. It turns out we can express
∆d in a different form. Let X′

j = (X1j, . . . , Xdj, 1)⊤ ∈ Rd, H′
d = conv(0,X′

0, . . . ,X′
d) ⊂

Rd+1 and∇d+1 = vold+1 H′
d On one hand, by base-height splitting, ∇d+1 = 1

d+1∆d.
On the other, ∇d+1 = ±1

(d+1)! det(X′
0 | · · · | X′

d). Comparing, we get

∆d = ± 1
d! det (X′

0 | X′
1 | X′

2 | · · · | X′
d) . (3.5)

By linearity of determinants, we can subtract the last row m1 = EXij times from
every other row. We then get

∆d = ± 1
d! det (Y′

0 | Y′
1 | Y′

2 | · · · | Y′
d) , (3.6)

where Y′
j = (Y1j, . . . , Ydj, 1)⊤ and Yij = Xij − m1. Note that, when Xij ∼

Unif(0, 1), we have mr = EXr
ij = 1/(r + 1). Since Yij ∼ Unif(−1/2,−1/2), we

also have explicitly
µr = EY r

ij = 1 + (−1)r
2r+1(r + 1) , (3.7)

so m1 = 1/2, µ2 = 1/12, µ3 = 0, µ4 = 1/80, µ5 = 0, µ6 = 1/448. Note that

t
k/1
k (d+ 1) = (d+ 1)E (det (Y′

0 | Y′
1 | · · · | Y′

d))
k
, (3.8)

since the (even) k-th moment of the determinant on the right hand side corre-
sponds to a marked permutation table with all k marks in the first column. The
factor (d+ 1) then comes from symmetry. Hence,

v
(k)
d (Cd) = 1

(d!)k
1

d+ 1t
k/1
k (d+ 1) = d+ 1

(d!)k−2 [td+1]T k/1
k (t). (3.9)

When k = 2, we have by Equation (2.189) that T 2/1
2 (t) = T 2

2 (t) = teµ2t and thus

v
(2)
d (Cd) = (d+ 1)[td+1]teµ2t = (d+ 1)[td]eµ2t = d+ 1

d! µd2. (3.10)

When k = 4, we take advantage of the fact that µ3 = 0, so T 4/1
4 (t) = S

4/1
4 (t). By

Corollary 163.1 and by scaling,

S
4/1
4 (t) = t

1 + 2µ2
2t

(1− µ2
2t)4 e

t(µ4−3µ2
2) (3.11)
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3.2. d-Simplex even volumetric moments

and thus

v
(4)
d (Cd) = d+ 1

(d!)2 [td] 1 + 2µ2
2t

(1− µ2
2t)4 e

t(µ4−3µ2
2) = d+ 1

(d!)2

d∑︂
j=0

[td−j]et(µ4−3µ2
2)

× [tj] 1 + 2µ2
2t

(1− µ2
2t)4 = d+ 1

(d!)2

d∑︂
j=0

(µ4 − 3µ2
2)d−j

(d− j)!
1
2(j + 1)2(j + 2)µ2j

2 .

(3.12)

Finally, when k = 6, we take advantage of the fact that µ3 = µ5 = 0, so T 6/1
6 (t) =

S
6/1
6 (t). By Corollary 207.2 and by scaling,

v
(6)
d (Cd)= s

6/1
6 (d+1)

(d+1)(d!)6 = d+1
d!4 µ3d

2

d+1∑︂
j=0

j∑︂
i=0

(1+i)(2+i)(4+i)!
48(d+ 1− j)!

(︄
14+j+2i
j − i

)︄
×

(︂
2(7+2i+j)(j−d−1)+i

(︂
µ6
µ3

2
−15µ4

µ2
2
+30

)︂)︂ (︂
µ6
µ3

2
−15µ4

µ2
2
+30

)︂d−j (︂µ4
µ2

2
−3

)︂j−i
.

(3.13)

3.2 d-Simplex even volumetric moments
The objective of this section is to deduce a general formula for v(k)

d (Td) when
k = 2, 4 and d arbitrary. The case k = 2 was obtained by Reed [59]:

v
(2)
d (Td) = d!

(d+ 2)d(d+ 1)d . (3.14)

Table 3.5 shows the second volumetric moments v(2)
d (Td) for low values of d.

d 0 1 2 3 4 5 6 7 8

v
(2)
d (Td) 1 1

6
1
72

3
4000

1
33750

5
5445468

45
1927561216

35
69657034752

7
747338906250

Table 3.5: Second volumetric moment in d-simplex

In fact, Reed showed that the problem of determining v
(k)
d (Td) for even k is

closely related to even moments of determinants of some random matrices (Reed’s
formula, Proposition 215). Using this connection, we are able to deduce

v
(4)
d (Td) = (d+ 1)!2

((d+ 4)(d+ 3)(d+ 2)(d+ 1))d+1

×
2∑︂

w=0

4−2w∑︂
s=0

d+1−s∑︂
c=0

(︄
4− 2w
s

)︄
(1 + c)2s6d+1−c−sdw(c)

(d+ 1− c− s)!(2− w)!w! ,
(3.15)

where
d0(c) = (2 + c), d1(c) = c(2 + c), d2(c) = c3. (3.16)

Table 3.6 shows the fourth volumetric moments v(4)
d (Td) for low values of d.
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d 0 1 2 3 4 5 6

v
(4)
d (Td) 1 1

15
1

900
871

123480000
2083

96808320000
24995

682923373461504
54793

1422757028044800000

Table 3.6: Fourth volumetric moment in d-simplex

Finally, for completeness, Table 3.7 shows the sixth volumetric moments v(6)
d (Td)

for low values of d. In this case, there also exists a general formula, the scope of
which is however beyond this thesis1.

d 0 1 2 3 4 5

v
(6)
d (Td) 1 1

28
403

2116800
2797

11202105600
28517

264649744800000
11490716929

618668393733836328960000

Table 3.7: Sixth volumetric moment in d-simplex

Note that the values v(4)
3 (T3) and v

(6)
3 (T3) were already known to Mannion [44].

3.2.1 Uniform and Dirichlet simplices
See section A.4 in the Appendix which covers the Dirichlet distribution first. In
there, T ∗

d is defined as conv{e0, e1, . . . ed}, that is, T ∗
d is a d-simplex embedded

into Rd+1.
Definition 213. We say a collection Y = (Y0, . . . ,Yd) is a standard Dirichlet
random sample if the points Yj are independent and follow the same symmetric
Dirichlet distribution with concentration parameter α. We call the convex hull
Hd(T ∗

d ) = conv(Y0, . . . ,Yd) of those points as a Dirichlet random simplex with
volume ∆d,α = voldHd(T ∗

d ) and normalised volume ∆d,α = ∆d,α/ vold T ∗
d with

its usual moments v(k)
d,α(T ∗

d ) = E∆k
d,α.

Theorem 214. Let Xij ∼ Γ(α) be i.i.d. random variables, A = (Xij)n×n and
fk(n) = E (detA)k as usual. Let Y0, . . . ,Yd be a standard Dirichlet random
sample with concentration parameter α. Then

v
(k)
d,α(T ∗

d ) =
(︄

Γ(α(d+ 1))
Γ(α(d+ 1) + k)

)︄d+1

fk(d+ 1). (3.17)

Proof. Note that the distance form 0 to A(Y0, . . . ,Yd) is⃦⃦⃦⃦
⃦
(︃ 1
d+ 1 , . . . ,

1
d+ 1

)︃⊤
⃦⃦⃦⃦
⃦ = 1√

d+ 1
. (3.18)

Denote B = (Y0 | · · · |Yd), then, by base-height splitting,
| detB| = (d+ 1)! vold+1 conv(0,Y0, . . . ,Yd)

= (d+ 1)! 1
d+ 1

1√
d+ 1

vold conv(Y0, . . . ,Yd) = ∆ d,α.
(3.19)

1at the time of submission of this thesis, the formula has not yet been found, however, the
current progress with Potechin and Lv suggests the formula will be available soon
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3.2. d-Simplex even volumetric moments

Set n = d + 1 and write A = (X0 | · · · |Xd) with Xj = (X0j, . . . , Xdj)⊤. Denote
Sj = ∑︁d

i=0 Xij, that is, Sj equals the sum of coordinates of Xj. Then, by Lemma
274, Sj ∼ Γ(α(d+ 1)) and

B = (Y0 | · · · |Yd) d=
(︃X0

S0

⃓⃓⃓
· · ·

⃓⃓⃓ Xd

Sd

)︃
, (3.20)

from which, taking determinant and writing S = ∏︁d
j=0 Sj,

detB d= det
(︃X0

S0

⃓⃓⃓
· · ·

⃓⃓⃓ Xd

Sd

)︃
= det(X0 | · · · |Xd)∏︁d

j=0 Sj
= detA

S
. (3.21)

Moreover, by Lemma 274, Xj/Sj and Sj are stochastically independent, so are
B and S. Hence, for even k,

fk(d+ 1) = E (detA)k = E (S detB)k = ESk E (detB)k

= (ES0)k E∆k
d,α =

(︄
Γ(α(d+ 1) + k)

Γ(α(d+ 1))

)︄d+1

v
(k)
d,α(T ∗

d ).
(3.22)

■

3.2.2 Reed’s formula
There is a connection between moments of random matrices with a certain dis-
tribution of entries and moments of volume of a random simplices in a regular
tetrahedron. As a consequence of Theorem 214, we obtain Reed’s formula we
have already seen in Introduction which establishes this connection:
Proposition 215 ([59] Reed 1974). Let Xij ∼ Exp(1) be i.i.d. random variables,
A = (Xij)n×n and fk(n) = E (detA)k as usual. Let Y0, . . . ,Yd be i.i.d. random
points uniformly distributed in Td. Then for k even,

v
(k)
d (Td) =

(︄
d!

(d+ k)!

)︄d+1

fk(d+ 1). (3.23)

Proof. From Theorem 214 with α=1 and upon noticing v(k)
d,1(T ∗

d ) = v
(k)
d (Td). ■

Remark 216. Note that the formula also holds for any real k > −1 if we
replace determinant moments fk(d+1) = E (detA)k with absolute determinant
moments E | detA|k. However, since we can expand the absolute values only
for k being an even positive integer, the problem of finding these moments for
general k is no longer a combinatorial problem.

Example 217. Let Xij ∼ Γ(α) i.i.d. and A = (Xij)n×n. Note that mr = EXr
ij =

Γ(α + k)/Γ(α), so m1 = α and m2 = α(α + 1). Since we know that in general
f2(n) = n!(m2 −m2

1)n−1(m2 +m1(n− 1)), we get f2(n) = αnn!(αn+ 1) and thus

v
(2)
d,α(T ∗

d ) =
(︄

Γ(α(d+ 1))
Γ(α(d+ 1) + 2)

)︄d+1

αd+1(d+ 1)!(α(d+ 1) + 1). (3.24)

Especially, when α = 1 (uniform simplices on T ∗
d ), we get (Reed [59])

v
(2)
d (Td) = d!

(d+ 2)d(d+ 1)d . (3.25)
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Example 218. Using or previous results on random matrices, we can also obtain
the value for the fourth moment for general d. Let Xij ∼ Γ(α) be i.i.d. random
variables, A = (Xij)n×n, then mr = Γ(α + r)/Γ(α) = α(α + 1) · · · (α + r − 1).
By Corollary 156.1 with m1 = α, m2 = α(α + 1), m3 = α(α + 1)(α + 2), m4 =
α(α+1)(α+2)(α+3), from which we compute µ2 = α, µ3 = 2α, µ4 = 3α(2+α),
we get

f4(n) = (n!)2
2∑︂

w=0

4−2w∑︂
s=0

n−s∑︂
c=0

(︄
4− 2w
s

)︄
(1 + c)2s6n−c−sαn+s+w+c

(n− c− s)!(2− w)!w! dw(c), (3.26)

where
d0(c) = (2 + c), d1(c) = c(2 + c), d2(c) = c3, (3.27)

from which

v
(4)
d,α(T ∗

d ) =
(︄

Γ(α(d+ 1))
Γ(α(d+ 1) + 4)

)︄d+1

f4(d+ 1). (3.28)

Especially for α = 1, we get as promised

v
(4)
d (Td) = (d+ 1)!2

((d+ 4)(d+ 3)(d+ 2)(d+ 1))d+1

×
2∑︂

w=0

4−2w∑︂
s=0

d+1−s∑︂
c=0

(︄
4− 2w
s

)︄
(1 + c)2s6d+1−c−sdw(c)

(d+ 1− c− s)!(2− w)!w! .
(3.29)

3.3 d-Orthoplex’s and even moments in general
The aim of this section is to deduce v(k)

d (Od) for k = 2, 4, 6. We briefly discuss
how we can obtain even volumetric moments for various polytopes efficiently in
a computer. Note that O2 = C2 (although with different area), so we can restrict
ourselves to the case d ≥ 3. We got

v
(2)
d (Od) = (d+ 1)!

2d(d+ 2)d(d+ 1)d . (3.30)

Table 3.8 shows the second volumetric moments v(2)
d (Od) for low values of d. We

d 3 4 5 6 7 8

v
(2)
d (Od) 3

8000
1

108000
5

29042496
45

17623416832
35

1114512556032
7

21257640000000

Table 3.8: Second volumetric moment in d-orthoplex

are able to deduce also the fourth moment

v
(4)
d (Od) =

d!(d+ 1)!∑︁d
j=0

3d−j(1+j)(2+j)
2 (d−j)!

(︂
j(d+4)(d+3)
(d+2)(d+1) + 1

)︂
22d(d+ 4)d(d+ 3)d(d+ 2)d(d+ 1)d . (3.31)
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d 3 4 5 6

v
(4)
d (Od) 4259

5268480000
3959

5664669696000
228685

699313534424580096
1940773

20720401019987558400000

Table 3.9: Fourth volumetric moment in d-orthoplex

Table 3.9 shows the fourth volumetric moments v(4)
d (Od) for low values of d.

Finally, for k = 6, we obtain the following formula for v(6)
d (Od) for any d,

v
(6)
d (Od)= d!2

48

(︃15
4

)︃d (︄ d!
(d+6)!

)︄d d+1∑︂
j=0

j∑︂
i=0

(1 + i)(2 + i)(4 + i)!
3i10j(3+d)(4+d)(2+d)×(︂

14+j+2i
j−i

)︂
(d−j+1)!

{︄
(3+d)(4+d)((1+d)(2+d)+(5+d)(6+d)(2i+j))(1+d−j)

+ 30 (5 + d)2 (6 + d)2(1 + d + 2i − 2j)

}︄
.

(3.32)

Table 3.10 shows the sixth volumetric moments v(6)
d (Od) for low values of d.

d 3 4 5

v
(6)
d (Od) 7200523

1835352981504000
74002087

462508951339008000000
7261177207

405955079162673083006928814080000

Table 3.10: Sixth volumetric moment in d-orthoplex

3.3.1 General numerical technique
Let x = (x0, . . . ,xd) be a collection of points xj ∈ Pd ⊂ Rd, j = 0, . . . , d with
coordinates xj = (x1j, . . . , xdj)⊤ and let ∆d = vold conv(x). Denote

e
(k)
d =

∫︂
(Pd)d+1

∆k
d λ

d+1
d (dx), (3.33)

so then

v
(k)
d (Pd) = e

(k)
d /(vold Pd)d+k+1. (3.34)

We have seen that we can express ∆d using determinants as

∆d = ± 1
d! det(x1 − x0 | · · · | xd − x0) = ± 1

d! det(x′
0 | x′

1 | · · · | x′
d), (3.35)

where x′
j = (x1j, . . . , xdj, 1)⊤. Denote y = (y1, . . . , yd)⊤ ∈ Rd, then

ai1i2i3...id =
∫︂
Pd

yi11 y
i2
2 · · · y

id
d λd(dy) (3.36)

form a basis of e(k)
d , in fact e(k)

d is a polynomial of homogeneity d + 1 in ai1,...,id
with i1 + · · · + id ≤ k. The total sum of indices ip in each product of a’s must
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be equal to k for any position p. We can obtain these polynomials separately via
combinatorics in a computer, for d = 2 with k = 2, 3 and d = 3 with k = 2,

e
(2)
2 = 3

2
(︂
2a10a11a01 − a20a

2
01 − a02a

2
10 − a00a

2
01 + a00a02a20

)︂
, (3.37)

e
(4)
2 = 3

8

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3a00a
2
22 + 12a2

12a20 + 12a2
11a22 + 12a2

21a02 +12a03a11a30
+3a40a

2
02−4a04a10a30+6a20a22a02+4a01a13a30+4a03a10a31

+3a04a
2
20+12a01a12a31−4a00a13a31−4a01a03a40+a00a04a40

−12a12a30a02 − 12a11a31a02 − 12a11a13a20 − 12a11a12a21
+12a10a13a21 − 12a03a20a21 − 12a10a12a22 − 12a01a21a22,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (3.38)

e
(2)
3 = 2

3

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a2
010a

2
101 − a000a

2
011a200 − a2

001a020a200 + a000a002a020a200
−2a010a011a100a101 + 2a002a010a100a110 − 2a001a011a100a110
+2a001a010a011a200 − 2a001a010a101a110 + 2a000a011a101a110

+a2
001a

2
110 + a2

011a
2
100 − a002a020a

2
100 + 2a001a020a100a101

−a002a
2
010a200 − a000a020a

2
101 − a000a002a

2
110

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.39)

and so on (see Code 1). A substantial simplification is achieved when we place
the center of our coordinates in the centroid of Pd. In that case, all the values
ai1...id with exactly one index equal to one and with remaining indices equal to
zero vanish. Then

e
(2)
2 = 3

2
(︂
a00a02a20 − a00a

2
11

)︂
, (3.40)

e
(4)
2 = 3

8

⎧⎪⎨⎪⎩
3a40a

2
02+12a2

21a02+6a20a22a02−12a12a30a02−12a11a31a02
+3a00a

2
22+12a2

12a20−12a11a13a20−12a11a12a21−4a00a13a31
+3a04a

2
20+12a2

11a22+12a03a11a30−12a03a20a21+a00a04a40

⎫⎪⎬⎪⎭ , (3.41)

e
(2)
3 = 2

3

{︄
2a000a101a110a011 + a000a002a020a200

−a000a002a
2
110−a000a200a

2
011−a000a020a

2
101,

}︄
(3.42)

e
(2)
4 = 5

24

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0000a0002a0020a0200a2000 − 2a0000a0110a1001a1100a0011
+a0000a

2
0110a

2
1001 + a0000a

2
0101a

2
1010 + a0000a

2
1100a

2
0011

+2a0000a0200a1001a1010a0011 − a0000a0200a2000a
2
0011

−2a0000a0101a1010a1100a0011 − a0000a0020a0200a
2
1001

+2a0000a0101a0110a2000a0011 − a0000a0002a0200a
2
1010

−2a0000a0101a0110a1001a1010 − a0000a0002a0020a
2
1100

+2a0000a0020a0101a1001a1100 − a0000a0020a
2
0101a2000

+2a0000a0002a0110a1010a1100 − a0000a0002a
2
0110a2000,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.43)

3.3.2 Octahedral symmetry
Finally, we assume that Pd has octahedral symmetry. That is, Pd is symmetrical
with respect to any permutation of axes and any reflection yi → −yi for any i
and (y1, . . . , yd)⊤ ∈ Pd. In that case, ai1...id is invariant under any permutation of
indices i1, . . . , id. Also, all ai1...id with at least one odd is vanish. As a consequence,
we get much more simplified formulae. When k = 2, 4, 6, we can write those
polynomials explicitly in that case. Let us define b0 = a...000 = vold Pd, b2 =
a...002, b4 = a...004, b6 = a...006, b22 = a...022, b42 = a...042, and so on. In general, the
indices of b’s are the nonzero indices of a’s in decreasing order (with the only
exception b0 where there are no non-zero indices). That is for any bi1,i2,...,ip , we
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have i1 ≥ i2 ≥ · · · ≥ ip > 0 and bi1...ip = ai1,...,ip,0,0,0,...,0 (d−p zeros). Or explicitly,

bi1i2i3...ip =
∫︂
Pd

yi11 y
i2
2 · · · yipp λd(dy). (3.44)

From this integral expression for bi1,...,ip , it is clear why all indices must be even
otherwise bi1,...,ip vanishes (follows from the substitution ys → −ys for a given s for
which is would be odd and the octahedral symmetry of Pd). We may associate
e

(k)
d with a sum over marked permutation tables Ek,d, which we define as row

permutations of d + 1 elements [0, 1, . . . , d] with k rows and in total k marks
covering the element 0. This is contrary to the d-cube case as xij, xi′j may no
longer be independent. We have

e
(k)
d = 1

(d!)k
∑︂

τ∈Ek,d
w(τ) sgn τ, (3.45)

where w(·) is given as a product of the corresponding ai1...id factors. When k = 2,
there is one column with two marks in E2,d (weight b0), the remaining columns are
columns with weight b2. The sum of weights over all those remaining columns
yields the Fortet’s second moment s0

2(d) with µ2 = b2. Since there are d + 1
positions for the marked column, we have

e
(2)
d = 1

d!2
∑︂

τ∈E2,d

w(τ) sgn τ = d+ 1
d!2 b0s

0
2(d) = d+ 1

d!2 b0d!bd2 = d+ 1
d! b0b

d
2 (3.46)

and thus, by Equation (3.34),

v
(2)
d (Pd) = 1

b2
0

d+ 1
d!

(︄
b2

b0

)︄d
. (3.47)

Tables E4,d (with octahedral symmetry assumed) have the following structure:

Type: 4-column 2-column ×2-column ×4-column

a
a
a
a

a
a
b
b

×
×
a
a

×
×
×
×

Weight w: b4 b22 b2 b0

Note that the requirement of containing k = 4 marks means that a table τ ∈ E4,d
either contains one ×4-column (covering four zeros) or two ×2-columns. Let
τ ′ ∈ S0

4,d have c four-columns (and thus d−c two-columns), we have w(τ) = bc4b
d−c
22 .

The first case is obtained by appending a column filled with 4 marks (covering four
0’s) to τ ′, we get w(τ) = b0b

c
4b
d−c
22 . The second case is obtained by additionally

switching two marks with two elements from
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• a four-column of τ ′ in 6 ways, yielding w(τ) = b2
2b
c−1
4 bd−c

22
• a two-column in 2 ways, selecting one of its pairs, w(τ) = b2

2b
c
4b
d−c−1
22 .

In total, we get the following contribution of τ ′ to ∑︁τ∈E4,d w(τ) sgn τ . Note that
by symmetry, we have to multiply the second case contribution by 1/2.

(d+ 1)
[︃
b0b

c
4b
d−c
22 + 1

2
(︂
6cb2

2b
c−1
4 bd−c

22 + 2(d− c)b2
2b
c
4b
d−c−1
22

)︂]︃
. (3.48)

Summing up the contribution from all tables τ ′ ∈ S0
4,d, we get

e
(4)
d = d+ 1

d!4

[︄
b0s

0
4(d) + 3b2

2
∂s0

4(d)
∂b4

+ b2
2
∂s0

4(d)
∂b22

]︄
, (3.49)

where s0
4(d) is the Niquist, Rice and Riordan’s fourth moment given by Corollary

(68.1) with µ4 = b4 and µ2
2 = b22, so

s0
4(d) = (d!)2

d∑︂
j=0

1
j!

(︄
d− j + 2

2

)︄
(b4 − 3b22)j bd−j

22 . (3.50)

Hence, after some simplifications,

e
(4)
d = d+ 1

(d!)2

d∑︂
j=0

(1 + j)(2 + j)bj22
2(d− j)! (b4 − 3b22)d−j

(︄
jb2

2
b22

+ b0

)︄
, (3.51)

from which, by Equation (3.34),

v
(4)
d (Pd) = 1

b4
0

d+1
(d!)2

(︄
b22

b0

)︄d d∑︂
j=0

(1+j)(2+j)
2 (d− j)!

(︄
b4

b22
−3

)︄d−j(︄
jb2

2
b22b0

+1
)︄
. (3.52)

Alternatively, we can extract s0
4(d) as s0

4(d) = (d!)2[td]S0
4(t), where the generating

function S0
4(t) is given by Proposition 68. Explicitly,

S0
4(t) = et(µ4−3µ2

2)

(1− µ2
2t)3 = et(b4−3b22)

(1− b22t)3 . (3.53)

In particular,

e
(4)
2 = 3

8
(︂
6b4b

2
2 + 6b22b

2
2 + b0b

2
4 + 3b0b

2
22

)︂
, (3.54)

e
(4)
3 = 1

54
(︂
b0b

3
4 + 9b2

2b
2
4 + 9b0b

2
22b4 + 18b2

2b22b4 + 6b0b
3
22 + 45b2

2b
2
22

)︂
(3.55)

e
(4)
4 = 5

13824

{︄
b0b

4
4 + 18b0b

2
22b

2
4 + 24b0b

3
22b4 + 45b0b

4
22

+12b2
2b

3
4 + 36b2

2b22b
2
4 + 180b2

2b
2
22b4 + 252b2

2b
3
22

}︄
. (3.56)

Lastly, E6,d tables have the following structure:
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3.3. d-Orthoplex’s and even moments in general

6-column 4-column 2-column ×2
4-column ×2

2-column ×4-column ×6-column

a
a
a
a
a
a

a
a
a
a
b
b

a
a
b
b
c
c

×
×
a
a
a
a

×
×
a
a
b
b

×
×
×
×
a
a

×
×
×
×
×
×

b6 b42 b222 b4 b22 b2 b0

Note that all marks cover the element 0 only. The requirement of E6,d containing
k = 6 marks means that a table τ ∈ E6,d either contains

• case I: one ×6-column (covering six zeros),
• case II: one ×2 and one ×4 column or
• case III: three ×2-columns.

Let τ ′ ∈ S0
6,d have s six-columns and f four-columns (and thus d − s − f two-

columns), we have w(τ) = bs6b
f
42b

d−s−f
222 . The first case is obtained by appending a

column filled with 6 marks (covering six 0’s) to τ ′, we get w(τ) = b0b
s
6b
f
42b

d−s−f
222 .

The second case is obtained by additionally switching two marks with two ele-
ments from

• a six-column of τ ′ in 15 ways, yielding w(τ) = b2b4b
s−1
6 bf42b

d−s−f
222

• a four-column of τ ′ in 6 ways selecting two from its four identical elements,
creating a ×2

2-column and yielding w(τ) = b2b22b
s
6b
f−1
42 bd−s−f

222
• a four-column of τ ′ in 1 way selecting the remaining lonely pair of two

elements, creating a ×4
2-column and yielding w(τ) = b2b4b

s
6b
f−1
42 bd−s−f

222
• a two-column in 3 ways, selecting one of its pairs, w(τ) = b2b22b

s
6b
f
42b

d−s−f−1
222 .

We get the following contribution of τ ′ to ∑︁τ∈E6,d w(τ) sgn τ ,

(d+ 1)
[︂
b0b

s
6b
f
42b

d−s−f
222 + 15sb2b4b

s−1
6 bf42b

d−s−f
222 + 6fb2b22b

s
6b
f−1
42 bd−s−f

222

+ fb2b4b
s
6b
f−1
42 bd−s−f

222 + 3(d− s− f)b2b22b
s
6b
f
42b

d−s−f−1
222

]︂
.

(3.57)

Summing up the contribution from all tables τ ′ ∈ S0
6,d, we get that the contribu-

tion of cases I and II to ∑︁τ∈E6,d w(τ) sgn τ is

(d+ 1)
[︄
b0s

0
6(d) + 15b2b4

∂s0
6(d)
∂b6

+ b2(6b22 + b4)
∂s0

6(d)
∂b42

+ 3b2b22
∂s0

6(d)
∂b222

]︄
, (3.58)

where s0
6(d) is the sixth moment for symmetrical distributions given as coefficients

s0
6(d) = (d!)2[td]S0

6(t) of the corresponding generating function

S0
6(t) = et(µ6−15µ4µ2+30µ3

2)

(1 + 3µ3
2t− µ4µ2t)15N6

(︄
µ3

2t

(1 + 3µ3
2t− µ4µ2t)3

)︄
.

with µ6 = b6, µ4µ2 = b42 and µ3
2 = b222. Explicitly (our f sym

6 (d) formula),

s0
6(d)=d!2

d∑︁
j=0

j∑︁
i=0

(1+i)(2+i)(4+i)!
48(d−j)!

(︂
14+j+2i
j−i

)︂
(b6−15b42+30b222)d−j(b42−3b222)j−ibi222. (3.59)
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Lastly, the third case can be obtained by the position approach. We start with a
larger table τ ′′ ∈ S0

6,d+1 and assume it has s six-columns and f four-columns (and
thus d + 1 − s − f two-columns), we have w(τ) = bs6b

f
42b

d+1−s−f
222 for its weight.

First, we select a number i which appears in three distinct columns (three pairs),
these numbers form a set I3(t′′). There is exactly #I3(t′′) = d + 1 − s − f of
those numbers. However, we don’t know whether these three distinct columns
where the elements i reside are 4- or 2-columns. Denote νi(t′′) the number of four
columns from those three distinct columns. Then, we turn all six i’s into marks.
The weight of the resulting table τ ∈ E6,d, based on the number of four columns
covered, is

bs6b
f−νi(t′′)
42 b

d+1−s−f−(3−νi(t′′))
222 b

νi(t′′)
4 b

3−νi(t′′)
22 . (3.60)

Since νi(t′′) ∈ {0, 1, 2, 3}, we can write this as a quintic polynomial in νi(t′′).
Unfortunately, we are currently only able to find explicit generating functions
when the polynomial in νi(t′′) is at most linear. Let us further assume b222b4 =
b22b42 so the factor above equals

bs6b
f−3
42 bd+1−s−f

222 b3
4. (3.61)

Summing over all i ∈ I3(t′′) and by symmetry, we get the following contribution
of τ ′′ to (d+ 1)∑︁τ∈E6,d w(τ) sgn τ ,

(d+ 1− s− f)bs6b
f−3
42 bd+1−s−f

222 b3
4. (3.62)

Finally, summing over all τ ′′ ∈ S0
6,d+1, we find that the contribution of case III to

(d+ 1)∑︁τ∈E6,d w(τ) sgn τ is

b222b
3
4

b3
42

∂s0
6(d+ 1)
∂b222

. (3.63)

Note that the factor (d + 1) comes from symmetry, since we require a specific
number (zero) to be covered. In total, putting together cases I, II and III,

e
(6)
d = d+ 1

d!6
[︂
b0s

0
6(d) + 15b2b4

∂s0
6(d)
∂b6

+ b2(6b22 + b4)
∂s0

6(d)
∂b42

+ 3b2b22
∂s0

6(d)
∂b222

+ 1
(d+ 1)2

b222b
3
4

b3
42

∂s0
6(d+ 1)
∂b222

]︂
.

(3.64)

Keep in mind that even though s0
6 appears as a function of d and d+ 1, we treat

b’s as a function of d (and not d + 1) since they were derived combinatorially.
Alternatively, we may write s0

6(d + 1) derivative in terms of s0
6(d) derivatives.

Plugging the explicit formula for s0
6(d), we arrive at the following formula

e
(6)
d = 1 + d

d!4
d+1∑︂
j=0

j∑︂
i=0

(1 + i)(2 + i)(4 + i)!
48(d− j + 1)!

(︄
14 + j + 2i

j − i

)︄
×

× bi−3
222 (b6 − 15b42 + 30b222) d−j (b42 − 3b222) j−i−1×

×
{︄

(d−j+1)b222 (b42−3b222) (b2b22b222(2i+j)+30b3
22+b0b

2
222)

+b3
22 (b6 − 15b42 + 30b222) (ib42 − 3jb222)

}︄ (3.65)

and from which by Equation (3.34) immediately
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v
(6)
d (Pd) = 1 + d

d!4bd+7
0

d+1∑︂
j=0

j∑︂
i=0

(1 + i)(2 + i)(4 + i)!
48(d− j + 1)!

(︄
14 + j + 2i

j − i

)︄
×

× bi−3
222 (b6 − 15b42 + 30b222) d−j (b42 − 3b222) j−i−1×

×
{︄

(d−j+1)b222 (b42−3b222) (b2b22b222(2i+j)+30b3
22+b0b

2
222)

+b3
22 (b6 − 15b42 + 30b222) (ib42 − 3jb222)

}︄ (3.66)

both valid as long as b42b22 = b4b222. Finally, let us list the values of e(6)
d for small

d. With no assumption on b’s (i.e. we relax b42b22 = b4b222), we have

e
(6)
2 = 3

32
(︂
b0b

2
6−90b3

22+90b2
4b22+180b2b42b22+15b0b

2
42+30b2b4b42+30b2b4b6

)︂
, (3.67)

e
(6)
3 = 1

1944

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b0b
3
6 + 90b222b

3
4 + 270b6b22b

2
4 + 540b22b42b

2
4 + 45b2b

2
6b4

+765b2b
2
42b4+3240b2

22b42b4+540b2b42b222b4+90b2b6b42b4
−810b2

22b222b4 + 3240b2b22b42b222 − 270b6b
3
22 + 30b0b

3
42

+45b0b6b
2
42 + 1350b2b22b

2
42 − 810b2b22b

2
222 − 1620b3

22b42
+540b2b6b22b42 + 4320b3

22b222 + 270b0b
2
42b222 − 90b0b

3
222

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.68)

3.3.3 d-Cube
As an example of a solid with octahedral symmetry, let us consider C∗

d a d-cube
with vertices [±1,±1, . . . ,±1], so C∗

d = [−1, 1]d. Let y ∈ Rd. Via symmetry and
by simple integration, b0 = voldC∗

d = 2d and

bi1,...,ip =
∫︂
C∗
d

yi11 · · · yipp λd(dy)=
∫︂

[0,1]d
yi11 · · · yipp dy1· · · dyd=2d 1

i1+1 · · ·
1

ip+1 , (3.69)

from which we deduce the moments v(k)
d (Cd) as before (Equations (3.1), (3.2) and

(3.3)).

3.3.4 d-Orthoplex
For d-orthoplex Od = conv(±e1, . . . ,±ed), it is an easy exercise (see Remark 277)
to deduce the following general formula

bi1,...,ip =
∫︂
Od

yi11 · · · yipp λd(dy)=2d
∫︂
Td
yi11 · · · yipp λd(dy)= 2d i1! · · · ip!

(d+i1+· · ·+ip)!
. (3.70)

Hence,

b0 = voldOd = 2d
d! , b2 = 2d+1

(d+ 2)! (3.71)

and thus by Equation (3.47), summing over E2,d tables,

v
(2)
d (Od) = 1

b2
0

d+ 1
d!

(︄
b2

b0

)︄d
= (d+ 1)!

2d(d+ 2)d(d+ 1)d . (3.72)

Similarly, we have

b22 = 2d+2

(d+ 4)! , b4 = 4! 2d
(d+ 4)! . (3.73)
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Thus, by Equation (3.52), summing over E4,d tables,

v
(4)
d (Od) =

d!(d+ 1)!∑︁d
j=0

3d−j(1+j)(2+j)
2 (d−j)!

(︂
j(d+4)(d+3)
(d+2)(d+1) + 1

)︂
22d(d+ 4)d(d+ 3)d(d+ 2)d(d+ 1)d . (3.74)

Finally,

b222 = 2d+3

(d+ 6)! , b42 = 4! 2d+1

(d+ 6)! , b6 = 6! 2d
(d+ 6)! . (3.75)

Crucially, d-orthoplex also satisfies the condition on moments b222b4 = b22b42.
Hence, we use Equation (3.66) to deduce

v
(6)
d (Od)= d!2

48

(︃15
4

)︃d (︄ d!
(d+6)!

)︄d d+1∑︂
j=0

j∑︂
i=0

(1 + i)(2 + i)(4 + i)!
3i10j(3+d)(4+d)(2+d)×(︂

14+j+2i
j−i

)︂
(d−j+1)!

{︄
(3+d)(4+d)((1+d)(2+d)+(5+d)(6+d)(2i+j))(1+d−j)

+ 30 (5 + d)2 (6 + d)2(1 + d + 2i − 2j)

}︄
.

(3.76)

3.3.5 d-Ball
Another interesting example possessing (among others also) the octahedral sym-
metry is the unit ball Bd. Let y ∈ Rd, then

bi1,...,ip =
∫︂
Bd
yi11 · · · yipp λd(dy). (3.77)

A common trick how to solve types of integrals like this is using the Gaussian
integral

∫︁∞
−∞ exp(−x2) dx =

√
π and related integrals in higher dimensions. First,

let us take advantage of the homogeneity of our integral by making the substitu-
tion y = rx, where r ∈ (0,∞) and x ∈ Sd−1. Splitting the measures into radial
and spherical part, that is λd(dy) = rd−1dr σd(dx), we get

bi1,...,ip =
∫︂
Sd

∫︂ 1

0
xi11 · · ·xipp rd−1+i1+···+ip dr σd(dx) =

∫︁
Sd x

i1
1 · · ·xipp σd(dx)

d+ i1 + · · ·+ ip
. (3.78)

Note that when i1 = · · · = ip = 0, we get b0 = ωd/d as expected since b0 =
vold Bd = κd = ωd/d. In order to utilize the Gaussian integral trick, let us
consider the integral

I =
∫︂
Rd
yi11 · · · yipp e−y2

1−y2
2− ··· −y2

dλd(dy). (3.79)

This integral can be solved via two methods. First, we can split it into a product
of one-dimensional integrals in each of the variables ys. This gives

I = πd/2
p∏︂
s=1

Γ(1+is
2 )

Γ(1
2) . (3.80)

On the other hand, by splitting the measures into radial and spherical part,

I=
∫︂
Sd

∫︂ ∞

0
xi11 · · ·xipp rd−1+i1+···+ipe−r2dr σd(dx)=

Γ(d+i1+···+ip
2 )

2

∫︂
Sd
xi11 · · ·xipp σd(dx).

(3.81)
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Comparing, we get
∫︁
Sd x

i1
1 · · ·xipp σd(dx) explicitly and as a result,

bi1,...,ip =
2πd/2∏︁p

s=1 Γ(1+is
2 )/Γ(1

2)
(d+ i1 + · · ·+ ip) Γ(d+i1+···+ip

2 )
=
πd/2∏︁p

s=1 Γ(1+is
2 )/Γ(1

2)
Γ
(︂
d+2+i1+···+ip

2

)︂ . (3.82)

Hence,

b0 = vold Bd = κd = πd/2

Γ(d+2
2 )

, b2 = κd
2 + d

(3.83)

and thus by Equation (3.47), summing over E2,d tables,

v
(2)
d (Bd) = 1

b2
0

d+ 1
d!

(︄
b2

b0

)︄d
= 1
κ2
d

d+ 1
d!(d+ 2)d . (3.84)

Similarly, we have

b22 = κd
(4 + d)(2 + d) , b4 = 3κd

(4 + d)(2 + d) . (3.85)

Thus, by Equation (3.52) (only j = d term survives), summing over E4,d tables,

v
(4)
d (Bd) = 1

κ4
d

(1 + d)2 (d2 + 5d+ 2)
2(d!)2 ((2 + d)(4 + d))d . (3.86)

Finally,

b222 = κd
(2+d)(4+d)(6+d) , b42 = 3κd

(2+d)(4+d)(6+d) , b6 = 15κd
(2+d)(4+d)(6+d) .

(3.87)
Crucially, d-ball also satisfies the condition on moments b222b4 = b22b42. Hence,
we use Equation (3.66) to deduce

v
(6)
d (Bd) = 1

κ6
d

(1 + d)3(2 + d)(3 + d) (d2 + 7d+ 2) (d2 + 7d+ 4)
48(d!)3((2 + d)(4 + d)(6 + d))d . (3.88)

Note that the values v(2)
d (Bd), v(4)

d (Bd) and v
(6)
d (Bd) obtained via this method

agree with the more general result of Miles expressing v
(k)
d (Bd) for any k > −d

(see the consequence of Theorem 220 in Chapter 4).

3.3.6 Polygon triangle even area moments
By similar treatment as before, we can find an explicit formula for v(k)

2 (K2) with
even k in terms of planar moments

ar,s =
∫︂
K2
xrys dxdy (3.89)
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for any planar shape K2 (possibly not convex). By Equation (3.34), we have
v

(k)
2 (K2) = e

(k)
2 /(vol2 K2)3+k, where e(k)

2 is given by Equation (3.45) as a sum over
Ek,d tables. Hence

v
(k)
2 (K2) = 2−k

(vol2 K2)3+k

∑︂
τ∈Ek,2

w(τ) sgn τ. (3.90)

Tables Ek,2 consist of three columns and k rows. Each row is a permutation of
{0, 1, 2}. For each τ ∈ Ek,2, the weight w(τ) is equal to a product of three ars’s
(for each column) such that r is the number of 1’s and s is the number of 2’s in
this column. Let E(ijpq)

k,2 ⊂ Ek,2 be the subset of tables with i ones and p twos in
the first column and j ones and q twos in the second column and denote E(ijpq)|l

k,2

as tables E(ijpq)
k,2 whose total number of (012), (201), (210) rows is l. Table 3.11

below shows the number of specific permutations appearing in any τ ∈ E(ijpq)|l
k,2 .

row (012) (201) (210) (021) (102) (120)
sign + + − − − +

count l − p l − j j − l + p k − i− l k − l − q i− k + l + q

Table 3.11: Structure of E
(ijpq)|l
k,2 tables

For any τ ∈ E(ijpq)|l
k,2 , we have w(τ) = ai,paj,qak−i−j,k−p−q and sgn τ = (−1)i+j+p+q+l.

Therefore, we deduce that

v
(k)
2 (K2) = 2−k

(vol2 K2)3+k

k∑︂
p=0

k−p∑︂
q=0

k∑︂
j=0

k−j∑︂
i=0

cijpqkai,paj,qak−i−j,k−p−q, (3.91)

where

cijpqk =
∑︂

τ∈E(ijpq)
k,2

sgn τ =
k∑︂
l=0

(−1)i+j+p+q+l|E(ijpq)|l
k,2 |. (3.92)

The number of E(ijpq)|l
k,2 tables is equal to the number of placements of specific

permutations into rows. By simple combinatorial argument, we deduce that

|E(ijpq)|l
k,2 | = k!

(l−j)!(l−p)!(j+p−l)!(k−i−l)!(k−q−l)!(l+i+q−k)! (3.93)

and thus

cijpqk =
min(k−i,j+p,k−q)∑︂
l=max(j,p,k−q−i)

(−1)i+j+p+q+lk!
(l−j)!(l−p)!(j+p−l)!(k−i−l)!(k−q−l)!(l+i+q−k)! .

(3.94)
Note that this result can be also derived more directly with the help of random
variables. Let Vi = [Xi, Yi] ∼ Unif(K2), i ∈ {0, 1, 2} be random points selected
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from K2 independently. Note that E [Xr
i , Y

s
i ] = ar,s/ vol2 K, i ∈ {1, 2, 3}. For the

area ∆2 of the convex hull conv(V0,V1,V2), we have

∆2 = 1
2

⃓⃓⃓⃓
⃓⃓⃓det

⎛⎜⎝X0 Y0 1
X1 Y1 1
X2 Y2 1

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓= 1

2 |X0Y1+X1Y2+X2Y0−X1Y0−X2Y1−X0Y2| .

(3.95)
By multinomial formula, we get for even k,

v
(k)
2 (K2)=E

[︃(︂
∆2

vol2 K2

)︂k]︃
= 2−k

(vol2 K2)k E (X0Y1+X1Y2+X2Y0−X1Y0−X2Y1−X0Y2)k

= 2−k

(vol2 K2)kE
∑︂

k1+···+k6=k

(−1)k4+k5+k6k!
k1!k2!k3!k4!k5! (X0Y1)k1(X1Y2)k2(X2Y0)k3(X1Y0)k4(X2Y1)k5(X0Y2)k6

= 2−k

(vol2 K2)k
∑︂

k1+···+k6=k

(−1)k4+k5+k6k!
k1!k2!k3!k4!k5! E[Xk1+k6

0 Y k3+k4
0 ]E[Xk2+k4

1 Y k1+k5
1 ]E[Xk3+k5

2 Y k2+k6
2 ]

= 2−k

(vol2 K2)k+3

∑︂
k1+···+k6=k

(−1)k4+k5+k6k!
k1!k2!k3!k4!k5! ak1+k6,k3+k4ak2+k4,k1+k5ak3+k5,k2+k6 ,

(3.96)

which is precisely Equation (3.91).
Example 219. Let Uαβ

2 = conv([α, 0], [0, β], [1, 0], [0, 1]) with α, β ∈ (0, 1) be the
canonical truncated triangle having vol2(Uαβ

2 ) = 1
2(1− αβ). Hence, for even k,

v
(k)
2 (Uαβ

2 ) = 8 k!
(1− αβ)3+k

k∑︂
p=0

k−p∑︂
q=0

k∑︂
j=0

k−j∑︂
i=0

cijpqkai,paj,qak−i−j,k−p−q, (3.97)

where, by inclusion/exclusion, by scaling and by Remark 277, we have

ars =
∫︂
Uαβ2

xrys dxdy = (1−αr+1βs+1)
∫︂
T2
xrys dxdy = r!s!1−α

r+1βs+1

(2 + r + s)! , (3.98)

from which we obtain when k = 2 and k = 4,

v
(2)
2 (Uαβ

2 ) =

{︄
α4β4 − 8α3β3 + 8α3β2 − 4α3β + 8α2β3

−10α2β2 + 8α2β − 4αβ3 + 8αβ2 − 8αβ + 1

}︄
72(1− αβ)4 , (3.99)

v
(4)
2 (Uαβ

2 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α6β6−6α5β−6αβ5+18αβ4+32αβ2−19αβ+1
−31αβ3 − 19α5β5 + 32α5β4 − 31α5β3 + 18α5β2

−31α3β + 32α4β5 − 47α4β4 + 46α4β3 − 34α4β2

+18α4β − 31α3β5 + 46α3β4 − 50α3β3 + 46α3β2

+18α2β5 − 34α2β4 + 46α2β3 − 47α2β2 + 32α2β

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
900(1− αβ)6 . (3.100)
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4. Odd Volumetric Moments
In this chapter, we are going to investigate how we can deduce polytopes Pd when
k is odd and d = 3 and higher.

4.1 Summary of known and new results

4.1.1 Known results
Extending the work of Crofton, Hostinský [36, p. 22–26] considered and solved
many problems concerning geometric probability. One of them is the ball tetra-
hedron picking, which was the first metric moment obtained in d = 3, it reads

v
(1)
3 (B3) = 9

715 . (4.1)

The result was generalised to higher dimensions by Kingman [40]. For the mean
volume of a d-simplex picked from a d-ball, Kingman got

v
(1)
d (Bd) =

2dΓ2
(︂

(d+1)2

2

)︂
Γd+1(d+ 1)

(d+ 1)d−1 Γ((d+ 1)2) Γ2(d+1)
(︂
d+1

2

)︂ . (4.2)

The result above can be obtained as a special case of even more general formula
by Miles [48, p. 363, Eq. (29)]

Theorem 220. [Miles, 1971] Denote V (i,j)
d as the r = i+ j − 1 dimensional

content (volr) of an r-simplex formed by a convex hull of randomly selected
i points from the interior and j points from the surface of Bd (ball with unit
radius). If 2 ≤ r ≤ d+ 1, then for k = 1, 2, 3, . . .

E
[︃(︂
V

(i,j)
d

)︂k]︃
= 1
r!k

(︄
d

d+k

)︄i Γ
(︂

(r+1)(d+k)
2 − j + 1

)︂
Γ
(︂

(r+1)d+rk
2 − j + 1

)︂
⎛⎝ Γ

(︂
d
2

)︂
Γ
(︂
d+k

2

)︂
⎞⎠r r−1∏︂

l=1

Γ
(︂
d−r+k+l

2

)︂
Γ
(︂
d−r+l

2

)︂ .

As a consequence of Miles’ formula, we get for d-ball volumetric moments,

v
(k)
d (Bd)=

⎛⎝Γ
(︂
d
2 +1

)︂
πd/2d!

⎞⎠k(︄ d

d+k

)︄d+1 Γ
(︂

(d+1)(d+k)
2 +1

)︂
Γ
(︂
d(d+k+1)

2 +1
)︂
⎛⎝ Γ

(︂
d
2

)︂
Γ
(︂
d+k

2

)︂
⎞⎠d d−1∏︂

l=1

Γ
(︂
k+l

2

)︂
Γ
(︂
l
2

)︂ . (4.3)

Table 4.1 shows odd volumetric moments obtained by this formula for small values
of k (even volumetric moments for k = 2, 4, 6 are already shown in Table 3.1).

v
(k)
d (Bd) k = 1 k = 3 k = 5 k = 7

d = 2 35
48π2

1001
6400π4

138567
2007040π6

1062347
24772608π8

d = 3 9
715

3
29393π2

1
475456π4

63
909788000π6

d = 4 676039
3888000π4

73465381
212425113600π8

192875738341
91746673612554240π12

32283434353859
1403572817879673864192π16

d = 5 20000
90751353

3125
390325604864π4

2025
1929127875659776π8

2625
9466435811358343168π12

Table 4.1: Selected values of v
(k)
d (Bd) with odd k and d ≤ 5.
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4.1. Summary of known and new results

Less is known about polytopes. In two dimensions, however, Buchta and Reitzner
[19] found a formula expressing v(1)

n (P2) for any convex polygon P2.

In three dimensions, there was a famous difficult problem proposed by Klee [41]
and popularised by Blaschke, which concerns finding v(1)

3 (T3), the mean volume of
a tetrahedron formed by four uniformly selected random points from the interior
of a fixed unit volume tetrahedron. The first attempt was made by Reed. In
[59], he uses the Crofton reduction technique [61] which enables him to express
the exact value of v(1)

3 (T3) = V3333 as a linear combination of mean volumes of
four irreducible configurations (3320), (2222), (3311), (3221), in which the points
forming the random tetrahedron are chosen from sets of lower dimensions.

• (3320) : two points inside, one on a face and the fourth being a vertex,
• (2222) : points on faces only, one on each face,
• (3311) : two points inside and two on the opposite edges,
• (3221) : one point inside, two points on adjacent faces and the fourth being

a vertex.
The specific form of the linear combination can be deduced as an easy exercise
from the Crofton Reduction Technique developed in Chapter 1. First, we con-
struct a reduction diagram corresponding to the aforementioned configurations
(Figure 4.1 below). In this diagram, we also included the position of the scaling
point C in cases reduction is possible. The arrows indicate which configurations
reduce to which. Each arrow is labeled by a roman numeral corresponding to a
given reduction equation in the system of reduction equations.

* *

*

*

*

*

*

Figure 4.1: All different (abcd) sub-configurations in T3

The full system obtained by the Multivariate Crofton Reduction Technique is

I : 3V3333 = 4 · 3(V3332 − V3333)
II : 3V3332 = 3 · 3(V3322 − V3332) + 2(V3331 − V3332),

III : 3V3331 = 3 · 3(V3321 − V3331) + 1(V3330 − V3331)
IV : 3V3322 = 2 · 3(V3222 − V3322) + 2 · 2(V3321 − V3322)
V : 3V3330 = 3 · 3(V3320 − V3330)

VI : 3V3321 = 2 · 3(V3221 − V3321) + 2(V3311 − V3321) + 1(V3320 − V3321)
VII : 3V3222 = 3(V2222 − V3222) + 3 · 2(V3221 − V3222)

Solving the system for V3333, we get,
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Chapter 4. Odd Volumetric Moments

V3333 = 27V2222

455 + 108V3221

455 + 18V3311

455 + 12V3320

455 . (4.4)

Reed was, however, only able to express V3320 = 3/64 in a closed form (he also
attempted to find V2222 but obtained an erroneous value). The remaining config-
urations were only solved by Mannion [44] using a clever handling of improper
integrals. Their exact values are V2222 = 23

486 + 2π2

6237 , V3221 = 11
216 −

π2

3465 and
V3320 = 7

144 −
π2

2310 . As a consequence, Mannion concluded that

v
(1)
3 (T3) = 13

720 −
π2

15015 ≈ 0.017398. (4.5)

However, Buchta and Reitzner [18] obtained this value earlier using the Efron
section formula [26], c.f. [46, p. 372], which relates the mean volume of a convex
hull of random points picked from a given body with an integral over section
planes. This integral over section planes can be then transformed, after some
nontrivial algebraic manipulations, into set of some calculable double integrals.
The same technique enabled Zinani [78] to deduce

v
(1)
3 (C3) = 3977

21600 −
π2

2160 ≈ 0.01384277. (4.6)

The derivation of v(1)
3 (C3) itself is straightforward, but at the same time unworldly

difficult, containing millions of intermediate integrals necessary to solve (to do so,
Zinani used the package Mathematica 4.0). No other values of odd volumetric
moments in three dimensions were known.

In higher dimensions, there were no results for polytopes. The Efron formula
completely breaks down because of the existence of cyclic polytopes.

However, Efron’s formula is not the only approach to volumetric moments. The
original method by Reed and Mannion to obtain v

(1)
3 (T3) was the Crofton’s re-

duction technique. Another derivation of v(1)
3 (T3) and v

(1)
3 (C3) which appeared

recently and was not using Efron’s formula (but equally difficult) was due to Philip
[52, 53]. As we shall see later in this thesis, there is yet another way. Had it not
been for Philip’s work, the author of this thesis would not have been convinced
that there might still be another method for obtaining volumetric moments.

4.1.2 New results
The objective of this section is to extend the number of polytopes for which the
volumetric moments are expressed exactly and to present the method to find it
efficiently. The key approach is the method of section integration. That is, instead
of integrating over points, we integrate over a section in the spirit of Blaschke-
Petkantschin formula (see Appendix B). In fact, there are two approaches. The
first is based on the Efron section formula, which enables to deduce v(1)

n (Pd) for
any integer n ≥ d in dimensions d = 2 and d = 3 (see Theorems 234 and 235).
Efron’s approach will be discussed later in Chapter 5. As there is no analog of
the Efron section formula for higher moments and dimensions, we might use the
second section integral approach applicable to volumetric moments v(k)

d (Kd) for
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4.1. Summary of known and new results

any k (picking a d-simplex from a d-dimensional body Kd). The second approach
is based on base-height splitting (Theorem 221) which is discussed in this chapter.

4.1.3 Three dimensions
First, we found higher volumetric moments in the tetrahedron, cube, and octa-
hedron. That is v(k)

3 (T3), v(k)
3 (C3) and v

(k)
3 (O3). The results are summarised in

Table 4.2 below.

P3 v
(1)
3 (P3) v

(3)
3 (P3) v

(5)
3 (P3)

T3
13
720 −

π2

15015
733

12600000 + 79π2

2424922500
5125739

4356374400000 −
547π2

8943995970000

C3
3977

216000 −
π2

2160
8411819

450084600000 −
π2

3402000
306749173351π2

124439390208000−
2225580641145943786613
91479676456923955200000

O3
19297π2

3843840−
6619

184320
1628355709π2

19864965120000−
81932629

103219200000
6356364544399π2

1611922729697280000−
205491225433

5287025049600000

Table 4.2: Selected values of v
(k)
3 (T3), v

(k)
3 (C3) and v

(k)
3 (O3) for odd k.

Next, we considered finding v
(1)
3 (P3) for various other polyhedra P3 shown in

Table 4.3 (including the case of a tetrahedron and a cube).

T3, tetrahedron O3, octahedron tetrahedron
bipyramid

square
pyramid

C3, cube triangular
prism

triakis
tetrahedron* cuboctahedron

truncated
tetrahedron

rhombic
dodecahedron

tetrakis
hexahedron*

truncated
octahedron*

Table 4.3: Polyhedra for which we considered v
(1)
3 (K3)

To be honest with the reader, the polyhedra indicated by ∗ have not been com-
puted yet (section integrals are availible only in some particular genealogies), but
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Chapter 4. Odd Volumetric Moments

they will surely appear in an updated version of this thesis. Interestingly, in
contrast to the well known tetrahedron and cube case, v(1)

3 (P3) often involves
logarithms and special values of the so called dilogarithm function Li2(x) =∑︁∞
n=1 x

2/n2, especially

Li2
(︂

1
4

)︂
≈ 0.2676526390827326069191838284878115758198570669 . . . (4.7)

Table 4.4 below summarises all new results of exact mean tetrahedron volume
in various 3-bodies K3. For completeness, the previously known cases of a ball,
tetrahedron and a cube have been added as well. Each K3 is having volume one
or alternatively, the right column displays v(1)

3 (K3).

K3 v
(1)
3 (K3)

ball, [36]
0 .012587413

9
715

rhombic
dodecahedron
0.012938482

2421179003623
17933819904000 + 37061863π2

29889699840 −
9406373047 ln 2

9340531200

− 1757220593 ln2 2
2490808320 + 282589831 ln 3

283852800 −
6078271 Li2( 1

4)
8515584

cuboctahedron
0.013002516

117410162173
525525000000 + 8752199π2

2402400000 −
192940695481 ln 2

105105000000

− 318759601 ln2 2
250250000 + 506316394917 ln 3

280280000000 −
648098487 Li2( 1

4)
500500000

octahedron
0.013637411

19297π2

3843840 −
6619

184320

cube, [78]
0 .013842776

3977
216000 −

π2

2160

truncated
tetrahedron
0.014845102

35604506258521
162358039443600 −

13447020779π2

96641690145 + 9972537226592 ln 2
3382459155075 + 3485442712 ln2 2

1400604205

− 8953623027 ln 3
7884520175 −

53493528168 ln 2 ln 3
32213896715 + 53162662164 Li2( 1

4)
32213896715

triangular
bipyramid

0.015082427

1712190037
16812956160 + 81471636487π2

907899632640 −
185777703053 ln 2

50438868480 −
909434448983 ln2 2

121053284352

+ 3498264683 ln 3
2401850880 + 20912895 ln 2 ln 3

2050048 − 1887867 ln2 3
585728 − 62045573287Li2( 1

4)
57644421120

triangular prism
0.015357705

1859
116640 −

π2

17010

square pyramid
0.015782681

941π2

72072 −
977
8640

tetrahedron,[18]
0 .017398239

13
720 −

π2

15015

Table 4.4: Mean tetrahedron volume v
(1)
3 (K3) in various bodies K3

4.1.4 Higher dimensions
Also, our another goal is to present a new technique and deduce the values of
v

(k)
d (Pd) for various odd k and d = 3, 4, 5 in the most elementary way (for even k,

they are trivial). The results for Td are shown in Table 4.5.
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4.1. Summary of known and new results

v
(1)
d (Td)

d = 4 97
27000 −

2173π2

52026975

d = 5 2207
3265920−

244129π2

14522729760 + 73522π4

541513323351

d = 6 26609
217818720 −

3396146609π2

621871356506400 + 1318349152898π4

12180206401298390455

v
(3)
d (Td)

d = 4 1955399
3403417500000 + 63065881π2

39669996140775000

d = 5 362173019
98363448852480000 + 10217818563857π2

557436796045056999751680 + 602363516243π4

569934065465972279392320

v
(5)
d (Td)

d = 4 12443146181
9803685146371200000−

1262701803371π2

3557043272871373325040000

Table 4.5: Selected values of v
(k)
d (Td) for odd k and d = 4, 5, 6.

In higher dimensions in general, other higher order polylogarithm functions will
appear, that is Lis(x) = ∑︁∞

n=1 x
n/ns. As a consequence, in four dimensions for

example, many exact formulae involve Apéry’s constant (which coincides with
Li3(1)):

ζ(3) =
∞∑︂
n=1

1
n3 ≈ 1.20205690315959428539973816151, . . . (4.8)

An example is the volumetric moments of C4, which are shown in Table 4.6.

v
(k)
4 (C4)

k = 1 31874628962521753237
1058357013719040000000 −

26003π2

1399680000 + 610208 ln 2
1913625 −

536557ζ(3)
2592000

k = 3 19330626155629115959
1682723192209145856000000−

52276897π2

216801070940160000 + 10004540239 ln 2
77977156950000−

6155594561ζ(3)
73741860864000

Table 4.6: Values of v
(k)
4 (C4) for k = 1, 3.
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4.2 Canonical section integral

Theorem 221. Let Kd be a d-dimensional convex body, x′ = (x1, . . . ,xd) a
collection of d points in Kd and σ = A(x′) ∈ A(d, d − 1) be a hyperplane
parametrised by η = (η1 . . . , ηd)⊤ ∈ Rd as x ∈ σ ⇔ η⊤x = 1, then

v
(k)
d (Kd) = (d− 1)!

dk

∫︂
Rd\K◦

d

v
(k+1)
d−1 (σ ∩Kd) ζd+k+1

d (σ)ι(k)
d (σ)λd(dη) (4.9)

for any real k > −1, where

ζd(σ) = vold−1(σ ∩Kd)
∥η∥ voldKd

, ι
(k)
d (σ) =

∫︂
Kd

|η⊤x− 1|kλd(dx) (4.10)

and K◦
d = {x ∈ Rd |x⊤y ≤ 1,y ∈ Kd} is the polar body of Kd.

Proof. Let X = (X0, . . . ,Xn) be a collection of random n + 1 i.i.d. points taken
uniformly from Kd, let Hn = conv(X) be their convex hull and ∆n = voldHn,
then we have in general (n ≥ d)

v(k)
n (Kd) = E [∆k

n]
(voldKd)k

. (4.11)

When n = d, Hd is almost surely a d-simplex. That means that any d-tuple of
points Xi from X form a facet. Let X′ = (X1, . . . ,Xd), σ = A(X′) as in the
statement of the theorem and let distσ(X0) be the distance from σ to the point
X0, then by base-height splitting,

∆d = 1
d

distσ(X0)∆d−1, (4.12)

where ∆d−1 = vold−1 conv(X′). See Figure 4.2 below.

Figure 4.2: Base-height splitting

Fixing X′, we get by conditioning,

v
(k)
d (Kd) = E [E [distkσ(X0) | X′ ]∆k

d−1]
dk(voldKd)k

, (4.13)

where
E [distkσ(X0) | X′ ] = 1

voldKd

∫︂
Kd

distkσ(x0)λd(dx0) (4.14)

is the k-th distance moment from (fixed) σ. If σ is parametrised Cartesianely,
that means by η = (η1, . . . , ηd)⊤ such that x ∈ σ ⇔ η⊤x0 = 1, we may write
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4.2. Canonical section integral

distσ(x0) = |η⊤x0 − 1|/∥η∥ (4.15)

and thus

E [distkσ(X0) | X′ ] = 1
∥η∥k voldKd

∫︂
Kd

|η⊤x0 − 1|kλd(dx0). (4.16)

Note that since E [distkσ(X0) | X′ ] is only a function of σ, we may use Blaschke-
Petkantschin formula in Cartesian parametrisation (Corollary 296.2), that is

E
[︂
g(σ)∆k

d−1

]︂
=(d− 1)!(voldK)k+1

∫︂
Rd\K◦

d

v
(k+1)
d−1 (σKd)ζd+k+1

d (σ)g(σ)∥η∥kλd(dη),

where σKd = σ ∩ Kd. Selecting g(σ) = E [distkσ(X0) | X′ ] and by definition of
ι
(k)
d (σ), Equation (4.13) then becomes the desired assertion of the theorem. ■

4.2.1 Limit behaviour

Lemma 222. For any k > −1, we can write in terms of geometric quantities

ι
(k)
d (σ) = ∥η∥k

∫︂ ∞

−∞
vold−1((σ + tη̂) ∩Kd) |t|k dt. (4.17)

Proof. By definition, we have for a given plane σ ∈ A(d, d− 1) parametrised by
a corresponding η ∈ Rd \K◦

d ,

ι
(k)
d (σ) =

∫︂
Kd

|η⊤x− 1|kλd(dx). (4.18)

Let η̂ = η/∥η∥ be the unit normal vector perpendicular to σ. We can decompose
any point x ∈ Kd as x = y + tη̂ for some t ∈ R and some y ∈ σ, which yields

|η⊤x− 1| = |η⊤y− 1 + tη⊤η̂| = |t|∥η∥. (4.19)

By Fubini’s theorem, we get, plugging into ι(k)
d (σ),

ι
(k)
d (σ) = ∥η∥k

∫︂ ∞

−∞

∫︂
σ∩Kd

|t|k1y+tη̂∈Kd λd−1(dy) dt. (4.20)

The lemma follows by integrating y over σ ∩Kd. ■

Remark 223. Let r ∈ R \ {0}, we define rσ as another section plane whose
Cartesian parametrization vector is η/r (the plane σ gets scaled by r). Then
σ + tη̂ = (1 + t∥η∥)σ and also

ζd((1 + t∥η∥)σ) = |1 + t∥η∥|vold−1((σ + tη̂) ∩Kd)
∥η∥ voldKd

. (4.21)

By substitution r = 1 + t∥η∥ and by Lemma 222, we may also write ι(k)
d (σ)

in terms of ζd(σ) for any k > −1 as

ι
(k)
d (σ) = voldKd

∫︂ ∞

−∞

ζd(rσ)
|r|

|r − 1|k dr. (4.22)

Finally, let us obtain the limit behaviour of v(k)
d (Kd) when k → (−1)+.
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Proposition 224.

lim
k→(−1)+

(1 + k) v(k)
d (Kd) = 2 d! voldKd

∫︂
Rd\K◦

d

ζd+1
d (σ)λd(dη). (4.23)

Proof. The function ι(k)
d (σ) =

∫︁
Kd
|η⊤x− 1|kλd(dx) becomes singular as k → −1

because of the points on σ which satisfy η⊤x − 1 = 0. For any fixed (small)
ε > 0, we get by Lemma 222 and by continuity of vold−1((σ + tη̂) ∩Kd),

ι
(k)
d (σ) =

∫︂ ε

−ε
vold−1((σ + tη̂) ∩Kd)|t|k dt+O(1)

= 2 vold−1(σ ∩Kd)
∥η∥(k + 1) +O(1) = 2ζd(σ) voldKd

k + 1 +O(1).
(4.24)

as k → (−1)+. Since ι(k)
d (σ) is the only singular term in v

(k)
d (Kd) when k ap-

proaches −1 (see Theorem 221), the statement of the proposition follows. ■

Alternative proof. Alternatively, let γ = {tη̂ | t ∈ R} be a line passing through
the origin in the direction of η̂ and L±(η̂,y) = vol1(K±

d ∩γ) be the lengths of line
segments of γ in Kd below and above the section plane σ, respectively. Then,
integrating out t in Equation (4.20), we get for any k > −1,

ι
(k)
d (σ) = 1

1 + k
∥η∥k

∫︂
σ∩Kd

Lk+1
+ (η̂,y) + Lk+1

− (η̂,y)λd−1(dy), (4.25)

from which we get for the limit limk→(−1)+ ι
(k)
d (σ) = 2 vold−1(σ ∩Kd)/∥η∥. ■

Remark 225. In terms of invariant measures (see Lemma 293), we obtain

lim
k→(−1)+

(1 + k) v(k)
d (Kd) = ωd d!

volddKd

∫︂
A(d,d−1)

vold+1
d−1(σ ∩Kd)µd−1(dσ). (4.26)

4.2.2 Symmetries and parametrization of configurations
By affine invariancy of volumetric moments and when Kd = Pd is a polytope, we
may take advantage of its symmetries (see Appendix C) to obtain

v
(k)
d (Pd) =

∑︂
C∈C(Pd)

wC v
(k)
d (Pd)C, (4.27)

where the sum is carried over all representants C in the set of all equivalence
classes C(Pd) of selections of vertices of Pd which could be separated by some
section plane σ and which are equivalent under affine transformations (section-
equivalent configurations). The weight wC then represents the size of the orbit of
C (see example of C(O3) in Table C.6). Lastly,

v
(k)
d (Pd)C = (d− 1)!

dk

∫︂
(Rd\P ◦

d
)C
v

(k+1)
d−1 (σ ∩Kd) ζk+d+1

d (σ)ι(k)
d (σ)λd(dη), (4.28)

where (Rd \ P ◦
d )C is the subset of Rd \ P ◦

d of all η-parametrisations of planes σ
which only cut out vertices found in the given configuration C. It may seem that
finding the precise integration domains (Rd \ P ◦

d )C for various configurations is
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4.2. Canonical section integral

complicated. In fact, it is relatively easy. Recall that a configuration C = Pd(S)
is defined by the property of σ separating some given vertices from the set S
out of the set of all vertices V of the polytope Pd. The domain (Rd \ P ◦

d )C in
(η1, . . . , ηd)⊤ is then the unique solution of the following inequalities

η⊤v < 1 for all v ∈ S, η⊤v > 1 for all v ∈ V \ S (4.29)

or inequalities with <, > flipped (we then take the union of those two options).
Note that σ always separates Pd into disjoint union P+

d ⊔ P−
d , where

P+
d = {x ∈ Pd |η⊤x < 1}, P−

d = {x ∈ Pd |η⊤x > 1}. (4.30)

We have vold Pd = vold P+
d + vold P−

d trivially.

Remark 226. Fundamental Lemma of Convex Geometry tells us that a poly-
tope is described equivalently either by linear inequalities or as a convex hull
of its vertices (H- and V- representation equivalence). Hence, for example by
linear programming techniques, we can deduce the vertices of P+

d from the
inequalities for P+

d and vice versa. The same applies for the polytope σ ∩ Pd
whose number of vertices is nC by definition.

4.2.3 Iota function splitting
Splitting Pd into P+

d ⊔ P−
d integration domains, we obtain that the computation

of ι(k)
d (σ) is also straightforward as

ι
(k)
d (σ) =

∫︂
P+
d

(1− η⊤x)kλd(dx) +
∫︂
P−
d

(η⊤x− 1)kλd(dx) (4.31)

for any real k > −1. When k is an integer, let us denote

ι
(k)
d (σ)N =

∫︂
Pd

(η⊤x− 1)kλd(dx), (4.32)

then, when k is even, we have ι(k)
d (σ) = ι

(k)
d (σ)N. For any general integer k, we

get by inclusion/exclusion

ι
(k)
d (σ) = ι

(k)
d (σ)N − (1− (−1)k)

∫︂
P+
d

(η⊤x− 1)kλd(dx)

= (−1)kι(k)
d (σ)N + (1− (−1)k)

∫︂
P−
d

(η⊤x− 1)kλd(dx).
(4.33)

4.2.4 Geometric interpretation of iota
Let M, M+ and M− be the centerpoint (centre of mass) of Pd, P+

d and P−
d ,

respectively. By mass balance, those centrepoints satisfy the vectorial equation

M vold Pd = M+ vold P+
d + M− vold P−

d . (4.34)
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On the other hand, by the definition of the centrepoints,
∫︁
Pd

xλd(dx) = M vold Pd
(similarly for M+ and M−). Hence, we get for the iota function by Equations
(4.31), (4.32) and (4.33) that ι(1)

d (σ)N = (η⊤M− 1) vold Pd and

ι
(1)
d (σ) = (1− η⊤M+) vold P+

d + (η⊤M− − 1) vold P−
d ,

= (η⊤M− 1) vold Pd + 2(1− η⊤M+) vold P+
d

= (1− η⊤M) vold Pd + 2(η⊤M− − 1) vold P−
d

(4.35)

For higher values of k, we are no longer able to express ι(k)
d (σ) using centrepoints.

However, we can always express it in terms of geometric quantities (see Lemma
222)

4.2.5 Zeta section function

Lastly, note that ζd(σ) is a rational function of η. To see this, we know that
vold P+

d is a rational function in (η1, . . . , ηd)⊤. From homogeneity (Remark 297),

ζd(σ) = − 1
vold Pd

d∑︂
j=1

ηj
∂ vold P+

d

∂ηj
= 1

vold Pd

d∑︂
j=1

ηj
∂ vold P−

d

∂ηj
(4.36)

which is also rational since differentiation preserves rationality. Note that, de-
noting Γ+

d (σ) = vold P−
d / vold Pd and Γ−

d (σ) = vold P−
d / vold Pd, we can write

ζd(σ) = −
d∑︂
j=1

ηj
∂Γ+

d (σ)
∂ηj

=
d∑︂
j=1

ηj
∂Γ−

d (σ)
∂ηj

. (4.37)

Alternatively, ζd(rσ) = r ∂
∂r

Γ+
d (rσ) = −r ∂

∂r
Γ−
d (rσ).

4.2.6 Line distance moments

Consider a trivial example of v(k)
1 (T1), that is the k-th moment of a random line

length. Parametrising η = (a)⊤, a > 1, we get ζ1(σ) = 1/a,

ι
(k)
1 (σ) =

∫︂ 1

0
|ax− 1|kdx = (a− 1)k+1 + 1

a(1 + k) (4.38)

and thus by Theorem 221 with R1 \ T ◦
1 = (1,∞) and λ1(dη) = da,

v
(k)
1 (T1) =

∫︂ ∞

1

(a− 1)k+1 + 1
ak+3(k + 1) da = 2

(1 + k)(2 + k) . (4.39)
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4.3 Two dimensions

4.3.1 Triangle area moments
As a toy model, which already includes the Sylvester problem as its special case, is
the derivation of volumetric moments v(k)

2 (T2) from the canonical section integral
formula (Theorem 221). We obtain values shown in Table 4.7. Note that we
already obtained those values in Chapter 1 via the Crofton Reduction Technique
(Table 1.13).

k 0 1 2 3 4 5 6 7 8 9

v
(k)
2 (T2) 1 1

12
1
72

31
9000

1
900

1063
2469600

403
2116800

211
2268000

13
2646000

2593
93915360

Table 4.7: Volumetric moments v
(k)
2 (T2) (triangle area moments)

First, from affine invariancy, v(k)
2 (T2) must be the same as v(k)

2 (T2), where

T2 = conv(0, e1, e2) = conv([0, 0], [1, 0], [0, 1]) (4.40)

is the canonical triangle. Trivialy, or by Proposition 276, we have vol2 T2 = 1/2! =
1/2. Let η = (a, b)⊤ be the Cartesian parametrisation of the line σ ∈ A(2, 1) such
that x ∈ σ ⇔ η⊤x = 1. We have ∥η∥ =

√
a2 + b2. Based on symmetries G(T2),

there is only one realisable configuration. Moreover, thanks to affine invariancy,
we can consider the only configuration I in C(T2). Table 4.8 shows specifically
which sets S of vertices are separated by a cutting plane σ. The corresponding
configurations in T2 are shown in Figure 4.3.

C I
S [0, 0]
wC 3

Table 4.8: Configurations C(T2). Figure 4.3: Configurations C(T2)

By Theorem 221 and for any C ∈ C(T2),

v
(k)
2 (T2)C = 1

2k
∫︂

(R2\T◦
2)C

v
(k+1)
1 (σ ∩ T2) ζk+3

2 (σ)ι(k)
2 (σ)λ2(dη), (4.41)

where

ζ2(σ) = vol1(σ ∩ T2)
∥η∥ vol2 T2

, ι
(k)
2 (σ) =

∫︂
T2
|η⊤x− 1|kλ2(dx). (4.42)

To ensure σ separates only the point [0, 0] in Configuration I, we must force the
plane intersection coordinates 1

a
, 1
b

to lie in the interval (0, 1). Or, by Equation
(4.29), we get a > 1 and b > 1 directly. Any way, that means (R2 \T◦

2)I = (1,∞)2

is our integration domain in a, b. See Figure 4.4.
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Figure 4.4: Configuration I in C(T2)

Denote
Tab2 = conv([0, 0], [1/a, 0], [0, 1/b]). (4.43)

The line σ splits T2 into disjoint union of two domains T+
2 ⊔ T−

2 , where the one
closer to the origin is precisely T+

2 = Tab2 . Therefore,

ι
(k)
2 (σ) =

∫︂
Tab2

(1− η⊤x)kλ2(dx) +
∫︂
T2\Tab2

(η⊤x− 1)kλ2(dx). (4.44)

This integral is easy to compute. In fact, for any real k > −1, we get

ι
(k)
2 (σ) = b(a− 1)k+2 − a(b− 1)k+2 + a− b

ab(a− b)(1 + k)(2 + k) . (4.45)

Note that σ ∩ T2 = conv([1/a, 0], [0, 1/b]) and thus

vol1(σ ∩ T2) =
√
a2 + b2

ab
= ∥η∥

ab
(4.46)

and hence
ζ2(σ) = vol1(σ ∩ T2)

∥η∥ vol2 T2
= 2
ab
. (4.47)

Moreover, by affine invariancy of volumetric moments and using line distance
moments (Equation (4.39)),

v
(k+1)
1 (σ ∩ T2) = v

(k+1)
1 (T1) = 2

(2 + k)(3 + k) . (4.48)

Alternatively, we can obtain ι
(k)
2 (σ) directly from ζ2(σ). First, more generally

and without the loss of generality assuming a > b > 1, we have for any s ∈ (0, a),

ζ2(sσ) = s
vol1(sσ ∩ T2)
∥η∥ vol2 T2

= 2s2

ab
1s<b + 2s(a−s)

a(a−b) 1b<s<a, (4.49)

from which. by Equation (4.22),

ι
(k)
2 (σ) =

∫︂ a

0

(︂
s
ab
1s<b + a−s

a(a−b)1b<s<a
)︂
|s− 1|k ds. (4.50)

By Equation (C.118) and by affine invariancy,

v
(k)
2 (T2) =

∑︂
C∈C(T2)

wC v
(k)
2 (T2)C = 3v(k)

2 (T2)I, (4.51)
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from which, we get by Equation (4.41) for any real k > −1,

v
(k)
2 (T2) = 48

∫︂ ∞

1

∫︂ ∞

1

b(a− 1)2+k − a(b− 1)2+k + a− b
ak+4bk+4(a− b)(1 + k)(2 + k)2(3 + k) dadb. (4.52)

Let a = 1/x and b = 1/y, then, after some simple manipulations,

v
(k)
2 (T2) = 48

(1+k)(2+k)2(3+k)

∫︂ 1

0

∫︂ 1

0

(1− x)2+k
(︂
x2+k − y2+k

)︂
x− y

dx dy (4.53)

for any real k > −1. This integral can be computed explicitly when k is an
integer. Dividing the numerator by x− y, we get

v
(k)
2 (T2) = 48

(1 + k)(2 + k)2(3 + k)

k+1∑︂
j=0

∫︂ 1

0

∫︂ 1

0
(1− x)2+kxk−j+1yj dx dy

= 48
(1 + k)(2 + k)2(3 + k)

k+1∑︂
j=0

1
j + 1

∫︂ 1

0
(1− x)2+kxj dx,

(4.54)

which is, of course, a Beta integral. Therefore, for any non-negative integer k,

v
(k)
2 (T2) = 48

(2 + k)(3 + k)

k+1∑︂
j=0

k! (k + 1− j)!
(j + 1)(2k − j + 4)! . (4.55)

Alternatively, note that the integral

Ik =
∫︂ 1

0

∫︂ 1

0

x2+k(1− x)2+k − y2+k(1− y)2+k

x− y
dxdy (4.56)

vanishes, since by substitution x → 1 − x and y → 1 − y, we get −Ik. Hence,
subtracting half of Ik from the integral in Equation (4.53) and by symmetry,

v
(k)
2 (T2) = 24

(1+k)(2+k)2(3+k)

∫︂ 1

0

∫︂ 1

0

(x− xy)2+k − (y − yx)2+k

x− y
dx dy. (4.57)

Rewriting the numerator using the formula A2+k −B2+k = ∑︁k+1
j=0 A

jBk+1−j,

v
(k)
2 (T2) = 24

(1+k)(2+k)2(3+k)

k+1∑︂
j=0

(︃∫︂ 1

0
xj(1− x)k+1−j dx

)︃2
. (4.58)

which is another Beta integral. Therefore, for any non-negative integer k,

v
(k)
2 (T2) = 24

(1 + k)(2 + k)2(3 + k)

k+1∑︂
j=0

j!2(k + 1− j)!2
(k + 2)!2 . (4.59)

The result for v(k)
2 (T2) is not new, in fact, it has been derived several times,

see Reed [59], Mathai [46, p. 391] or Alagar [2]. Finally, let us mention that
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that the particular case of even moments is easy to obtain independently also by
integrating even powers of the area over the unit triangle, see Figure 4.5 below.

Figure 4.5: Random triangle area ∆2 written as a determinant

In general, writing the expectation as an integral, we have for even k and xi =
(xi, yi)⊤, i = 1, 2, 3,

v
(k)
2 (T2) = 2k+3

∫︂
T3

2

∆k
2 dx0dx1dx2. (4.60)

Density

The density can be recovered from moments using inverse Mellin transform (see
appendix A.5). For the probability density f(s) of the random variable S = ∆2 =
∆2/ vol2 T2, we have by Equation (4.57)

M[f ] = v
(k−1)
2 (T2) = 24

k(1+k)2(2+k)

∫︂ 1

0

∫︂ 1

0

(x− xy)1+k − (y − yx)1+k

x− y
dx dy,

(4.61)
so formally,

f(s) = 24 I0I2
1I2M−1

[︄∫︂ 1

0

∫︂ 1

0

(x− xy)1+k − (y − yx)1+k

x− y
dx dy

]︄

= 24 I0I2
1I2

∫︂ 1

0

∫︂ 1

0

x2(1−y)2δ(s−x(1−y))−y2(1−x)2δ(s−y(1−x))
x− y

dxdy.
(4.62)

From Table A.5 (see Appendix A),

I0I2
1I2δ(s− α) =

α2 − s2 − 2αs ln α
s

2α3 1s<α. (4.63)

via which we can deduce, with α = x(1− y) and α = y(1− x),

f(s) = 12
∫︂ 1

0

∫︂ 1

0

(1− y)2x2 − s2 − 2s(1− y)x ln (1−y)x
s

x(1− y)(x− y) 1s<x(1−y)

−
(1− x)2y2 − s2 − 2s(1− x)y ln (1−x)y

s

y(1− x)(x− y) 1s<y(1−x) dx dy.
(4.64)

We can deduce that f(s) is nonzero only when s ∈ (0, 1). Evaluating this integral
is cumbersome. After a lot of simplifications, we arrive at the same formula as
derived in Chapter 1 on Crofton Reduction Technique (Equation (1.345)) namely
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f(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
12(1− s)− 6(1 + 24s+ 6s ln s) ln s
−12(1+26s)

√
1−4s argtanh

√
1−4s

−144s(1 + s)(π2

9 − argtanh2√1− 4s)

⎫⎪⎪⎬⎪⎪⎭ , 0 < s < 1/4,

⎧⎪⎪⎨⎪⎪⎩
12(1− s)− 6(1 + 24s+ 6s ln s) ln s
−12(1+26s)

√
4s−1(π3−arctan

√
4s−1)

−144s(1 + s)(π3 − arctan
√

4s− 1)2

⎫⎪⎪⎬⎪⎪⎭ , 1/4 ≤ s < 1.

(4.65)

4.3.2 Square area moments
As another example, we deduce the volumetric moments v(k)

2 (C2) from Theorem
221. We obtain values shown in Table 4.9.

k 1 2 3 4 5 6 7 8 9

v
(k)
2 (C2) 11

144
1
96

137
72000

1
2400

363
3512320

761
27095040

7129
870912000

61
24192000

83711
103038566400

Table 4.9: Volumetric moments v
(k)
2 (C2) (square area moments)

We may parametrise C2 with vol2 C2 = 1 as

C2 = conv([0, 0], [1, 0], [0, 1], [1, 1]), (4.66)

Let η = (a, b)⊤ be the Cartesian parametrisation of the line σ ∈ A(2, 1) such that
x ∈ σ ⇔ η⊤x = 1. We have ∥η∥ =

√
a2 + b2. Based on symmetries G(C2), there

are two configurations. Table 4.10 shows specifically which sets S of vertices are
separated by a cutting plane σ in which configurations in our local representation
of C2 above. Note that there is an ambiguity how to select those vertices as long
it is the same configuration.

C I II

S [0, 0] [0, 0]
[0, 1]

wC 4 2

Table 4.10: Configurations C(C2) in a local representation.

By Theorem 221 and for any C ∈ C(C2),

v
(k)
2 (C2)C = 1

2k
∫︂

(R2\C◦
2 )C

v
(k+1)
1 (σ ∩ C2) ζk+3

2 (σ)ι(k)
2 (σ)λ2(dη), (4.67)

where

ζ2(σ) = vol1(σ ∩ C2)
∥η∥ vol2 C2

, ι
(k)
2 (σ) =

∫︂
C2
|η⊤x− 1|kλ2(dx). (4.68)
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Configuration I

By Equation (4.29), we get the following set of inequalities which ensure σ sep-
arates only the point [0, 0],

0 < 1, a > 1, b > 1, a+ b > 1, (4.69)

hence, our a, b integration domain is (R2 \ C◦
2)I = (1,∞)2. Denote

Tab2 = conv([0, 0], [1/a, 0], [0, 1/b]), (4.70)

then the line σ splits C2 into disjoint union of two domains C+
2 ⊔ C−

2 , where the
one closer to the origin is precisely C+

2 = Tab2 . Therefore,

ι
(k)
2 (σ) =

∫︂
Tab2

(1− η⊤x)kλ2(dx) +
∫︂
C2\Tab2

(η⊤x− 1)kλ2(dx). (4.71)

This integral is easy to compute. In fact, for any real k > −1, we get

ι
(k)
2 (σ) = (a+ b− 1)k+2 − (a− 1)k+2 − (b− 1)k+2 + 1

ab(k + 1)(k + 2) . (4.72)

By Equation (4.47) from the P2 = T2 case,

ζ2(σ) = vol1(σ ∩ C2)
∥η∥ vol2 C2

= 1
ab

(4.73)

and by affine invariancy, as σ ∩ C2 is a line segment,

v
(k+1)
1 (σ ∩ C2) = v

(k+1)
1 (T1) = 2

(2 + k)(3 + k) . (4.74)

from which, we get by Equation (4.67) for any real k > −1,

v
(k)
2 (C2)I = 21−k

∫︂ ∞

1

∫︂ ∞

1

(a+b−1)k+2−(a−1)k+2−(b−1)k+2+1
ak+4bk+4(1 + k)(2 + k)2(3 + k) da db. (4.75)

Integrating out b and substituting a = 1/x and after some simplifications, we get

v
(k)
2 (C2)I = 21−k

(1 + k)(2 + k)2(3 + k)2

∫︂ 1

0

1− x2+k

1− x dx, (4.76)

for any real k > −1. When k is an integer, we get

v
(k)
2 (C2)I = 16Hk+2

(1 + k)(2 + k)2(3 + k)2 , (4.77)

where Hk = ∑︁k
j=1 1/j is the k-th harmonic number .
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Configuration II

By Equation (4.29), we get the following set of inequalities which ensure σ sep-
arates points [0, 0] and [0, 1],

0 < 1, a > 1, b < 1, a+ b > 1, (4.78)

however, by symmetry, we may additionally require b > 0. In fact, both options
b > 0 and b < 0 give the same factor since they correspond to two possibilities
where σ hits A([0, 0], [0, 1]). Therefore we only consider the following integration
half-domain (indicated by ∗)

(R2 \ C◦
2)∗

II = (1,∞)× (0, 1) (4.79)

and in the end multiply the result twice. The plane σ splits C3 into disjoint union
of two domains C+

3 ⊔ C−
3 , where the one closer to the origin can be described as

C+
2 = conv

(︄
[0, 0] ,

[︃1
a
, 0
]︃
,

[︄
1− b
a

, 1
]︄
, [0, 1]

)︄
, (4.80)

from which, by elementary geometry vol2 C+
2 = (2−b)/(2a) and as a consequence

of Equation (4.36),

ζ2(σ) = −a ∂
∂a

(︄
2− b

2a

)︄
− b ∂

∂b

(︄
2− b

2a

)︄
= 1
a
. (4.81)

Next, again, the following integrals

ι
(k)
2 (σ) =

∫︂
C+

2

(1− η⊤x)kλ2(dx) +
∫︂
C2\C+

2

(η⊤x− 1)kλ2(dx). (4.82)

are easy to compute for any real k > −1, we get

ι
(k)
2 (σ) = (a+ b− 1)k+2 − (a− 1)k+2 − (1− b)k+2 + 1

ab(k + 1)(k + 2) . (4.83)

and by affine invariancy, as σ ∩ C2 is again a line segment,

v
(k+1)
1 (σ ∩ C2) = v

(k+1)
1 (T1) = 2

(2 + k)(3 + k) . (4.84)

from which, we get by Equation (4.67) for any real k > −1 (counted twice!),

v
(k)
2 (C2)II = 4

2k
∫︂ ∞

0

∫︂ ∞

1

(a+b−1)k+2−(a−1)k+2−(1−b)k+2+1
ak+4b(1 + k)(2 + k)2(3 + k) da db. (4.85)

Integrating out a and after some simplifications, we get

v
(k)
2 (C2)II = 23−k

(1 + k)(2 + k)2(3 + k)2

∫︂ 1

0

1− b2+k

1− b db, (4.86)

for any real k > −1. When k is an integer, we get

v
(k)
2 (C2)II = 23−kHk+2

(1 + k)(2 + k)2(3 + k)2 . (4.87)
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Contribution from all configurations

By Equation (C.118),

v
(k)
2 (C2) =

∑︂
C∈C(C2)

wC v
(k)
2 (C2)C = 4v(k)

2 (C2)I + 2v(k)
2 (C2)II, (4.88)

which gives for any real k > −1,

v
(k)
2 (C2) = 24

2k(1 + k)(2 + k)2(3 + k)2

∫︂ 1

0

1− xk+2

1− x dx. (4.89)

For k being an integer, we get

v
(k)
2 (C2) = 24Hk+2

2k(1 + k)(2 + k)2(3 + k)2 =
24∑︁k+2

j=1
1
j

2k(1 + k)(2 + k)2(3 + k)2 . (4.90)

This result is also not new, see Reed [59] or Henze [35]. We can also deduce
this result independently from the Canonical section integral by using Crofton
Reduction Technique (see Section 1.6.2 in Chapter 1).

Density

The density can be recovered using inverse Mellin transform (see appendix A.5).
For the density f(s) of the random variable S = ∆2 = ∆2/ vol2 C2, we have by
Equation (4.89)

M[f ] = v
(k−1)
2 (C2) = 24

2k−1k(1 + k)2(2 + k)2

∫︂ 1

0

1− xk+1

1− x dx, (4.91)

so formally,

f(s)=24 I0I2
1I2

2M−1
[︄∫︂ 1

0

1− xk+1

2k−1(1−x)dx
]︄
=24 I0I2

1I2
2

∫︂ 1

0

δ(s− 1
2)−x2δ(s− x

2 )
1− x dx.

(4.92)
From Table A.5 (see Appendix A),

I0I2
1I2

2δ(s− α) =
(α− s)(α + 5s)− 2s(2α + s) ln α

s

4α3 1s<α. (4.93)

via which we can deduce, with α = 1/2 and α = x/2,

f(s) = 12
∫︂ 1

0

1− 20s2 + 8s− 8(s+ 1)s ln 1
2s

1− x 1
s<

1
2

−
x2 − 20s2 + 8sx− 8s(s+ x) ln x

2s
x(1− x) 1

s<
x
2

dx.
(4.94)

We can deduce that f(s) is nonzero only when s ∈ (0, 1/2). Calculating the
integral (for example, using Mathematica),

f(s) = 12
(︂
1− 2s− 25s2

)︂
− 16π2s(1 + s) + 12s2(5− 2 ln(2s))2

− 12
(︂
1 + 8s− 20s2

)︂
ln(1− 2s) + 96s(1 + s) Li2(2s),

(4.95)

where Li2(x) = ∑︁∞
n=1

xn

n2 is the dilogarithm function. This result is not new, see
Philip [55].
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4.3.3 General 2-body area moments

Note that for any convex 2-body K2, we have thanks to affine invariancy,

v
(k+1)
1 (σ ∩K2) = v

(k+1)
1 (T1) = 2

(2 + k)(3 + k) , (4.96)

provided of course σ ∩K2 ̸= ∅. Hence by Theorem 221

v
(k)
2 (K2) = 21−k

(2 + k)(3 + k)

∫︂
R2\K◦

2

ζk+3
2 (σ)ι(k)

2 (σ)λ2(dη), (4.97)

where

ζ2(σ) = vol1(σ ∩K2)
∥η∥ vol2 K2

, ι
(k)
2 (σ) =

∫︂
K2
|η⊤x− 1|kλ2(dx). (4.98)

Let us consider the special case when k = 1. By the geometrical interpretation
of ι(1)

2 (σ) (Equation (4.35)),

ι
(1)
2 (σ) = (1− η⊤M+) vol2 K+

2 + (η⊤M− − 1) vol2 K−
2 (4.99)

from which

v
(1)
2 (K2) = vol2K2

12

∫︂
R2\K◦

2

ζ4
2 (σ)

(︂
(1− η⊤M+)Γ+

2 (σ) + (η⊤M− − 1)Γ−
2 (σ)

)︂
λ2(dη),

(4.100)
where Γ+

2 (σ) = vol2 K+
2 / vol2 K2 and Γ−

2 (σ) = vol2 K−
2 / vol2 K2.

For higher moments, first, by polar coordinates, let η = η̂/q with q ∈ (0,∞) and
η̂ ∈ S1, so λ2(dη) = 1

q
dqσ2(dη̂). In a slight abuse of notation, we identity σ with

its closest point ξ from the origin. Hence σ = qη̂ and Equation (4.97) becomes

v
(k)
2 (K2) = 21−k

(2 + k)(3 + k)

∫︂
S1

∫︂ ∞

0
ζk+3

2 (qη̂)ι(k)
2 (qη̂) 1

q3 dq σ2(dη̂), (4.101)

Note that we can express ι
(k)
2 (qη̂) using the following geometric integral (By

Equation (4.22))

ι
(k)
2 (qη̂) = vol2 K2

∫︂ ∞

−∞

ζ2(rqη̂)
|r|

|r − 1|k dr. (4.102)

Therefore, we get

v
(k)
2 (K2) = 21−k vol2 K2

(2 + k)(3 + k)

∫︂
S1

∫︂ ∞

0

∫︂ ∞

−∞
ζk+3

2 (qη̂)ζ2(rqη̂) |s− 1|k

|r|q3 dr dq σ2(dη̂),

(4.103)
from which we can deduce the formula for density by inverse Mellin transform.
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Density

The density can be recovered using inverse Mellin transform. For its basic prop-
erties and techniques, see appendix A.5. In our case of two-dimensional bodies,
we have for the density f(s) of the random variable S = ∆2 = ∆2/ vol2 K2,

M[f ] = v
(k−1)
2 (K2) = 22−k

(1 + k)(2 + k)

∫︂
R2\K◦

2

ζk+2
2 (σ)ι(k−1)

2 (σ)λ2(dη), (4.104)

or by using Equation (4.103). We can write the formal inversion as

f(s) = vol2K2 I1I2M−1
[︄∫︂

S1

∫︂ ∞

0

∫︂ ∞

−∞
ζk+2

2 (qη̂)ζ2(rqη̂) |r − 1|k−1

2k−2|r|q3 dr dq σ2(dη̂)
]︄
.

(4.105)
From Table A.5 (see Appendix A),

I1I2M−1[αk−1] = I1I2δ(s− α) = sα−3(α− s)1s<α, (4.106)

we immediately get with α = 1
2 |r − 1|ζ2(qη̂),

f(s) = 8s vol2K2

∫︂
S1

∫︂ ∞

0

∫︂ ∞

−∞
ζ2(rqη̂) |r − 1|ζ2(qη̂)− 2s

|r|q3|r − 1|3 1s< 1
2 |r−1|ζ2(qη̂) dr dq σ2(dη̂).

(4.107)
Let us make a substitution r = 1 + t/q, we get

f(s) = 8s vol2K2

∫︂
S1

∫︂ ∞

0

∫︂ ∞

−∞
ζ2((q+t)η̂) |t|ζ2(qη̂)− 2sq

|q + t||t|3q
12sq<|t|ζ2(qη̂) dt dq σ2(dη̂).

(4.108)

4.4 Three dimensions

4.4.1 Tetrahedron odd volumetric moments

Let us investigate how we can obtain the volumetric moments v(k)
3 (T3). First,

since v(k)
3 (T3) is an affine invariant, then it must be the same as v(k)

3 (T3), where

T3 = conv(0, e1, e2, e3) = conv([0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]) (4.109)

is the canonical tetrahedron. By Proposition 276, we have vol3 T3 = 1/3! = 1/6.
Let η = (a, b, c)⊤ be the Cartesian parametrisation of σ ∈ A(3, 2) such that
x ∈ σ ⇔ η⊤x = 1. We have ∥η∥ =

√
a2 + b2 + c2. Based on symmetries G(T3),

there are two realisable configurations we need to consider (see its genealogy at
Figure 4.7 or Figure D.2 in Appendix D). Moreover, thanks to affine invariancy,
we can consider instead the two C(T3) configurations (see Table 4.11 below, Figure
shows the correspoding configurations on the non-deformed T3).
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4.4. Three dimensions

C I II

S [0, 0, 0] [0, 0, 0]
[0, 0, 1]

wC 4 3
nC 3 4

Table 4.11: Config-
urations C(T3). Figure 4.6: Configurations C(T3)

Figure 4.7:
Tetrahedron ge-
nealogy

By Theorem 221 and for any C ∈ C(T3),

v
(k)
3 (T3)C = 2

3k
∫︂

(R3\T◦
3)C

v
(k+1)
2 (σ ∩ T3) ζk+4

3 (σ)ι(k)
3 (σ)λ3(dη), (4.110)

where

ζ3(σ) = vol2(σ ∩ T3)
∥η∥ vol3 T3

, ι
(k)
3 (σ) =

∫︂
T3
|η⊤x− 1|kλ3(dx). (4.111)

In order to distinguish between configurations, we also write ζ3(σ)C and ι(k)
3 (σ)C

instead of just ζ3(σ) and ι(k)
3 (σ). Here, C is only a subscript and does not imply

any decomposition of those functions.

Configuration I

To ensure σ separates only the point [0, 0, 0], plugging the remaining points into
Equation (4.29), we get a > 1, b > 1 and c > 1. That means (R3 \T◦

3)I = (1,∞)3

is our integration domain in a, b, c. See Figure 4.8.

Figure 4.8: Configuration I in C(T3)

Denote
Tabc3 = conv([0, 0, 0], [1/a, 0, 0], [0, 1/b, 0], [0, 0, 1/c]). (4.112)

The plane σ splits T3 into disjoint union of two domains T+
3 ⊔T−

3 , where the one
closer to the origin is precisely T+

3 = Tabc3 . Therefore, by inclusion/exclusion,

ι
(k)
3 (σ)I =

∫︂
T+

3

(1− η⊤x)kλ3(dx) +
∫︂
T−

3

(η⊤x− 1)kλ3(dx)

=
∫︂
T3

(η⊤x− 1)kλ3(dx)− (1− (−1)k)
∫︂
Tabc3

(η⊤x− 1)kλ3(dx).
(4.113)
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Chapter 4. Odd Volumetric Moments

for any k integer. These integrals are easy to compute. Mathematica Code 2
computes ι(k)

3 (σ)I for various values of k. Running the code for k = 1, 2, 3, we get

ι
(1)
3 (σ)I = 1

24

(︃ 2
abc

+ a+ b+ c− 4
)︃
, (4.114)

ι
(2)
3 (σ)I = 1

60
(︂
a2 + ab+ bc+ ac+ b2 + c2 − 5a− 5b− 5c+ 10

)︂
, (4.115)

ι
(3)
3 (σ)I = 1

120

(︄
2
abc

+15a+15b+15c−6a2−6b2−6c2−6ab−6ac

−6bc+a2b+ab2+a2c+b2c+ac2+bc2+a3+b3+c3+abc−20
)︄
.

(4.116)

In fact, we can also deduce a general formula for ι(k)
3 (σ). Rescaling the second

integral and applying Equation (A.28),

ι
(k)
3 (σ)I =

∫︂
T3

(ax1+bx2+cx3−1)k− (−1)k−1
abc

(1−x1−x2−x3)kλ3(dx)

= 1
(k+1)(k+2)(k+3)

(︂
1
abc

+ (a−1)3+k

a(a−b)(a−c) + (b−1)3+k

b(b−a)(b−c) + (c−1)3+k

c(c−a)(c−b)

)︂
.

(4.117)

Alternatively, at least for the first moment, we can utilize our knowledge of the
geometric interpretation of ι(1)

3 (σ) to derive it more easily. Let M and M+ be
the centerpoints of T3 and T+

3 , respectively. Clearly, since M and M+ are both
centerpoints of tetrahedra,

M= 1
4(0+e1+e2+e3)=[1

4 ,
1
4 ,

1
4 ], M+ = 1

4(0+ 1
a
e1+ 1

b
e2+ 1

c
e3)=[ 1

4a ,
1
4b ,

1
4c ]. (4.118)

Then, by Equation (4.35) and since vol3 T3 = 1
6 and vol3 T+

3 = 1
6abc ,

ι
(1)
3 (σ)I = (η⊤M− 1) vol3 T3 + 2(1− η⊤M+) vol3 T+

3

= (a+b+c
4 − 1)1

6 + 2(1− 3
4) 1

6abc = 1
24(a+ b+ c− 4 + 2

abc
).

(4.119)

Denote T abc2 as the triangle conv([1/a, 0, 0], [0, 1/b, 0], [0, 0, 1/c]). Then the inter-
section of the plane σ with T3 is precisely T abc2 . That is,

σ ∩ T3 = T abc2 . (4.120)

By Equation (4.15), the distance from T abc2 to the origin is distσ(0) = 1/∥η∥. By
base-height splitting,

vol3 T3

abc
= vol3 T+

3 = 1
3 distσ(0) vol2 T abc2 = vol2(σ ∩ T3)

3∥η∥ , (4.121)

from which we immediately get

ζ3(σ)I = vol2(σ ∩ T3)
∥η∥ vol3 T3

= 3
abc

. (4.122)

Finally, by scale affinity (we have nI = 3),

v
(k+1)
2 (σ ∩ T3) = v

(k+1)
2 (T abc2 ) = v

(k+1)
2 (T2), (4.123)
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4.4. Three dimensions

which implies for k = 1, 2, 3 that (see Table 4.7 or Tables 3.5 and 3.6)

v
(2)
2 (σ ∩ T3) = 1

72 , v
(3)
2 (σ ∩ T3) = 31

9000 , v
(4)
2 (σ ∩ T3) = 1

900 . (4.124)

Putting everything into the integral in Equation (4.110), we get when k = 1,

v
(1)
3 (T3)I = 3

32

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1

2 + abc(a+ b+ c− 4)
a6b6c6 da db dc = 3

2000 . (4.125)

For higher values of k, we get

v
(2)
3 (T3)I = 279

4000000 , v
(3)
3 (T3)I = 37193

6174000000 ,

v
(4)
3 (T3)I = 681383

847072800000 , v
(5)
3 (T3)I = 3674957

25092716544000 .
(4.126)

Configuration II

In this scenario, σ separates two points [0, 0, 0] and [0, 0, 1] from T3. By Equation
(4.29), we get a > 1, b > 1 and c < 1. We can split the condition for c into to
cases: either 0 < c < 1 or c < 0. In fact, both options give the same factor
since they are symmetrical as they correspond to two possibilities where σ might
intersect A([0, 0, 0], [0, 0, 1]). Therefore we only consider the integration half-
domain (indicated by ∗)

(R3 \ T◦
3)∗

II = (1,∞)2 × (0, 1) (4.127)

and in the end multiply the result twice.

Figure 4.9: Configuration II in C(T3)

From Figure 4.9 above, we can see the plane σ intersects T3 at points 1
a
e1, 1

b
e2

(already in Configuration I) and additionally at

A = 1
c
e3 + α( 1

a
e1 − 1

c
e3) = [ 1−c

a−c , 0,
a−1
a−c ],

B = 1
c
e3 + β(1

b
e2 − 1

c
e3) = [0, 1−c

b−c ,
b−1
b−c ],

(4.128)
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where we denote α = a(1−c)
a−c and β = b(1−c)

b−c . Thus, the plane σ splits T3 into
disjoint union of two domains T+

3 ⊔ T−
3 , where T+

3 being the one closer to the
origin. Denote Tabc3 = conv(0, 1

a
e1,

1
b
e2,

1
c
e3) and T∗

3 = conv(e3,A,B, 1
c
e3), or

explicitly

Tabc3 = conv
(︂
[0, 0, 0] ,

[︂
1
a
, 0, 0

]︂
,
[︂
0, 1

b
, 0
]︂
,
[︂
0, 0, 1

c

]︂)︂
, (4.129)

T∗
3 = conv

(︂
[0, 0, 1] ,

[︂
1−c
a−c , 0,

a−1
a−c

]︂
,
[︂
0, 1−c

b−c ,
b−1
b−c

]︂
,
[︂
0, 0, 1

c

]︂)︂
. (4.130)

Then we can write T+
3 = Tabc3 \ T∗

3 = conv(0, e3,
1
a
e1,

1
b
e2,A,B), that is

T+
3 = conv

(︂
[0, 0, 0], [0, 0, 1], [ 1

a
, 0, 0], [0, 1

b
, 0], [ 1−c

a−c , 0,
a−1
a−c ], [0,

1−c
b−c ,

b−1
b−c ]

)︂
. (4.131)

By inclusion/exclusion,

ι
(k)
3 (σ)II =

∫︂
T3

(η⊤x− 1)kλ3(dx)− (1− (−1)k)
∫︂
Tabc3

(η⊤x− 1)kλ3(dx)

+ (1− (−1)k)
∫︂
T∗

3

(η⊤x− 1)kλ3(dx).
(4.132)

for any k integer. These integrals are again easy to compute. Mathematica Code
3 computes ι(k)

3 (σ)II for various values of k. Running the code for k = 1 and
k = 3, we obtain

ι
(1)
3 (σ)II = ι

(1)
3 (σ)I −

(1− c)4

12c(a− c)(b− c) , (4.133)

ι
(3)
3 (σ)II = ι

(3)
3 (σ)I −

(1− c)6

60c(a− c)(b− c) . (4.134)

where the functions ι
(1)
3 (σ)I and ι

(3)
3 (σ)I are given by Equations (4.114) and

(4.116). In general case for any k integer, we have

ι
(k)
3 (σ)II = ι

(k)
3 (σ)I −

(1− (−1)k)(1− c)3+k

(k + 1)(k + 2)(k + 3)c(a− c)(b− c) . (4.135)

For k even, we have ι(k)
3 (σ)II = ι

(k)
3 (σ)I = ι

(k)
3 (σ)N since the part with 1− (−1)k

vanishes. However, since the even metric moments v(k)
3 (T3) are trivial to compute

by integration alone, we will proceed by assuming k is odd. The calculation of
ι
(k)
3 (σ)II is again trivial when k = 1 and can be done by hand from its geometric

interpretation. Note that 1
6abc = vol3 Tabc3 = 1

3! | det( 1
a
e1− 1

c
e3 | 1

b
e2− 1

c
e3 | 0− 1

c
e3)|

and thus

vol3 T∗
3 = 1

3! | det
(︂
α( 1

a
e1− 1

c
e3) |β(1

b
e2− 1

c
e3) |(1−c)(0− 1

c
e3)
)︂
|= αβ(1−c)

6abc . (4.136)

Let M, Mabc, M∗ and M+ be the centerpoints of T3, Tabc3 , T∗
3 and T+

3 , respectively.
Trivially, M = [1

4 ,
1
4 ,

1
4 ] and Mabc = [ 1

4a ,
1
4b

1
4c ]. Since also M∗ is a centerpoint of a

tetrahedron, namely T∗
3 = conv(e3,A,B, e3/c),

M∗ = 1
4(e3 + A + B + 1

c
e3) = [ α4a ,

β
4b ,

3+c−α−β
4c ]. (4.137)

Since T+
3 = Tabc3 \T∗

3, we have vol3 T+
3 = vol3 Tabc3 − vol3 T∗

3 and by mass balance,

M+ vol3 T+
3 = Mabc vol3 Tabc3 −M∗ vol3 T∗

3. (4.138)
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4.4. Three dimensions

Solving for M+ is left as an exercise for the reader, but it turns out one does not
need its knowledge to obtain ι

(1)
3 (σ)II. To see this, plugging the mass balance

directly into Equation (4.35) and by our previous relation for ι(1)
3 (σ)I, we get

ι
(1)
3 (σ)I = (η⊤M− 1) vol3 T3 + 2(1− η⊤M+) vol3 T+

3

= ι
(1)
3 (σ)I − 2(1− η⊤M∗) vol3 T∗

3 = ι
(1)
3 (σ)I − αβ(1−c)2

12abc ,
(4.139)

which matches Equation (4.133). Denote

T abc2 = conv
(︃[︃1
a
, 0, 0

]︃
,
[︃
0, 1
b
, 0
]︃
,
[︃
0, 0, 1

c

]︃)︃
, (4.140)

T ∗
2 = conv

(︄[︃1− c
a− c

, 0, a− 1
a− c

]︃
,

[︄
0, 1− c
b− c

,
b− 1
b− c

]︄
,
[︃
0, 0, 1

c

]︃)︄
, (4.141)

we have for the intersection of σ with T3,

σ ∩ T3 = T abc2 \ T ∗
2 = conv

(︂
[ 1
a
, 0, 0],[0, 1

b
, 0],[ 1−c

a−c , 0,
a−1
a−c ],[0,

1−c
b−c ,

b−1
b−c ]

)︂
, (4.142)

so nII = 4. By scale affinity

v
(k+1)
2 (σ ∩ T3) = v

(k+1)
2 (T abc2 \ T ∗

2 ) = v
(k+1)
2 (Uαβ

2 ), (4.143)

where Uαβ
2 = conv([α, 0], [0, β], [0, 1], [1, 0]) is a canonical truncated triangle with

α = a(1− c)
a− c

, β = b(1− c)
b− c

. (4.144)

See Figure 4.10 below for an illustration of Uαβ
2 and its volumetric moments.

Figure 4.10: Mean section moments in the second C(T3) configuration

Since vol2 Uαβ
2 = 1

2(1− αβ), we can write in general,

v
(k+1)
2 (Uαβ

2 ) =
(︄

2
1− αβ

)︄k+4 ∫︂
(Uαβ2 )3

∆k+1
2 dx0dx1dx2, (4.145)

We would like to find v
(k+1)
2 (Uαβ

2 ) for odd k. This is, luckily, trivial, since we are
now integrating even powers of

∆2 = 1
2! |det(x1 − x0 |x2 − x0)| . (4.146)
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The calculation can be carried out in Mathematica using Code 4, which exploits
the symmetries and uses inclusion/exclusion. Running the code for k = 1 and
k = 3, we obtain

v
(2)
2 (Uαβ

2 ) =

{︄
α4β4 − 8α3β3 + 8α3β2 − 4α3β + 8α2β3

−10α2β2 + 8α2β − 4αβ3 + 8αβ2 − 8αβ + 1

}︄
72(1− αβ)4 , (4.147)

v
(4)
2 (Uαβ

2 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α6β6−6α5β−6αβ5+18αβ4+32αβ2−19αβ+1
−31αβ3 − 19α5β5 + 32α5β4 − 31α5β3 + 18α5β2

−31α3β + 32α4β5 − 47α4β4 + 46α4β3 − 34α4β2

+18α4β − 31α3β5 + 46α3β4 − 50α3β3 + 46α3β2

+18α2β5 − 34α2β4 + 46α2β3 − 47α2β2 + 32α2β

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
900(1− αβ)6 . (4.148)

Alternatively, since we have turned our problem to essentially finding the even
moments by recursions, we can use Example 219 in Chapter 3 on even volumetric
moments. Finally, by definition (alternatively by Equation (4.36))

ζ3(σ)II = vol2(σ ∩ T3)
∥η∥ vol3 T3

= (1− αβ) vol2 T abc2
∥η∥ vol3 T3

= (1− αβ)ζ3(σ)I. (4.149)

Before we proceed to evaluate the final integral, we make the following change of
variables (a, b, c) → (α, β, c) via transformation Equations (4.144), which trans-
form the integration half-domain into

(R3 \ T◦
3)∗

II |α,β,c = (1−c, 1)2 × (0, 1). (4.150)

Note that, if c is treated as a parameter, the variables a, b depend on α, β sepa-
rately. As a consequence,

da = c(1− c) dα
(1− c− α)2 , db = c(1− c) dβ

(1− c− β)2 (4.151)

and thus one has for the of transformation of measure

λ3(dη) = da db dc = c2(1− c)2 dα dβ dc
(1− c− α)2(1− c− β)2 . (4.152)

Our functions in variables a, b, c are transformed into

ζ3(σ)II = 3(1− c− α)(1− c− β)(1− αβ)
c3αβ

, (4.153)

ι
(1)
3 (σ)II = 1

24

(︃
2(1−c−α)(1−c−β)(1−(1−c)2αβ)

c3αβ
+ c

(︂
1− α

1−c−α −
β

1−c−β

)︂
− 4

)︃
(4.154)

and so on for ι(1)
3 (σ)II with larger k. Putting everything into the integral in

Equation (4.110) with prefactor 2, we get when k = 1,

v
(1)
3 (T3)II = 3

16

∫︂ 1

0

∫︂ 1

1−c

∫︂ 1

1−c

(1− c)2(1− c− α)3(1− c− β)3(1− αβ)
c13α5β5 ×(︄

2(1−c−α)(1−c−β) (1−(1−c)2αβ)
c3αβ

+c
(︄

1− α

1−c−α−
β

1−c−β

)︄
−4

)︄
×
(︂
1− 8αβ + 8α2β − 4α3β + 8αβ2 − 10α2β2 + 8α3β2 − 4αβ3 + 8α2β3

− 8α3β3 + α4β4
)︂

dα dα dc.

(4.155)
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Integrating out α, β can be done relatively easily, we end up with

v
(1)
3 (T3)II =

∫︂ 1

0

c2p0+4800c(1−c)2p1 ln(1−c)+3600(1−c)2p2 ln2(1−c)
19200c16 dc, (4.156)

where

p0 = 8265600− 49593600c+ 111530400c2 − 103044000c3

− 10353200c4 + 114147200c5 − 115229200c6 + 58917200c7

− 17280824c8 + 2861248c9 − 220122c10 − 702c11 + 213c12,

(4.157)

p1 = 3444− 15498c+ 22076c2 − 4942c3 − 18060c4 + 21343c5

− 11086c6 + 3147c7 − 496c8 + 36c9,
(4.158)

p2 = 2296− 11480c+ 19692c2 − 9888c3 − 11350c4 + 20442c5

− 13971c6 + 5296c7 − 1191c8 + 154c9 − 9c10.
(4.159)

The last c integration can be carried out by Mathematica (alternatively, we can
use derivatives of the Beta function). We get

v
(1)
3 (T3)II = 217

54000 −
π2

45045 . (4.160)

For higher values of k, the integration possesses similar difficulty, we got

v
(3)
3 (T3)II = 105199

9261000000 + 79π2

7274767500 ,

v
(5)
3 (T3)II = 1890871

9601804800000 −
547π2

26831987910000 .
(4.161)

Contribution from all configurations

By Equation (C.118) and by affine invariancy,

v
(k)
3 (T3) =

∑︂
C∈C(T3)

wC v
(k)
3 (T3)C = 4v(k)

3 (T3)I + 3v(k)
3 (T3)II, (4.162)

from which, immediately, we get Buchta and Reitzner’s [18], Mannion’s [44] and
Philip’s [52] result for v(1)

3 (T3) and also some of its further generalisations

v
(1)
3 (T3) = 13

720 −
π2

15015 ≈ 0.01739823925, (4.163)

v
(3)
3 (T3) = 733

12600000 + 79π2

2424922500 ≈ 0.0000584961, (4.164)

v
(5)
3 (T3) = 5125739

4356374400000 −
547π2

8943995970000 ≈ 0.000001176003. (4.165)
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4.4.2 Octahedron odd volumetric moments
By affine invariancy, it does not matter how large is the volume of an octahedron
as long as the octahedron stays regular. Hence, we may select the following
representation of a regular octahedron

O3 = conv([±1, 0, 0], [0,±1, 0], [0, 0,±1]), (4.166)

which has vol3 O3 = 4/3. According to its genealogy C(O3), it has three con-
figurations as shown in Figure 4.11 (or D.3 in Appendix D). Table 4.12 shows
specifically which sets S of vertices are separated by a cutting plane σ in which
configurations in our local representation of O3 above. Note that there is an
ambiguity how to select those vertices as long it is the same configuration.

C I II III

S [0, 0, 1] [1, 0, 0]
[0, 1, 0]

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

wC 6 12 4

Table 4.12: Configurations C(O3) in a lo-
cal representation. Figure 4.11: Octahedron genealogy

By Theorem 221 and for any C ∈ C(O3),

v
(k)
3 (O3)C = 2

3k
∫︂

(R3\O◦
3)C

v
(k+1)
2 (σ ∩O3) ζk+4

3 (σ)ι(k)
3 (σ)λ3(dη), (4.167)

where

ζ3(σ) = vol2(σ ∩O3)
∥η∥ vol3 O3

, ι
(k)
3 (σ) =

∫︂
O3
|η⊤x− 1|kλ3(dx). (4.168)

We can describe the relation x = (x, y, z)⊤ ∈ O3 by the following set of eight
linear inequalities (all of them keep 0 ∈ O3)

x+ y + z < 1, −x+ y + z < 1, x+ y − z < 1, −x+ y − z < 1,
x− y + z < 1, −x− y + z < 1, x− y − z < 1, −x− y − z < 1.

(4.169)

Configuration I

First, we find (R3 \O◦
3)I. By Equation (4.29), plugging the configurations points

from S into η⊤x > 1 and from V \ S into η⊤x < 1 (flipped inequalities give the
empty set), we get that a, b, c must satisfy

c > 1, −c < 1, a < 1, −a < 1, b < 1, −b < 1, (4.170)

so (R3 \O◦
3)I = (−1, 1)2 × (1,∞). Next, σ splits O3 into O+

3 ⊔ O−
3 . We can

parametrise those domains by simultaneously solving Equation (4.30) and (4.169).
From those inequalities, we get by linear programming
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4.4. Three dimensions

O+
3 = conv

(︂
[−1, 0, 0], [0,−1, 0], [0, 0,−1], [0, 0, 1], [0, 1, 0],

[ b−1
b−a ,

a−1
a−b , 0], [ b+1

a+b ,
1−a
a+b , 0], [ c−1

c−a , 0,
a−1
a−c ], [

c+1
a+c , 0,

1−a
a+c ]

)︂
.

(4.171)

Note that a simultaneous system of inequalities can be reduced using the epony-
mous Reduce command in Mathematica (used also in the case above). As a
direct consequence of this parametrisation, we get

vol3 O+
3 = 2 (c4 + 3c3 − 3c2 − 2a2c2 − 2b2c2 + c+ 2a2b2)

3(c− a)(c+ a)(c− b)(c+ b) (4.172)

from which, by Equation (4.36),

ζ3(σ)I = 3c(c− 1)2

2(c− a)(c+ a)(c− b)(c+ b) . (4.173)

Also, thanks to our parametrisation, we get

ι
(k)
3 (σ)I =

∫︂
O+

3

(1− η⊤x)kλ3(dx) +
∫︂
O−

3

(η⊤x− 1)kλ3(dx) (4.174)

for any real k > −1 almost for free, namely for k = 1 and k = 3,

ι
(1)
3 (σ)I = c5 + 6c3 + 4a2b2 − 4c2 (1 + a2 + b2) + c

3(c− a)(c+ a)(c− b)(c+ b) , (4.175)

ι
(3)
3 (σ)I =

{︄
c7 + 15c5 + 15c3 − 6c2 + 6a4c2 − 20b2c2 − 6b4c2

−20a2c2 − 6a2b2c2 + c+ 20a2b2 + 6a4b2 + 6a2b4

}︄
15(c− a)(c+ a)(c− b)(c+ b) (4.176)

and also nI = 4 since
σ ∩O3 = conv

(︂
[ b−1
b−a ,

a−1
a−b , 0], [ b+1

a+b ,
1−a
a+b , 0], [ c−1

c−a , 0,
a−1
a−c ], [

c+1
a+c , 0,

1−a
a+c ]

)︂
. (4.177)

We can use a computer to deduce the following even moments

v
(2)
2 (σ ∩O3) = 3c4 + c2(a2 + b2)− a2b2

288c4 , (4.178)

v
(4)
2 (σ ∩O3) =

{︄
12c6 + 17a2c4 + 17b2c4 + 3a4c2

−14a2b2c2 + 3b4c2 − 3a4b2 − 3a2b4

}︄
28800c6 . (4.179)

Therefore, putting everything together,

v
(1)
3 (O3)I = 3

512

∫︂ ∞

1

∫︂ 1

−1

∫︂ 1

−1

c (c− 1)10 (c2a2 + c2b2 − a2b2 + 3c4)
(c− a)6(c+ a)6(c− b)6(c+ b)6

×
(︂
4a2b2 − 4a2c2 − 4b2c2 − 4c2 + c5 + 6c3 + c

)︂
da db dc,

(4.180)

similarly for v(3)
3 (O3)I. Integration in Mathematica then reveals

v
(1)
3 (O3)I = 2569561

230400 −
11571π2

10240 , (4.181)

v
(3)
3 (O3)I = 3260724307264561

433954160640000 −
109143647π2

143360000 , (4.182)

v
(5)
3 (O3)I = 1306914286180250262095927

59965827237606850560000 −
3676076446537π2

1664719257600 . (4.183)
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Configuration II

By Equation (4.29), plugging the configurations points from S into η⊤x > 1 and
from V \ S into η⊤x < 1 (flipped inequalities give empty set), we get that a, b, c
must satisfy

c < 1, −c < 1, a > 1, −a < 1, b > 1, −b < 1, (4.184)

so (R3 \O◦
3)II = (1,∞)2 × (−1, 1). Next, σ splits O3 into O+

3 ⊔ O−
3 . We can

parametrise those domains by simultaneously solving Equation (4.30) and (4.169).
Then, by linear programming, we get nII = 6 since we obtained

O+
3 = conv

(︂
[−1, 0, 0], [0,−1, 0], [0, 0,−1], [0, 0, 1], [0, c−1

c−b ,
b−1
b−c ],

[0, c+1
b+c ,

1−b
b+c ], [

1−b
a+b ,

a+1
a+b , 0], [ b+1

a+b ,
1−a
a+b , 0], [ c−1

c−a , 0,
a−1
a−c ], [

c+1
a+c , 0,

1−a
a+c ]

)︂
,

(4.185)

from which, using Mathematica,

vol3 O+
3 =

2
{︄

3a2b2+a3b2+a2b3−c2+3ac2−3a2c2−a3c2+3bc2

−3abc2−a2bc2−3b2c2−ab2c2−b3c2 + 2ac4+2bc4−ab

}︄
3(a+ b)(a− c)(b− c)(a+ c)(b+ c) (4.186)

which further yields, by Equation (4.36),

ζ3(σ)II = 3 (2ac2 + 2bc2 − ab+ a2b2 − a2c2 − b2c2 − abc2 − c2)
2(a+ b)(a− c)(b− c)(a+ c)(b+ c) . (4.187)

Next, for k = 1, we obtain

ι
(1)
3 (σ)II =

{︄
a4b2−a4c2+a3b3−a3bc2+a2b4−a2b2c2+6a2b2−6a2c2−ab
−ab3c2−6abc2+4ac4+4ac2−b4c2−6b2c2+4bc4+4bc2−c2

}︄
3(a+ b)(a− c)(b− c)(a+ c)(b+ c) . (4.188)

As ι(3)
3 (σ), v(2)

2 (σ ∩O3) and v(4)
2 (σ ∩O3) are rather long, we are not listing them

here. Putting everything together and integrating over a, b, c, we get

v
(1)
3 (O3)II = 72588071π2

92252160 −
12023076361
1548288000 , (4.189)

v
(3)
3 (O3)II = 38809663388059π2

95351832576000 −
830108924076197
206644838400000 , (4.190)

v
(5)
3 (O3)II = 24706383193486257481π2

22106368864419840000 −
6614474327656066615169519
599658272376068505600000 . (4.191)

Configuration III

By Equation (4.29), a, b, c must satisfy

c > 1, −c < 1, a > 1, −a < 1, b > 1, −b < 1, (4.192)

or with < and > flipped,

c < 1, −c > 1, a < 1, −a > 1, b < 1, −b > 1, (4.193)
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so (R3\O◦
3)II =((−∞,−1) ∪ (1,∞))3. By symmetry, we may integrate only over

half-domain (R3 \ O◦
3)∗

II = (1,∞)3. Next, O+
3 ⊔ O−

3 , where, by simultaneously
solving Equations (4.30) and (4.169) and by linear programming,

O+
3 = conv

(︂
[−1, 0, 0], [0,−1, 0], [0, 0,−1], [0, 1−c

b+c ,
b+1
b+c ], [0,

c+1
b+c ,

1−b
b+c ],

[ 1−b
a+b ,

a+1
a+b , 0], [ b+1

a+b ,
1−a
a+b , 0], [ 1−c

a+c , 0,
a+1
a+c ], [

c+1
a+c , 0,

1−a
a+c ]

)︂
,

(4.194)

which means nIII = 6. Using Mathematica,

vol3 O+
3 = 2 (3ab+a2b+ab2+3ac+a2c+3bc+2abc+b2c+ac2+bc2−1)

3(a+ b)(a+ c)(b+ c) (4.195)

from which, by Equation (4.36),

ζ3(σ)III = 3(ab+ ac+ bc− 1)
2(a+ b)(a+ c)(b+ c) . (4.196)

Next, for k = 1 and k = 3, we obtained

ι
(1)
3 (σ)III =

{︄
6ab− 1 + a3b+ a2b2 + ab3 + 6ac+ a3c+ 6bc

+2a2bc+ 2ab2c+ b3c+ a2c2 + 2abc2 + b2c2 + ac3 + bc3

}︄
3(a+ b)(a+ c)(b+ c) (4.197)

and

v
(2)
2 (σ ∩O3)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ab−1−6a2+20a3b−6b2−18a2b2−6a4b2+20ab3

+18a3b3−6a2b4−21a4b4+3a5b5+3ac+20a3c+3bc
−12a2bc−12a4bc−12ab2c+18a3b2c+20b3c+18a2b3c
−48a4b3c−12ab4c−48a3b4c+15a5b4c+15a4b5c−6c2

−18a2c2−6a4c2−12abc2+18a3bc2−18b2c2−6b4c2

−54a4b2c2+18ab3c2−84a3b3c2+30a5b3c2+108a2b2c2

−54a2b4c2+54a4b4c2+30a3b5c2+20ac3+18a3c3

+20bc3+18a2bc3−48a4bc3+18ab2c3−84a3b2c3

+30a5b2c3+18b3c3−84a2b3c3+78a4b3c3−48ab4c3

+78a3b4c3+30a2b5c3−6a2c4−21a4c4−12abc4

−48a3bc4+15a5bc4−21b4c4−54a2b2c4+54a4b2c4

+3b5c5−6b2c4+78a3b3c4+54a2b4c4+15ab5c4+3a5c5

−48ab3c4+15a4bc5+30a3b2c5+30a2b3c5+15ab4c5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
288(ab+ ac+ bc−1)5 , (4.198)

As ι(3)
3 (σ) and v(4)

2 (σ∩O3) are rather long, we are not listing them here. Putting
everything together and integrating over a, b, c and multiplying by the factor of
two (as (1,∞)3 is only a half-domain of integration),

v
(1)
3 (O3)III = 376079789

57344000 −
2721π2

4096 , (4.199)

v
(3)
3 (O3)III = 752252545541087

964342579200000 −
90646167π2

1146880000 , (4.200)

v
(5)
3 (O3)III = 3995047725382306264583

9994304539601141760000 −
4195233727π2

103582531584 . (4.201)
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Contribution from all configurations

By Equation (C.118),

v
(k)
3 (O3) =

∑︂
C∈C(O3)

wC v
(k)
3 (O3)C = 6v(k)

3 (O3)I +12v(k)
3 (O3)II +4v(k)

3 (O3)III, (4.202)

from which, immediately

v
(1)
3 (O3) = 19297π2

3843840 −
6619

184320 ≈ 0.013637411, (4.203)

v
(3)
3 (O3) = 1628355709π2

19864965120000 −
81932629

103219200000 ≈ 0.0000152505, (4.204)

v
(5)
3 (O3) = 6356364544399π2

1611922729697280000 −
205491225433

5287025049600000 ≈ 5.215748 · 10−8. (4.205)

4.4.3 Cube odd volumetric moments
We use the following standard representation of the unit cube (vol3 C3 = 1),

C3 =conv([0, 0, 0],[1, 0, 0],[0, 1, 0],[0, 0, 1],[0, 1, 1],[1, 0, 1],[1, 1, 0],[1, 1, 1]). (4.206)

According to its genealogy C(C3), it has five configurations as shown in Figure
4.12 below (or D.4 in Appendix D). Table 4.13 shows specifically which sets S
of vertices in which configurations are separated by a cutting plane σ in our
standard representation of C3 above.

C I II III IV V

S [0, 0, 0] [0, 0, 0]
[0, 0, 1]

[0, 0, 0]
[1, 0, 0]
[0, 1, 0]

[0, 0, 0]
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

[0, 0, 0]
[1, 0, 0]
[0, 1, 0]
[1, 1, 0]

wC 8 12 24 4 3

Table 4.13: Configurations C(C3) in the stan-
dard representation of C3. Figure 4.12: Cube genealogy
By Theorem 221 and for any C ∈ C(C3),

v
(k)
3 (C3)C = 2

3k
∫︂

(R3\C◦
3 )C

v
(k+1)
2 (σ ∩ C3) ζk+4

3 (σ)ι(k)
3 (σ)λ3(dη), (4.207)

where

ζ3(σ) = vol2(σ ∩ C3)
∥η∥ vol3 C3

, ι
(k)
3 (σ) =

∫︂
C3
|η⊤x− 1|kλ3(dx). (4.208)

We can describe the relation x = (x, y, z)⊤ ∈ C3 by the following set of three
linear inequalities

0 < x < 1, 0 < y < 1, 0 < z < 1. (4.209)
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Configurations I – V

For Configuration I, by Equation (4.29), a, b, c must satisfy

a > 1, b > 1, a+ b > 1, a+ c > 1, b+ c > 1, a+ b+ c > 1, (4.210)

so (R3\C◦
3)I = (1,∞)3. Similarly for other configurations. Since the analysis is

similar as in the case of P3 being a regular octahedron O3, we only list the results
from all configurations, see Table 4.14.

C v
(1)
3 (C3)C v

(3)
3 (C3)C v

(5)
3 (C3)C

I 391
82944000

8717
1800338400000

932274811
50575353828920524800

II 34309
186624000

648789871
3089380694400000

36816619074923
51228618815877414912000

III 3191π2

207360−
792503149
5225472000

182029π2

195955200−
113292736592927

12357522777600000
213033619π2

634894848000 −
47144185844633987

14235866239795200000

IV 198785357
217728000 −

71π2

768
22659798780677
411917425920000−

910157π2

163296000
26487208076498306317

1921073205595403059200−
27814438817π2

19910302433280

V 7
5184

29
21870000

22473091
6271745266483200

Table 4.14: Sections integrals in various configurations C(C3).

Contribution from all configurations

Summing up the contributions from all configurations with appropriate weights,

v
(k)
3 (C3) =

∑︂
C∈C(C3)

wC v
(k)
3 (C3)C = 8v(k)

3 (C3)I + 12v(k)
3 (C3)II

+ 24v(k)
3 (C3)III + 4v(k)

3 (C3)IV + 3v(k)
3 (C3)V,

(4.211)

from which immediately

v
(1)
3 (C3) = 3977

216000 −
π2

2160 ≈ 0.01384277574, (4.212)

v
(3)
3 (C3) = 8411819

450084600000 −
π2

3402000 ≈ 0.0000157883, (4.213)

v
(5)
3 (C3) = 306749173351π2

124439390208000 −
2225580641145943786613
91479676456923955200000 ≈ 3.673225 · 10−7. (4.214)

We find it striking that even though an octahedron has fewer number of con-
figurations than a cube, the value v(1)

3 (C3) has been obtained by Zinani [78] by
carrying out the contributions from all configurations while the octahedron case
v

(1)
3 (O3) remained unknown. Keep in mind that the configurations are the same in

our canonical approach as well as in the original method using the Efron section
formula.
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4.5 Four dimensions

4.5.1 Pentachoron odd volumetric moments
By a pentachoron, we mean a 4-simplex. The regular pentachoron is then T4. The
analysis is somewhat analogous to the three-dimensional case. Now, we obtain the
volumetric moments v(k)

4 (T4) for odd k. First, since v(k)
4 (T4) is an affine invariant,

it must be the same as v(k)
4 (T4), where

T4 = conv([0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]) (4.215)

is the canonical pentachoron. By Proposition 276, we have vol4 T4 = 1/4! = 1/24.
Let η = (a, b, c, d)⊤ be the Cartesian parametrisation of σ ∈ A(4, 3) such that
x ∈ σ ⇔ η⊤x = 1. We have ∥η∥ =

√
a2 + b2 + c2 + d2. Based on symmetries

G(T4), there are two realisable configurations we need to consider. Thanks to
affine invariancy, we can again consider instead the two C(T4) configurations (see
Table 4.15 below).

T4 I II

S [0, 0, 0, 0] [0, 0, 0, 0]
[0, 0, 0, 1]

wC 5 10

Table 4.15: Configurations C(T4).

By Theorem 221 and for any C ∈ C(T4),

v
(k)
4 (T4)C = 6

4k
∫︂

(R4\T◦
4)C

v
(k+1)
3 (σ ∩ T4) ζk+5

4 (σ)ι(k)
4 (σ)λ4(dη), (4.216)

where

ζ4(σ) = vol3(σ ∩ T4)
∥η∥ vol4 T4

, ι
(k)
4 (σ) =

∫︂
T4
|η⊤x− 1|kλ4(dx). (4.217)

Again, in order to distinguish between configurations, we write ζ4(σ)C and ι(k)
4 (σ)C

instead of just ζ4(σ) and ι
(k)
4 (σ).

Configuration I

To ensure σ separates only the point [0, 0, 0, 0], we get from Equation (4.29), that
a > 1, b > 1, c > 1 and d > 1. That means (R4 \T◦

4)I = (1,∞)4 is our integration
domain in a, b, c, d. Denote

Tabcd4 = conv([0, 0, 0, 0], [ 1
a
, 0, 0, 0], [0, 1

b
, 0, 0], [0, 0, 1

c
, 0], [0, 0, 0, 1

d
]). (4.218)

The hyperplane σ splits T4 into disjoint union of two domains T+
4 ⊔ T−

4 , where
the one closer to the origin is precisely T+

4 = Tabcd4 . Therefore

ι
(k)
4 (σ)I =

∫︂
T+

4

(1− η⊤x)kλ4(dx) +
∫︂
T−

4

(η⊤x− 1)kλ4(dx)

=
∫︂
T4

(η⊤x− 1)kλ4(dx)− (1− (−1)k)
∫︂
Tabcd4

(η⊤x− 1)kλ4(dx).
(4.219)
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for any k integer. These integrals are easy to compute. Mathematica Code 5
computes ι(k)

4 (σ)I for various values of k. Running the code for k = 1 and k = 3,
we obtain

ι
(1)
4 (σ)I = 1

120

(︃ 2
abcd

+ a+ b+ c+ d− 5
)︃
, (4.220)

ι
(3)
4 (σ)I = 1

840

(︄
2

abcd
+ a3 + a2b+ a2c+ a2d− 7a2 + ab2 + abc+ abd

− 7ab+ ac2 + acd− 7ac+ ad2 − 7ad+ 21a+ b3 + b2c+ b2d

− 7b2 + bc2 + bcd− 7bc+ bd2 − 7bd+ 21b+ c3 + c2d− 7c2

+ cd2 − 7cd+ 21c+ d3 − 7d2 + 21d− 35
)︄
.

(4.221)

Alternatively, at least for ι(1)
4 (σ)I, we can use its geometric interpretation to

derive it by hand. Let M and M+ be the centerpoints of T4 and T+
4 , respectively.

Clearly, since M and M+ are both centerpoints of pentachora (4-simplices),

M = 1
5(0 + e1 + e2 + e3 + e4) = [1

5 ,
1
5 ,

1
5 ,

1
5 ],

M+ = 1
5(0 + 1

a
e1 + 1

b
e2 + 1

c
e3 + 1

d
e4) = [ 1

5a ,
1
5b ,

1
5c ,

1
5d ].

(4.222)

Then, by Equation (4.35) and since vol4 T4 = 1
24 and vol4 T+

4 = 1
24abcd ,

ι
(1)
4 (σ)I = (η⊤M− 1) vol4 T4 + 2(1− η⊤M+) vol4 T+

4

= (a+b+c+d
5 − 1) 1

24 + 2(1− 4
5) 1

24abcd = 1
120(a+ b+ c+ d− 5 + 2

abcd
).

(4.223)

Denote T abcd3 = conv([1/a, 0, 0, 0], [0, 1/b, 0, 0], [0, 0, 1/c, 0], [0, 0, 0, 1/d]), then the
intersection of the hyperplane σ with T4 is precisely tetrahedron T abcd3 . That is,

σ ∩ T4 = T abcd3 . (4.224)

By Equation (4.15), the distance from T abcd3 to the origin is distσ(0) = 1/∥η∥.
By base-height splitting,

vol4 T4

abc
= vol4 T+

4 = 1
4 distσ(0) vol3 T abcd3 = vol3(σ ∩ T4)

4∥η∥ , (4.225)

from which we immediately get

ζ4(σ)I = vol3(σ ∩ T4)
∥η∥ vol4 T4

= 4
abcd

. (4.226)

Finally, by scale affinity (we have nI = 4),

v
(k+1)
3 (σ ∩ T4) = v

(k+1)
3 (T abcd3 ) = v

(k+1)
3 (T3), (4.227)

which implies for k = 1, 2, 3 that (see Table 3.1 or Tables 3.5 and 3.6 and Equation
(4.164)),

v
(2)
3 (σ ∩ T4) = 3

4000 , v
(3)
3 (σ ∩ T4) = 733

12600000 + 79π2

2424922500 ,

v
(4)
3 (σ ∩ T4) = 871

123480000 .
(4.228)
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Putting everything into the integral in Equation (4.216), we get when k = 1,

v
(1)
4 (T4)I = 24

625

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1

2+abcd(a+b+c+d−5)
a7b7c7d7 da db dc dd = 1

16875 . (4.229)

For k = 3 and k = 5, we get

v
(3)
4 (T4)I = 26061191

1600967592000000 , v
(5)
4 (T4)I = 27909940019

504189521813376000000 . (4.230)

Configuration II

In this scenario, σ separates two points [0, 0, 0, 0] and [0, 0, 0, 1] from T4. By
Equation (4.29), we get a > 1, b > 1, c > 1 and d < 1. We can split the condition
for d into to cases: either 0 < d < 1 or d < 0. In fact, both options give the
same factor since they are symmetrical as they correspond to two possibilities
where σ hits A([0, 0, 0, 0], [0, 0, 0, 1]). Therefore we only consider the integration
half-domain

(R4 \ T◦
4)∗

II = (1,∞)3 × (0, 1) (4.231)
and in the end multiply the result twice. The hyperplane σ intersects T4 at points
1
a
e1, 1

b
e2, 1

c
e3 (already in Configuration I) and additionally at

A = 1
d
e4 + α( 1

a
e1 − 1

d
e4) = [ 1−d

a−d , 0, 0,
a−1
a−d ],

B = 1
d
e4 + β(1

b
e2 − 1

d
e4) = [0, 1−d

b−d , 0,
b−1
b−d ],

C = 1
d
e4 + γ(1

c
e3 − 1

d
e4) = [0, 0, 1−d

c−d ,
c−1
c−d ],

(4.232)

where we denote α = a(1−d)
a−d , β = b(1−d)

b−d and γ = c(1−d)
c−d . Thus, the hyper-

plane σ splits T4 into disjoint union of two domains T+
4 ⊔ T−

4 , where T+
4 be-

ing the one closer to the origin. Let Tabcd4 = conv(0, 1
a
e1,

1
b
e2,

1
c
e3,

1
d
e4) and

T∗
4 = conv(e4,A,B,C, 1

d
e4), or explicitly

Tabcd4 = conv
(︂
[0, 0, 0, 0] ,

[︂
1
a
, 0, 0, 0

]︂
,
[︂
0, 1

b
, 0, 0

]︂
,
[︂
0, 0, 1

c
, 0
]︂
,
[︂
0, 0, 0, 1

d

]︂)︂
, (4.233)

T∗
4 = conv

(︂
[0, 0, 0, 1],

[︂
1−d
a−d , 0, 0,

a−1
a−d

]︂
,
[︂
0, 1−d

b−d , 0,
b−1
b−d

]︂
,
[︂
0, 0, 1−d

c−d ,
c−1
c−d

]︂
,
[︂
0, 0, 0, 1

d

]︂)︂
,

(4.234)

Then we can write T+
4 = Tabcd4 \T∗

4 = conv(0, e4,
1
a
e1,

1
b
e2,

1
c
e3,A,B,C) and thus,

by inclusion/exclusion

ι
(k)
4 (σ)II =

∫︂
T4

(η⊤x− 1)kλ4(dx)− (1− (−1)k)
∫︂
Tabcd4

(η⊤x− 1)kλ4(dx)

+ (1− (−1)k)
∫︂
T∗

4

(η⊤x− 1)kλ4(dx).
(4.235)

for any k integer. These integrals are again easy to compute. Mathematica Code
6 computes ι(k)

4 (σ)II for various values of k. Running the code for k = 1 and
k = 3, we obtain

ι
(1)
4 (σ)II = ι

(1)
4 (σ)I −

(1− d)5

60d(a− d)(b− d)(c− d) , (4.236)

ι
(3)
4 (σ)II = ι

(3)
4 (σ)I −

(1− d)7

420d(a− d)(b− d)(c− d) . (4.237)
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where the functions ι
(1)
4 (σ)I and ι

(3)
4 (σ)I are given by Equations (4.220) and

(4.221) from the configuration I. The calculation of ι(k)
4 (σ)II is again trivial when

k = 1 and can be done by hand from its geometric interpretation. Scaling the
volume of Tabcd4 , we get

vol4 T∗
4 = αβγ(1−d)

24abcd . (4.238)

Let M, Mabcd, M∗ and M+ be the centerpoints of T4, Tabcd4 , T∗
4 and T+

4 , respec-
tively. Trivially, M = [1

5 ,
1
5 ,

1
5 ,

1
5 ] and Mabcd = [ 1

5a ,
1
5b ,

1
5c ,

1
5d ]. Since also M∗ is a

centerpoint of a 4-simplex, namely T∗
4 = conv(e4,A,B,C, e4/d),

M∗ = 1
5(e4 + A + B + C + 1

d
e4) = [ α5a ,

β
5b ,

γ
5c ,

4+d−α−β−γ
5d ]. (4.239)

Since T+
4 = Tabcd4 \T∗

4, we have vol4 T+
4 = vol4 Tabcd4 −vol4 T∗

4 and by mass balance,

M+ vol4 T+
4 = Mabcd vol4 Tabcd4 −M∗ vol4 T∗

4. (4.240)

Solving for M+ is left as an exercise for the reader, but it turns out one does not
need its knowledge to obtain ι

(1)
4 (σ)II. To see this, plugging the mass balance

directly into Equation (4.35) and by our previous relation for ι(1)
4 (σ)I, we get

ι
(1)
4 (σ)I = (η⊤M− 1) vol4 T4 + 2(1− η⊤M+) vol4 T+

4

= ι
(1)
4 (σ)I − 2(1− η⊤M∗) vol4 T∗

4 = ι
(1)
4 (σ)I − αβγ(1−d)2

60abcd ,
(4.241)

which matches Equation (4.236). By denoting

T abcd3 = conv
(︂[︂

1
a
, 0, 0, 0

]︂
,
[︂
0, 1

b
, 0, 0

]︂
,
[︂
0, 0, 0, 1

c

]︂
,
[︂
0, 0, 0, 1

d

]︂)︂
, (4.242)

T ∗
3 = conv

(︂[︂
1−d
a−d , 0, 0,

a−1
a−d

]︂
,
[︂
0, 1−d

b−d , 0,
b−1
b−d

]︂
,
[︂
0, 0, 1−d

c−d ,
c−1
c−d

]︂
,
[︂
0, 0, 0, 1

d

]︂)︂
, (4.243)

we have for the intersection of σ with T4,

σ ∩ T4 = T abcd3 \ T ∗
3 = conv

(︂ [︂
1
a
, 0, 0, 0

]︂
,
[︂
0, 1

b
, 0, 0

]︂
,
[︂
0, 0, 0, 1

c

]︂
,[︂

1−d
a−d , 0, 0,

a−1
a−d

]︂
,
[︂
0, 1−d

b−d , 0,
b−1
b−d

]︂
,
[︂
0, 0, 1−d

c−d ,
c−1
c−d

]︂ )︂
,

(4.244)

so nII = 6. By scale affinity

v
(k+1)
3 (σ ∩ T4) = v

(k+1)
3 (T abcd3 \ T ∗

3 ) = v
(k+1)
3 (Uαβγ

3 ), (4.245)

where

Uαβγ
3 = conv([α, 0, 0], [0, β, 0], [0, 0, γ], [1, 0, 0], [0, 1, 0], [0, 0, 1])

is a canonical truncated tetradedron with the already introduced

α = a(1− d)
a− d

, β = b(1− d)
b− d

, γ = c(1− d)
c− d

. (4.246)

See Figure 4.13 below for an illustration of Uαβγ
3 and its volumetric moments.
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Figure 4.13: Mean section moments in the second C(T4) configuration

Since vol3 Uαβγ
3 = 1

3!(1− αβγ), we can write in general,

v
(k+1)
3 (Uαβγ

3 ) =
(︄

6
1− αβγ

)︄k+5 ∫︂
(Uαβγ3 )4

∆k+1
3 dx0dx1dx2dx3, (4.247)

We would like to find v(k+1)
3 (Uαβγ

3 ) for odd k. This is, luckily, trivial, since we are
now integrating even powers of

∆3 = 1
3! |det(x1 − x0 |x2 − x0 |x3 − x0)| . (4.248)

The calculation can be carried out in Mathematica using Code 7, which exploits
the symmetries and uses inclusion/exclusion. Running the code for k = 1, we get

v
(2)
3 (Uαβγ

3 )=

3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+10α2βγ−16α5β5γ5+10α5β5γ4+10α5β4γ5

−4α5β5γ3−2α5β4γ4−4α5β3γ5+10α4β5γ5−2α4β5γ4

−2α4β4γ5+9α4β4γ2+2α4β3γ3−10α4β3γ2+9α4β2γ4

−10α4β2γ3+9α4β2γ2−4α3β5γ5+2α3β4γ3−10α3β4γ2

+2α3β3γ4+2α3β3γ2−10α3β2γ4+2α3β2γ3−4α3βγ
+α6β6γ6−10α2β4γ3+9α2β4γ2−10α2β3γ4+2α2β3γ3

+9α2β4γ4+9α2β2γ4−2α2β2γ−2α2βγ2−4αβ3γ
−2αβ2γ2+10αβ2γ−4αβγ3+10αβγ2−16αβγ+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
4000(1− αβγ)6 , (4.249)

Finally, by definition (alternatively by Equation (4.36))

ζ4(σ)II = vol3(σ ∩ T4)
∥η∥ vol4 T4

= (1− αβγ) vol3 T abc3
∥η∥ vol4 T4

= (1− αβγ)ζ4(σ)I. (4.250)

Before we proceed to evaluate the final integral, we make the following change
of variables (a, b, c, d)→ (α, β, γ, d) via transformation Equations (4.246), which
transform the integration half-domain into

(R4 \ T◦
4)∗

II |α,βγ,d = (1−d, 1)3 × (0, 1). (4.251)

Note that, if d is treated as a parameter, the variables a, b, c depend on α, β, γ
separately. As a consequence,

da = d(1− d) dα
(1− d− α)2 , db = d(1− d) dβ

(1− d− β)2 , dc = d(1− d) dγ
(1− d− α)2 (4.252)
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and thus one has for the of transformation of measure

λ4(dη) = da db dc dd = d3(1− d)3 dα dβ dγ dd
(1− d− α)2(1− d− β)2(1− d− γ)2 . (4.253)

Putting everything into the integral in Equation (4.216), we get when k = 1 and
after integrating out α, β, γ,

v
(1)
4 (T4)II = 1

1406250

∫︂ 1

0

(︂
d3p0 + 180d2(1− d)3p1 ln(1− d)

+ 10800d(1− d)3p2 ln2(1− d) + 216000(1− d)3p3 ln3(1− d)
)︂ dd
d25 ,

(4.254)

where
p0 = 32480784000− 324807840000d+ 1556229024000d2

− 4749037776000d3 + 10279357367400d4 − 16555175611200d5

+ 20253161331700d6 − 18987688381900d7 + 13740024940130d8

− 7798431753680d9 + 3604300565845d10 − 1440768739775d11

+ 518639866862d12 − 161581999478d13 + 39317696413d14

− 6685392751d15 + 700753210d16 − 34837616d17

+ 6112d18 − 3272d19 + 784d20,

(4.255)

p1 = 541346400− 4060098000d+ 14794437000d2 − 34585687500d3

+56747312360d4−67139592080d5+57686267770d6−36408101115d7

+ 17574730626d8 − 7114914681d9 + 2659305113d10 − 888330365d11

+ 229856455d12 − 40385468d13 + 4279933d14 − 213224d15,

(4.256)

p2 = 9022440−72179520d+279656230d2−694452010d3+1216036193d4

− 1552509188d5 + 1460599749d6 − 1021377960d7 + 544097150d8

− 234903968d9 + 90292498d10 − 32050399d11 + 9632345d12

− 2161105d13 + 327799d14 − 30254d15 + 1312d16,

(4.257)

p3 = 150374− 1278179d+ 5249902d2 − 13810685d3 + 25712115d4

−35209551d5+35968805d6−27633760d7+16221440d8−7575685d9

+ 3035423d10 − 1117957d11 + 369741d12 − 99030d13 + 19440d14

− 2588d15 + 211d16 − 8d17.

(4.258)

The last d integration can be carried out by Mathematica (or tediously using
Beta function derivatives). We get

v
(1)
4 (T4)II = 89

270000 −
2173π2

520269750 . (4.259)

For higher values of k, the integration possesses similar difficulty, we got

v
(3)
4 (T4)II = 3947568673

80048379600000000 + 63065881π2

396699961407750000 ,

v
(5)
4 (T4)II = 700536944899

7058653305387264000000 −
1262701803371π2

35570432728713733250400000 .
(4.260)
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Contribution from all configurations

By Equation (C.118) and by affine invariancy,

v
(k)
4 (T4) =

∑︂
C∈C(T4)

wC v
(k)
4 (T4)C = 5v(k)

4 (T4)I + 10v(k)
4 (T4)II, (4.261)

from which immediately

v
(1)
4 (T4) = 97

27000 −
2173π2

52026975 ≈ 0.0031803708487, (4.262)

v
(3)
4 (T4) = 1955399

3403417500000 + 63065881π2

39669996140775000 ≈ 5.9023 · 10−7, (4.263)

v
(5)
4 (T4) = 12443146181

9803685146371200000−
1262701803371π2

3557043272871373325040000≈1.26573 · 10−9. (4.264)

Monte-Carlo simulation shows that the value v(1)
4 (T4) fits withing the 95% confi-

dence interval (0.00318034, 0.00318043) obtained from 4×1010 trials of randomly
generated 4-simplices in T4 (We wrote and run Fortran program simplex.f90
for that purpose, see Attachements).

Moreover, by Buchta’s relation (Equation (5.36)), we get the value of mean 4-
volume of a convex hull of 6 points in the unit pentachoron as

v
(1)
5 (T4) = 3v(1)

4 (T4) = 97
9000 −

2173π2

17342325 ≈ 0.00954111. (4.265)

4.5.2 Hexadecachoron first volumetric moment
The hexadecachoron, 16-cell or the 4-cross-polytope are alternative names of 4-
orthoplex O4, a polychoron with standard representation with vol4 O4 = 2/3,

O4 = conv([1, 0, 0, 0], [0, 1, 0, 0][0, 0, 1, 0], [0, 0, 0, 1],
[−1, 0, 0, 0], [0,−1, 0, 0], [0, 0,−1, 0], [0, 0, 0,−1]).

(4.266)

The symmetry group G(O4) is isomorphic to Coxeter group B4 of order |B4| = 384.
We can describe the symmetry group using its four generators (one reflection, two
rotations and one double rotation) of permutations acting on vertices indexed as
in Equation (4.266). In cycle notation (excluding fixed points), we have

G(O4) = ⟨(48), (2367), (1256), (1256), (3478)⟩ < S8, (4.267)

where ⟨·⟩ denotes the algebraic closure and < the relation of being a subgroup.
From this group, we can generate 14 configurations, out of which only 4 are
realisable and section equivalent. These consist the genealogy C(C4). Table 4.16
shows specifically which sets S of vertices in which configurations are separated
by a cutting plane σ in our standard representation of O4 in Equation (4.266).
By similar treatment as in the case of O3, we can easily find inequalities which
describe O+

4 and thus σ ∩ O+
4 . We only list the section integrals obtained from

all configurations, see Table 4.17.
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C I II III IV

S [0, 0, 0, 1] [0, 0, 1, 0]
[0, 0, 0, 1]

[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

wC 8 24 32 16
nC 6 10 12 0

Table 4.16: Configurations C(O4) in the standard representation of O4.

C v
(1)
4 (O4)C

I 2400441939ζ(3)
320000 − 71765769458062825751339

8136689713152000000 + 173050612310219π2

3547315200000 −
127327345788535137 ln 2

130068224000000

II
11577920188509587165389181

2072472081039360000000 − 13611484420925379ζ(3)
2928808960000

+69987566888072781151π2

1461358518681600000 −
71866300533π2 ln 2

1040060000

III (not yet derived)

IV (not yet derived)

Table 4.17: Sections integrals in various configurations C(O4).

By Equation (C.118), considering the contributions from all configurations,

v
(k)
4 (O4)=

∑︂
C∈C(O4)

wC v
(k)
4 (O4)C =8v(k)

4 (O4)I+24v(k)
4 (O4)II+32v(k)

4 (O4)III +16v(k)
4 (O4)IV

(4.268)
from which immediately for k = 1,

v
(1)
4 (O4) = XXX

≈ XXX,
(4.269)

Remark 227. As of now, we have not found the expressions for v(1)
4 (O4)C for

configurations C ∈ {III, IV}, we have succeeded in writing them as explicit
double integrals, but the shear scope of them have not enabled us to calculate
using our own computers. However, we think this might be doable and will
be part of our future papers. We have also attempted to find higher odd
moments, however, the section integrals became too complicated. The third
and the fifth moment are in principle derivable but it would be extraordinarily
time consuming. We found at least in the first configuration

v
(3)
4 (O4)I = 8928188080691679ζ(3)

7867596800000 − 13757679936170496961418065762637875149511
10097679414187456780038045696000000000

+ 420783881199433246283869π2

1357358340088791040000000 −
138200770459501589499358193329 ln 2

20380735476433197465600000000

(4.270)
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4.5.3 Tesseract odd volumetric moments
By tesseract, we mean C4 (4-cube). The standard representation of the unit
tesseract with vol4 C4 = 1 is

C4 = conv([0, 0, 0, 0],[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1],[1, 1, 0, 0],
[1, 0, 1, 0],[1, 0, 0, 1],[0, 1, 1, 0],[0, 1, 0, 1],[0, 0, 1, 1], [1, 1, 1, 0],
[1, 1, 0, 1],[1, 0, 1, 1],[0, 1, 1, 1],[1, 1, 1, 1]).

(4.271)

The symmetry group G(C4) is isomorphic to Coxeter group B4 of order |B4| = 384.
We can describe the symmetry group using its four generators (one reflection, two
rotations and one double rotation) of permutations acting on vertices indexed as
in Equation (4.271). In cycle notation, we have

G(C4) = ⟨(1, 5), (2, 8), (3, 10), (4, 11), (6, 13), (7, 14), (9, 15), (12, 16),
(1, 3, 9, 4), (2, 6, 12, 7), (5, 10, 15, 11), (8, 13, 16, 14),
(1, 2, 6, 3), (4, 7, 12, 9), (5, 8, 13, 10)(11, 14, 16, 15),
(1, 7, 16, 10), (2, 12, 15, 5), (3, 4, 14, 13), (6, 9, 11, 8)⟩ < S16.

(4.272)

From this group, we can generate 402 configurations, out of which 14 are realisable
and section equivalent. These consist the genealogy C(C4). Table 4.18 shows
specifically which sets S of vertices in which configurations are separated by a
cutting plane σ in our standard representation of C4 in Equation (4.271).

C I II III IV V VI VII

S [0, 0, 0, 0] [0, 0, 0, 0]
[1, 0, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[1, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[1, 1, 0, 0]

wC 16 32 96 24 64 16 192
nC 4 6 8 8 10 12 10
C VIII IX X XI XII XIII XIV

S

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[1, 0, 1, 0]
[1, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]
[1, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 1, 1, 0]
[1, 0, 1, 0]
[1, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 1, 1, 0]
[1, 0, 1, 0]
[1, 1, 0, 0]
[1, 1, 1, 0]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]
[1, 1, 0, 0]
[1, 0, 1, 0]
[1, 0, 0, 1]

[0, 0, 0, 0]
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]
[0, 1, 1, 0]
[1, 0, 1, 0]
[1, 1, 0, 0]

wC 96 96 64 192 4 32 64
nC 10 12 10 12 8 12 12

Table 4.18: Configurations C(C4) in the standard representation of C4.

By similar treatment as in the case of O4, we can easily find inequalities which
describe C+

4 and thus σ∩C+
4 . We only list the section integrals obtained from all

configurations, see Table 4.19. Also, for brevity, we only enlist the first volumetric
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moment, although we found also v
(3)
4 (C4)C for all configurations. For example

v
(3)
4 (C4)I = 573495143

783231158555529707520000 . It turns out the last configuration XIV is tricky
to integrate. In the end, one has to use the identity involving trilogarithms found
(rediscovered) by Shobhit Bhatnagar [11], the identity states that

Li3
(︃
−1

3

)︃
− 2 Li3

(︃1
3

)︃
= − ln3 3

6 + π2

6 ln 3− 13ζ(3)
6 . (4.273)

.

C v
(1)
4 (C4)C

I 65598041
3386742443900928000000

II 102608713871
3292649334374400000

III 256081766015430731
345728180109312000000 −

6302191π2

83980800000

IV 7383631
1862358220800

V 74369ζ(3)
92160000 −

15427192177655450593
2304854534062080000000 + 31318807π2

149299200000 + 482072643302197 ln 2
91462481510400000

VI 2007170664939114317 ln 2
38109367296000000 − 1663466629ζ(3)

622080000 − 210954160717218293347879
6338349968670720000000 −

133847π2

124416000

VII 388451ζ(3)
29859840 + 596684331816745397

29933175767040000000 + 4354897π2

1343692800000 −
23489337302150729 ln 2

457312407552000000

VIII 188122446351063331
10975497781248000000 −

1170683π2

671846400 + 221036483033 ln 2
2494431313920000

IX 373791108546507725849549
38030099812024320000000 −

618197167ζ(3)
1866240000 + 74238971π2

671846400000−
1333435310218723619 ln 2

97995515904000000

X 2274497329ζ(3)
69120000 − 21609245552433862937

4390199112499200000 −
1523317655658026279 ln 2

30487493836800000

XI 24570427ζ(3)
55296000 − 157440595529232693016981

76060199624048640000000 + 47205929π2

24883200000 + 3002774140883958709 ln 2
1371937222656000000

XII 17
311040

XIII 746581063847040871
6602447884032000000 −

641346209π2

55987200000

XIV 10605967272168022814803
1152427267031040000000 −

41203109797ζ(3)
622080000 − 12193153π2

27993600000 + 4645960252158518597 ln 2
45731240755200000

Table 4.19: Sections integrals in various configurations C(C4).

By Equation (C.118), considering the contributions from all configurations,

v
(k)
4 (C4) =

∑︂
C∈C(C4)

wC v
(k)
4 (C4)C =16v(k)

4 (C4)I+32v(k)
4 (C4)II+96v(k)

4 (C4)III

+ 24v(k)
4 (C4)IV + 64v(k)

4 (C4)V + 16v(k)
4 (C4)VI + 192v(k)

4 (C4)VII

+ 96v(k)
4 (C4)VIII + 96v(k)

4 (C4)IX + 64v(k)
4 (C4)X + 192v(k)

4 (C4)XI

+ 4v(k)
4 (C4)XII + 32v(k)

4 (C4)XIII + 64v(k)
4 (C4)XIV,

(4.274)

from which immediately
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v
(1)
4 (C4)= 31874628962521753237

1058357013719040000000 −
26003π2

1399680000 + 610208 ln 2
1913625 −

536557ζ(3)
2592000

≈ 0.0021295294356445791857,
(4.275)

v
(3)
4 (C4)= 19330626155629115959

1682723192209145856000000−
52276897π2

216801070940160000 + 10004540239 ln 2
77977156950000−

6155594561ζ(3)
73741860864000

≈ 7.5157 · 10−8,

(4.276)

4.6 Higher dimensions

4.6.1 Hexateron odd volumetric moments

By the hexateron, we mean T5 (5-simplex). By affine invariancy, we may consider

T5 = conv(0, e1, e2, e3, e4, e5) (4.277)

with configurations and C(T5) weights given by Table 4.20.

C I II III

S [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]
[0, 0, 0, 0, 1]

[0, 0, 0, 0, 0]
[0, 0, 0, 1, 0]
[0, 0, 0, 0, 1]

wC 6 15 10

Table 4.20: Configurations C(T5) in a local representation with C(T5) weights.

By Theorem 221 and for any C ∈ C(T5),

v
(k)
5 (T5)C = 24

5k
∫︂

(R5\T◦
5)C

v
(k+1)
4 (σ ∩ T5) ζk+6

5 (σ)ι(k)
5 (σ)λ5(dη), (4.278)

where

ζ5(σ) = vol4(σ ∩ T5)
∥η∥ vol5 T5

, ι
(k)
5 (σ) =

∫︂
T5
|η⊤x− 1|kλ5(dx). (4.279)

Configurations I and II are analogous to the first two configurations of T3 and
T4, we have nI = 5 and nII = 2nI − 2 = 8 (truncated 4-simplex). The last
configuration III, for which we have nIII = 9, has no analogue in lower dimen-
sions. However, by similar procedure as before, we obtained contributions from
all configurations, see Table 4.21.
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C v
(1)
5 (T5)C

I 5
2722734

II 12732911
653456160000−

1394234873π2

3353951824423200 + 1622π4

2707566616755

III 146034151
3920736960000 −

3546684881π2

3353951824423200 + 4904π4

386795230965

C v
(3)
5 (T5)C

I 9097367105
359796813461446459392

II 25351944803581
245954852952160665600000 + 204046383487590493π2

98081004264127779106308096000 + 13583435573π4

17098021963979168381769600

III 173514729599507
874506143829904588800000 −

12027338819078269π2

9341048025155026581553152000 + 1191143596913π4

11398681309319445587846400

Table 4.21: Sections integrals in various configurations C(T5).

As a consequence, summing up the contributions from all configurations and by
affine invariancy,

v
(k)
5 (T5) =

∑︂
C∈C(T5)

wC v
(k)
5 (T5)C = 6v(k)

5 (T5)I +15v(k)
5 (T5)II +10v(k)

5 (T5)III, (4.280)

from which immediately

v
(1)
5 (T5) = 2207

3265920 −
244129π2

14522729760 + 73522π4

541513323351 ≈ 0.00052308272, (4.281)

v
(3)
5 (T5) = 362173019

98363448852480000 + 10217818563857π2

557436796045056999751680 + 602363516243π4

569934065465972279392320
≈ 3.96585 · 10−9.

(4.282)

Remark 228. Higher volumetric moments are difficult to compute. For the
fifth moment, we would need v

(5)
5 (T5)III. However, even v

(3)
5 (T5)III was al-

ready extremely difficult to compute (the file we worked with exceeded 1GB
of storage memory). The intricacy of the third configuration stems partly
from its asymmetry and from lacking the decoupling substitution (a→ α, b→
β, c→ γ, d→ δ), which we found in the second configuration of T4 (and which
generalises as well into higher dimensions) and which enables us to integrate
out α, β, γ, δ immediately. We have not attempted to obtain the fifth mo-
ment, such calculation is surely within our grasp but the shear monstrosity of
v

(6)
4 (σ ∩ T5) in Configuration III discourages us to finish the computation.

4.6.2 Heptapeton first volumetric moment
By the heptapeton, we mean T6 (6-simplex). By affine invariancy, we may consider

T6 = conv(0, e1, e2, e3, e4, e5, e6) (4.283)

with configurations and C(T6) weights given by Table 4.22.
By Theorem 221 and for any C ∈ C(T6),

v
(k)
6 (T6)C = 120

6k
∫︂

(R6\T◦
6)C

v
(k+1)
5 (σ ∩ T6) ζk+7

6 (σ)ι(k)
6 (σ)λ6(dη), (4.284)
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C I II III

S [0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1]

[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 1, 0]

wC 7 21 35

Table 4.22: Configurations C(T6) in a local representation with C(T6) weights.

where

ζ6(σ) = vol5(σ ∩ T6)
∥η∥ vol6 T6

, ι
(k)
6 (σ) =

∫︂
T6
|η⊤x− 1|kλ6(dx). (4.285)

Configurations I and II are analogous to the first two configurations of T3, T4
and T5, we have nI = 6 and nII = 2nI − 2 = 10 (truncated 5-simplex). The last
configuration III is analogous to third configuration of T5. We have nIII = 12.
Thanks to this similarity, since we already know how to handle this configuration
in the T5 case, we obtained contributions of all T6 configurations, see Table 4.23.

C v
(1)
6 (T6)C

I 45
963780608

II 3826171
4182119424000 −

12560362004329π2

443562265371500795520 + 6607326855286π4

85176183364279644451815

III 71529389
24395696640000 −

4625576448278719π2

33267169902862559664000 + 432402941059748π4

141960305607132740753025

Table 4.23: Sections integrals in various configurations C(T6).

As a consequence, summing up the contributions from all configurations and by
affine invariancy,

v
(k)
6 (T6) =

∑︂
C∈C(T6)

wC v
(k)
6 (T6)C = 7v(k)

6 (T6)I +21v(k)
6 (T6)II +35v(k)

6 (T6)III, (4.286)

from which immediately

v
(1)
6 (T6) = 26609

217818720 −
3396146609π2

621871356506400 + 1318349152898π4

12180206401298390455
≈ 0.00007880487647920397.

(4.287)

We have not attempted to derive the higher moments. We leave this for our
readers and humbly add that this task will be extraordinarily difficult.

4.7 Unsolved problems
An obvious question is to deduce the volumetric moments v(k)

d (Td) for d ≥ 6.
When d = 7, there are four section equivalent configurations C ∈ {I, II, III, IV}
in C(T7). Evaluating the section integral v(1)

7 (T7)IV for the fourth configuration
is beyond the capabilities of our computer. At least, since σ ∩ Td is always a
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Td−1 simplex in the first configuration of Td, that is nI = d with wI = d + 1. By
Theorem 221,

v
(k)
d (Td)I = v

(k+1)
d−1 (Td−1)

(d− 1)!
dk

∫︂
Rd\K◦

d

ζk+d+1
d (σ)ι(k)

d (σ)λd(dη) (4.288)

since v
(k+1)
d−1 (Td−1) are constants. More specifically, for k = 1 by using Reed’s

formula, we found the following surprising relation

v
(1)
d (Td)I = 2v(2)

d (Td) = 2(d!)
(d+ 1)d(d+ 2)d . (4.289)

Based on the result we have seen so far for d-simplices, we conjecture

v
(k)
r+1(Tr+1) =

⌊r/2⌋∑︂
s=0

p(k)
rs π

2s (4.290)

for some rationals p(k)
rs and r = 0, 1, 2, 3, . . . Since G(Td) is isomorphic to the sym-

metry group on d+1 elements (any permutation of vertices is a valid symmetry),
we have for the weights oC =

(︂
d+1
|S|

)︂
, where |S| is the number of vertices separated

by the section plane σ in configuration C.

At time of submission of this thesis (May 30, 2025), we had some partial results
for v(1)

4 (O4), where O4 is the hexadecachoron, the 4-dimensional analogy of an
octahedron, known also as 16-cell, 4-orthoplex or a 4-cross-polytope. However,
we were not able to solve all configurations.
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5. First-order Metric Moments
Let us clarify the name of this chapter. By order, we mean the power k in metric
moments v(k)

n (Pd). Hence, we are interested in v(k)
n (Pd) for general n but with

k = 1 only. Moreover, we also restrict the dimension to be d = 2 or d = 3.
Hence, there is a natural overlap with Chapter 4 on Odd volumetric moments
v(d)
n (Pd). These two particular cases and the methods shown here are known and

well explored in literature.

5.1 Efron’s formulae
Let K3 ⊂ R3 be a convex 3-body, from which we pick a random selection
X = (X0,X1 . . . ,Xn) of (n + 1) random points uniformly and independently,
n ≥ 3. The convex hull Hn = conv(X) of these points has volume vol3(Hn).
When n < 3, we get E [vol3(Hn)] = 0 trivially. When n = 3, H3 is almost
surely a tetrahedron. It turns out we can express the mean tetrahedron volume
E [vol3(H3)] by an integral over all possible cutting planes. By affine invariancy,
we have E [vol3(H3)] = v

(1)
3 (K3) vol3(K3) and

v
(1)
3 (K3) = 3

5 − E
[︂
Γ+

3 (X′)2 + Γ−
3 (X′)2

]︂
, (5.1)

where Γ+
3 (X′) = vol3 K+

3 / vol3 K3 and Γ−
3 (X′) = vol3 K−

3 / vol3 K3 are the volume
fractions of the two parts K+

3 ⊔K−
3 into which K3 is divided by a cutting plane

σ passing through the collection X′ = (X′
1,X′

2,X′
3) ∈ K3

3 . That is, K3 is split by
σ = A(X′) into disjoint union K+

3 ⊔K−
3 with vol3 K+

3 + vol3 K−
3 = vol3 K3. Note

that this result can be written out as an integral

v
(1)
3 (K3) = 3

5 −
1

(vol3 K3)3

∫︂
K3

3

Γ+
3 (x′)2 + Γ−

3 (x′)2 λ3
3(dx′), (5.2)

where x′ = (x′
1,x′

2,x′
3) is the collection of points x′

j = (x′
1j, x

′
2j, x

′
3j)⊤, j ∈ {1, 2, 3}

and λ3
3(dx′) = λ3(dx′

1)λ3(dx′
2)λ(dx′

3) = ∏︁3
i,j=0 dx′

ij is the usual Lebesgue measure
on (R3)3. This formula is a special case of the more general Efron section
formula [26] as stated in Theorem 235. Similar result holds in dimension two
(Theorem 234). In order to prove those theorems, let us recall some definitions
and show two intermediate results, the Efron vertex and facet identities.

5.1.1 Polytopes and their f-vector
First, we recall the following facts (cf. [71]) for any convex d-polytope Pd ⊂ Rd

(convex d-dimensional polytope).

Definition 229 (f -vector). We denote by fk(Pd) the total number of k-faces
of Pd, where f0(Pd) stands for the number of its vertices, f1(Pd) the number of
edges, f2(Pd) the number of faces and so on. The last value fd−1(Pd) denotes
the number of facets of Pd. Together, the values can be combined into a single
vector (f0(Pd), f1(Pd), . . . , fd−1(Pd)) called the f -vector of Pd. Lastly, we denote
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5.1. Efron’s formulae

by vold(Pd) the volume (d-volume) of Pd as usual.

The f -vector values fk(Pd) are not independent and are connected via linear
relations. In d = 2, we have trivially for any P2 that

f0(P2) = f1(P2). (5.3)

In d = 3, we have for any convex 3-polytope P3 the Euler polyhedral formula

f0(P3)− f1(P3) + f2(P3) = 2. (5.4)

In higher dimensions, there exists an analogue of the Euler’s polyhedral formula
called the Schläfli or the Euler-Poincaré formula [64]

d−1∑︂
k=0

(−1)kfk(Pd) = 2(−1)d (5.5)

valid for any convex d-polytope Pd. However, convex hulls Hn = conv(X) of
a random point collection X = (X0, . . . ,Xn) form a more special class of d-
polytopes as their facets are just (d−1)-simplices almost surely. Polytopes whose
facets are (d − 1)-simplices are called simplical polytopes. For any simplical d-
polytope Sd, by counting the total number of facets in two different ways,

2 fd−2(Sd) = d fd−1(Sd). (5.6)

More generaly, the Dehn–Sommerville equations [66] form a complete set of
linear relations between the numbers of k-faces of Sd. If we define f−1(Sd) =
fd(Sd) = 1, they take the form

d−1∑︂
j=k

(−1)j
(︄
j + 1
k + 1

)︄
fj(Sd) = (−1)d−1fk(Sd)

valid for k = −1, 0, 1, . . . , d − 2. The Schläfli formula is a special case when
k = −1. Dehn-Sommerville equations imply that the knowledge of all fi(Sd) for
0 ≤ i < ⌊d/2⌋ uniquely determines all fi(Sd) with i ≥ ⌊d/2⌋ and vice versa.

5.1.2 Vertex identity

Proposition 230 (Extended Efron vertex identity). Let Kd ⊂ Rd be a convex
d-body and let the points Xj, j = 0, ..., n, n ≥ d be uniformly selected from
Kd. Denote Hn their convex hull, voldHn its volume and f0(Hn) its number
of vertices as usual. Then E (voldHn−k)k = v

(k)
n−k(Kd)(voldKd)k with

v
(k)
n−k(Kd) = E

k−1∏︂
i=0

(︄
1− f0(Hn)

n− i+ 1

)︄
. (5.7)

274



Chapter 5. First-order Metric Moments

Proof. Without the loss of generality, we assume that voldKd = 1. Let us select
k indices from {0, 1, 2, 3, ..., n}, that is J ⊂ {0, 1, 2, 3, ..., n} with the number of
elements |J | = k is our set of indices. There are two ways how to express the
probability P that points Xj with selected indices j ∈ J do not form vertices of
Hn.

First, we can condition on the realisation of the remaining n+1−k points. That
means, in Kd, we fix the position of those remaining n + 1 − k points Xj with
indices j not in J . Then, the probability that those k given points with J indices
do not form vertices of Hn is simply the probability that all those k points fall
into convex hull of the remaining n + 1 − k points. Since they are independent,
that is

(voldHn−k)k (5.8)
By the law of total probability (or expectation), in order to get P , we must
average this over all conditions we have fixed, that is, over all realisations of
n+ 1− k points and thus we get

P = E (voldHn−k)k (5.9)

Second, by symmetry, since the points Xj are indistinguishable, the probability
P that points with given k indices do not form vertices of Hn must be the same
as the probability Q that points with random k indices do not form vertices
(uniformly selected from the set {0, 1, . . . , n}). We can compute this probability
Q in two steps: First, we condition with respect to a given realisation of all Xj

points according to the uniform distribution in Kd. Let the convex hull of this
particular realisation of points have f0(Hn) vertices (not random now). We then
select k points at random from this realisation, that is, we randomly select k
indices from {0, 1, 2, ..., n}. Number of points not being vertices now follow the
hypergeometric distribution. That is, probability Q of randomly selected k points
(among those Xj’s already realised) not being vertices is equal to the probability
of first point in not a vertex times the probability of the second point not being
a vertex (given 1st point not being a vertex already) and so on, i.e.

n+ 1− f0(Hn)
n+ 1 · n− f0(Hn)

n
· n− 1− f0(Hn)

n− 1 · · · n+ 2− k − f0(Hn)
n+ 2− k . (5.10)

By the law of total probability, we must average over all realisations and thus

Q = E
[︄
k−1∏︂
i=0

n− i+ 1− f0(Hn)
n− i+ 1

]︄
. (5.11)

Since P = Q, we get the statement of the proposition. ■

Remark 231. The special case of k = 1 gives

v
(1)
n−1(Kd) = 1− E f0(Hn)

n+ 1 , (5.12)

or E f0(Hn) = (n+ 1)
(︂
1− v(1)

n−1(Kd)
)︂
, which is the original Efron vertex iden-

tity [26], the extended case shown here was first proven by Buchta [15], who
recently also provided a geometrical explanation for its dual version [16].
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5.1.3 Facet identity

Proposition 232 (Efron facet identity). Let Kd ⊂ Rd be a convex body and
let X = (X0, . . . ,Xn) be the collection of points Xj, j = 0, ..., n, n ≥ d
uniformly selected from Kd. Denote Hn their convex hull and let fd−1(Hn)
denote its number of facets as usual. Then

E fd−1(Hn) =
(︄
n+ 1
d

)︄
E
[︂
Γ+
d (X′)n−d+1 + Γ−

d (X′)n−d+1
]︂
, (5.13)

where Γ+
d (X′) = voldK+

d / voldKd and Γ−
d (X′) = voldK−

d / voldKd are the d-
volume fractions of the two parts K+

d ⊔ K−
d into which Kd is divided by a

hyperplane σ = A(X′) going through the collection X′ = (X′
1,X′

2, . . . ,X′
d) of

random points X′
j, j ∈ {1, 2, . . . , d} drawn from Kd uniformly and indepen-

dently.

Remark 233. We may write out the expectation into an integral to get the
following form of the proposition:

E fd−1(Hn) =
(︄
n+ 1
d

)︄
1

(voldKd)d
∫︂
Kd
d

Γ+
d (x′)n−d+1 + Γ−

d (x′)n−d+1λdd(dx′),

(5.14)
where x

′ = (x′
1,x′

2, . . . ,x′
d) is the collection of points x′

j = (x′
1j, . . . , x

′
dj)⊤,

j ∈ {1, 2, . . . , d} and λdd(dx′) = λd(dx′
1)λd(dx′

2) · · ·λd(dx′
d) = ∏︁d

i,j=0 dx′
ij is the

usual Lebesgue measure on (Rd)d.

Proof. Select a sub-collection X′ ⊂ X of d points with a given set of fixed indices
and let σ = A(X′). Cutting plane σ divides body Kd into two parts K+

d ⊔K−
d

with d-volume fractions Γ+
d (X′) and Γ−

d (X′). Fixing the position of the points in
collection X′ in Kd, we see that H′ = conv(X′) is a facet of Hn if and only if all
the remaining n+ 1− d points lie either on one side of σ or on the other. Hence

P [H′ is a facet of Hn |X′ fixed] = Γ+
d (X′)n−d+1 + Γ−

d (X′)n−d+1. (5.15)

By the law of total probability, averaging over all collections X′, we get,

P [H′ is a facet of Hn] = E
[︂
Γ+
d (X′)n−d+1 + Γ−

d (X′)n−d+1
]︂
, (5.16)

Let In,d be the set of subset of {0, 1, . . . , n} with exactly d elements and for a
given τ ∈ In,d denote Hτ = conv(Xj)j∈τ , then

fd−1(Hn) =
∑︂
τ∈In,d

1{Hτ is a facet of Hn}. (5.17)

Taking expectation, by linearity and by symmetry,

E fd−1(Hn) =
(︄
n+ 1
d

)︄
P [H′ is a facet of Hn] . (5.18)

Together with Equation (5.16), we get the statement of the proposition. ■
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5.1.4 Section formulae
We are now well equipped to show the Efron section formulae.

Two-dimensional

Theorem 234 (Efron 1965). Let K2 ⊂ R2 be a convex 2-body, from which
we pick a collection X = (X0, . . . ,Xn) of n + 1 random points uniformly
independently. Let vol2(Hn) denote the area of the convex hull Hn = conv(X).
Then for all n = 2, 3, . . ., we have E [vol2(Hn)] = v(1)

n (K2) vol2(K2) with

v(1)
n (K2) = 1− n+ 1

2 E
[︂
Γ+

2 (X′)n + Γ−
2 (X′)n

]︂
, (5.19)

where Γ+
2 (X′) = vol2 K+

2 / vol2 K2 and Γ−
2 (X′) = vol2 K−

2 / vol2 K2 are the area
fraction of the two parts K+

2 ⊔K−
2 into which K2 is divided by a line σ = A(X′)

going through the collection X′ = (X′
1,X′

2) of random points X′
j, j ∈ {1, 2}

drawn from K2 uniformly and independently.

Proof. Since Hn is a polygon almost surely, we may write f0(Hn) = f1(Hn).
Taking expectation of both sides and by the Efron vertex and facet identities,

(n+ 1)
(︂
1− v(1)

n−1(K2)
)︂

=
(︄
n+ 1

2

)︄
E
[︂
Γ+

2 (X′)n−1 + Γ−
2 (X′)n−1

]︂
. (5.20)

Rearranging and replacing n by n+ 1, we get the two-dimensional Efron section
formula. ■

Three-dimensional

Theorem 235 (Efron 1965). Let K3 ⊂ R3 be a convex 3-body, from which
we pick a collection X = (X0, . . . ,Xn) of n+1 random points uniformly inde-
pendently. Let vol3(Hn) denote the volume of the convex hull Hn = conv(X).
Then for all n = 3, 4, . . ., we have E [vol3(Hn)] = v(1)

n (K3) vol3(K3) with

v(1)
n (K3) = n

n+ 2 −
n(n+ 1)

12 E
[︂
Γ+

3 (X′)n−1 + Γ−
3 (X′)n−1

]︂
, (5.21)

where Γ+
3 (X′) = vol3 K+

3 / vol3 K3 and Γ−
3 (X′) = vol3 K−

3 / vol3 K3 are the vol-
ume fractions of the two parts K+

3 ⊔K−
3 into which K3 is divided by a plane

σ = A(X′) going through the collection X′ = (X′
1,X′

2,X′
3) of random points

X′
j, j ∈ {1, 2, 3} drawn from K3 uniformly and independently.

Proof. In d = 3, almost surely, Hn = conv(X) is a simplical polyhedron whose
faces are triangles. That means, by Equation (5.6),

2 f1(Hn) = 3 f2(Hn). (5.22)

Moreover, by Euler’s polyhedral formula (Equation (5.4)),

f0(Hn)− f1(Hn) + f2(Hn) = 2. (5.23)
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Combining these these two equations together, we get a linear relation

2f0(Hn)− f2(Hn) = 4. (5.24)

Taking expectation of both sides and by using the Efron vertex and facet identi-
ties,

2(n+ 1)
(︂
1− v(1)

n−1(K3)
)︂
−
(︄
n+ 1

3

)︄
E
[︂
Γ+

3 (X′)n−2 + Γ−
3 (X′)n−2

]︂
= 4. (5.25)

Rearranging and replacing n by n+1, we get the three-dimensional Efron section
formula. ■

5.1.5 Cartesian reparametrisation
Let Kd ⊂ Rd be a convex body and let X′ = (X′

1, . . . ,X′
d) be a collection of points

X′
j drawn uniformly and independently from Kd. It is convenient to introduce

the gamma section functional

γn(Kd) = E
[︂
Γ+
d (X′)n−d+2 + Γ−

d (X′)n−d+2
]︂
, (5.26)

where Γ+
d (X′) = voldK+

d / voldKd and Γ−
d (X′) = voldK−

d / voldKd are the d-
volume fractions of the two parts K+

d ⊔K−
d into which Kd is divided by a hyper-

plane σ = A(X′). Written as an integral, this is equivalent to

γn(Kd) = 1
(voldKd)d

∫︂
Kd
d

Γ+
d (x′)n−d+2 + Γ−

d (x′)n−d+2λdd(dx′), (5.27)

where x
′ = (x′

1,x′
2, . . . ,x′

d) is the collection of points x′
j = (x′

1j, . . . , x
′
dj)⊤, j ∈

{1, 2, . . . , d} and λdd(dx′) = λd(dx′
1)λd(dx′

2) · · ·λd(dx′
d) = ∏︁d

i,j=0 dx′
ij is the usual

Lebesgue measure on (Rd)d.

Note that γn(Kd) is an affine functional. If Kd is some sufficiently symmetric
polytope Pd, we can further use genealogic decomposition (see Appendix C)

γn(Pd) =
∑︂

C∈C(Pd)
wC γn(Pd)C. (5.28)

Efron section formulae (Theorems 234 and 235) then can be written in the fol-
lowing compact form

v(1)
n (K2) = 1− n+1

2 γn(K2), v(1)
n (K3) = n

n+2 −
n(n+1)

12 γn(K3). (5.29)

By Blaschke-Petkantschin formula (in the form of Corollary 296.2) with k = 0,

γn(Kd)=(d−1)! voldKd

∫︂
Rd\K◦

d

v
(1)
d−1(σ∩Kd)ζd+1

d (σ)(Γ+
d (σ)n−d+2+Γ−

d (σ)n−d+2)λd(dη),

where η is the Cartesian representation of σ defined by the relation η⊤x = 1. In
this representation, we have K+

d = {x ∈ Kd |η⊤x < 1} and (by Remark 297)

ζd(σ) = vold−1(σ ∩Kd)
∥η∥ voldKd

= − 1
voldKd

d∑︂
j=1

ηj
∂ voldK+

d

∂ηj
= −

d∑︂
j=1

ηj
∂Γ+

d (Kd)
∂ηj

.

(5.30)

278
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Dimension two

When d = 2, the formula is extraordinarily simple. Since σ ∩K2 is always a line
segment, we get v(1)

1 (σ ∩K2) = 1/3 and so

γn(K2) = 1
3 vol2 K2

∫︂
R2\K◦

2

ζ3
2 (σ)(Γ+

2 (σ)n + Γ−
2 (σ)n)λ2(dη) (5.31)

Dimension three

When d = 3, we have

γn(K3)=2 vol3K3

∫︂
R3\K◦

3

v
(1)
2 (σ ∩K3)ζ4

3 (σ)(Γ+
3 (σ)n−1+Γ−

3 (σ)n−1)λ3(dη), (5.32)

This integral can be always solved when the integrand is a rational function. This
happens when K3 = P3 a convex polygon. Then, σ ∩P3 is some convex polytope
P2. Since v(1)

2 (P2) is known for any convex polytope (due to Buchta and Reitzner
[19]), in fact it is a rational function, we can plug this value into the integral
and then integrate everything out. We can use this formula to deduce the first
volume moment relatively easily regardless of the number of points in the convex
hull. This is the method that we originally used to derive v(1)

3 (P3) for polyhedra
in Table 4.3.

5.1.6 Generalisations of Efron’s formula
Affentranger’s recurrence relations

It turns out that the first volume moments E [vold(Hn)] = v(1)
n (Kd) voldKd in a

convex d-body Kd for n ≥ 3 are related via the formula (d = 3 and m ≥ 1)

v
(1)
2m+d−1(Kd) =

m∑︂
k=1

(4k − 1)B2k

k

(︄
2m+ d

2k − 1

)︄
v

(1)
2m−2k+d(Kd), (5.33)

where B2k are the Bernoulli numbers (B2 = 1/6, B4 = −1/30, B6 = 1/42,
B8 = −1/30 and so on). Special cases up to m = 4 are listed below

v
(1)
4 (K3) = 5

2v
(1)
3 (K3),

v
(1)
6 (K3) = 7

2v
(1)
5 (K3)− 35

4 v
(1)
3 (K3),

v
(1)
8 (K3) = 9

2v
(1)
7 (K3)− 21v(1)

5 (K3) + 63v(1)
3 (K3),

v
(1)
10 (K3) = 11

2 v
(1)
9 (K3)− 165

4 v
(1)
7 (K3) + 231v(1)

5 (K3)− 2805
4 v

(1)
3 (K3).

(5.34)

The identity is due to Affentranger [1] and Badertscher [3] and it is proven sim-
ply by comparing the coefficients of Γ+

d (x) by expanding Γ−
d (x)n−d+2 as (1 −

Γ+
d (x))n−d+2 in the Efron section formula. Note that the same formula holds also

in two dimensions (put d = 2), from which we get up to m = 4
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v
(1)
3 (K2) = 2v(1)

2 (K2),
v

(1)
5 (K2) = 3v(1)

4 (K2)− 5v(1)
2 (K2),

v
(1)
7 (K2) = 4v(1)

6 (K2)− 14v(1)
4 (K2) + 28v(1)

2 (K2),
v

(1)
9 (K2) = 5v(1)

8 (K2)− 30v(1)
6 (K2) + 126v(1)

4 (K2)− 255v(1)
2 (K2).

(5.35)

Buchta’s identity

However, Affentranger’s recurrence relation does not generalise to higher di-
mensions. That means, there is no recurrence formula relating E [vold(Hn)] =
v(1)
n (Kd) voldKd to each other when d ≥ 4. The only exception where Affen-

tranger’s formula holds is the case m = 1 for which indeed for any d,

v
(1)
d+1(Kd) = d+ 2

2 v
(1)
d (Kd) (5.36)

as proven by Buchta in [14, p. 96] by a simple projection argument. Neither the
Efron section formula can be generalised to higher dimensions. This is because the
values f0(Hn) and fd−1(Hn) are no longer connected by a simple linear relation.
For example, when d = 4 and f0(Hn) = 6, then either f0(Hn) = 8 or f0(Hn) = 9.
The second option corresponds to Hn being a cyclic polytope. It is thus believed
there is no analogue of Efron’s formula in higher dimensions [1], although partial
results connecting expected values of various polyhedral elements have been found
(see Cowan [22]).

Vertex-Facet polynomial

In d = 4, there are three ways how H5 can look like. Either H5 is
• a 4-simplex, f0(H5) = 5, f0(H5) = 5
• convex union of two 4-simplices sharing one facet, f0(H5) = 6, f3(H3) = 8
• or a cyclic polytope with f0(H5) = 6, f0(H5) = 9.

These three options can be combined into a single quadratic relation

12f0(H5) = 17f3(H5)− f 2
3 (H5). (5.37)

More generally, we have the following observation:

Proposition 236. There is a polynomial pd : R→ R of order ⌊d/2⌋ such that

f0(Hd+2) = pd(fd−1(Hd+2)). (5.38)

Proof. The proof is based on the classification of simplical polytopes with low
number of vertices (see [71, Chapter 15.]). A polytope Pd with d + 2 vertices is
simplical if and only if it can be written as a direct sum of two lower-dimensional
simplices. That is, Pd = Tk ⊕ Td−k. There are ⌊d2⌋ such polytopes since by
symmetry, k = 1, . . . , ⌊d2⌋. Based on the property of direct sums, fd−1(Pd) =
fk−1(Tk)fd−k−1(Td−k) = (k + 1)(d− k + 1). Together with Hd+1 being d-simplex
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(k = 0), there are 1 + ⌊d2⌋ possible simplical polytopes for Hd+1 and thus there
are 1 + ⌊d2⌋ pairs of number of vertices and facets Hd+1 can have. Therefore, in
general, we can construct a polynomial pd : R→ R of order ⌊d/2⌋ as claimed by
the proposition. ■

Example 237. For d = 2 upto d = 11, all possibilities are enlisted in Table 5.1.

(f0, fd−1) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
d = 2 (3, 3) (4, 4)
d = 3 (4, 4) (5, 6)
d = 4 (5, 5) (6, 8) (6, 9)
d = 5 (6, 6) (7, 10) (7, 12)
d = 6 (7, 7) (8, 12) (8, 15) (8, 16)
d = 7 (8, 8) (9, 14) (9, 18) (9, 20)
d = 8 (9, 9) (10, 16) (10, 21) (10, 24) (10, 25)
d = 9 (10, 10) (11, 18) (11, 24) (11, 28) (11, 30)
d = 10 (11, 11) (12, 20) (12, 27) (12, 32) (12, 35) (12, 36)
d = 11 (12, 12) (13, 22) (13, 30) (13, 36) (13, 40) (13, 42)

Table 5.1: Number of vertices and facets of Pd = Hd+1 = Tk ⊕ Td−k.

From those values, we construct the following polynomials

p2(x) = x, (5.39)

p3(x) = x

2 + 2, (5.40)

p4(x) = 17
12x−

x2

12 , (5.41)

p5(x) = 2 + 11
12x−

x2

12 , (5.42)

p6(x) = 17x
10 −

43x2

360 + x3

360 , (5.43)

p7(x) = 2 + 223x
180 −

13x2

180 + x3

720 , (5.44)

p8(x) = 537x
280 −

2749x2

20160 + 43x3

10080 −
x4

20160 , (5.45)

p9(x) = 2 + 419x
280 −

103x2

1120 + 5x3

2016 −
x4

40320 , (5.46)

p10(x) = 5281x
2520 −

32743x2

226800 + 2971x3

604800 −
x4

12096 + x5

1814400 , (5.47)

p11(x) = 2 + 4307x
2520 −

5267x2

50400 + 2857x3

907200 −
17x4

362880 + x5

3628800 . (5.48)

Remark 238. The leading coefficient of pd(x) is (−1)⌊ d2⌋+1(d−1−⌊ d2⌋)!
(d−1)!⌊ d2⌋!

.
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5.2 Two dimensions

5.2.1 Triangle first-order metric moments
Let us re-derive the solution of the Silvester problem, that is to find the (volu)metric
moment v(1)

2 (T2), where T2 is a triangle. By symmetry, γn(T2) = 3γn(T2)I, where
I with wI = 3 is the only configuration in C(T2) separating one of its vertices.
By affinity, we may use T2 = conv([0, 0], [1, 0], [0, 1]) instead of T2. In order
σ : η⊤x = ax+by = 1 to separate S = {[0, 0]}, we must have (R2\T ◦

2 )I = (1,∞)2

to be the domain of integration of η = (a, b)⊤ in configuration I. The area fraction
(closer to the origin) is given by Γ+

2 (σ)I = 1/(ab), so by Remark 297

ζ2(T)I = −a∂Γ+
2 (σ)I

∂a
− b∂Γ+

2 (σ)I

∂b
= 2
ab
. (5.49)

Hence,

γn(T2)I = 1
6

∫︂ ∞

1

∫︂ ∞

1

(︂
2
ab

)︂3 (︂(︂ 1
ab

)︂n
+
(︂
1− 1

ab

)︂n)︂
da db = 4Hn+1

3(n+ 1)(n+ 2) , (5.50)

where Hk = ∑︁k
j=1 1/j is the k-th harmonic number , from which immediately

v(1)
n (T2) = v(1)

n (T2) = 1− n+ 1
2 γn(T2) = 1− 2Hn+1

n+ 2 . (5.51)

Those values are tabulated in Table 5.2.

n 2 3 4 5 6 7 8 9 10

v(1)
n (T2) 1

12
1
6

43
180

3
10

197
560

499
1260

5471
12600

589
1260

82609
166320

Table 5.2: Convex hull area expectations v
(1)
n (T2)

Silvester’s problem is the special case when n = 2, that is v(1)
2 (T2) = 1− 1

2H3 = 1
12 .

5.2.2 Quadrilateral first area moment
We present a more elaborate example. In what follows, we find the first area
moment in a quadrilateral. The first area moment in a quadrilateral was essential
for Buchta and Reitzner (see their original 1992 paper [18]) to derive v(1)

3 (T3) since
the intersection of a section plane σ with T3 is either a triangle (treated in the
previous section) or a quadrilateral – this is then plugged into three-dimensional
Efron’s section formula (Equation (5.32)). Although Buchta and Reitzner were
able to get the first area moment in a quadrilateral from the general formula for
v(1)
n (P2) for P2 being any polygon (which they described in [19]), they mentioned

that the special case of P2 being a quadrilateral is already contained in a textbook
on geometric probability by Deltheil [23].
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Any quadrilateral (apart from parallelograms) is affinely congruent to the canon-
ical truncated triangle defined as

Uαβ
2 = conv([α, 0], [0, β], [0, 1], [1, 0]) (5.52)

with parameters α, β ∈ (0, 1). Note that a parallelogram can still be obtained
from Uαβ

2 by the continuous limit α = β → 1−. We have vol2 Uαβ
2 = 1

2(1 − αβ).
This time, our goal will be to derive only the first area moment v(1)

2 (Uαβ
2 ). Let

η = (a, b)⊤ be the Cartesian parametrisation of the line σ ∈ A(2, 1) such that
x ∈ σ ⇔ η⊤x = 1. We have ∥η∥ =

√
a2 + b2. Table 5.3 shows all possible

configurations C(Uαβ
2 ) and their respective point selections S of vertices separated

by a cutting plane σ which define those configurations.

C I II III IV V VI

S [α, 0] [β, 0] [0, 1] [1, 0] [α, 0]
[1, 0]

[1, 0]
[0, 1]

wC 1 1 1 1 1 1

Table 5.3: Configurations C(Uαβ2 ).

Each configuration is unique, thus wC = 1 for any C. Although there are in gen-
eral no rigid symmetries of Uαβ

2 , we are still able to jump between configurations
by using affine transformations. For any configuration C, we have for the gamma
section functional (Equation (5.31)),

γ2(Uαβ
2 )C = 1− αβ

6

∫︂
(R2\(Uαβ2 )◦)C

ζ3
2 (σ)(Γ+

2 (σ)2 + Γ−
2 (σ)2)λ2(dη), (5.53)

where Γ+
2 (σ)2 = vol2(Uαβ

2 )+/ vol2 Uαβ
2 and Γ−

2 (σ)2 = vol2(Uαβ
2 )−/ vol2 Uαβ

2 are the
area fractions of domains (Uαβ

2 )+ ⊔ (Uαβ
2 )− = Uαβ

2 onto which Uαβ
2 is divided by

line σ. Furthermore, by definition of ζ2(σ) and by Remark 297,

ζ2(σ)C = vol1(σ ∩ Uαβ
2 )

∥η∥ vol2 Uαβ
2

= −a∂Γ+
2 (σ)C

∂a
− b∂Γ+

2 (σ)C

∂b
. (5.54)

Here, C is only a subscript to distinguish between configurations and does not
imply any decomposition of ζ2(σ) nor Γ±

2 (σ).

Configuration I

Let us cut of the vertex [α, 0]. By Equation (4.29), we get the following set of
inequalities which ensure σ separates only the point [α, 0],

aα < 1, bβ > 1, a > 1, b > 1, (5.55)

hence, our a, b integration domain is (R2 \ (Uαβ
2 )◦)I = (1, 1/α) × (1/β,∞). The

line σ splits Uαβ
2 into disjoint union of two domains (Uαβ

2 )+ ⊔ (Uαβ
2 )−, where

(Uαβ
2 )+ = conv

(︄
[α, 0] ,

[︃1
a
, 0
]︃
,

[︄
α(bβ − 1)
bβ − aα

,
β(1− aα)
bβ − aα

]︄)︄
, (5.56)

283



5.2. Two dimensions

which has area equal to

vol2(Uαβ
2 )+ = β(1− aα)2

2a(bβ − aα) (5.57)

from which we get for the area fraction (closer to the origin)

Γ+
2 (σ)I = β(1− aα)2

a(1− αβ)(bβ − aα) . (5.58)

Hence, by Equation (5.54),

ζ2(Uαβ
2 )I = 2β(1− aα)

a(1− αβ)(bβ − aα) . (5.59)

Finally, for the gamma section functional,

γ2(Uαβ
2 )I =

∫︂ ∞

1/β

∫︂ 1/α

1

4(1− aα)3β3

3a5(aα− bβ)5(1− αβ)4 ×[︃
(1− aα)4β2 +

(︂
a2α + β − abβ(1− αβ)− 2aαβ

)︂2
]︃

da db.
(5.60)

Integrating out a and b, we get

γ2(Uαβ
2 )I = (1− α)2β2 (18− 16β − 20αβ + 9β2 − 2αβ2 + 11α2β2)

54(1− αβ)4 . (5.61)

Configuration II

Note that Configuration II is obtained from Configuration I by reflection, that is
by replacing α with β and vice versa in Equation (5.61). We get

γ2(Uαβ
2 )II = α2(1− β)2 (18− 16α + 9α2 − 20αβ − 2α2β + 11α2β2)

54(1− αβ)4 . (5.62)

Configuration III

This configuration can be deduced from configuration II. Let x,v ∈ R2 and M ∈
R2×2 be a non-singular matrix. Consider an affine transformation x ↦→ Mx + v
with

M = 1
1− α

(︄
−1 −1
1 α/β

)︄
, v = 1

1− α

(︄
1
−α

)︄
. (5.63)

Applying the transformation on Uαβ
2 , we get

Uαβ
2 ↦→ conv

(︂[︂
1−β
1−α , 0

]︂
,
[︂
0, α(1−β)

β(1−α)

]︂
, [0, 1] , [1, 0]

)︂
, (5.64)

which is another canonical truncated triangle Uγδ
2 with

γ = 1− β
1− α, δ = α(1− β)

β(1− α) . (5.65)
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Since the vertex [0, 1] to be cut away by σ maps to
[︂
0, α(1−β)

β(1−α)

]︂⊤
under our affine

transformation, we realise that configuration III is equivalent to configuration II
with γ, δ instead of α, β. Replacing α→ 1−β

1−α and β → α(1−β)
β(1−α) in Equation (5.62),

γ2(Uαβ
2 )III = (1− β)2 (11− 2β − 20αβ + 9β2 − 16αβ2 + 18α2β2)

54(1− αβ)4 . (5.66)

Although we should assume that α < β (otherwise γ and δ are negative), it turns
out the formula above is in fact valid for any α, β in [0, 1).

Configuration IV

By symmetry, configuration IV is obtained from III by replacing α with β and
vice versa. Equation (5.66) therefore yields

γ2(Uαβ
2 )IV = (1− α)2 (11− 2α + 9α2 − 20αβ − 16α2β + 18α2β2)

54(1− αβ)4 . (5.67)

Configuration V

By Equation (4.29), we get the following set of inequalities which ensure σ sep-
arates points [1, 0] and [0, 1],

aα < 1, bβ < 1, a > 1, b > 1, (5.68)

from which we obtain the integration domain in (a, b) as

(R2 \ (Uαβ
2 )◦)V = (1, 1/α)× (1, 1/β). (5.69)

The plane σ splits Uαβ
2 into disjoint union of two domains (Uαβ

2 )+⊔(Uαβ
2 )−, where

(Uαβ
2 )− = conv

(︂[︂
1
a
, 0
]︂
,
[︂
0, 1

b

]︂
, [0, 1] , [1, 0]

)︂
, (5.70)

which is again a canonical truncated triangle with area vol2(Uαβ
2 )− = 1

2(1 − 1
ab

)
and the corresponding area fraction

Γ−
2 (σ)V = vol2(Uαβ

2 )−

vol2 Uαβ
2

=
1− 1

ab

1− αβ , (5.71)

from which, by Equation (5.54),

ζ2(σ)V = a
∂Γ−

2 (σ)V

∂a
+ b

∂Γ−
2 (σ)V

∂b
= 2
ab(1− αβ) . (5.72)

Finally, for the gamma section functional, we get by Equation (5.53)

γ2(Uαβ
2 )V =

∫︂ 1/β

1

∫︂ 1/α

1

4 (2− 2ab+ a2b2 − 2abαβ + a2b2α2β2)
3a5b5(1− αβ)4 da db. (5.73)

Integrating out a and b, we get

γ2(Uαβ
2 )V =

{︄
11−18α2−18β2+16α3+16β3−9α4−9β4−16αβ+36α2β2

−16α3β3 + 11α4β4 + 16α4β + 16αβ4 − 18α2β4 − 18α4β2

}︄
54(1− αβ)4 .

(5.74)
Note that γ2(Uαβ

2 )V = γ2(Uβα
2 )V as expected by symmetry.
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Configuration VI

Let x ↦→Mx + v be the affine transformation from configuration III, that is with
M,v given by Equation (5.63). Again we have Uαβ

2 ↦→ Uγδ
2 with

γ = 1− β
1− α, δ = α(1− β)

β(1− α) . (5.75)

Therefore, configuration VI is equivalent to configuration V with γ, δ instead of
α, β. Replacing α→ 1−β

1−α and β → α(1−β)
β(1−α) in Equation (5.74),

γ2(Uαβ
2 )VI =

⎧⎪⎨⎪⎩
24α + 24β − 24α2 − 24β2 + 20α3 + 20β3 − 9α4 − 9β4 − 72αβ

+106α2β2 − 72α3β3 + 4α2β + 4αβ2 − 20α3β − 20αβ3 + 20α4β
+20αβ4+4α3β2+4α2β3−24α4β2−24α2β4+24α4β3+24α3β4

⎫⎪⎬⎪⎭
54(1− αβ)4 .

(5.76)
Note that again γ2(Uαβ

2 )VI = γ2(Uβα
2 )VI as expected by symmetry.

Contribution from all configurations

By Equation (C.118), we get after some simplifications,

γ2(Uαβ
2 ) =

∑︂
C∈C(Uαβ2 )

wC γ2(Uαβ
2 )C = 11

18 + 2αβ(1− α)2(1− β)2

27(1− αβ)4 , (5.77)

which yields by Equation (5.29) with n = 2 and for any α, β ∈ [0, 1),

v
(1)
2 (Uαβ

2 ) = 1− 3
2γ2(Uαβ

2 ) = 1
12 −

αβ(1− α)2(1− β)2

9(1− αβ)4 . (5.78)

Remark 239. Note that as α = β = 0, we get Silvester’s v(1)
2 (T2) = 1/12 and

when α = β → 1−, we get v(1)
2 (C2) = 11/144 as expected.

5.2.3 Half-disk first-order metric moments
What is the value of v(1)

2 (D2) where D2 is the half-disk? Henze proposed me this
problem while I was at a conference in Bad Herrenbald. More concretely, let

D2 = {(x, y)⊤ ∈ R2 | x2 + y2 ≤ 1 ∧ y > 0} (5.79)
and η = (a, b)⊤ be the Cartesian parametrization of cutting plane σ, that is
x = (x, y)⊤ ∈ σ ⇔ η⊤x = ax + by = 1. Although the top part of the boundary
of D2 is smooth, we may still recognize two distinct configurations. See Figure
5.1 below.

Figure 5.1: Half-disk configurations C(D2)
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Configuration I

Consider the following change of variables (a, b) → (ψ, α), where α ∈ [0, π) is
the angle of (left) incidence of σ and ψ is the angle of a circular sector on D2
intersected by σ (see Figure 5.1 on the left). By symmetry (symmetry factor of
2), we assume that α ∈ [0, π2 ) and thus 0 < ψ < π − 2α. Point ξ (the closest
point of σ to the origin) can be expressed as

ξ = (cos ψ
2 sinα, cos ψ

2 cosα)⊤, (5.80)

which follows from the slope angle being minus tanα and from ∥ξ∥ = cos ψ
2 or

equivalently 1/∥η∥ = cos ψ
2 . Since η = ξ/∥ξ∥2 and η = (a, b)⊤, we get the

following transformation rules

a = sinα
cos ψ

2
, b = cosα

cos ψ
2

(5.81)

with the Lebesgue measure transforming as (by calculating the Jacobian)

λ2(dη) = da db =
sin ψ

2
2 cos3 ψ

2
dαdψ. (5.82)

By simple geometry, we get for the length of intersection

vol1(σ ∩ D2) = 2
√︂

1− ∥ξ∥2 = 2 sin ψ
2 (5.83)

and thus
ζ2(σ) = vol1(σ ∩ D2)

∥η∥ vol2 D2
= 4
π

sin ψ
2 cos ψ

2 = 2 sinψ
π

. (5.84)

For the area of the circular segment D−
2 (above σ), we have

vol2 D−
2 = ψ

2 −
1
2 sinψ (5.85)

and thus, since vol2 D2 = π/2,

Γ−
3 (σ) = vol2 D−

2
vol2 D2

= 1
π

(ψ − sinψ). (5.86)

By Equation (5.31) (including the symmetry factor 2),

γn(D2)I = 32
3π2+n

∫︂ π

0

∫︂ π
2 −ψ

2

0
sin4 ψ

2 ((ψ− sinψ)n + (π− ψ + sinψ)n) dσdψ. (5.87)

Integrating out α and writing sin4 ψ
2 = (1− cosψ)2/4, we get

γn(D2)I = 4
3π2+n

∫︂ π

0
(π−ψ)(1−cosψ)2((ψ−sinψ)n+(π−ψ+sinψ)n)dψ. (5.88)

This integral is elementary for a given n. Especially, when n = 2, we get

γ2(D2)I = 2
3 + 2816

81π4 −
131
18π2 . (5.89)
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Configuration II

Consider another change of variables (a, b) → (ψ, s), where ψ is again the angle
of the circular sector and s = 1/a is the x-intercept of σ (see Figure 5.1 on the
right). Our integration domain in those variables is 0 < ψ < π and −1 < s < 1.
By symmetry, we can restrict s ∈ (0, π) (symmetry factor 2). By simple geometry,

vol2 D−
2 = ψ

2 −
s
2 sinψ, (5.90)

from which
Γ−

3 (σ) = vol2 D−
2

vol2 D2
= 1
π

(ψ − s sinψ). (5.91)

By the rule of cosines,

vol1(σ ∩ D2) =
√︂

1 + s2 − 2s cosψ. (5.92)

Equating the area of triangle [0, 0], [0, s], [cosψ, sinψ] in two ways, we get for the
distance of the closest point ξ on σ from the origin,

∥ξ∥ = s sinψ√
1 + s2 − 2s cosψ

(5.93)

and thus
ζ2(σ) = ∥ξ∥vol1(σ ∩ D2)

vol2 D2
= 2s sinψ

π
. (5.94)

Since ∥ξ∥ = 1/∥η∥ = 1/
√
a2 + b2 and a = 1/s, we get, solving for b,

b = s− cosψ
s sinψ , (5.95)

from which (by calculating the Jacobian)

λ2(dη) = da db = 1− s cosψ
s3 sin2 ψ

dsdψ. (5.96)

By Equation (5.31), with the symmetry factor 2,

γn(D2)II = 8
3π2+n

∫︂ π

0

∫︂ 1

0
sinψ(1−s cosψ)((ψ−s sinψ)n+(π−ψ+s sinψ)n)dsdψ.

(5.97)
This integral is again elementary for a given n. Especially, when n = 2, we get

γ2(D2)II = 16
3π2 −

1664
81π4 . (5.98)

Contribution from all configurations

Adding up the contributions from the two configurations,

v(1)
n (D2) = 1− n+ 1

2 γn(D2) = 1− n+ 1
2 (γn(D2)I + γn(D2)II) . (5.99)

When n = 2, we get the answer for Henze’s question to be
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v
(1)
2 (D2) = 35

12π2 −
64
3π4 ≈ 0.0765125. (5.100)

The first-order metric moments with higher n are tabulated in Table 5.4 below.

n 2 3 4 5

v(1)
n (D2) 35

12π2 − 64
3π4

35
6π2 − 128

3π4
175

18π2 − 69103
432π4 + 204800

243π6
204800
81π6 − 53743

144π4 + 175
12π2

n 6 7

v(1)
n (D2) 245

12π2− 322441
432π4 + 954438853

86400π6 − 24090300416
455625π8

245
9π2− 290185

216π4 + 6296189677
194400π6 − 96361201664

455625π8

Table 5.4: Convex hull area expectations v
(1)
n (D2)

Note that only the values of v(1)
n (D2) with even n are independent. Values with

odd n can be deduces from other even values by Affentranger’s relations (Equation
(5.35)).

5.3 Three dimensions

5.3.1 Tetrahedron first-order metric moments
Let us rederive the result of Buchta and Reitzner, namely v

(1)
3 (T3) (see their

original paper [18] from 1992) and v(1)
n (T3) for general n (see their follow-up pa-

per [20] from 2001). The auxiliary value of γn(T3) is split into configurations
C(T3) = {I, II} (shown in Figure 4.6). By affine invariancy, we can instead calcu-
late γn(T3)C, where

T3 = conv(0, e1, e2, e3) = conv([0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]) (5.101)

is the canonical tetrahedron with vol3 T3 = 1/6. Its configurations are determined
by the points which are separated by the cutting plane σ ∈ A(3, 2) (see Table
4.11). Since the analysis is the same as in the Canonical integral approach, we
skip the unnecessary details. By Equation (5.32) and for any C ∈ C(T3),

γn(T3)C = 1
3

∫︂
R3\T◦

3

v
(1)
2 (σ ∩ T3)ζ4

3 (σ)(Γ+
3 (σ)n−1 + Γ−

3 (σ)n−1)λ3(dη), (5.102)

where η = (a, b, c)⊤ is the Cartesian parametrisation of σ such that x ∈ σ ⇔
η⊤x = 1 and

ζ3(σ) = vol2(σ ∩ T3)
∥η∥ vol3 T3

, Γ+
3 (σ) = vol3 T+

3
vol3 T3

, Γ−
3 (σ) = vol3 T−

3
vol3 T3

(5.103)

with T+
3 = {x ∈ T3 | η⊤x < 1} and T−

3 = {x ∈ T3 | η⊤x > 1}. In order to
distinguish between configurations, we also write ζ3(σ)C, Γ+

3 (σ)C and Γ−
3 (σ)C

instead of just ζ3(σ), Γ+
3 (σ) and Γ−

3 (σ). Here, C is only a subscript and does not
imply any decomposition of those functions.
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Configuration I

We already calculated functions related with the canonical tetrahedron in config-
uration I. However, let us derive some of them again in a different way. First,

T+
3 = conv([0, 0, 0], [1/a, 0, 0], [0, 1/b, 0], [0, 0, 1/c]) (5.104)

from which its trivial to see that

Γ+
3 (σ)I = vol3 T+

3
vol3 T3

= 1
abc

. (5.105)

By handy Remark 297, we get

ζ3(σ)I = −
3∑︂
j=1

ηj
∂Γ+

3 (σ)
∂ηj

= −
(︄
a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c

)︄
Γ+

3 (σ) = 3
abc

. (5.106)

Next, for any σ by scale affinity and by the already obtained solution of the
Silvester problem (see Table 5.2),

v
(1)
2 (σ ∩ T3) = v

(1)
2 (T2) = 1

12 . (5.107)

Finally, our integration domain in a, b, c is (R3 \ T◦
3)I = (1,∞)3 and therefore,

putting everything into the integral in Equation (5.102), we get

γn(T3)I = 9
4

∫︂ ∞

1

∫︂ ∞

1

∫︂ ∞

1
1

a4b4c4

(︃(︂
1
abc

)︂n−1
+
(︂
1− 1

abc

)︂n−1
)︃

da db dc. (5.108)

This triple integral can be solved exactly for any n. Consider the following sub-
stitution (a, b, c)→ (x, y, z) where

a = y
x
, b = z

y
, c = 1

z
. (5.109)

This substitution enables us easily to integrate out y and z to get a single integral

γn(T3)I = 9
8

∫︂ 1

0
x2
(︂
(1− x)n−1 + xn−1

)︂
ln2 x dx. (5.110)

After some manipulations, we arrive at the following formula

γn(T3)I = 9
4

(︄
(Hn+2)2 − 3Hn+2 +H ′

n+2 + 1
n(n+ 1)(n+ 2) + 1

(n+ 2)3

)︄
, (5.111)

where Hk = ∑︁k
j=1 1/j is the k-th harmonic number and H ′

k = ∑︁k
j=1 1/j2 is the

k-th diharmonic number . Table 5.5 below shows γn(T3)I for low values of n.

n 3 4 5 6 7 8 9 10

γn(T3)I
2353
48000

3059
96000

182431
8232000

106583
6585600

8723171
711244800

9721567
1016064000

1291624303
169047648000

1402000513
225396864000

Table 5.5: Auxiliary integral γn(T3)I
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Configuration II

In this scenario, σ separates two points [0, 0, 0] and [0, 0, 1] (see Figure 4.9).
We can split the integration domain (R3 \ T◦

3)II into two halfs, each of which
contributes the same amount to γn(T3)II. One of the two domains is the following

(R3 \ T◦
3)∗

II = (1,∞)2 × (0, 1). (5.112)

The plane σ splits T3 into disjoint union of two domains T+
3 ⊔ T−

3 , where

T+
3 = conv

(︂
[0, 0, 0], [0, 0, 1], [ 1

a
, 0, 0], [0, 1

b
, 0], [ 1−c

a−c , 0,
a−1
a−c ], [0,

1−c
b−c ,

b−1
b−c ]

)︂
, (5.113)

from which we obtain

Γ+
3 (σ)II = vol3 T+

3
vol3 T3

= c− a− b+ 3ab− 3abc+ abc2

ab(a− c)(b− c) . (5.114)

and thus by Remark 297, we get

ζ3(σ)II = −
(︄
a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c

)︄
Γ+

3 (σ) = 3(c− a− b+ 2ab− abc)
ab(a− c)(b− c) . (5.115)

We make the following change of variables (a, b, c)→ (α, β, c) via transformation

α = a(1− c)
a− c

, β = b(1− c)
b− c

, (5.116)

by which

Γ+
3 (σ)II = (1− c− α)(1− c− β)(1− (1− c)αβ)

c3αβ
, (5.117)

ζ3(σ)II = 3(1− c− α)(1− c− β)(1− αβ)
c3αβ

. (5.118)

For the intersection of σ with T3, we have

σ ∩ T3 = conv
(︂
[ 1
a
, 0, 0], [0, 1

b
, 0], [ 1−c

a−c , 0,
a−1
a−c ], [0,

1−c
b−c ,

b−1
b−c ]

)︂
, (5.119)

By scale affinity and recalling Equation (5.78),

v
(1)
2 (σ ∩ T3) = v

(1)
2 (Uαβ

2 ) = 1
12 −

αβ(1− α)2(1− β)2

9(1− αβ)4 (5.120)

where Uαβ
2 = conv([α, 0], [0, β], [0, 1], [1, 0]) is the canonical truncated triangle (see

Figure 4.10). Our change of variables transform the integration half-domain into

(R3 \ T◦
3)∗

II |α,β,c = (1−c, 1)2 × (0, 1). (5.121)

Note that, if c is treated as a parameter, the variables a, b depend on α, β sepa-
rately. As a consequence,

da = c(1− c) dα
(1− c− α)2 , db = c(1− c) dβ

(1− c− β)2 (5.122)
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and thus one has for the of transformation of measure

λ3(dη) = da db dc = c2(1− c)2 dα dβ dc
(1− c− α)2(1− c− β)2 . (5.123)

Putting everything into the integral in Equation (5.102) with prefactor 2, we get

γn(T3)II = 3
2

∫︂ 1

0

∫︂ 1

1−c

∫︂ 1

1−c

(1− c)2(1− c− α)2(1− c− β)2

c10α4β4 ×(︃(︂
(1−c−α)(1−c−β)(1−(1−c)αβ)

c3αβ

)︂n−1
+
(︂
1− (1−c−α)(1−c−β)(1−(1−c)αβ)

c3αβ

)︂n−1
)︃

×
(︂
3(1− αβ)4 − 4αβ(1− α)2(1− β)2

)︂
dα dα dc.

(5.124)

This integral is the same (apart from substitution) as In(p2, p3) in Buchta and
Reitzner [20, p. 23]. For a given n, integrating out α, β can be done relatively
easily, when n = 3, we end up with

γ
(1)
3 (T3)II =

∫︂ 1

0

c2p0+1200c(1−c)2p0 ln(1−c)+3600(1−c)2p2 ln2(1−c)
1200c16 dc, (5.125)

where

p0 = 2318400− 13910400c+ 31299600c2 − 28986000c3

− 5018800c4 + 40976800c5 − 46746600c6 + 28094200c7

− 9678136c8 + 1803672c9 − 151833c10 − 903c11 + 357c12,

(5.126)

p1 = 3864− 17388c+ 24796c2 − 5642c3 − 24680c4 + 35233c5

− 22818c6 + 7765c7 − 1358c8 + 114c9,
(5.127)

p2 = 644− 3220c+ 5528c2 − 2792c3 − 4035c4 + 8353c5

− 6960c6 + 3181c7 − 814c8 + 115c9 − 8c10.
(5.128)

The last c integration can be carried out by Mathematica (alternatively, we can
use derivatives of the Beta function). We get

γ3(T3)II = 13891
108000 + π2

45045 . (5.129)

For higher values of n, the integration possesses similar difficulty, Table 5.6 below
shows γn(T3)II for low values of n.

n 4 5 6 7

γn(T3)II
5891
72000 + π2

30030
343339
6174000 + 178π2

4849845
588221

14817600 + 211π2

5819814
3139907

106686720 + 22829π2

669278610

n 8 9 10

γn(T3)II
17135963
762048000 + 461π2

14709420
446479763

25357147200 + 6116122π2

214886239425
475739497

33809529600 + 12890876π2

501401225325

Table 5.6: Auxiliary integral γn(T3)II
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Contribution from all configurations

By affine invariancy and by decomposition into configurations,

γn(T3) =
∑︂

C∈C(T3)
wC γn(T3)C = 4γn(T3)I + 3γn(T3)II, (5.130)

Recall Efron’s formula (Equation (5.29))

v(1)
n (T3) = n

n+ 2 −
n(n+ 1)

12 γn(T3). (5.131)

When n = 3, we get γ3(T3) = 419
720 + π2

15015 , from which we immediately recover
Buchta and Reitzner’s [18]

v
(1)
3 (T3) = 3

5 − γ3(T3) = 13
720 −

π2

15015 ≈ 0.01739823925. (5.132)

Moreover, for general n ≥ 3, we get the same result as derived by Buchta and
Reitzner in [20, Theorem 2]. Table 5.7 below shows v(1)

n (T3) for low values of n.

n 3 4 5 6

v(1)
n (T3) 13

720 −
π2

15015
13
288 −

π2

6006
127
1680 −

89π2

323323
307
2880 −

211π2

554268

n 7 8 9 10

v(1)
n (T3) 41369

302400−
22829π2

47805615
11129
67200−

461π2

817190
641303
3326400−

3058061π2

4775249765
37723
172800−

6445438π2

9116385915

Table 5.7: Convex hull volume expectations v
(1)
n (T3)

Note that only the values of v(1)
n (T3) with odd n are independent. Values with even

n can be deduces from other odd values by Affentranger’s recurrence relations
(Equation (5.34)).

5.4 Unsolved problems
We have seen that the metric moments v(k)

n (Pd) having n = d can be computed
for all odd k via our canonical section integral method whereas for n > 1 and
d = 3, k = 1 we could use Efron’s formula. However, we have shown that Efron’s
formula cannot be generalised in higher dimensions nor for higher moments be-
cause of the inability to obtain linear relations between the number of vertices
and the number of facets. A natural question arises: How then can we compute
v(k)
n (Pd) for odd k > 1 and n > d? Or when d ≥ 4?
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6. Radial Random Simplices
In this chapter, we deduce formulae for volumetric moments of random simplices
whose vertices are drawn independently from radially symmetric distributions.
Such simplices are called radial simplices (Miles [48] uses the term isotropic).
There are, in fact, multiple approaches as we can express the volume of random
simplices. For example, by using its facets, determinants of random matrices,
integrals over section planes, Wishart (and other special) distributions, Grass-
mann/fermionic variables, etc.

Originally, the main purpose of this chapter is to deduce Theorem 181 without
the knowledge of the properties of the (shifted) Wishart distribution. As a result,
we establish even more tight connection between random determinant moments
and their random simplices volumetric moments counterparts.

6.1 Definitions
We will be mainly interested in the following construction:

Definition 240. We call a collection X of random points Xj, j ∈ N0 a (random)
sample if the points are independent and identically distributed according to
some distribution Dd in Rd. Let 0 ∈ Rd denotes the origin. We define random
variables

∇p(Dd) def= volp conv(0,X1, . . . ,Xp), (6.1)
∆p(Dd) def= volp conv(X0,X1, . . . ,Xp) (6.2)

and their corresponding moments

η(k)
p (Dd) = E∇k

p(Dd), v(k)
p (Dd) = E∆k

p(Dd). (6.3)

Remark 241. Again, we can see a tight connection to moments of random
matrices. For the former, let U = (X1 | X2 | · · · | Xp) be a (random) matrix
whose columns are coordinates of the points Xj. Using Gram matrix, we can
write

∇p(Dd) = 1
p!
√

detU⊤U. (6.4)

Remark 242. Note that if Dd = Unif(Kd), that is a uniform distribution in some
convex d-body Kd, then v(k)

p (Unif(Kd)) coincides with the volumetric moments
v(k)
p (Kd) defined earlier in the Introduction of this thesis. The definition is

hence consistent.

Definition 243 (Conditional radial simplices). Let Xj, j = 1, . . . d be i.i.d.
random points following some generic distribution Dd as before and let x0 be
some point in Rd. We define

∆p(Dd | x0) def= volp conv(x0,X1, . . . ,Xp) (6.5)

295



6.1. Definitions

and its corresponding moments

v(k)
p (Dd | x0) = E∆k

p(Dd | x0). (6.6)

Remark 244. By definition, the following relations hold

η(k)
p (Dd) = v(k)

p (Dd | 0), (6.7)

v(k)
p (Dd) = E v(k)

p (Dd | X0) =
∫︂
Rd
v(k)
p (Dd | x0) Dd(dx0). (6.8)

6.1.1 Radially symmetric functionals
Definition 245. Let Xj, j = 0, . . . , p be i.i.d. random points in Rd each dis-
tributed according to some common distribution Dd with a probability measure
Dd(dx) = ρd(x)λd(dx), where ρd(x) represents its probability density. We say
Xj ∼ Dd is radially symmetric if ρd(x) = ρ̃d(∥x∥) for some function ρ̃d : R→ R.
Since x and ∥x∥ are a vector and a scalar, we may denote the second function
simply as ρd(∥x∥) without any additional diacritics. Similarly, we write for
the joint probability density of the sample X = (X0, . . . ,Xp) using its joint
probability measure Dd(dx) = ρd(x)dx

ρd(x) =
p∏︂
j=0

ρd(x) =
p∏︂
j=0

ρd(∥x∥), (6.9)

even though the symbol ρd technically represents three different functions.

Let us select f(x) = ∆k
p g(σ)ρd(x) in the Blaschke-Petkantschin formula (The-

orem 295) with p = q and let us denote y as the closest point from the origin
to σ = A(x0, . . . ,xp) ∈ G(d, p). We will assume that the function g(σ) is sym-
metric under actions of SO(d) group (group of rotations in Rd) on the sample
x. As a result, g must be a function of the distance of σ to the origin only and
we may thus write g(σ) = g(h), where h = ∥y∥. Under those assumptions of
radial symmetry and thanks to decomposition µq(dσ) = λd−p(dy)νq(dγ), where
γ ∈ G(d, p), y ∈ γ⊥ and σ = γ + y, Blaschke-Petkantschin formula (the special
case of Lemma 295 with p = q and βdp = βdpp) turns into

E
[︂
∆k
p(Dd) g(H)

]︂
=βdpωd−p

∫︂ ∞

0
hd−p−1g(h)

∫︂
γp+1

0

∆d−p+k
p ψp(u)λp+1

p (du)dh, (6.10)

where γ0 is any p-plane selected from G(d, p), u = (u0, . . . ,up) is a selection
of points from γ0 and H is a random variable associated with h if the selec-
tion of points is random, that is H equals the distance to the affine p-plane
A(X0, . . . ,Xp). Also, we decomposed xj = y + uj and defined

ψp(u) =
p∏︂
j=0

ψp(uj) (6.11)

with ψp(u) = ρd(
√︂
h2 + ∥u∥2). There is an important special case to this formula:

Definition 246. Consider a family of radially symmetric distributions Dp on
p-planes γ ∈ G(d, p), p = 0, . . . , d with density ρp(u). We say the family is
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shape-preserving, if for any u ∈ γ and y ∈ γ⊥, there exist functions εdp(h) and
ξ(h), where h = ∥y∥, such that for any p ≤ d,

ρd(y + u) = εdp(h)ρp(u/ξ(h)). (6.12)

Note that since both ρd and ρp are radial, we may write this, denoting s = ∥u∥,

ρd
(︂√

h2 + s2
)︂

= εdp(h)ρp(s/ξ(h)). (6.13)

Proposition 247. Let Dp be a family of shape-preserving radially symmetric
distributions with density ρp(u), where u lie on a p-plane γ ∈ G(d, p), then

E
[︂
∆k
p(Dd) g(H)

]︂
= βdp ωd−p v

(d−p+k)
p (Dp)J (k)

dp [g(h)], (6.14)

where ∆p(u) = volp conv(u) and J (k)
dp [·] is the functional defined as

J (k)
dp [g(h)] =

∫︂ ∞

0
hd−p−1g(h)ξ(h)(d+k+1)pεp+1

dp (h) dh. (6.15)

Proof. Denote sj = ∥uj∥. Assuming the shape-preserving property,

ψp(u)λp+1
p (du) =

p∏︂
j=0

ψp(uj)λp(duj) = εp+1
dp (h)

p∏︂
j=0

ρp

(︄
uj
ξ(h)

)︄
λp(duj). (6.16)

Let us make the change of variables uj = ξ(h)u′
j. We transform the Lebesgue

measures as λp(duj) = ξ(h)pλp(du′
j). Also, by scaling, ∆p(u) = ξ(h)p∆p(u′),

where u′ = (u0, . . . ,up). Overall,

∆d−p+k
p (u)ψp(u)λp+1

p (du) = ξ(h)(d+k+1)pεp+1
dp (h)∆d−p+k

p (u′) ρp(u′)λp+1
p (du′).

(6.17)
Since the transformation does not affect γ, we get, integrating over u′ ∈ γp+1,
the desired result. ■

Corollary 247.1. Let Dp be a family of shape-preserving distributions, then

v(k)
p (Dd) = 1

p!k
J (k)
dp [1]

J (0)
(d+k)p[1]

p∏︂
j=0

ωd−j

ωd+k−j
, (6.18)

η
(k)
p+1(Dd) = 1

(p+ 1)!k
J (k)
dp [hk]
J (0)

(d+k)p[1]

p∏︂
j=0

ωd−j

ωd+k−j
. (6.19)

Remark 248. Alternatively, we can express these formulae in terms of γ’s as

v(k)
p (Dd) = 1

p!k
√

2πk(p+1)
J (k)
dp [1]

J (0)
(d+k)p[1]

p∏︂
j=0

γd+k−j

γd−j
, (6.20)

η
(k)
p+1(Dd) = 1

√
2πk(p+1)(p+ 1)!k

J (k)
dp [hk]
J (0)

(d+k)p[1]

p∏︂
j=0

γd+k−j

γd−j
. (6.21)

297



6.1. Definitions

Proof. Set g(h) = 1 in Proposition 247, then

v(k)
p (Dp) = βdp ωd−p v

(d−p+k)
p (Dp)J (k)

dp [1], (6.22)

plugging k = 0, we get 1 = βdp ωd−p v
(d−p)
p (Dp)J (0)

dp [1]. Since d can be arbitrary,
we replace d by d + k and get 1 = β(d+k)p ωd+k−p v

(d−p+k)
p (Dp)J (0)

(d+k)p[1], from
which we obtain,

v(k)
p (Dd) =

βdp ωd−p J (k)
dp [1]

β(d+k)p ωd+k−p J (0)
(d+k)p[1]

, (6.23)

which further simplifies, since by Remark 296, βdp ωd−p = (p!)d−p∏︁p
j=0

ωd−j
ωp−j

. Next,
by base-height splitting, we have when p < d,

∇p+1(Dd) = H

p+ 1∆p(Dd). (6.24)

Thus, setting g(h) = hk/(p+ 1)k in Proposition 247,

η
(k)
p+1(Dp) = 1

(p+ 1)kβdp ωd−p v
(d−p+k)
p (Dp)J (k)

dp [hk], (6.25)

and therefore

η
(k)
p+1(Dp) = 1

(p+ 1)k
βdp ωd−p J (k)

dp [hk]
β(d+k)p ωd+k−p J (0)

(d+k)p[1]
. (6.26)

■

Proposition 249. Let Dp, p = 0, . . . , d be a family of shape-preserving radially
symmetric distributions with density ρp(u), where u lie on a p-plane γ ∈ G(d, p),
then for any function g(h),

E
[︂
∆k
p(Dd) g(H)

]︂
= v(k)

p (Dd)
J (k)
dp [g(h)]
J (k)
dp [1]

= (p+ 1)kη(k)
p+1(Dp)

J (k)
dp [g(h)]
J (k)
dp [hk]

. (6.27)

Shape-preserving distributions can either be Normal, Beta, Beta′ or Spherical
shell distribution, see Ruben & Miles [62].

6.1.2 General conditional radial simplices
Finally, to conclude this section, we derive the following result

Theorem 250. Let Dp, p = 0, . . . , d be a family of radially symmetric shape-
preserving distributions, then for any p < d and k = 2m, where m is an
integer,

v
(2m)
p+1 (Dd | x0)=η

(2m)
p+1 (Dd)

m∑︂
s=0

γdγd−p+2m J (2m)
dp [h2m−2s]

γd+2sγd−p+2m−2s J (2m)
dp [h2m]

(︄
m

s

)︄
∥x0∥2s. (6.28)
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Proof. Let X = (X1, . . . ,Xp+1) be a random sample of i.i.d. points Xj ∼ Dd,
j = 1, . . . , p+ 1. By definition, v(k)

p+1(Dd | x0) = E∆k
p+1(Dd | x0), where ∆p+1(Dd |

x0) = volp+1 conv(x0,X1, . . . ,Xp+1). Denote Y the closest point from the origin
to σ = A(X) ∈ A(d, p). The points Uj = Xj − Y, j = 1, . . . , p + 1 define a
linear subspace γ ∈ G(d, p) on which they lie. We have Y ∈ γ⊥. By base-height
splitting, we may write

∆p+1(Dd | x0) = 1
p+ 1 distσ(x0)∆p(Dd), (6.29)

where ∆p(Dd) = volp conv(X) and distσ(x0) is the distance from x0 to σ (see
Figure 6.1).

γ

σ = γ + Y

U1
U2

Up+1

0
x0

H distσ x0

∆p(Dd)

X1
X2

Xp+1

Y

Figure 6.1: Base-height splitting of ∆p+1(Dd | x0)

The distance is unchanged if we project it onto γ⊥,

distσ(x0) = ∥ projγ⊥
x0 −Y∥. (6.30)

This is a scalar function of Y, but not H = ∥Y∥ only. However, we may use the
following trick: By symmetry and the law of conditional expectation, we have

v
(k)
p+1(Dd | x0) = E v(k)

p+1(Dd | ∥x0∥S0) = 1
(p+ 1)kE

[︂
∆k
p(Dd)g(H)

]︂
, (6.31)

where S0 ∼ Unif(Sd−1) (uniform distribution on the unit sphere Sd−1) and

g(H) = E
[︂
∥∥x0∥ projγ⊥

S0 −Y∥k | X
]︂

(6.32)

is now a function of H = ∥Y∥ only. As a consequence, by Proposition 249,

v
(k)
p+1(Dd | x0) = η

(k)
p+1(Dd)

J (k)
dp [g(h)]
J (k)
dp [hk]

. (6.33)
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Let us express the function g(h). Since dim γ⊥ = d− p, we get by Lemma 269,
B0 = projγ⊥

S0 ∼ Betad−p(2− p) (6.34)
on γ⊥. Hence, for any fixed y ∈ γ⊥ with h = ∥y∥,

g(h) = E
[︂
∥∥x0∥B0 − y∥k

]︂
. (6.35)

Denote δ = span(y) ∈ G(d− p, 1) the line passing through y and the origin. By
the Law of Cosines,

g(h) = E
[︂
(∥x0∥2∥B0∥2 − 2∥x0∥h projδ B0 + h2)k/2

]︂
. (6.36)

We can split random variable B0 into the product R0S′
0 of two independent

random variables R0 and S′
0 ∼ Sd−p. Since

T = projδ S′
0 ∼ Beta1(3− d+ p) (6.37)

we get, by first taking expectation with respect to T ,

g(h) = c1(3−d+p)E
∫︂ 1

−1

(∥x0∥2R2
0 − 2∥x0∥R0ht+ h2)k/2

(1− t2)(3−d+p)/2 dt. (6.38)

By substitution t = cos θ and expressing the normalisation factor c1(3−d+p),

g(h) = γd−p

γd−p−1
E

1√
2π

∫︂ π

0
(∥x0∥2R2

0 − 2∥x0∥R0h+ h2)k/2 sind−p−2 θ dθ. (6.39)

This result is valid for any real k for which the expression makes sense. However,
when k is an even integer as in the statement of the theorem, we can proceed
further. From Gradshteyn and Ryzhik [33, (3.665)] for m integer and p < d,

1√
2π

∫︂ π

0

(︂
r2−2rh cos θ+h2

)︂m
sind−p−2 θ dθ=

m∑︂
s=0

γd−p−1γd−p+2m

γd−p+2m−2sγd−p+2s

(︄
m

s

)︄
r2sh2m−2s.

(6.40)
Plugging r = ∥x0∥R0,

g(h) =
m∑︂
s=0

γd−pγd−p+2m

γd−p+2m−2sγd−p+2s

(︄
m

s

)︄
∥x0∥2sh2m−2sER2s

0 . (6.41)

Recall that R0 = ∥B0∥, where B0 ∼ Betad−p(2−p). So, by Lemma 267 (Equation
(A.13)), we have ER2s

0 = γd−p+2sγd/(γd−pγd+2s) and thus

g(h) =
m∑︂
s=0

γdγd−p+2m

γd+2sγd−p+2m−2s

(︄
m

s

)︄
∥x0∥2sh2m−2s. (6.42)

We conclude the proof by plugging this result into Equation (6.33). ■

6.2 Gaussian simplices
In this section, we study random Gaussian simplices, that is, simplices whose
vertices are points selected according to multivariate normal distribution Nd (see
table of common distributions in Appendix). Using the standard method of base-
height splitting (see [24]), we were able to obtain a new formula for the volume
moments of Gaussian simplices with one vertex fixed. However, it turned out
the formula has been known because of its connections with random determinant
moments of some special matrix. More specfically, we provide an alternative
derivation of Theorem 181 by reformulating it in terms of Gaussian simplices.
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Definition 251. We call a collection Z = (Z1, . . . ,Zp) of random points Zi se-
lected from Rd a standard normal sample if the points are independent and iden-
tically distributed according to the standard multivariate normal distribution
Nd, that is with density function ρd(z) = e−∥z∥2/2/(2π)d/2 for each i ∈ {1, . . . , p}
and with joint density function

ρd(z1, . . . , zp) =
p∏︂
i=1

ρd(zi). (6.43)

We write Nd(dz) = e−∥z∥2/2/(2π)d/2λd(dz) = rd−1e−r2/2/(2π)d/2σd(du)dr with
u ∈ Sn−1 for the probability measure associated with the standard multivariate
normal distribution and its decomposition into radial and spherical part.

Definition 252 (double factorial). Let m be an integer, we define the double
factorial standardly as

(2m)!! = (2m)× (2m− 2)× · · · × 4× 2 and
(2m− 1)!! = (2m− 1)× (2m− 3)× · · · × 3× 1.

(6.44)

Note that we can express the above in terms of the Gamma function as

(2m)!! = 2m Γ(m+ 1) and (2m− 1)!! = 2m√
π

Γ
(︃
m+ 1

2

)︃
. (6.45)

Remark 253. If a and b are either both integers or both half-integers, one has

Γ(a)
Γ(b) = 2b−a (2a− 2)!!

(2b− 2)!! . (6.46)

6.2.1 Radial volumetric moments

A lot is known about Gaussian random simplices. The following formula is due
to Miles [48, p. 377, (70)], which states

Proposition 254 (Miles, 1971). Let Z0,Z1.Z2, . . . ,Zp be a standard nor-
mal sample in Rd. Assuming p ≤ d, we get for moments of the p−volume
∆p(Nd) = volp conv(Z0, . . . ,Zp) of a simplex formed by a convex hull of those
points

η(k)
p (Nd) =

v(k)
p (Nd)

(p+ 1)k/2 = 1
p!k

p−1∏︂
j=0

γd+k−j

γd−j
= 2pk/2

p!k
p−1∏︂
j=0

Γ
(︂

1
2(d+ k − j)

)︂
Γ
(︂

1
2(d− j)

)︂ (6.47)

for any real k > p− d− 1.

Proof. The crucial observation is that the normal distribution is shape-preserving.
Let γ ∈ G(d, p), u ∈ γ, s = ∥u∥, y ∈ γ⊥, h = ∥y∥ and s = ∥u∥. Let r = ∥x∥,
x ∈ Rd, the density of the standard normal multivariate distribution Nd is ρd(x) =
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6.2. Gaussian simplices

exp(−r2/2)/
√

2πd, which we can identify as, plugging r =
√
h2 + s2,

ρd(
√
h2 + s2) = 1

√
2πd

e− 1
2 (h2+s2) = e− 1

2h
2

√
2πd−p

e− 1
2 s

2

√
2πp

= e− 1
2h

2

√
2πd−pρp(u), (6.48)

where ρp(u) is the density of the distribution Np. Hence, we got a family of
shape-preserving distributions with ξ(h) = 1 and εdp(h) = e− 1

2h
2
/
√

2πd−p. Now,
let us compute J (k)

dp [hq]. We have

J (k)
dp [hq]=

∫︂ ∞

0
hd+q−p−1ξ(h)(d+k+1)pεp+1

dp (h)dh=
∫︂ ∞

0

hd−p+q−1e−(p+1)h2/2

√
2π(d−p)(p+1) dh

= γd−p+q

(2π)
(d−p)(p+1)

2 (p+ 1) d−p+q
2

.
(6.49)

Hence, plugging first q = k = 0 and then replacing d with d+ k, we get

J (0)
(d+k)p[1] = γd+k−p

(2π)
(d+k−p)(p+1)

2 (p+ 1) d+k−p
2

. (6.50)

Dividing these two relations, we get

J (k)
dp [hq]
J (0)

(d+k)p[1]
= γd−p+q

γd−p+k
(2π)

k(p+1)
2 (p+ 1)

k−q
2 . (6.51)

As a consequence of Corollary 247.1 with q = 0, we get

v(k)
p (Nd) = (p+ 1)k/2

p!k
γd−p

γd−p+k

p∏︂
j=0

γd+k−j

γd−j
= (p+ 1)k/2

p!k
p−1∏︂
j=0

γd+k−j

γd−j
. (6.52)

Similarly, with q = k, we get

η
(k)
p+1(Dd) = 1

(p+ 1)!k
p∏︂
j=0

γd+k−j

γd−j
, (6.53)

which concludes the proof. ■

Remark 255. Note that when k = 2m for some m integer, 1
2(d+ 2m− j) and

1
2(d− j) are either both integers or both half-integers. Using Remark 253,

η(2m)
p (Nd)=

v(2m)
p (Nd)

(p+ 1)m = 1
p!2m

p−1∏︂
j=0

(d+2m−j−2)!!
(d− j − 2)!! = 1

p!2m
m−1∏︂
i=0

(d+ 2i)!
(d−p+2i)! .

(6.54)
The last equality is a consequence of the following identity

p−1∏︂
j=0

(d+ 2m− j − 2)!!
(d− j − 2)!! =

m−1∏︂
i=0

(d+ 2i)!
(d− p+ 2i)! , (6.55)

the proof of which is left as an easy exercise.
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6.2.2 Conditional simplices

Proposition 256. Let Z1,Z2, . . . ,Zp be a standard normal sample in Rd

(that is, Zj ∼ Nd) and z0 ∈ Rd be some fixed point. We assume that p ≤ d, so
the convex hull of z0,Z1,Z2, . . . ,Zp is almost surely a p−dimensional simplex
formed by those vertices. For the moments of its p−volume ∆p(Nd | z0) and
m natural,

v(2m)
p (Nd | z0) = 1

p!2m

(︄
m−1∏︂
r=0

(d+ 2r)!
(d−p+2r)!

)︄
m∑︂
s=0

(︄
m

s

)︄
(d− 2)!!

(d+2s−2)!!p
s∥z0∥2s.

(6.56)

Proof. We already know that Nd is shape-preserving. By Equation (6.49), we get

J (2m)
dp [h2m−2s]
J (2m)
dp [h2m]

= (p+ 1)sγd−p+2m−2s

γd−p+2m
, (6.57)

so by Theorem 250,

v
(2m)
p+1 (Nd | x0) = η

(2m)
p+1 (Nd)

m∑︂
s=0

γd
γd+2s

(︄
m

s

)︄
(p+ 1)s∥z0∥2s (6.58)

as desired since γd
γd+2s

= Γ( d2 )
2sΓ( d2 +s) = (d−2)!!

(d+2s−2)!! . ■

Remark 257. The proposition is equivalent to Theorem 181. To see this,
define random points Xj = (X1j, X2j, . . . , Xnj)⊤ with Xij ∼ N(µ, σ2) and
write U = (Xij)n×p. On one hand, E (det(U⊤U))k/2 = fk(n, p). On the other
hand, note that the Gram determinant

√︂
det(U⊤U) is equal to the volume of

a parallelotope [0,X1] + . . . + [0,Xp]. Equivalently, we can relate the Gram
determinant with the volume of a random polytope√︂

det(U⊤U) = p! volp conv(0,X1, . . . ,Xn) (6.59)

Since Xij ∼ N(µ, σ2), we can shift the points by the point x0 = (µ, µ, . . . , µ),
so

volp conv(0,X1, . . . ,Xp) = volp conv(−x0,X1 − x0, . . . ,Xn − x0). (6.60)

Define a new set of points Zi = (Xi−x0)/σ and z0 = −x0/σ. Now, the points
Zi ∼ Nd form a standard normal sample. For the volumes, we immediately
get

volp conv(0,X1, . . . ,Xp) = σn volp conv(z0,Z1, . . . ,Zp), (6.61)
from which immediately, for any even k,

fk(n, p) = p!kσpkE∆k
p(Nd | z0) = p!kσpkv(k)

p (Nd | z0). (6.62)

Finally, by spherically symmetry, the point z0 can be chosen arbitrarily, the
result is a function of ∥z0∥ only.
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Note that the special case z0 = 0 gives

v(2m)
p (Nd | 0) = η(2m)

p (Nd) = 1
p!2m

m−1∏︂
r=0

(d+ 2r)!
(d− p+ 2r)! , (6.63)

Similarly, by Remark 244, by integrating ∥z0∥ out from (6.56) with respect to
Nd(dz0), we recover the special case Miles’ formula for even moments. That is
the Proposition 254 with k = 2m, where m is an integer, which is equivalent to

Corollary 257.1 (Miles, 1971). Let p ≤ d, then for any k = 2m with m integer,

v(2m)
p (Nd) = (p+ 1)mη(2m)

p (Nd) = (p+ 1)m
p!2m

m−1∏︂
r=0

(d+ 2r)!
(d− p+ 2r)! . (6.64)

Proof. To see that, we have v(2m)
p (Nd) = E v(2m)

p (Nd | Z0). For the moments, we
have

E ∥Z0∥2s = γd+2s

γd
=

2sΓ
(︂
d
2 + s

)︂
Γ
(︂
d
2

)︂ = (d+ 2s− 2)!!
(d− 2)!! , (6.65)

then we use the Binomial formula. ■

6.3 Beta and Beta’ simplices
Miles and Ruben [62] studied volumetric moments of random Beta and Beta′

simplices formed by vertices drawn independently from distribution Betad(a) or
Beta′

d(a), respectively. Their method is to decompose certain class of distributions
into part dependent on H and points on γ. This is essentially the method we
are using in this thesis. Moreover, they showed that the only distributions which
can form a shape-preserving families are either Gaussian, Beta or Beta′ (with
degenerate subcase of uniform distribution on a sphere).

6.3.1 Radial volumetric moments
While η(k)

p ( · ) already appeared in Miles ([48]), the values of v(k)
p ( · ) have only

been expressed recently by Kabluchko and Steigenberger [38].

Proposition 258. Let B = (B1,B2, . . . ,Bp) be a sample drawn form Betad(a)
distribution and let B′ = (B′

1,B′
2, . . . ,B′

p) be a sample drawn form Beta′
d(a) dis-

tribution. Assuming p ≤ d, we get for moments of the p−volume ∇p(Betad(a)) =
volp conv(0,B1, . . . ,Bp) and ∇p(Beta′

d(a)) = volp conv(0,B′
1, . . . ,B′

p) of simplices
formed by a convex hull of those points

η(k)
p (Betad(a)) = 1

p!k
p−1∏︂
j=0

γd+k−jγd−a+2

γd−jγd−a+2+k
, η(k)

p (Beta′
d(a)) = 1

p!k
p−1∏︂
j=0

γd+k−jγa−d−k

γd−jγa−d
.

Proof. By Lemma 267, there exists a set of random variables Vj ∼ χd−a+2 inde-
pendent of Bj, j = 1, . . . p, such that BjVj

d= Zj ∼ Nd for each j. By linearity of
determinants,

volp conv(0,Z1, . . . ,Zp) = V1 · · ·Vp volp conv(0,B1, . . . ,Bp), (6.66)
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from which, immediately,

η(k)
p (Nd) = E∇k

p(Nd) = (EV k
1 )pE∇k

p(Betad(a)) =
(︄
γd−a+2+k

γd−a+2

)︄p
η(k)
p (Betad(a)).

(6.67)
Similarly, there is a set of random variables Uj ∼ χa−d independent of Zj ∼ Nd

such that B′
j
d= Zj/Uj ∼ Beta′

d(a) for each j = 1, . . . , p. Hence

volp conv(0,B′
1, . . . ,B′

p) = 1
U1 · · ·Up

volp conv(0,Z1, . . . ,Zp), (6.68)

from which, immediately,

η(k)
p (Beta′

d(a))=E∇k
p(Beta′

d(a))=(EU−k
1 )pE∇k

p(Nd)=
(︄
γa−d−k

γa−d

)︄p
η(k)
p (Nd). (6.69)

■

Proposition 259. Let B = (B0,B1, . . . ,Bp) be a sample drawn form Betad(a)
distribution and let B′ = (B′

0,B′
1, . . . ,B′

p) be a sample drawn form Beta′
d(a) dis-

tribution. Assuming p ≤ d, we get for moments of the p−volume ∆p(Betad(a)) =
volp conv(B0,B1, . . . ,Bp) and ∆p(Beta′

d(a)) = volp conv(B′
0,B′

1, . . . ,B′
p) of sim-

plices formed by a convex hull of those points

v(k)
p (Betad(a)) = 1

p!k
γ(d−a+k)(p+1)+2γd−a+2

γ(d−a+k)(p+1)+2−kγd−a+2+k

p−1∏︂
j=0

γd+k−jγd−a+2

γd−jγd−a+2+k
,

v(k)
p (Beta′

d(a)) = 1
p!k

γ(a−d−k)(p+1)+kγa−d−k

γ(a−d−k)(p+1)γa−d

p−1∏︂
j=0

γd+k−jγa−d−k

γd−jγa−d
.

(6.70)

Proof. Both Beta and Beta′ distributions are shape-preserving. As a consequence,
we can extract the moments from Proposition 249 with g(h) = 1, which states,
for any shape-preserving family of distributions Dp, p = 0, . . . , d,

v(k)
p (Dd) = (p+ 1)kη(k)

p+1(Dp)
J (k)
dp [1]
J (k)
dp [hk]

(6.71)

Let γ ∈ G(d, p), u ∈ γ, s = ∥u∥, y ∈ γ⊥, h = ∥y∥ and s = ∥u∥. Let r = ∥x∥,
x ∈ Rd, the density of the multivariate distributions Betad(a) and Beta′

d(a) are
ρd(x) = cda1r<1/(1 − r2)a/2 and ρ′

d(x) = c′
da/(1 + r2)a/2, respectively. Plugging

r =
√
h2 + s2,

ρd(
√
h2 + s2) = cda1h2+s2<1

(1− h2 − s2)a/2 = cda
cpa

1h<1

(1− h2)a/2

cpa1 s√
1−h2<1(︃

1−
(︂

s√
1−h2

)︂2
)︃a/2 ,

ρ′
d(
√
h2 + s2) = c′

da

(1 + h2 + s2)a/2 = c′
da

c′
pa

1
(1 + h2)a/2

c′
pa(︃

1 +
(︂

s√
1+h2

)︂2
)︃a/2 .

(6.72)

Hence, we got a family of shape-preserving distributions Betap(a) with ξ(h) =√
1− h2 and εdp(h) = cda1h<1/(cpa(1 − h2)a/2) and a family of shape-preserving
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distributions Beta′
p(a) with ξ′(h) =

√
1 + h2 and ε′

dp(h) = c′
da/(c′

pa(1 + h2)a/2),
respectively. Now, let us compute the corresponding functionals J (k)

dp [hq] and
J̃ (k)
dp [hq] (for Betap(a) and Beta′

p(a) families). We have

J (k)
dp [hq] =

∫︂ ∞

0
hd+q−p−1ξ(h)(d+k+1)pεp+1

dp (h)dh

=
(︄
cda
cpa

)︄p+1 ∫︂ 1

0

hd−p+q−1

(1− h2)
(p+1)a−(d+k+1)p

2
dh

=
(︄
cda
cpa

)︄p+1 1
ωd−p+qc(d−p+q)((p+1)a−(d+k+1)p)

,

J̃ (k)
dp [hq] =

∫︂ ∞

0
hd+q−p−1ξ′(h)(d+k+1)pε′

dp
p+1(h)dh

=
(︄
c′
da

c′
pa

)︄p+1 ∫︂ ∞

0

hd−p+q−1

(1 + h2)
(p+1)a−(d+k+1)p

2
dh

=
(︄
c′
da

c′
pa

)︄p+1 1
ωd−p+qc′

(d−p+q)((p+1)a−(d+k+1)p)
.

(6.73)

Hence, plugging q = 0 and q = k, we get

J (k)
dp [1]
J (k)
dp [hk]

= ωd−p+kc(d−p+k)((p+1)a−(d+k+1)p)

ωd−pc(d−p)((p+1)a−(d+k+1)p)
,

J̃ (k)
dp [1]

J̃ (k)
dp [hk]

=
ωd−p+kc

′
(d−p+k)((p+1)a−(d+k+1)p)

ωd−pc′
(d−p)((p+1)a−(d+k+1)p)

.

(6.74)

Our proof is concluded by plugging those results into Equation (6.71) and by
relations
ωd−p+kc(d−p+k)b

ωd−pc(d−p)b
= γd−pγd−p+k−b+2

γd−p+kγd−p−b+2
,

ωd−p+kc
′
(d−p+k)b

ωd−pc′
(d−p)b

= γd−pγb−d+p

γd−p+kγb−d+p−k
, (6.75)

which follow from Equations (A.13) and (A.15) by replacing d with d− p and a
with b. ■

Remark 260. A simple consequence of the proposition is Miles’s formula for
the volumetric moments in the unit d-ball (Equation (4.3)), that is

v
(k)
d (Bd)=

⎛⎝Γ
(︂
d
2 +1

)︂
πd/2d!

⎞⎠k(︄ d

d+k

)︄d+1 Γ
(︂

(d+1)(d+k)
2 +1

)︂
Γ
(︂
d(d+k+1)

2 +1
)︂
⎛⎝ Γ

(︂
d
2

)︂
Γ
(︂
d+k

2

)︂
⎞⎠d d−1∏︂

l=1

Γ
(︂
k+l

2

)︂
Γ
(︂
l
2

)︂ .

To see this, note that Unif(Bd) is a special case of Betad(a) with a = 0. Thus,
by Proposition 259 with p = d and a = 0, we get

v
(k)
d (Unif(Bd)) = 1

d!k
γ(d+k)(d+1)+2γd+2

γ(d+k)(d+1)+2−kγd+2+k

d−1∏︂
j=0

γd+k−jγd+2

γd−jγd+2+k
. (6.76)

Keeping in mind that v(k)
d (·) is defined differently for bodies and distributions,
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we get that these two results are ideed equivalent after appropriate normali-
sation v

(k)
d (Bd) = v

(k)
d (Unif(Bd))/κkd.

6.3.2 Conditional simplices
We extend the work of Steigenberger and Kabluchko to conditional simplices.

Proposition 261. Let B1,B2, . . . ,Bp be a sample drawn form Betad(a) distri-
bution and let B′

1,B′
2, . . . ,B′

p be a sample drawn form Beta′
d(a) distribution and

b0,b′
0 ∈ Rd be some fixed points. Assuming p ≤ d, we get for moments of the

p−volume ∆p(Betad(a) | b0) = volp conv(b0,B1,B2, . . . ,Bp) and ∆p(Beta′
d(a) |

b′
0) = volp conv(b′

0,B′
1,B′

2, . . . ,B′
p) of simplices formed by a convex hull of those

points and for m natural,

v(2m)
p (Betad(a) |b0)= 1

p!2m

⎛⎝p−1∏︂
j=0

γd+2m−jγd−a+2

γd−jγd−a+2+2m

⎞⎠ m∑︂
s=0

(︄
m

s

)︄
γdγ(d−a+2m)p+2

γd+2sγ(d−a+2m)p+2−2s
∥b0∥2s,

v(2m)
p (Beta′

d(a) |b′
0)= 1

p!2m

⎛⎝p−1∏︂
j=0

γd+2m−jγa−d−2m

γd−jγa−d

⎞⎠ m∑︂
s=0

(︄
m

s

)︄
γdγ(a−d−2m)(p+1)−2s

γd+2sγ(a−d−2m)(p+1)
∥b′

0∥2s.

(6.77)

Proof. We already know that Betad(a) and Beta′
d(a) are shape-preserving. By

Equation (6.49), we get

J (2m)
dp [h2m−2s]
J (2m)
dp [h2m]

= ωd−p+2mc(d−p+2m)((p+1)a−(d+2m+1)p)

ωd−p+2m−2sc(d−p+2m−2s)((p+1)a−(d+2m+1)p)
,

J̃ (2m)
dp [h2m−2s]
J̃ (2m)
dp [h2m]

=
ωd−p+2mc

′
(d−p+2m)((p+1)a−(d+2m+1)p)

ωd−p+2m−2sc′
(d−p+2m−2s)((p+1)a−(d+2m+1)p)

.

(6.78)

From which, by relations

ωd−p+kc(d−p+k)b

ωd−p+lc(d−p+l)b
= γd−p+k−b+2γd−p+l

γd−p+kγd−p+l−b+2
,

ωd−p+kc
′
(d−p+k)b

ωd−p+lc′
(d−p+l)b

= γd−p+lγb−d+p−l

γd−p+kγb−d+p−k
, (6.79)

we get

J (2m)
dp [h2m−2s]
J (2m)
dp [h2m]

= γd−p+2m−2sγ(d−a+2m)(p+1)+2

γd−p+2mγ(d−a+2m)(p+1)+2−2s
, (6.80)

J̃ (2m)
dp [h2m−2s]
J̃ (2m)
dp [h2m]

= γd−p+2m−2sγ(a−d−2m)(p+1)−2s

γd−p+2mγ(a−d−2m)(p+1)
(6.81)

and finally, by Theorem 250,

v
(2m)
p+1 (Betad(a) | b0) = η

(2m)
p+1 (Betad(a))

m∑︂
s=0

γdγ(d−a+2m)(p+1)+2

γd+2sγ(d−a+2m)(p+1)+2−2s

(︄
m

s

)︄
∥b0∥2s,

v
(2m)
p+1 (Beta′

d(a) | b′
0) = η

(2m)
p+1 (Beta′

d(a))
m∑︂
s=0

γdγ(a−d−2m)(p+1)−2s

γd+2sγ(a−d−2m)(p+1)

(︄
m

s

)︄
∥b′

0∥2s

(6.82)

as desired. ■
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6.4 Spherical shell simplices
Let us call random simplices whose verices are drawn independently and uni-
formly from the surface of the unit (d−1)sphere as spherical shell simplices. The
mean d-volume and the corresponding moments of those simplices were already
derived by Forsythe and Tukey [31]. However, note that our Beta simplices inher-
ently contain the special case in which the vertices are drawn from the uniform
distribution on the unit (d−1)sphere Sd−1. This is a consequence of the following
equivalence in distributions

Unif(Sd−1) = lim
a→2−

Betad(a). (6.83)

6.4.1 Radial volumetric moments
By simply plugging a = 2 in Propositions 258 and 259, we get

Proposition 262. Let S = (S0,S1, . . . ,Sp) be a sample drawn form Unif(Sd−1)
distribution. Assuming p ≤ d, we get for moments of the p−volume∇p(Unif(Sd−1))) =
volp conv(0,S1, . . . ,Sp) and ∆p(Unif(Sd−1)) = volp conv(S0,S1, . . . ,Sp) of sim-
plices formed by a convex hull of those points

η(k)
p (Sd−1)= 1

p!k
p−1∏︂
j=0

γd+k−jγd
γd−jγd+k

, v(k)
p (Sd−1)= 1

p!k
γ(d−2+k)(p+1)+2γd

γ(d−2+k)(p+1)+2−kγd+k

p−1∏︂
j=0

γd+k−jγd
γd−jγd+k

.

6.4.2 Conditional simplices
Similarly, Proposition 261 with a = 2 becomes

Proposition 263. Let S1,S2, . . . ,Sp be a sample drawn form Unif(Sd−1) distri-
bution and s0 ∈ Rd be some fixed point. Assuming p ≤ d, we get for moments
of the p−volume ∆p(Unif(Sd−1) | s0) = volp conv(s0,S1,S2, . . . ,Sp) of simplices
formed by a convex hull of those points and for m natural,

v(2m)
p (Unif(Sd−1) |s0)= 1

p!2m

⎛⎝p−1∏︂
j=0

γd+2m−jγd
γd−jγd+2m

⎞⎠ m∑︂
s=0

(︄
m

s

)︄
γdγ(d−2+2m)p+2

γd+2sγ(d−2+2m)p+2−2s
∥s0∥2s.
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A Probability distributions and their stochastic
decomposition

A.1 Common 1-dimensional distributions
The following Table A.1 enlists common distributions PX of a real random vari-
able X, its probability density function (PDF) fX(x) and (non-central) mo-
ments mq = EXq for q possibly being a real number. As usual, B(x, y) =
Γ(x)Γ(y)/Γ(x+ y) is the Beta function.

distribution PX fX(x) mq = EXq notes

standard
normal N(0, 1) e−x2/2

√
2π

⎧⎨⎩(q−1)!!, q even
0, q odd

chi χd
xd−1e−x2/2

2 d
2 −1 Γ(d2)

1(0,∞)(x)
2q/2Γ

(︂
d+q

2

)︂
Γ(d2)

q > −d

chi-square χ2
d

xd/2−1e−x/2

2 d
2 Γ(d2)

1(0,∞)(x)
2rΓ

(︂
d
2 + q

)︂
Γ(d2)

q>−d/2

Gamma Γ(d) xd−1e−x

Γ(d) 1(0,∞)(x) Γ(d+ q)
Γ(d) q > −d

Beta Beta(d, p) xd−1(1−x)p−1

B(d, p) 1(0,1)(x) B(d+ q, p)
B(d, p) q > −d

exponential Exp(λ) λe−λx
1(0,∞)(x) Γ(q + 1)

λq
q > −1

uniform Unif(a, b) 1
b− a

1(a,b)(x) bq+1 − aq+1

(q + 1)(b− a) b > a

Dirac δa δ(x− a) aq

Table A.1: Common distributions and their properties

Some remarks: Let Xi be i.i.d. random variables with distribution N(0, 1). Then√︂∑︁d
i=1 X

2
i ∼ χd.

Let X ∼ χd, then X2 ∼ χ2
d and X2/2 ∼ Γ(d/2), from which we get the relation

between moments and density functions. It is convenient to denote

γd =
∫︂ ∞

0
rd−1e− 1

2 r
2dr = 2 d

2 −1Γ
(︂
d
2

)︂
, (A.1)
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using which we can write for the probability density of X ∼ χd

fX(x) = xd−1

γp
e−x2

2 1(0,∞) (A.2)

and for its moments EXq = γd+q/γd.

A.2 Langford and related distributions
Let U,U ′, U ′′ ∼ Unif(0, 1) (independent), we define four random variables

Λ = (U ′ − U)(U ′′ − U), Σ = (U − U ′)U, Ξ = UU ′, Ω = U(1− U). (A.3)
The equalities between Λ,Σ,Ξ,Ω with U,U ′, U ′′ have to be interpreted only in
terms of distributions. That means, we will assume Λ,Σ,Ξ,Ω to be in fact inde-
pendent. We say Λ follows the Langford distribution (Λ ∼ Lang) [42]. We call
those variables as our thesis’ auxiliary Langford random variables. The proba-
bility density functions (PDFs) and the cumulative density functions (CDFs) of
those are shown in Table A.2 below. Trivially, PDF of U is fU(u) = 1 when
0 < u < 1 and zero otherwise.

X x PDF: fX(x) = d
dx
FX(x) CDF: FX(x) = P [X ≤ x]

Λ λ

fΛ(λ) =

⎧⎪⎪⎨⎪⎪⎩
4 argtanh

√
1 + 4λ− 4

√
1 + 4λ, −1

4 ≤ λ < 0,
4
√
λ− 2 lnλ− 4, 0 < λ ≤ 1,

0, otherwise

FΛ(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, λ < −1
4

1
3(1− 8λ)

√
1 + 4λ+ 4λ argtanh

√
1 + 4λ, −1

4 ≤ λ < 0
1
3 , λ = 0,
1
3

(︂
1− 6λ+ 8λ3/2

)︂
− 2λ ln λ, 0 < λ < 1,

1, λ ≥ 1.

Σ σ

fΣ(σ) =

⎧⎪⎪⎨⎪⎪⎩
2 argtanh

√
1 + 4σ, −1

4 ≤ σ < 0,
−1

2 ln σ, 0 < σ ≤ 1,
0, otherwise

FΣ(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, σ < −1
4

1
2
√

1 + 4σ + 2σ argtanh
√

1 + 4σ, −1
4 ≤ σ < 0

1
2 , σ = 0,
1
2(1 + σ − σ ln σ), 0 ≤ σ < 1,
1, σ ≥ 1.

Ω ω fΩ(ω)=
⎧⎨⎩

2√
1−4ω , 0 ≤ ω < 1/4,

0, otherwise
FΩ(ω)=

⎧⎪⎪⎨⎪⎪⎩
0, ω ≥ 0
1−
√

1−4ω, 0 ≤ ω < 1/4,
1, ω ≥ 1/4.

Ξ ξ fΞ(ξ)=
⎧⎨⎩− ln ξ, 0 ≤ ξ < 1,

0, otherwise
FΞ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
0, ξ ≤ 0
ξ(1−ln ξ), 0 < ξ < 1,
1, ξ ≥ 1.

Table A.2: PDFs and CDFs of auxiliary Langford variables
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A step-by-step derivation of fΛ(λ) is shown in Example 284. Similar derivation
of fΣ(σ) is shown in Example 283 and finally, derivation of fΩ(ω) is shown in
Example 278.

A.3 Radial multi-dimensional distributions
The following Table A.3 enlists common radially symmetric distributions PX of a
real random vector X ∈ Rd and its density function fX(x), x ∈ Rd. Furthermore,
to emphasize these distributions are intimately related, distributions of the their
projections onto p-planes γ ∈ G(d, p), p ≤ d are given.

distribution PX fX(x) Pprojγ X

standard
multi-normal Nd

1√
2πd

e−∥x∥2/2 Np

uniform on
d-ball Unif(Bd) 1

κd
1∥x∥<1 Betap(p− d)

uniform on
(d− 1)-sphere Unif(Sd−1) 1

ωd
δ(1− ∥x∥) Betap(2− d+ p)

multi-Beta Betad(a) cda1∥x∥<1

(1− ∥x∥2)a/2 Betap(a− d+ p)

multi-Beta′ Beta′
d(a) c′

da

(1 + ∥x∥2)a/2 Beta′
p(a− d+ p)

Table A.3: Common multi-dimensional distributions of radial random vectors and
their properties

Normalisation

In the table above, ωd is the surface of the unit Sd−1 sphere and κd = ωd/d is the
volume of the corresponding unit d-ball Bd. For their exact value, we have the
following result

Lemma 264. ωd = σd(Sd−1) =
∫︂
Sd−1

σd(dn̂) = 2πd/2

Γ(d/2) .

Proof. Note that the standard multi-normal distribution must normalise to one,
integrating over Rd and realising that for radial functions λd(dx) = ωdr

d−1dr
where r = ∥x∥,

1 =
∫︂
Rd

e− 1
2 ∥x∥2

√
2πd

λd(dx) = ωd

∫︂ ∞

0

rd−1e− 1
2 r

2

√
2πd

dr = ωdγd√
2πd

, (A.4)
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where γd =
∫︁∞

0 rd−1e−r2/2dr = 2 d
2 −1Γ

(︂
d
2

)︂
(see Equation (A.1)). ■

Similarly, we can express cda and c′
da in the exact form.

Lemma 265. ωdcda = γd−a+2

γdγ2−a
, ωdc

′
da = γa

γdγa−d
.

Proof. First, let us write down how the normalisation conditions look like

1 = cdaωd

∫︂ 1

0

rd−1

(1− r2)a/2 dr, 1 = c′
daωd

∫︂ ∞

0

rd−1

(1 + r2)a/2 dr. (A.5)

The remaining integrals can be solved in terms of the Beta function. Instead, we
show somewhat more elementary approach. Consider the following integral

∫︂ ∞

0
rd−1λa−1e−σ2λ2/2 dλ = γa

rd−1

σa
. (A.6)

First, by plugging σ =
√

1 + r2 and integrating out r over (0,∞), we get

γd

∫︂ ∞

0
λa−d−1e−λ2/2 dλ = γa

∫︂ ∞

0

rd−1

(1 + r2)a/2 dr, (A.7)

from which immediately γdγa−d = γa/(ωdc′
da). For the first integral, we substitute

r = s/
√

1 + s2, which gives

1
ωdcda

=
∫︂ 1

0

rd−1

(1− r2)a/2 dr =
∫︂ ∞

0

sd−1

(1 + s2)(d−a+2)/2 ds = 1
ωdc′

d(d−a+2)
, (A.8)

from which cda = c′
d(d−a+2). ■

Radial moments and spherical representation

Note that any radially symmetric d-dimensional random vector X can be repre-
sented as a product of two independent random variables R and S,

X d= RS, (A.9)

where S ∼ Unif(Sd−1) and R has the distribution of ∥X∥.

Lemma 266. Let Z ∼ Nd, then ∥Z∥ ∼ χd.

Proof. We only need to check for the radial moments, we have

E∥Z∥k=
∫︂
Rd
∥z∥k e

− 1
2 ∥z∥2

√
2πd

λd(dz) = ωd

∫︂ ∞

0

rk+d−1e− 1
2 r

2

√
2πd

dr= ωdγd+k√
2πd

= γd+k

γd
,

(A.10)
which matches ∥Z∥ ∼ χd. ■
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Lemma 267. Let B ∼ Betad(a), B′ ∼ Beta′
d(a) and Z ∼ Nd,

BV d= Z, B′ d= Z
U
, (A.11)

where B is independent with V ∼ χd−a+2 and Z is independent with U ∼ χa−d.
We may write this as

Betad(a)χd−a+2
d= Nd, Beta′

d(a) d= Nd

χa−d
. (A.12)

Proof. Let R = ∥Z∥ ∼ χd. For the radial moments, we have

E ∥B∥k = ωdcda

∫︂ 1

0

rk+d−1

(1− r2)a/2 = ωdcda
ωd+kc(d+k)a

= γd+kγd−a+2

γdγd+k−a+2
. (A.13)

We can write this as
E ∥B∥k γd−a+2+k

γd−a+2
= γd+k

γd
(A.14)

which is E∥B∥k EV k = ERk with some V ∼ χd−a+2 independent of B. Similarly,

E ∥B′∥k = ωdc
′
da

∫︂ ∞

0

rk+d−1

(1 + r2)a/2 = ωdc
′
da

ωd+kc′
(d+k)a

= γd+kγa−d−k

γdγa−d
. (A.15)

which is E∥B′∥k = ERk EU−k with U ∼ χa−d independent of R. ■

Projections

Let γ ∈ G(d, p) be a p-plane. Note that the orthogonal projection projγ X of any
radial random vector X is again a radial random vector (on γ). Moreover, by
symmetry, the distribution of this projection on γ is the same for any γ ∈ G(d, p).

Lemma 268. Let Z ∼ Nd and γ ∈ G(d, p) any, then projγ Z ∼ Np on γ.

Proof. Let Z ∼ Nd, then there is a well known representation Z d= (Z1, . . . , Zd)⊤,
where Zj are identically and independently distributed according to the standard
normal distribution N(0, 1). Let us select γ0 = span(e1, e2, . . . , ep), then

projγ0 Z = (Z1, Z2, Z3, . . . , Zp−1, Zp, 0, 0, . . . , 0)⊤ ∼ Np (A.16)

on γ0. By radial symmetry, the result applies for any γ ∈ G(d, p). ■

Lemma 269. Let S ∼ Unif(Sd−1) and γ ∈ G(d, p), then projγ S ∼ Betap(2−
d+ p) on γ.

Proof. Let Z ∼ Nd, then Z d= RS, where R ∼ χd is independent with S ∼
Unif(Sd−1). Taking the projection, we get

projγ Z d= R projγ S. (A.17)
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Note that projγ S is again radial on γ. Since projγ Z ∼ Np, we get in distributions,

Np
d= χd projγ S. (A.18)

Comparing with Lemma 267, we get projγ S ∼ Betap(2− d+ p). ■

Lemma 270. Let B ∼ Betad(a) and γ ∈ G(d, p), then projγ B ∼ Betap(a −
d+ p) on γ.

Proof. Let V ∼ χd−a+2 be a random variable independent on B ∼ Betad(a). By
Lemma 267, BV d= Z ∼ Nd. Taking the projection onto γ, we get

(projγ B)V d= projγ Z ∼ Np. (A.19)

By using Lemma 267 again, we get projγ B ∼ Betap(a− d+ p). ■

Corollary 270.1. Let W ∼ Unif(Bd) and γ ∈ G(d, p), then projγ W ∼ Betap(p−
d) on γ.

Proof. Follows trivially from Lemma 270 with a = 0 as Unif(Bd) = Betad(0). ■

Remark 271. Note that, actually, also the uniform distribution Unif(Sd−1)
on the unit (d − 1)-sphere may be viewed as a singular case of multi-Beta
distribution with a = 2. The projection formula in Lemma 269 then follows
also from Lemma 270 by putting a = 2.

Lemma 272. Let B′ ∼ Beta′
d(a) and γ ∈ G(d, p), then projγ B′ ∼ Beta′

p(a−
d+ p) on γ.

Proof. Let U ∼ χa−d be independent with Z ∼ Nd. By Lemma 267, B′ d= Z/U ∼
Beta′

d(a). Taking the projection onto γ, we get

projγ B′ d=
projγ Z
U

∼ Np

χa−d
. (A.20)

Hence, Lemma 267 gives projγ B′ ∼ Beta′
p(a− d+ p) ■

A.4 Dirichlet distribution
The following Table A.4 enlists one remaining distribution PY of a real random
vector Y = (Y0, Y1, . . . , Yd)⊤ ∈ Rd+1 and its probability measure PY(dy), y ∈
Rd+1 used in this thesis, namely the Dirichlet distribution.

distribution PY PY(dy)

Dirichlet Dir(α0, . . . , αd)
Γ(∑︁d

i=0 αi)∏︁d
i=0 Γ(αi)

(︄
d∏︂
i=0

yαi−1
i

)︄
τd(dy)√
d+ 1

Table A.4: Dirichlet distribution of a random vector
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In the table above, τd is the surface measure on a regular d-dimensional sim-
plex T ∗

d = {(y0, . . . , yd)⊤ ∈ [0, 1]d+1 |∑︁d
i=0 yi = 1} embedded in Rd+1 (as a d-

dimensional surface). Dirichlet distribution is said to be symmetric if there exists
a single concentration parameter α such that αi = α for each i = 0, . . . , d.

Remark 273. Often, the probability measure of the Dirichlet distribution
is written in terms of y1, . . . , yd. This form can be recovered from the
probability measure by writing y0 = 1 − ∑︁d

i=1 yi and by realizing that by
the projection onto y0 = 0 plane, we have the following transformation
τd(dy) =

√
d+ 1 dy1dy2 · · · dyd.

We will see that the normalisation constant is correct using the following stochas-
tic decomposition argument:

Lemma 274. Let X = (X0, X1, . . . , Xd)⊤ be a random vector with Xi ∼ Γ(αi)
being independent and let S = ∑︁d

i=0 Xi, then X/S ∼ Dir(α0, α1, . . . , αd) and
S ∼ Γ(α0 + · · ·+ αd). Moreover, X/S and S are stochastically independent.

Proof. Note that since Xi ∼ Γ(αi) are independent,

PX(dx) =
(︄

d∏︂
i=0

xαi−1
i

Γ(αi)
1(0,∞)(xi)

)︄
e−
∑︁d

i=0 xiλd+1(dx) (A.21)

Let us perform the change of variables xi = syi such that ∑︁d
i=0 yi = 1 and s > 0.

Note that now y = (y0, . . . , yd)⊤ lies on T ∗
d and thus the Lebesgue measure splits

as λd+1(dx) = sdτd(dy)ds/
√
d+ 1. The additional factor

√
d+ 1 comes from the

projection of s into the direction of the vector (1, 1, . . . , 1). In total,

PX(dx) =
(︄

d∏︂
i=0

yαi−1
i

Γ(αi)

)︄
sα0+···+αd−1e−s
√
d+ 1

1(0,∞)(s)τd(dy)ds = PY(dy)PS(ds),

(A.22)
with S ∼ Γ(α0 + · · ·+αd) since fS(s) = sα0+···+αd−1e−s

1(0,∞)(s)/Γ(α0 + · · ·+αd).
Independence follows from the fact that we factorised the probability measure
into a product of two measures. ■

The proof of Lemma 274 is somewhat standard. The version shown here is an
adaptation taken from Ranošová [58].

Corollary 274.1.

vold T ∗
d =
√
d+ 1
d! . (A.23)

Proof. Let αi = 1 for all i in Dir(α0, . . . , αd). Then, since E 1 = 1,

vold T ∗
d =

∫︂
T ∗
d

τd(dy) = (
√
d+ 1)

∏︁d
i=0 Γ(αi)

Γ(∑︁d
i=0 αi)

E 1 =
√
d+ 1

Γ(d+ 1) . (A.24)

■

Definition 275. We define yet another set of simplices Td which we call canon-
ical simplices as

Td = conv(0, e1, e2, . . . , ed). (A.25)
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Proposition 276.
vold Td = 1

d! . (A.26)

Proof. Let x = (x0, . . . , xd)⊤. The distance to the plane (1, . . . , 1)⊤x = 1 is equal
to 1/

√
d+ 1. By base-height decomposition, we have

vold+1 Td+1 = 1
d+ 1

1√
d+ 1

vold T ∗
d = 1

(d+ 1)! . (A.27)

■

Remark 277. As a consequence of Remark 273, we get the following formula

∫︂
Td

(︂
1−∑︁d

i=1 yi
)︂α0−1 d∏︂

i=1
yαi−1
i λd(dy) =

∏︁d
i=0 Γ(αi)

Γ(∑︁d
i=0 αi)

, (A.28)

where y = (y1, . . . , yd)⊤ ∈ Rd.

A.5 Reconstruction of density of random variables from
moments via Inverse Mellin Transform

Positive random variables

Recall the definition of the Mellin transform of a function f : R+ → R,

M[f ] =M[f(s)](k) =
∫︂ ∞

0
sk−1f(s) ds. (A.29)

For example, for any α > 0, we have

M[δ(s− α)] = αk−1. (A.30)

If we know the moments of a positive real random variable S, say mk = ESk,
that is mk =

∫︁∞
0 skf(s)ds, we can then recover its density f(s) by the inverse

Mellin transform since mk−1 =M[f(s)](k). Formally,

f(s) =M−1[mk−1](s). (A.31)

Example 278. Let us derive the PDF fΩ(ω) of a positive random variable Ω =
X(1 −X), where X ∼ Unif(0, 1). Let us write down an integral for moments of
Ω for k being a positive integer,

mk = E [Ωk] =
∫︂ 1

0
xk(1− x)k dx. (A.32)

Taking the inverse Mellin Transform, we get, rather unsurprisingly, the Dirac
kernel method (which works not only for positive random variables)

fΩ(ω)=M−1[mk−1]=M−1
[︃∫︂ 1

0
xk−1(1−x)k−1 dx

]︃
=
∫︂ 1

0
δ(x(1− x)−ω)dx. (A.33)
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This integral is trivial and can be solved via the known formula

δ(g(x)) =
∑︂

y,g(y)=0
δ(x− y)/|g′(y)| (A.34)

valid for any suitable real function g, The roots of g(x) = x(1 − x) − ω = 0 are
y± = 1

2 ±
1
2
√

1− 4ω and thus g′(y±) = 1− 2y± = ∓
√

1− 4ω, from which

fΩ(ω) = 2√
1− 4ω

10<ω<1/4. (A.35)

Integral operators

Let r ≥ 0. Integrating by parts,

M[f ] = −
∫︂ ∞

0

sk+r

k + r
(s−rf(s))′ds = − 1

k + r
M[sr+1(s−rf(s))′], (A.36)

so
sr+1(s−rf(s))′ = −M−1[(k + r)M[f ]] (A.37)

We define a (commutative) integral operator Ir with r ≥ 0, such that

Irf(s) = sr
∫︂ ∞

s
t−r−1f(t) dt. (A.38)

We can invert Equation (A.37) as follows,

f(s) = IrM−1[(k + r)M[f ]]. (A.39)

Iterating the process,

f(s) = Ir1 . . . IrnM−1[(k + r1) · · · (k + rn)M[f ]]. (A.40)

Example 279. Assuming α, r > 0, we have

Irδ(s− α) = sr
∫︂ ∞

s
t−r−1δ(s− α) dt = srα−r−1

1s<α. (A.41)

Example 280. Similarly, for q ̸= r non-negative,

IqIrδ(s− α) = sq α−r−1
∫︂ ∞

s
tr−q−1

1t<αdt = sqα−q−1 − srα−r−1

r − q
1s<α. (A.42)

Note that the result is only some linear combination of Irδ(s−α) and Iqδ(s−α).
This pattern is general and arises from the partial fraction decomposition. To see
this, note that, by Equation (A.39),

M[Irf ] = M[f ]
k + r

, (A.43)

so

M[Ir1 . . . Irnf ] = M[f ]
(k+r1) · · · (k+rn) =

n∑︂
l=1

βl
k + rl

M[f ] =
n∑︂
l=1

βlM[Irlf ], (A.44)

where βl = 1/∏︁j ̸=l(rj − rl). Hence, taking the inverse Mellin transform,

Ir1 . . . Irn =
n∑︂
l=1

βlIrl . (A.45)
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Example 281. Since 1
(1+k)(2+k) = 1

1+k −
1

2+k , we get I1I2 = I1 − I2 and therefore,
by Irδ(s− α) = srα−r−1

1s<α (Equation (A.41)),

I1I2δ(s− α) = sα−3(α− s)1s<α. (A.46)

Since the operator Ir is continuous, we can take the limit q → r in Equation
(A.42) to get I2

r δ(s − α) for r ≥ 0 and α > 0. Alternatively, differentiating
Equation (A.43) by r, we get I2

r = − ∂
∂r
Ir. Either way, we obtain

I2
r δ(s− α) = sr

αr+1 ln α
s
1s<α. (A.47)

Example 282. Since 1
k(1+k)2(2+k) = 1

2k −
1

(1+k)2 − 1
2(2+k) , we get I0I2

1I2 = 1
2I0 −

I2
1 − 1

2I2 and thus, after some simplifications

I0I2
1I2δ(s− α) =

α2 − s2 − 2αs ln α
s

2α3 1s<α. (A.48)

Differentiating Equation (A.43) by r twice, we get I3
r = 1

2
∂2

∂r2Ir. Hence, from
Irδ(s− α) = srα−r−1

1s<α (Equation (A.41)), we obtain

I3
r δ(s− α) = sr

2αr+1 ln2 α

s
1s<α. (A.49)

More generally, for any non-negative integer k, we have Ik+1
r = (−1)k

k!
∂k

∂rk
Ir so

Ik+1
r δ(s− α) = 1

k!
sr

αr+1 lnk α
s
1s<α. (A.50)

Table A.5 shows selected products IΠ of integral operators Ir, their decomposition
into sum of individual operators (done via partial fractions decomposition) and
their action on the Dirac kernel δ(s− α), α > 0.

IΠ decomposition IΠδ(s− α)

I1I2 I1 − I2 sα−3(α− s)1s<α
I1I3

1
2I1 − 1

2I3
s

2α4 (α2 − s2)1s<α
I0I1I2

1
2I0 − I1 + 1

2I2
1

2α3 (α− s)2
1s<α

I1I2I3
1
2I1 − I2 + 1

2I3
s

2α4 (α− s)2
1s<α

I2I3I5
1
3I2 − 1

2I3 + 1
6I5

s2

6α6 (α− s)2(2α + s)1s<α
I1I2I3I4I5

1
24I1− 1

6I2+ 1
4I3− 1

6I4+ 1
24I5

s
24α6 (α− s)4

1s<α

I0I2
1I2

1
2I0 − I2

1 − 1
2I2

1
2α3

[︂
α2 − s2 − 2αs ln α

s

]︂
1s<α

I0I2
1I2

2
1
4I0+I1−I2

1− 5
4I2− 1

2I
2
2

1
4α3

[︂
(α−s)(α+5s)−2s(2α+s)ln α

s

]︂
1s<α

Table A.5: Decomposition of the product of integral operators and their action on
the Dirac kernel
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Real random variables

Let us slightly generalise the method of reconstructing the PDFs from moments.
Let S be a real random variable. Until now, we assumed that S is positive.
However, we split any real random variable S into its positive and negative part
and treat those cases separately by the technique introduced in the previous
section. We have

S = S+ − S−, (A.51)
where S+ = max{S, 0} and S− = max{−S, 0}. For moments in general,

mq = E [Sq] = E [Sq+] + (−1)qE [Sq−] = m+
q + eπiqm−

q . (A.52)

Moreover, when q = k is an integer, we get

mk = m+
k + (−1)km−

k . (A.53)

We can split the PDF fS(s) of S as

fS(s) =
⎧⎨⎩f

+
S (s), s ≥ 0
f−
S (−s), s < 0,

(A.54)

where f+
S (s) and f−

S (s) are now conditional, that is apart from a constant multi-
ple) PDFs of positive random variables S+ and S−, respectively. Hence, by Mellin
Inverse transform, we can reconstruct those functions as

f+
S (s) =M−1[m+

k−1](s), f+
S (s) =M−1[m−

k−1](s). (A.55)

Example 283. Let us derive PDF fΣ(σ) of a random variable Σ = (X − Y )X,
where X, Y ∼ Unif(0, 1). First, for the moments of Σ for k a positive integer,

mk = E [Σk] =
∫︂ 1

0

∫︂ 1

0
(x− y)kxk dxdy. (A.56)

Integrating out y,

mk=
∫︂ 1

0

xk+1−(x−1)k+1

1 + k
xk dx=

∫︂ 1

0

x2k+1

1 + k
dx+(−1)k

∫︂ 1

0

xk(1−x)k+1

1 + k
dx, (A.57)

from which we immediately identify,

m+
k =

∫︂ 1

0

x2k+1 dx
1 + k

, m−
k =

∫︂ 1

0

xk(1− x)k+1

1 + k
dx. (A.58)

Taking the inverse Mellin Transform, we get for the positive part Σ+,

f+
Σ (σ)=I0M−1

[︂
km+

k−1

]︂
=I0M−1

[︃∫︂ 1

0
x2k−1 dx

]︃
=I0

∫︂ 1

0
x δ(x2−σ) dx (A.59)

and for the negative part Σ−, similarly,

f−
Σ (σ)=I0M−1

[︃∫︂ 1

0
xk(1−x)k+1 dx

]︃
=I0

∫︂ 1

0
(1−x) δ(x(1−x)−σ)dx. (A.60)
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Equation (A.41) with r = 0 yields I0δ(σ − α) = 1
α
1σ<α, so

f+
Σ (σ)=

∫︂ 1

0

1
x
1σ<x2 dx = −1

2 ln σ 1σ<1

f−
Σ (σ)=

∫︂ 1

0

1
x
1σ<x(1−x)dx= 2 argtanh(

√
1−4σ)1σ<1/4.

(A.61)

Overall, by Equation (A.54), we get for the full density of Σ = Σ+ − Σ−,

fΣ(σ) =
⎧⎨⎩2 argtanh

√
1 + 4σ, −1

4 ≤ σ < 0
−1

2 ln σ, 0 < σ ≤ 1
(A.62)

when σ ∈ [−1/4, 1] and fΣ(σ) = 0 otherwise. Integrating, we get the CDF of Σ,

FΣ(σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, σ < −1

4
1
2
√

1 + 4σ + 2σ argtanh
√

1 + 4σ, −1
4 ≤ σ < 0

1
2(1 + σ − σ ln σ), 0 ≤ σ < 1,
1, σ ≥ 1.

(A.63)

Example 284. Let us derive PDF fΛ(λ) of a random variable Λ ∼ Lang. By
definition, we can write Λ = (Y −X)(Z −X), where X, Y, Z ∼ Unif(0, 1). Let us
calculate the moments of Λ for k being a positive integer. We have

mk = E [Λk] =
∫︂ 1

0

∫︂ 1

0

∫︂ 1

0
(y − x)k(z − x)k dxdydz. (A.64)

Integrating out y and z and by symmetry,

mk=
∫︂ 1

0

(︄
(1−x)k+1−(−x)k+1

1 + k

)︄2

dx=
∫︂ 1

0

2x2k+2 dx
(1 + k)2 +(−1)k

∫︂ 1

0

2(x(1− x))k+1

(1 + k)2 dx,

(A.65)
from which we immediately identify,

m+
k =

∫︂ 1

0

2x2k+2 dx
(1 + k)2 , m−

k =
∫︂ 1

0

2(x(1− x))k+1

(1 + k)2 dx. (A.66)

Taking the inverse Mellin Transform, we get for the positive part Λ+,

f+
Λ (λ)=2I2

0M−1
[︂
k2m+

k−1

]︂
=2I2

0M−1
[︃∫︂ 1

0
x2kdx

]︃
=2I2

0

∫︂ 1

0
x2δ(x2−λ) dx (A.67)

and for the negative part Λ−, similarly,

f−
Λ (λ)=2I2

0M−1
[︃∫︂ 1

0
xk(1−x)k dx

]︃
=2I2

0

∫︂ 1

0
x(1−x) δ(x(1−x)−λ)dx. (A.68)

Equation (A.43) with r = 0 yields I2
0δ(λ− α) = 1

α
ln α

λ
1λ<α, so

f+
Λ (λ)=2

∫︂ 1

0
ln x

2

λ
1λ<x2 dx =

[︂
4
√
λ− 2 lnλ− 4

]︂
1λ<1

f−
Λ (λ)=2

∫︂ 1

0
ln x(1− x)

λ
1λ<x(1−x)dx=4

[︂
argtanh

√
1−4λ−

√
1−4λ

]︂
1λ<1/4.

(A.69)
Overall, by Equation (A.54), we get for the full density of Λ = Λ+ − Λ−,

fΛ(λ) =
⎧⎨⎩4 argtanh

√
1 + 4λ− 4

√
1 + 4λ, −1

4 ≤ λ < 0
4
√
λ− 2 lnλ− 4, 0 < λ ≤ 1

(A.70)

when λ ∈ [−1/4, 1] and fΛ(λ) = 0 otherwise. Integrating, we get the CDF of Λ.
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B Integral calculus on real affine subspaces

First, we shall discuss the common techniques of multidimensional integration.
The notation used in this section is borrowed from the textbook Lectures on
convex geometry by Hug and Weil [37]. Once again, let us recall some basic facts
and definitions.

Definition 285 (Sd−1, ωd). Let Sd−1 be a unit sphere in Rd with the usual
surface area measure σd(·). That is, for the surface area of Sd−1, we get

ωd =
∫︂
Sd−1

σd(du) = σd(Sd−1) = 2π
d
2

Γ(d2)
(B.71)

as shown in the proof of Lemma 264. Also note that we can decompose x = ru,
where u ∈ Sd−1 and r ∈ (0,∞), the usual Lebesgue measure λd splits into radial
and angular part as λd(dx) = rd−1drσd(du).

Definition 286 (Bd, κd). We write Bd ⊂ Rd for the unit ball (with unit radius)
and κd for its volume. Splitting the Lebesgue measure into radial and angular
part,

κd = vold Bd =
∫︂
Bd
λd(dx) = ωd

∫︂ 1

0
rd−1 dr = ωd/d = πd/2

Γ(d+2
2 )

. (B.72)

Definition 287. We denote G(d, p) as the set of all linear p-dimensional sub-
spaces of Rd, this set is often called the (linear) Grassmannian. More generally,
we denote A(d, p) as the set of all p-dimensional affine subspaces of Rd (p-
planes), this set is called the affine Grasmannian.

Remark 288. Both spaces G(d, p) and A(d, p) smooth finite-dimensional man-
ifolds. More concretely, we have dimG(d, p) = (d − p)p and dimA(d, p) =
(d− p)(p+ 1).

Definition 289. Let Kd ⊂ Rd. We define GKd(d, p) = {γ ∈ G(d, p) |γ ∩Kd ̸=
∅} and analogously, AKd(d, p) = {σ ∈ A(d, p) |σ ∩Kd ̸= ∅}.

Definition 290. Let νp be the probability Haar measure on G(d, p). That is,
νp is invariant under action of the group of proper rigid sphere transformations
SO(n) and νp(G(d, p)) = 1.

Definition 291. We define the standard Haar measure µp on A(d, p) by

µp(·) =
∫︂
G(d,p)

∫︂
γ⊥
1{γ + y ∈ ·}λd−p(dy)νp(dγ), (B.73)

where γ⊥ ∈ G(d, d−p) is the linear space orthogonal to γ. That is, γ⊥⊕γ = Rd.

Lemma 292. µp(ABd(d, p)) = κd−p = ωd−p/(d− p).
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Proof. By symmetry, we have for any γ0 ∈ G(d, p),

µp(ABd(d, p)) =
∫︂

γ⊥
1{γ + y ∈ ABd(d, p)}λd−p(dy) = vold−p(Bd ∩ γ⊥) = κd−p.

(B.74)
■

B.1 Cartesian parametrisation
In the case of p = d−1, the affine Grassmannian A(d, d−1) consists of hyperplanes
of dimension d− 1. Note that dimA(d, d− 1) = d so in order to parametrise the
space of all affine planes, we need exactly d parameters. One choice of those
parameters are the coordinates of the closest point to a given hyperplane, we
write ξ = (ξ1, . . . , ξd)⊤ to be the vector from the origin to the closest point on the
hyperplane σ. Another choice of parametrisation is by using spherical inversion
of ξ. Namely,

η = ξ

ξ⊤ξ
= ξ

∥ξ∥2 . (B.75)

so ∥ξ∥ = 1/∥η∥. There is a nice interpretation of η. Namely, a plane σ defined
uniquely by the vector η has a nonempty intersection with convex body Kd ⊂ Rd

if and only if η does not lie in the polar body K◦
d defined as

K◦
d = {x ∈ Rd |x⊤y ≤ 1,y ∈ Kd}. (B.76)

This follows from the fact that the points x on the hyperplane σ ∈ A(d, d − 1)
satisfy η⊤x = 1. Therefore, we must remember that

σ ∩Kd ̸= ∅ ⇐⇒ η ∈ Rd \K◦
d . (B.77)

Finally, the following lemma gives us then the Jacobian of transformation between
the standard Haar measure on a Grasmannian of hyperplanes and the Lebesgue
measure of the closest point intercepts:

Lemma 293. Let σ ∈ A(d, d− 1) and η = (η1, . . . , ηd)⊤ be the plane vector
associated to σ such that x ∈ σ ⇔ η⊤x = 1, then

µd−1(dσ) = 2
ωd

1
∥η∥1+dλd(dη). (B.78)

Proof. First, we show that our measure on the right hand side is invariant with
respect to action of the group G(d) of all proper rigid motions in Rd. We may
view any g(M,b) ∈ G(d) by its corresponding action on points x ∈ Rd. That is,

x′ = g(M,b) ◦ x = Mx + b (B.79)

where b is a translation vector and the matrix M corresponds to (proper) rota-
tions, hence M satisfies

detM = 1 and M⊤M = MM⊤ = Id, (B.80)
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where Id is the d × d identity matrix. Let us find σ′ = g−1(M,b) ◦ (σ) onto
which σ is mapped by applying g−1(M,b). Its associated plane vector η′ must
satisfy η′⊤x′ = 1. By multiplying Equation (B.79) by M⊤ from the left, we
obtain M⊤x′ = x + M⊤b. Further multiplying by η⊤ from the left, we get
η⊤M⊤x′ = 1 + η⊤M⊤b, from which we identify

η′ = g−1(M,b) ◦ η = Mη

1 + b⊤Mη
. (B.81)

For the norm, we have by using M⊤M = Id,

∥η′∥ = ∥η∥
|1 + b⊤Mη|

. (B.82)

Let us calculate the Jacobian of transformation from η′ to η. We have

∂η′

∂η
= M(1 + b⊤Mη)−Mηb⊤M

(1 + b⊤Mη)2 = M
Id − ηb⊤M

1+b⊤Mη

1 + b⊤Mη
, (B.83)

By Matrix Determinant Lemma 119,

det
(︄
∂η′

∂η

)︄
= detM

(1 + b⊤Mη)d

(︄
1− b⊤Mη

1 + b⊤Mη

)︄
= detM

(1 + b⊤Mη)1+d . (B.84)

In total,

1
∥η′∥1+dλd(dη′)= |1+b⊤Mη|1+d

∥η∥1+d
detM

|1+b⊤Mη|1+dλd(dη)= 1
∥η∥1+dλd(dη) (B.85)

for any M and b. Therefore, ∥η∥−1−dλd(dη) is a Haar measure on A(d, d − 1)
and as such, it must differ from µd−1(dσ) by a constant multiple [37, Theorem
5.4], say

µd−1(dσ) = c

∥η∥1+dλd(dη) (B.86)

for some c. To check this constant is indeed c = 2/ωd, let us calculate the µd−1
measure over planes which pass trough Bd (the unit ball with radius one). On
one hand, by definition, we already know that µd−1(ABd(d, d− 1)) = ω1 = 2. On
the other, let us characterise the condition under which a (d − 1) hyperplane σ
intercepts Bd. This happens exactly when the closest point on σ lies inside of Bd.
That is, ∥ξ∥ < 1, or equivalently ∥η∥ > 1. Hence, by using spherical coordinates
and symmetry, λd(dη) = ωdr

d−1 dr, where r = ∥η∥, and therefore

µd−1(ABd(d, d− 1)) =
∫︂
Rd\Bd

c

∥η∥1+dλd(dη) = ωd

∫︂ ∞

1
c
rd−1

r1+ddr = ωdc, (B.87)

so c = 2/ωd indeed. ■

Remark 294. Simple calculation of Jacobian of transformation between η and
ξ (only the radial part is affected) reveals that

µd−1(dσ) = 2
ωd
∥ξ∥1−dλd(dξ). (B.88)
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B.2 Section integral

In this section, we show an important result of integral geometry, namely the
section integral. Let x = (x0,x1, . . . ,xd−1) be a collection of d points in Kd, let
∆d−1 = vold−1 convx be the (d − 1)-volume of their convex hull and σ = A(x)
be a section plane passing through those points. Section plane σ is parametrised
by η ∈ Rd such that for any x ∈ σ, we have η⊤x = 1. We wish to integrate an
integrable functional f : Kd

d → R over all points in Kd. Normally, this would be
a d2-dimensional integral (d degrees of freedom for each point). However, often
f(x) posseses some simple form (a function of ∆d−1, σ only or combination of
both). In that case, this multidimensional integral can be drastically simplified.
The overall idea is simple: Instead of integrating over individual points in a
collection, we may first fix the plane on which the points lie and then integrate
over all planes. See an illustration in Figure B.1 below.

Figure B.1: The section integral replaces integration over space by integration over
sections planes diving Kd into K−

d ⊔K+
d

The only remaining question is then to correctly write down the Jacobian of this
transformation. This leads to the section integral formula below

∫︂
Kd
d

f(x)λdd(dx)=(d−1)!
∫︂
Rd\K◦

d

∫︂
(σ ∩Kd)d

f(x)∆d−1∥η∥−1−dλdd−1(dx)λd(dη).

B.3 Blaschke-Petkantschin formula

Apart from the already discussed Cartesian parametrisation, the section integral
is a direct consequence of the famous Blaschke-Petkantschin formula which en-
ables us to reparametrise an integral over set of points x = (x0, . . . ,xp) for any
p ≤ d as an integral over q-planes in A(d, q) for any q ≥ p, on which these points
lie.
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Lemma 295 (Blaschke-Petkantschin formula). Let f : (Rd)p+1 → R be a
Lebesgue integrable function of a collection x = (x0, . . . ,xp) of points xj ∈ Rd,
j = 0, . . . , p. Denote Hp = conv(x) and ∆p = volpHp, then for any integer q
such that 0 ≤ p ≤ q ≤ d,∫︂

(Rd)p+1
f(x)λp+1

d (dx) = βdqp

∫︂
A(d,q)

∫︂
σp+1

f(x)∆d−q
p λp+1

q (dx)µq(dσ), (B.89)

where

βdqp = (p!)d−qπ
1
2p(d−q)

p−1∏︂
j=0

Γ
(︂
q−j

2

)︂
Γ
(︂
d−j

2

)︂ , (B.90)

λp+1
d (dx) = ∏︁p

j=0 λd(dxj) and λp+1
q (dx) = ∏︁p

j=0 λq(dxj) are the Lebesgue mea-
sures on (Rd)p+1 and σp+1, respectively.

Proof. See Rubin [63] for an elementary proof. ■

Remark 296. Denote γd =
∫︁∞

0 rd−1e−r2/2 dr = 2 d
2 −1Γ(d2) as before. We have

ωdγd =
√

2πd (see Equation (A.1)). We can express βdqp in terms of γ’s and
ω’s as follows:

βdqp = (p!)d−q√2πp(d−q) p−1∏︂
j=0

γq−j
γd−j

= (p!)d−q
p−1∏︂
j=0

ωd−j

ωq−j
. (B.91)

The statement of the Blaschke-Petkantschin formula is way too general for our
purposes. We will only need its special cases. First, often we assume that the
affine plane on which the points lie is exactly their affine hull almost surely.
This corresponds to the case p = q. Another special case is got by restricting
the domain of integration using the following choice of f : Let Kd ⊂ Rd be a
compact convex body with dimKd = d and let f(x) = f̃(x)∏︁0≤i≤k 1Kd(xi) for
some f̃ : Kp+1

d → R suitably integrable, then∫︂
Kp+1
d

f̃(x)λp+1
d (dx) = βdqp

∫︂
AKd (d,q)

∫︂
(Kd∩ σ)p+1

f̃(x)∆d−q
p λp+1

q (dx)µq(dσ). (B.92)

In this thesis, mostly we use the special case with f̃(x) = g(A(x))∆k
p, where g(·)

is a function of the cutting plane σ = A(x) ∈ A(d, q) only. In this case, the
Blaschke-Petkantschin formula restricted on Kd as in Equation (B.92) becomes,
using definition of v(n)

p (·) and denoting σKd = Kd∩σ (dim σKd = q almost surely),∫︂
Kp+1
d

g(σ)∆k
pλ

p+1
d (dx) = βdqp

∫︂
AKd (d,q)

v(d−q+k)
p (σKd)(volq σKd)

1+(d+k) p
q g(σ)µq(dσ).

(B.93)
This still very general relation can be further reformulated in terms of expected
values. Let us select the collection X = (X0,X1, . . . ,Xp) of (p+1) random points
Xi independently from the same distribution Unif(Kd). Then
Corollary 296.1. With respect to the uniform probability measure Unif(Kd),

E
[︂
g(σ)∆k

p

]︂
= βdqp

(voldKd)p+1

∫︂
AKd (d,q)

v(d−q+k)
p (σKd)(volq σKd)

1+(d+k) p
q g(σ)µq(dσ).

(B.94)
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If moreover q = d− 1, for which, by using Remark 296,

βd(d−1)p = p!
p−1∏︂
j=0

ωd−j

ωd−1−j
= p!ωd
ωd−p

, (B.95)

we may use the Cartesian parametrisation x ∈ σ ⇔ η⊤x = 1, to get

E
[︂
g(σ)∆k

p

]︂
= 2 p!
ωd−p(voldKd)p+1

∫︂
Rd\K◦

d

v(k+1)
p (σKd)(vold−1 σKd)

1+ (d+k)p
d−1 g(σ)λd(dη)

∥η∥1+d ,

(B.96)
where σ is now a function of η. If moreover p = q = d− 1, we get

E
[︂
g(σ)∆k

d−1

]︂
= (d− 1)!

(voldKd)d
∫︂
Rd\K◦

d

v
(k+1)
d−1 (σKd)(vold−1 σKd)d+k+1g(σ)λd(dη)

∥η∥1+d .

(B.97)
We may write this relation in the form of the following corollary

Corollary 296.2. With respect to the uniform probability measure Unif(Kd),

E
[︂
g(σ)∆k

d−1

]︂
= (d− 1)!(voldKd)k+1

∫︂
Rd\K◦

d

v
(k+1)
d−1 (σKd)ζd+k+1

d (σ)g(σ)∥η∥kλd(dη)

where we defined the zeta section function

ζd(σ) = vold−1(σ ∩Kd)
∥η∥ voldKd

(B.98)

Especially, for d = 3 and p = q = d− 1 = 2, we get∫︂
K3

3

g(σ)∆k
2λ

3
3(dx) = 2

∫︂
Rd\K◦

3

v
(k+1)
2 (σK3)(vol2 σK3)k+4g(σ)∥η∥−4λ3(dη). (B.99)

Remark 297. We show that ∥η∥ always cancels out in ζd(σ). First, note that
σ always separates Kd into disjoint union K+

d ⊔K−
d , where

K+
d = {x ∈ Kd |η⊤x < 1}, K−

d = {x ∈ Kd |η⊤x > 1}. (B.100)

From homogeneity of d-volume, vold(σ∩Kd)
∥η∥ = −∑︁d

j=1 ηj
∂ voldK+

d

∂ηj
and thus

ζd(σ) = − 1
voldKd

d∑︂
j=1

ηj
∂ voldK+

d

∂ηj
= 1

voldKd

d∑︂
j=1

ηj
∂ voldK−

d

∂ηj
(B.101)

does not depend on ∥η∥.

B.4 Spherical parametrization
Lastly, let σ ∈ A(d, 1) be a line in Rd. Any σ can be decomposed as

σ = γ + y, (B.102)

where γ ∈ G(d, 1) (lines passing through the origin) and y ∈ γ⊥. Note that
G(d, 1) is isomorphic to a half-sphere Sd−1

+ , since any γ can be associated with its
unit tangent vector n̂ as

γ = {tn̂ | t ∈ R, n̂ ∈ Sd−1}. (B.103)
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This isomorphism is a bijection as long as n̂ is taken from half-spheres, since
for a given γ ∈ G(d, 1), both ±n̂ would be its possible unit tangent vectors.
By the definition of the invariant measures, we may write the (half-)spherical
parametrization of µ1(dσ) as

µ1(dσ) = 2
ωd
λd−1(dy)σd(dn̂). (B.104)

Moreover, it is convenient to denote n̂⊥ = γ⊥ (hyperplane perpendicular to n̂),
so y ∈ n̂⊥, where n̂ ∈ Sd−1

+ .

Blaschke-Petkantschin formula

Inserting the relation between measures into Blaschke-Petkantschin formula,

∫︂
K2
d

f(x)λ2
d(dx)=

∫︂
Sd−1

+

∫︂
n̂⊥

∫︂
(σ∩Kd)2

f(x)∆d−1
1 λ2

1(dx)λd−1(dy)σd(dn̂),

where x = (x0,x1) and λ2
d(dx) = dx0dx1. For arguments in the special form

f(x) = g(σ)∆k
1, we may integrate out x0,x1 to obtain

Proposition 298. Let Kd ⊂ Rd be a convex d-body and X0,X1 ∼ Unif(Kd) be
random points uniformly and independently selected from Kd. Denote, as usual,
∆1 = ∥X1−X0∥ the (random) distance between them and σ = A(X0X1) the line
passing through them. Then, for any integrable function g(σ), any d ≥ 1 and any
(real) k > −d,

E
[︂
g(σ)∆k

1

]︂
= 2/(voldKd)2

(d+k)(d+k+1)

∫︂
Sd−1

+

∫︂
n̂⊥
g(σ) vol1(σ ∩Kd)d+k+1λd−1(dy)σd(dn̂)

(B.105)
where σ = {y + tn̂ | t ∈ R} ∈ A(d, 1) (implicitly dependent on y and n̂).

Proof. By Blaschke-Petkantchin formula in form of Corollary 296.1 with p = q =
1,

E
[︂
g(σ)∆k

1

]︂
= βd11

(voldKd)2

∫︂
AKd (d,1)

g(σ)v(d+k−1)
1 (σ ∩Kd) vol1(σ ∩Kd)d+k+1µq(dσ).

(B.106)
By Remark 296, we have βd11 = ωd/ω1 = ωd/2. Next, by affine invariancy, we get

v
(d+k−1)
1 (σ ∩Kd) = v

(d+k−1)
1 (T1) = 2

(d+ k)(d+ k + 1) (B.107)

by Equation (4.39) (T1 is the line segment (0, 1)). Hence,

E
[︂
g(σ)∆k

1

]︂
= ωd/(voldKd)2

(d+k)(d+k+1)

∫︂
AKd (d,1)

g(σ) vol1(σ ∩Kd)d+k+1µ1(dσ). (B.108)

The statement of the original proposition follows immediately from the spherical
parametrization of µ1(dσ) (Equation (B.104)). ■
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Distance moments

As a direct consequence of the previous proposition with g(σ) = 1, we get the
following formula on distance moments (Kingman [40, Eq. 34]).

Proposition 299. Let Kd ⊂ Rd be a convex d-body and X0,X1 ∼ Unif(Kd) be
random points uniformly and independently selected from Kd. Denote, as usual,
∆1 = ∥X1 −X0∥ the (random) distance between them. Then, for any d ≥ 1 and
any (real) k > −d,

E
[︂
∆k

1

]︂
= 2/(voldKd)2

(d+k)(d+k+1)

∫︂
Sd−1

+

∫︂
n̂⊥

vol1(σ ∩Kd)d+k+1λd−1(dy)σd(dn̂) (B.109)

where σ = {y + tn̂ | t ∈ R} ∈ A(d, 1) (implicitly dependent on y and n̂).

As a special case, we get the following interesting corollary:

Corollary 299.1. For any convex d-body Kd ⊂ Rd and any d ≥ 1,

lim
k→−d+

(d+ k)E
[︂
∆k

1

]︂
= ωd

voldKd

. (B.110)

Proof. By Proposition 299 above,

lim
k→−d+

(d+k)E
[︂
∆k

1

]︂
= 2

(voldKd)2

∫︂
Sd−1

+

∫︂
n̂⊥

vol1(σ∩Kd)λd−1(dy)σd(dn̂). (B.111)

The statement follows immediately from the trivial fact that
∫︁
Sd−1

+
σd(dn̂) = ωd

2

coupled with Fubini’s theorem: For any fixed n̂ ∈ Sd−1
+ ,

voldKd =
∫︂
Kd

λd(dx) =
∫︂

n̂⊥

∫︂
σ∩Kd

λ1(dt)λd−1(dy) =
∫︂

n̂⊥
vol1(σ ∩Kd)λd−1(dy),

(B.112)
where σ = {y + tn̂ | t ∈ R} ∈ A(d, 1) as usual. ■
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C Symmetries and genealogic decomposition

C.1 Configurations
Let G(Pd) be the group of all isometries of Pd (the symmetric group of Pd). That
is, G(Pd) is isomorphic to the group of permutations of vertices of Pd such that it
leaves Pd unchanged upto rigid transformations (including reflections). Note that
in d = 3, G(Pd) only consists of rotations, reflections and improper rotations. In
Schoenflies notation, they are denoted Cn, σ, Sn, respectively (together with
inversion I and identity E).
Example 300. All isometries of a regular octahedron are given as

G(O3) = {E, 6C2, 8C3, 6C4, 3C2
4 , I, 3σh, 6σd, 6S4, 8S6}. (C.113)

Let us select some subset S of vertices V of Pd. We can imagine the selected ver-
tices are coloured (black/white), this way we get a polytope Pd(S) with coloured
vertices. We denote Pd as the set of all those polytopes with pre-selected (coloured)
vertices. We say two Pd(S1), Pd(S2) ∈ Pd are equivalent if there is g ∈ G(Pd)
such that gPd(S2) = Pd(S1). Moreover we say they are section equivalent if
gPd(S2) = Pd(S1) or gPd(S2) = Pd(V \ S1). We see that the first condition is
more strict since in the latter case, since in the section equivalent case we also
identify two coloured polytopes with switched colours. We call the representants
of all equivalent classes of coloured polytopes as configurations.

C.2 Weights and orders
The size of an orbit of some configuration C = Pd(S) with selected representant
vertices S is by definition oC = |G(Pd)C|, where G(Pd)C = {gC | g ∈ G(Pd)} is the
orbit of C. By orbit-stabiliser lemma, oC = |G(Pd)|/|GC(Pd)|, where GC(Pd) =
{g ∈ G(Pd) | gC = C} is the stabiliser subgroup. The total number of equivalent
configurations is given by Burnside’s lemma as

1
|G(Pd)|

∑︂
g∈G(Pd)

|{C | gC = C}|, (C.114)

where {C | gC = C} is the set of fixed points (that is the set of configurations
that are unchanged by the action of the group element g). We can find those
configurations via the help of computer, see GECRA (Code 9) in the appendix.
The procedure is as follows: First, we represent G(Pd) as a subgroup of the sym-
metry group S|V | with |V | whose elements (permutations) which act of vertices
of Pd we represent as permutation matrices. This representation is of course an
isomorphism. Then, we can represent a selection (colouring) of vertices S as a
vector s of length |V | of ones and zeros. Let us denote the set of all such vectors
as S. There are 2|V | such vectors. The set of all configurations is then simply the
classes ⋃︂

s∈S
|S|V |s| =

⋃︂
s∈S
{gs | g ∈ S|V |}. (C.115)

So far, we have not employed the section equivalence gC ∼ C′, where we write
C′ = Pd(V \S). Therefore, for a given configuration C with S selected (coloured)
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vertices out of total n vertices of Pd, we define the section weight wC as the size
of the orbit of C with respect to the section equivalence, that is, by symmetry

wC =
⎧⎨⎩oC, |S| < n/2
oC/2, |S| = n/2.

(C.116)

Since σ∩Pd is also a polytope (more precisely, a (d− 1)-polytope), we define the
order nC of a configuration C as the number of vertices of σ ∩Pd. We claim this
number is well defined for a given configuration.

C.3 Realisable configurations

GC(O3) : G(O3)
{︄
E,2C4,C

2
4

2σh, 2σd

}︄ {︄
E,C2,
σh,σd

}︄ {︄
E,2C2,2C4,3C2

4 ,
I, 3σh, 2σd, 2S4

}︄ {︄
E,2C3,

3σd

}︄ {︄
E,C2,
σh, σd

}︄

C :

oC : 1 6 12 3 8 12
wC : 1 6 12 3 4 6

Table C.6: Section equivalent configurations of O3

In the example above shown in Table C.6, configurations N, I, II, III are those
whose points can be separated by a plane. In general that is, there exists a
(d − 1)-plane σ such that all vertices in S lie on side of σ and all remaining
vertices V \S lie on the other side. Those configurations are said to be realisable.
We write σ/C, where C is a configuration and we write C(Pd) for the set of all
realisable configurations. We can check whether a configuration is realisable by
checking whether there is a nonempty subset of Rd satisfying Equations (4.29).

C.4 Genealogy
Realisable configurations have a unique property – assuming Pd is convex, we
can obtain them from realisable configurations with fewer coloured vertices by
successively adding (colouring) another neighbouring vertex. This corresponds to
a continuous shift of σ. The graph (in fact, a Hasse diagam) of such successions is
called the genealogy of Pd configurations with section weights wC. Generalogies
for selected polyhedra are shown in Appendix D. For example, the genealogy of
the octahedron section equivalent configurations from Table C.6 are shown in
Figure D.3.

C.5 Decomposition of functionals
Let P ⊂ Rd be a convex d-polytope. Consider an affinely invariant functional

F (P ) = 1
(vold P )d

∫︂
P d
f(x)λdd(dx). (C.117)
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By symmetry, we can decompose this functional as follows

F (P ) =
∑︂

C∈C(P )
wCF (P )C, (C.118)

where
F (K)C = 1

(vold P )d
∫︂
P d
1{A(x)/C}f(x)λdd(dx). (C.119)

Note that the property A(x)/C is also affinelly invariant, since any affine trans-
formation does not change the set of vertices S separated by σ. As a conse-
quence, also FC(K) stays invariant under affine transformations of K. By defining
PC = {x ∈ P | A(x)/C}, we may also write

F (K)C = 1
(vold P )d

∫︂
P dC

f(x)λdd(dx). (C.120)
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D Selected genealogies
Configurations C(P ) derived from the empty configuration N (no points selected)
by succesively adding an extra vertex (I, II, III, etc.). Genealogic decomposition
is used to decompose affine functionals F (K) as ∑︁C∈C(P ) wCF (K)C. Each config-
uration is characterised by selection S of vertices (figures), by section equivalent
weights wC and the number of vertices of σ ∩ P , which is the order nC.

C I II
wC 4 6
nC 3 4

Figure D.2: Tetrahedron genealogy

C I II III
wC 6 12 4
nC 4 6 6

Figure D.3: Octahedron genealogy

C I II III IV V
wC 8 12 24 4 3
nC 3 4 5 6 4

Figure D.4: Cube genealogy

C I II III IV V VI VII VIII IX
wC 4 4 6 12 12 12 2 2 3
nC 6 3 10 7 9 8 9 9 8

Figure D.5: Triakis tetrahedron genealogy
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C I II III IV
wC 1 4 4 4
nC 4 3 5 4

Figure D.6: Square pyramid ge-
nealogy

C I II III IV V
wC 6 6 3 1 6
nC 3 4 4 3 5

Figure D.7: Triangular prism ge-
nealogy

C I II III IV
wC 3 2 3 6
nC 4 3 6 5

Figure D.8: Triangular bipyra-
mid genealogy

C I II III IV V VI VII VIII

wC 24 24 12 48 24 24 24 24
nC 3 4 4 5 5 6 6 6
C IX X XI XII XIII XIV XV XVI

wC 6 48 48 48 24 8 48 48
nC 4 7 7 7 5 6 8 6
C XVII XVIII XIX XX XXI XXII XXIII XXIV

wC 12 24 48 48 48 24 24 24
nC 8 6 7 7 9 7 7 6
C XXV XXVI XXVII XXVIII XXIX XXX XXXI XXXII

wC 24 48 48 6 48 48 24 48
nC 8 8 8 8 7 7 9 9
C XXXIII XXXIV XXXV XXXVI XXXVII XXXVIII XXXIX XL

wC 24 24 48 24 24 48 48 48
nC 6 8 8 8 10 7 7 9
C XLI XLII XLIII XLIV XLV XLVI XLVII

wC 48 24 4 24 6 12 12
nC 9 7 6 8 6 10 8

Figure D.9: Truncated octahedron genealogy
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C I II III IV V VI VII VIII IX
wC 12 24 24 8 6 48 24 12 12
nC 4 6 8 6 8 8 8 8 8

Figure D.10: Cuboctahedron genealogy

C I II III IV V VI VII
wC 12 12 6 4 24 12 12
nC 3 4 4 3 5 4 6
C I II III IV V VI VII
wC 24 12 24 3 12 4 12
nC 5 5 7 4 6 6 6

Figure D.11: Tuncated tetrahedron genealogy

C I II III IV V
wC 8 6 24 24 24
nC 3 4 5 6 7
C V VII VIII IX X
wC 12 6 4 12 24
nC 6 8 6 8 8
C XI XII XIII XIV XV
wC 24 48 8 24 24
nC 7 7 9 7 8

Figure D.12: Rhombic dodecahedron
genealogy
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E Codes in Mathematica

E.1 General formulae

Code 1: Code to evaluate e
(k)
d for general d and k

1 efun[d_,1]:= (d+1)*(a @@ ConstantArray[0,d])^(d+1);
2 efun[d_,k_] := Simplify[(d+1)!/(d!)^k
3 Sum[Times @@ Array[Signature[p[#+1]] &, k-1]*
4 (Times @@ (a @@ Table[Count[#,i], {i,1,d}] &
5 /@ Table[Flatten[{i-1, Table[p[j][[i]]-1, {j,2,k

}]}], {i,1,d+1}])), ##] &
6 @@ Table[{p[i], Permutations[Range[d+1]]}, {i,2,k}]];

E.2 Tetrahedron area moments

Code 2: Code to evaluate ι
(k)
3 (σ) in T3, configuration I

1 k = 1 (*desirable integer*);
2 Tcanon = Tetrahedron[{{0,0,0},{1,0,0},{0,1,0},{0,0,1}}];
3 Tabc = Tetrahedron[{{0,0,0},{1/a,0,0},{0,1/b,0},{0,0,1/c

}}];
4 iotaint = Simplify[Integrate[(Dot[{a,b,c},x] - 1)^k, x \[

Element] Tcanon] - (1 - (-1)^k) Integrate[(Dot[{a,b,c
},x] - 1)^k, x \[Element] Tabc],Assumptions -> 1 < a
&& 1 < b && 1 < c]

Code 3: Code to evaluate ι
(k)
3 (σ) in T3, configuration II

1 k = 1(*desirable integer*);
2 Tcanon = Tetrahedron[{{0,0,0},{1,0,0},{0,1,0},{0,0,1}}];
3 Tabc = Tetrahedron[{{0,0,0},{1/a,0,0},{0,1/b,0},{0,0,1/c

}}];
4 Tstar = Tetrahedron[{{0,0,1},{(1 - c)/(a - c),0,(a - 1)/(

a - c)},{0,(1 - c)/(b - c),(b - 1)/(b - c)},{0,0,1/c
}}];

5 iotaint = Simplify[(Integrate[(Dot[{a,b,c},x] - 1)^k, x
\[Element]

6 Tcanon] - (1 - (-1)^k) Integrate[(Dot[{a,b,c},x] - 1)^
k,

7 x \[Element] Tabc] + (1 - (-1)^k) Integrate[(Dot[{a,b,
c},x]

8 - 1)^k, x \[Element] Tstar]),
9 Assumptions -> 1 < a && 1 < b && 0 < c < 1]

Code 4: Code to evaluate v
(k+1)
2 (Uαβ2 ), odd k

1 k = 1(*desirable odd integer*);
2 Delta = 1/2! Det[{x1 - x0, x2 - x0}];
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3 trianab = Triangle[{{0, 0}, {\[Alpha], 0}, {0, \[Beta
]}}];

4 trianunit = Triangle[{{0, 0}, {1, 0}, {0, 1}}];
5 meancut =
6 Simplify[(2/(1 - \[Alpha] \[Beta]))^(
7 k + 4) (Integrate[Delta^(k + 1), x0 \[Element]

trianunit,
8 x1 \[Element] trianunit, x2 \[Element] trianunit] -
9 3 Integrate[Delta^(k + 1), x0 \[Element] trianunit,

10 x1 \[Element] trianunit, x2 \[Element] trianab] +
11 3 Integrate[Delta^(k + 1), x0 \[Element] trianunit,
12 x1 \[Element] trianab, x2 \[Element] trianab] -
13 Integrate[Delta^(k + 1), x0 \[Element] trianab,
14 x1 \[Element] trianab, x2 \[Element] trianab]),
15 Assumptions -> 0 < \[Alpha] < 1 && 0 < \[Beta] < 1]

E.3 Pentachoron 4-volume moments

Code 5: Code to evaluate ι
(k)
4 (σ) in T4, configuration I

1 k = 1 (*desirable integer*);
2 Tcanon =
3 Simplex[{{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0,

0, 1, 0}, {0, 0, 0, 1}}];
4 Tabcd =
5 Simplex[{{0, 0, 0, 0}, {1/a, 0, 0, 0}, {0, 1/b, 0, 0},

{0, 0, 1/c, 0}, {0, 0, 0, 1/d}}];
6 iotaint =
7 Simplify[
8 Integrate[(Dot[{a, b, c, d}, x] - 1)^k, x \[Element]
9 Tcanon] - (1 - (-1)^k) Integrate[(Dot[{a, b, c, d}, x

] - 1)^
10 k, x \[Element] Tabcd],
11 Assumptions -> 1 < a && 1 < b && 1 < c && 1 < d]

Code 6: Code to evaluate ι
(k)
4 (σ) in T4, configuration II

1 k = 1(*desirable integer*);
2 Tcanon = Simplex[{{0, 0, 0, 0}, {1, 0, 0, 0},
3 {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}];
4 Tabcd = Simplex[{{0, 0, 0, 0}, {1/a, 0, 0, 0},
5 {0, 1/b, 0, 0}, {0, 0, 1/c, 0}, {0, 0, 0, 1/d}}];
6 Tstar = Simplex[{{0, 0, 0, 1},
7 {(1 - d)/(a - d), 0, 0, (a - 1)/(a - d)},
8 {0, (1 - d)/(b - d), 0, (b - 1)/(b - d)},
9 {0, 0, (1 - d)/(c - d), (c - 1)/(c - d)},

10 {0, 0, 0, 1/d}}];
11 iotaint = Simplify[(Integrate[(Dot[{a, b, c, d}, x] - 1)^

k,

336



Appendices

12 x \[Element] Tcanon] - 2 Integrate[(Dot[{a,b,c,d},x] -
1)^k,

13 x \[Element] Tabcd] + 2 Integrate[(Dot[{a,b,c,d},x] -
1)^k, x

14 \[Element] Tstar]),
15 Assumptions -> 1 < a && 1 < b && 1 < c && 0 < d < 1]

Code 7: Code to evaluate v
(k+1)
3 (Uαβγ3 ), odd k

1 k = 1(*desirable odd integer*);
2 Delta = 1/3! Det[{x1 - x0, x2 - x0, x3 - x0}];
3 Tabc = Tetrahedron[{{0, 0, 0}, {\[Alpha], 0, 0}, {0, \[

Beta], 0}, {0, 0, \[Gamma]}}];
4 Tcan = Tetrahedron[{{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0,

0, 1}}];
5 meancut =
6 Simplify[(6/(1 - \[Alpha] \[Beta] \[Gamma]))^(
7 k + 5) (Integrate[Delta^(k + 1), x0 \[Element] Tcan,
8 x1 \[Element] Tcan, x2 \[Element] Tcan,x3 \[Element]

Tcan]
9 - 4 Integrate[Delta^(k + 1), x0 \[Element] Tcan,

10 x1 \[Element] Tcan, x2 \[Element] Tcan, x3 \[Element]
Tabc]

11 + 6 Integrate[Delta^(k + 1), x0 \[Element] Tcan,
12 x1 \[Element] Tcan, x2 \[Element] Tabc, x3 \[Element]

Tabc]
13 - 4 Integrate[Delta^(k + 1), x0 \[Element] Tcan,
14 x1 \[Element] Tabc, x2 \[Element] Tabc, x3 \[Element]

Tabc]
15 + Integrate[Delta^(k + 1), x0 \[Element] Tabc, x1 \[

Element]
16 Tabc, x2 \[Element] Tabc, x3 \[Element] Tabc]),
17 Assumptions ->
18 0 < \[Alpha] < 1 && 0 < \[Beta] < 1 && 0 < \[Gamma] <

1]

E.4 GECRA: Genealogy creation algorithm
The following algorithm generates realisable configurations and their weights for
any polytopes by exploiting their symmetries. The code works on iterating over
nos (the number of selected vertices) and it has the following steps

• Step 0: initialise empty configuration N
• CYCLE

– Step I: generate new configurations from old ones
– Step II: group them into classes, select first configuration from each

(the so called representant)
– Step III: for each representant, determine if it is realisable, discard

unrealisable
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• repeat step I until nos reaches half the number of vertices,

The algorithm is initialised by inserting vertices of Pd into solid as a list of their
coordinates and the symmetry group G(Pd) into symgroup as list of permuta-
tions on indexes of these vertices. In the code, dimen is the dimension d. Various
inputs and results are stored in the library in the file GENERAL EFRON.nb (see
Attachments). For example, Code 8 shows the input for Pd = C3 (the three-
dimensional unit cube). Note that we only store the generators of G(C3) since
the whole symmetric group can be obtain by successive composition of the ele-
ments with themselves.

Code 8: Input for GECRA for Pd = C3

1 solid = {{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1},
2 {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}};
3 generators = {(*reflection*){4, 6, 5, 1, 3, 2, 8, 7},
4 (*2fold rotation*){3, 7, 5, 1, 4, 2, 8, 6},
5 (*3fold rotation*){7, 8, 3, 2, 1, 6, 5, 4}};
6 symgroup = FixedPoint[Union[Flatten[Table[

PermutationProduct[#, p] & /@ #, {p, #}], 1]] &,
generators];

The output of the GECRA program is the following
• alltypes:the list of cofigurations, each configuration is represented by a

list of indices of vertices
• allweights: list of weights of configurations
• allgenealogy: the genealogy as a list of pairs i → j, where i, j are

indices of configurations in the list of configurations
• gengraph: the genealogy graph (a Hasse diagram)

Code 9: GECRA: Genealogies from symmetry groups
1 Clear[classreps, rawclassreps, oineqsel, isrealisable,

orbitmaker,
2 allsuccesors, weightsel, dimen];
3 dimen = 4;
4 ofvertices=Length[solid];
5 etaparams = Table[a[i], {i, dimen}];
6 orbitmaker[sel_] :=
7 orbitmaker[sel] =
8 Union[Table[(sel)[[#[[i]]]], {i, ofvertices}] & /@

symgroup];
9 weightsel[sel_] :=

10 If[Total[sel] < ofvertices/2, Length[orbitmaker[sel]],
11 Length[orbitmaker[sel]]/2];
12 (*inequalities for etaparams a,b,c,d,... for a given 0,1

selection of \vertices*)
13 oineqsel[sel_] :=
14 oineqsel[sel] =
15 With[{representant = Pick[solid, # == 1 & /@ sel]},
16 Reduce[Or[
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17 And @@ Flatten[{Dot[etaparams, #] > 1 & /@
representant,

18 Dot[etaparams, #] < 1 & /@ Complement[solid,
representant]}],

19 And @@
20 Flatten[{Dot[etaparams, #] < 1 & /@ representant,
21 Dot[etaparams, #] > 1 & /@
22 Complement[solid, representant]}]]]];
23 isrealisable[sel_] :=
24 isrealisable[sel] = If[Length[oineqsel[sel]] == 0, 0,

1];
25 (*step 0*)
26 classreps[0] = {ConstantArray[0, ofvertices]};
27 (*step I*)
28 allsuccesors[sel_] :=
29 allsuccesors[sel] = ReplaceList[sel, {a___, 0, b___} :>

{a, 1, b}];
30 (*step II*)
31 rawclassreps[i_] :=
32 rawclassreps[i] =
33 Map[Last,
34 Union[orbitmaker[#] & /@
35 Union[Flatten[allsuccesors[#] & /@ classreps[i - 1],
36 1]]]];
37 (*step III*)
38 classreps[nos_] :=
39 classreps[nos] =(*sort by weight of a configuration*)
40 SortBy[Select[rawclassreps[nos], isrealisable[#] == 1

&], weightsel];
41

42 (*OUTPUT*)
43 allreps = Flatten[Table[classreps[i], {i, 1, Floor[

ofvertices/2]}], 1];
44 (*01 representants as their index*)
45 repstoindexesrule =
46 Flatten[{{ConstantArray[0, ofvertices] -> 0},
47 Table[allreps[[i]] -> i, {i, Length[allreps]}]}, 1];
48 allgenealogy =
49 Flatten[Table[(sel /. repstoindexesrule) -> (suc /.
50 repstoindexesrule), {i, 0, Floor[ofvertices/2] - 1},

{sel, classreps[i]}, {suc,
51 Intersection[Flatten[(orbitmaker[#] & /@ allsuccesors

[sel]), 1], classreps[i + 1]]}], 2];
52 gengraph =
53 GraphPlot[
54 RomanNumeral[#[[1]]] -> RomanNumeral[#[[2]]] & /@

allgenealogy,
55 VertexLabeling -> True, DirectedEdges -> True];
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56 (*representants in coordinates*)allrepscoord =
57 Pick[solid, # == 1 & /@ #] & /@ allreps;
58 alltypes = Pick[Range[ofvertices], # == 1 & /@ #] & /@

allreps;
59 allweights = weightsel[#] & /@ allreps;
60 allnoofsel = Total[#] & /@ allreps;
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F Auxiliary integrals

Recurrence relations for auxiliary integrals
Recall that D(ζ, γ) is the fundamental triangle domain with vertices [0, 0], [ζ, 0],
[ζ, ζ tan γ] (ζ > 0, 0 < γ < π/2). To express the integrals

I
(p)
ij (q, γ) =

∫︂
D(q,γ)

xiyj
(︂
1 + x2 + y2

)︂p/2
dxdy, (F.121)

we mainly employ recursive relations. However, I(p)
11 (q, γ) can be expressed di-

rectly without recursions. We parametrise the domain D(q, γ) as y ∈ (0, x tan γ),
x ∈ (0, q), by integrating out y and then x, we get

I
(p)
11 (q, γ) = sin2 γ + cos2 γ (1 + q2 sec2 γ)2+ p

2 − (1 + q2)2+ p
2

(2 + p)(4 + p) . (F.122)

K’s

In case of I(p)
10 (q, γ) and I

(p)
10 (q, γ), we cannot integrate twice. To overcome this,

we first define our first auxiliary integral

K(p)(r) =
∫︂ r

0

(︂
1 + t2

)︂1+p/2
dt (F.123)

satisfying symmetry
K(p)(−r) = −K(p)(r) (F.124)

and, via integration by parts, the recurrence relation

K(p)(r) = 2 + p

3 + p
K(p−2)(r) + r

3 + p
(1 + r2)1+p/2 (F.125)

with boundary conditions

K(−2)(r) = r, K(−3)(r) = argsinh r. (F.126)

We can then express our I(p)
10 (q, γ) and I

(p)
10 (q, γ) in terms of K ′s as

I
(p)
10 (q, γ) = 1

2 + p

[︄(︂
1 + q2

)︂ 3+p
2 K(p)

(︄
q tan(γ)√

1 + q2

)︄
− sin γ K(p)(q sec γ)

]︄
, (F.127)

I
(p)
01 (q, γ) = 1

2 + p

[︂
cos γK(p)(q sec γ)−K(p)(q)

]︂
. (F.128)

J’s

We denote
J (p)(q, γ) = −γ +

∫︂ γ

0
(1 + q2 sec2 φ)1+p/2 dφ, (F.129)

satisfying symmetry
J (p)(q,−γ) = −J (p)(q, γ) (F.130)

and, via integration by parts, the recurrence relations

J (p)(q, γ) = J (p−2)(q, γ) + q (1 + q)
1+p

2 K(p−2)
(︄
q tan γ√
1 + q2

)︄
, (F.131)
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with boundary conditions

J (−2)(q, γ) = 0, J (−3)(q, γ) = −γ + arcsin sin γ√
1 + q2 . (F.132)

Remark 301. Note that we can write J (p)(q, γ) =∫︁ γ
0

(︂
(1 + q2 sec2 φ)1+p/2 − 1

)︂
dφ.

We transform I
(p)
00 (q, γ) by substitution into polar coordinates x = r cosφ, y =

r sinφ, our domain D(ζ, γ) becomes parametrised as r ∈ (0, q secφ), φ ∈ (0, γ)
and thus

I
(p)
00 (q, γ) =

∫︂ γ

0

∫︂ q secφ

0
r
(︂
1 + r2

)︂p/2
drdφ, (F.133)

Integrating out r, we get

I
(p)
00 (q, γ) = 1

2 + p

∫︂ γ

0
(1 + q2 sec2 φ)1+p/2 − 1 dφ = 1

2 + p
J (p)(q, γ). (F.134)

Note that, by this integral formula, we can extend the definition of I(p)
00 (q, γ) for

negative γ as well.

M’s

The last set of auxiliary integrals we define is

M (p)(q, γ) =
∫︂ γ

0
cos2 φ

[︂
(1 + q2 sec2 φ)1+p/2 − 1

]︂
dφ, (F.135)

satisfying the recurrence relation
M (p)(q, γ) = M (p−2)(q, γ) + q2

(︂
γ + J (p−2)(q, γ)

)︂
. (F.136)

Using standard techniques of calculus it is not hard to derive their specific values
for p = −2 and p = −3 are M (−2)(q, γ) = 0 and

M (−3)(q, γ) = 1− q2

2 arcsin sin γ√
1 + q2−

γ

2 +sin γ
2

(︃√︂
cos2 γ + q2 − cos γ

)︃
. (F.137)

Finally, we can express I(p)
20 (q, γ) and I(p)

02 (q, γ). Note that we only need to express
the former as I(p)

02 (q, γ) can be extracted from other integrals since

I
(p)
00 (q, γ) + I

(p)
20 (q, γ) + I

(p)
02 (q, γ) =

∫︂
D(q,γ)

(︂
1 + x2 + y2

)︂1+p/2
dxdy = I

(p+2)
00 (q, γ).

(F.138)
Again, by using the polar coordinates substitution, we transform the integral into

I
(p)
20 (q, γ) =

∫︂ γ

0

∫︂ q secφ

0
r3 cos2 φ

(︂
1 + r2

)︂p/2
drdφ, (F.139)

Integrating out r, we get

I
(p)
20 (q, γ) =

∫︂ γ

0

cos2 φ
[︂
(1 + q2 sec2 φ)2+ p

2 − 1
]︂

4 + p
−

cos2 φ
[︂
(1 + q2 sec2 φ)1+ p

2 − 1
]︂

2 + p
dφ

= 1
4 + p

M (p+2)(q, γ)− 1
2 + p

M (p)(q, γ).

(F.140)

Selected values of the auxiliary integrals I(p)
ij (q, γ) can be found below in the next

section.
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Special values of auxiliary integrals

The following Table F.1 lists some of the values of I(1)
ij (q, γ) used throughout our

thesis.

I
(1)
00

(︂
1, π4

)︂ 1
2
√

3
− π

36 + 2
3 argcoth

√
3

I
(1)
00

(︂√
2

2 ,
π
3

)︂ 1
4 −

π

36 + 7 argcoth
√

2
12
√

2

I
(1)
00

(︂√
2

4 ,
π
3

)︂ 1
16
√

2
+ π

18 + 25 ln 3
192
√

2
− 1

3 arccot
√

2

I
(1)
00

(︂√
2

2 ,
π
4

)︂ 1
6
√

2
− π

12 + 7 ln 3
24
√

2
+ 1

3 arccot
√

2

I
(1)
00

(︂
1
2 ,

π
5

)︂ √
5

16 −
5
48 + π

60 −
13 ln 5

192 − 1
6 arccot 2 + 13

96 argsinh 2

I
(1)
00

(︂
1
2 ,

2π
5

)︂ √
5

16 −
5
48 + π

20 −
13 ln 5

192 − 1
6 arccot 2 + 13

96 argsinh 2

I
(1)
10

(︂
1, π4

)︂ √
3

8 −
argsinh

√
2

8
√

2
+ 1

2 argcoth
√

3

I
(1)
10

(︂√
2

2 ,
π
3

)︂ 3
16
√

2
−
√

3
16 argsinh

√
2 + 9

32 argcoth
√

2

I
(1)
10

(︂√
2

4 ,
π
3

)︂ 3
256 + 81 ln 3

1024 −
√

3
16 argcoth

√
3

I
(1)
01

(︂
1, π4

)︂
− 7

12
√

2
+ 3
√

3
8 + argsinh

√
2

8
√

2
− 1

8 argcoth
√

2

I
(1)
01

(︂√
2

2 ,
π
3

)︂ 3
8

√︄
3
2 −
√

3
8 −

1
8 argcoth

√
3 + 1

16 argsinh
√

2

I
(1)
11

(︂
1, π4

)︂ 1
30 −

4
√

2
15 + 3

√
3

10

I
(1)
11

(︂√
2

2 ,
π
3

)︂ 1
20 −

3
20

√︄
3
2 + 3

√
3

20

I
(1)
20

(︂√
2

2 ,
π
3

)︂ 1
40 + 1

20
√

3
+ π

180 + 13 argcoth
√

2
120
√

2

I
(1)
20

(︂√
2

4 ,
π
3

)︂ 1
20
√

3
− 29

640
√

2
− π

90 + 43 ln 3
7680
√

2
+ 1

15 arccot
√

2

Table F.1: Selected values of I
(1)
ij (q, γ) for various arguments
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List of equivalent values
Note that the values in Table F.1 are get by not only recursions alone, but also
with addition to the following rules (equivalent replacement rules). These rules
are only aesthetic and have no effect on the correctness of our results.

arcsin 1√
3
→ π

2 − arctan
√

2

arcsin
√︄

2
3 →

π

2 − arccot
√

2

argsinh 1→ argcoth
√

2

argsinh 1√
3
→ ln 3

2

argsinh 1√
2
→ argcoth

√
3
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Attachments

GENERAL EFRON.nb
A Mathematica worksheet containing all necessary codes and implementations,
library of solid as well as integration algorithms and various simplifications sub-
routines.

simplex.f90
Fortran program which computes 1st and 2nd volume moments of random 4D
simplex (pentachoron) for Monte-Carlo simulation, see section 4.5.1 on 4D sim-
plex volumetric moments.
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