FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

DOCTORAL THESIS

Dominik Beck

Random polytopes

Mathematical Institute of Charles University

Supervisor of the doctoral thesis: prof. RNDr. Jan Rataj, CSc.

Study programme: General Questions of Mathematics
and Computer Science

Study branch: P4M8

Prague 2025






I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature



i



I would like at this point to thank all those who had confidence in me and saw
the meaning in my work and my associated renunciation of everything worldly. I
would like to thank especially my supervisor, Professor Jan Rataj, who supported
me many times in my free research and under whose guidance I was able to give
myself fully to my ideas. Without his help and direction I would not be where I
am now. Many thanks also go to my family and also to my Anima, embodied in
Kara Bravo, who has consistently supported me even in the most difficult times
and to whom shall this work be dedicated...

“But if you tame me, then we shall need each other.
To me, you will be unique in all the world.

To you I shall be unique in all the world...”

— Antoine de Saint-Exupéry, The Little Prince

il



v



Title: Random polytopes
Author: Dominik Beck
Department: Mathematical Institute of Charles University

Supervisor: prof. RNDr. Jan Rataj, CSc., Mathematical Institute of Charles
University

Abstract: Our work covers the topic of moments of volumes of random sim-
plices. We explain both combinatorial and integral-geometric treatment of the
subject. The main themes throughout the work are moments of random determi-
nants, Crofton Reduction Technique, Efon’s formulae and Blaschke-Petkantschin
formula.

We made a major contribution in higher dimensional generalisations of the know
problems and pushed the older ideas to their limits in each of the branches men-
tioned. In random simplices metric moments branch, we were successful to enlarge
the list of the exact volumetric moments for other three-dimensional polyhedra
than to the only known three (ball, tetrahedron and cube). A new approach was
developed to tackle also the volumetric moments in higher dimensions, which
were inaccessible using previous methods.

A novel systematic use of the well known Crofton Reduction Technique enabled
us to found other characteristics of polytopes, such as mean random distances of
their interior points or the probability of a triangle formed by random interior
points being obtuse.

Last but not least, in moments of random determinants branch, we found the
fourth moment for a complete general case of matrix entries and the sixth moment
for a special special case of centrally distributed entries. Although we solved those
problems in our earlier published work, the treatment in this thesis is based solely
on analytic combinatorics, making the material more broadly accessible.

Keywords: Random simplices, Mean tetrahedron volume, Crofton reduction tech-
nique, Efron formula, Random determinants, Mean distance, Polyhedra, Deter-
minant moments, Blaschke-Petkantschin formula, Canonical section integral



Abstract (in Czech): V této praci se zabyvame momenty objemu ndhodnych sim-
plext. Vysvétlime zde komplexni a ucelenou teorii kombinatorického a integralné-
geomtrického pristupu k tomuto problému, jehoz soucdsti nesmi chybét momenty
nahodnych matic, Croftonova redukéni technika, Efronovy vzorce a Blaschke-
Petkantschinova formule.

Hlavni prinos této prace spoc¢iva ve zobecnéni jiz znamych vysledk do vice di-
menzi, a to ve vSech probiranych tématech. V kapitoldch o ndhodnych sim-
plexech jsme spocetli stfedni hodnoty objemu nahodného c¢tyrsténu v télese pro
celou skalu novych mnohostént mimo jedinych tfech znamych (koule, ¢tyfstén,
krychle). Navic jsme odvodili analogické vysledky i ve vice dimenzich.

Novy a systematicky pristup ke znamé Croftonové redukéni metodé nam umoznil
vyjadrit exaktné i dalsi charasteriky v mnohosténech jako napriklad stredni hod-
noty vzdalenosti dvou vnitfnich ndhodnych bodi a nebo pravdépodobnosti, Ze
nahodny trojuhelnik tvoreny tfemi nahodnymi vnitinimi body je tupothly.

V neposledni radé, co se ty¢e momentiu determinantii ndhodnych matic, jsme
zobecnili ¢tvrty moment pro obecnd rozdéleni prvki matice a nasli i Sesty mo-
ment pro rozdéleni prvki s nulovou stredni hodnotou. Ackoli jsme tyto vysledky
jiz publikovali, vénujeme se jim znovu v této praci a znovuodvozujeme je pomoci
nastrojii analytické kombintoriky, ¢imz se téma momenti ndhodnych determi-
nantu stava vice pratelstéjsi pro Sirsi okruh ¢tenarstva.

Keywords (in Czech): Nahodné simplexy, Stfedni objem ¢tyfsténu, Croftonova
redukéni technika, Efronova formule, Nahodné determinanty, Sttedni vzdalenost,
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vi



PANTA RHEI

DoOMINIK BECK

May 30, 2025

vii



viil



Contents

[List of symbols| 7
Untroduction| 11
[Random point selections and metric moments| . . . . . . ... .. ... 11
[Crotton Reduction Technique| . . . . . . . . ... ... ... ... ... 12
[Metric moments and random matricesl . . . . . . . ... ... ... .. 14
[Odd metric moments in polytopes and integral geometry| . . . . . . . . 15
[Metric moments in radial simplices| . . . . . . . . ... ... ... ... 18
[Content overview] . . . . . . . . . ... 18
(1 Crofton Reduction Technique] 19
(L1 _Preliminaries . . . . . . . . . . ... . . .. 19
(L1.1  Definitionsl . . . . . . . ... . 19
[1.1.2 Bivariate Crofton Reduction Techniquel . . . . . . . . . .. 21
[1.1.3  Multivariate Crofton Reduction Techniquel . . . . . . . .. 22
[1.1.4  Functional Crofton Reduction Technique| . . . . . . . . .. 22
[1.1.5 CRT for distributions, Dirac kernel method| . . . . . . .. 23
[1.1.6  CRT for joint densities of more functionals| . . . . . . . . . 24

(.2  Overview of functionalsl. . . . . . ... ... ... ... .. .. 26
21 Distance . . . .. ... ... ... 26
(1.2.2  Triangle area] . . . . . ... ... . ... ... ... ..., 29
[1.2.3  Obtusity indicator] . . . . . . . . ... ... ... ..... 29
[1.2.4  Perimeter and related functionals of a triangle| . . . . . . . 31

(L3 Bivariate functionals in two dimensions/ . . . . . . . . . ... . .. 34
[1.3.1 Equilateral triangle] . . . . . . . .. ... ..., 34
[1.3.2  Square| . . . . . . ... 36
M33DisK . . . . 39
[1.3.4  General regular polygons| . . . . . . . ... ... ... ... 42

(.4 _Bivariate functionals in three dimensions . . . . . . . .. ... .. 48
CZT Ball . . . ... 48
[1.4.2  General and special polyhedra . . . . . . . ... ... ... 50
[1.4.3 Regular tetrahedron| . . . . .. .. ... ... ... .... o7
MA4Cubd . . . . .. 61
[1.4.5 Regular octahedron| . . . . . . ... ... ... .. ... .. 64
[1.4.6  Regular icosahedronl . . . . . . .. .. ... ... ..... 69
[1.4.7  Regular dodecahedron| . . . . . .. ... ... ... .... 75
[1.4.8  Unsolved problems| . . . . . ... ... ... ... ..... 86

[1.5 Bivariate functionals in higher dimensions| . . . . .. .. ... .. 87
MET _dBalll . . .. .. 87

(1.6 Irivariate functionals in two dimensionsl . . . . . .. ... .. .. 89
[1.6.1 Equilateral triangle] . . . . . . ... ... ..., 89
[1.6.2  Square| . . . . . . . ... 97
ME3 _Diskl . . . . .o 102

(L7 Irivariate functionals in three dimensions . . . . . . . . . . . . .. 111
MTZT Balll . . . ... 111



2 Fven Moments of Random Determinants| 121
2.1 Preliminaries . . . . . . . .. . . 121
2.1.1  Definitionsl . . . . . . . .. ..o 121
[2.1.2  Polynomial nature and scalability| . . . . . ... ... ... 122
[2.1.3  Permutations and derangements| . . . . . . . .. ... ... 123
[2.1.4  Analytic combinatorics| . . . . . . .. ... ... ... ... 125

2.2 Permutation tabled . . . . . .. ... ... 0oL 127
[2.2.1 Exponential generating function and analytic combinato- |

rial nature of permutation tables] . . . . . ... ... ... 129

[2.2.2  Highest moment recursion formulae] . . . . . . . . ... .. 131
[2.2.3  Second moment general . . .. ... ... ... ... ... 133
2.2.4  Fourth moment centrall . . . . . . ... ... .. ... ... 134
225 Normal moments . ... ... ... ... ... ....... 136
2.2.6  Sixth moment centrall . . . . . . . ... ... oL 137
[2.2.7  Mounting argument for higher moments| . . . . . . . . .. 142
[2.2.8  Direct mounting without inclusion/exclusion| . . . . . . . . 143
[2.2.9  Chain counting generating function| . . . . . . . . . . . .. 147
[2.2.10 Position approach|. . . . . . . ... ... 149

[2.3  Gram moment and permutation tables| . . . . . . . ... ... .. 151
2.3.1 Gram second moment] . . .. ... ... ... ... .. .. 152
.32 Pair-tabled . . . . ... ... ... o 152
2.3.3  Sub-table factorizationl . . . . . . . ... ..o 154
2.5.4  Gram fourth moment centrall. . . . . . ... ... ... .. 156
2.3.5  Normal Gram moments . . .. ... ... ... ...... 158
2.3.6  Gram sixth moment centrall . . . . . .. ... ... ... .. 159

[2.4  Marked permutation tables[. . . . . . . ... ... .00 159
.41 Shifted basisl. . . . . . . . ..o o 159
[2.4.2  Finite decomposition| . . . . . . . ... ... 161
[2.4.3  Marked permutations and tables|. . . . . . ... ... ... 164
2.4.4 Nontrivial marked tables . . . . . . ... ... .. ... .. 165
[2.4.5  Second moment general (alternative proof)| . . . . . . . .. 167
2.4.6  Even marked tabled . . . . . . ... ... ... ... 168
2.47 Shifted normal moments . . . . . ... ... 169
.48 Odd-end marked tablesl. . . . ... ... ... ... .. 171
[2.4.9  Decomposition into odd-end marked tables| . . . . . . . .. 171

[2.5  Fourth moment general . . . . . . . ... ... ... 173
2.5.1 Structure of marked tables . . . . . ... ... ... 174
[2.5.2  Odd-end tables decomposition| . . . . . . . ... ... ... 174
[2.5.3  Covering techniquel . . . . . . . .. ... ... L. 175
[2.5.4 Addition techniquel . . . . . . . . ... L. 179
[2.5.5 Inclusion/Exclusion|. . . . . . ... ... 0L 181

2.6 Paired Marked Permutation Tables . . . . .. .. ... ... ... 183
[2.6.1 Marked pair-tables| . . . . . .. ... ..., 183
[2.6.2  Even marked pair-tables| . . . . . ... ... ... 184
2.6.3 Shifted normal Gram moments/ . . .. ... .. ... ... 184

(2.7  Gram fourth moment (general)] . . ... ... ... ... ..... 185




PAA

Structure of marked pair-tables| . . . . . . ... ... ...

2.7.2

Decomposition over even marked columns| . . . . . . . ..

2.7.3

Inclusion/Exclusion| . . . . . .. .. ...

D74

Covering technique| . . . . . . . . . . ... ... ... ..

[2.8 Ordinary sixth moment (intermedial){ . . . . . ... ... ... ..

[3.2  d-Simplex even volumetric moments|. . . . . . . ... ... L.

B21

Unitorm and Dirichlet simplices| . . . . . . ... ... ...

322 Reed’sformulal . . ... .. ... ... 0L

[3.3  d-Orthoplex’s and even moments in generall . . . ... ... ...

B.3.1

General numerical techniquel . . . . . . . . ... ...

B.3.2

Octahedral symmetry|. . . . . . ... ... ... ... ...

3.3.3

d-Cubel. . . . .

Ai4

Higher dimensions| . . . . . . ... ... ... ... ....

[4.2  Canonical section integrall . . . . ... .. ... ... ... ....

421 Timit bebavioud . . . . . .. ... ... ...

22

Symmetries and parametrization of configurations| . . . . .

2.3

lota tunction splitting| . . . . . ... ... ... ......

[4.2.4  Geometric interpretation of iotal . . . . . . ... ... ...

[4.2.5 Zeta section function| . . . . . . . .. ...

4.3 T'wo dimensions . . . . . . . ..

A3

Triangle area moments| . . . . . . . .. ... ... ... ..

3.2

Square area moments| . . . . .. ... ...

[4.3.3  General 2-body area moments| . . . . . .. ... ... ...

(4.4 Three dimensions . . . . . . . . . . ...

207
208
209
210
211
212
213
214
215
220
220
221
222

225
225
225
227
228
229
231
232
233
234
234
235
235
236
236
240
244
245
245
253
257
259



4.5.1 Pentachoron odd volumetric moments/. . . . . . ... ... 259
4.5.2 Hexadecachoron first volumetric moment| . . . . . . . . .. 265
“.o.3 Tesseract odd volumetric moments . . . ... .. ... .. 267

4.6  Higher dimensions| . . . . ... .. ... ... ... ........ 269
4.6.1 Hexateron odd volumetric moments/ . . . . . .. . ... .. 269
[4.6.2  Heptapeton first volumetric moment| . . . . .. ... ... 270

[4.7  Unsolved problems| . . . . . .. ... ... ... ... ... .. .. 271
5 First-order Metric Moments| 273
b1  Ffron’s formulael. . . . . . ..o 273
[>.1.1  Polytopes and their f-vector| . . . . . . .. ... ... ... 273
[5.1.2  Vertex identity| . . . . . . . . . ... ... .. ... ..., 274
[>.1.3  Facet identity| . . . . . . . ... ... 276
B.1.4  Section formulael . . . ... ... ... 0L 277
[>.1.5  Cartesian reparametrisation| . . . . . . . . . ... .. ... 278
0.1.6  Generalisations of Efron’s formulal . . . . . . ... ... .. 279

b2 Two dimensiond . . . . . . . . . ... 282
[5.2.1 Triangle first-order metric moments| . . . . . . .. ... .. 282
[5.2.2  Quadrilateral first area moment| . . . . . . ... ... ... 282
0.2.3 Half-disk first-order metric moments . . . .. ... .. .. 286

b3 Three dimensions . . . . . . . . .. ... 289
0.3.1 Tetrahedron first-order metric moments/. . . . . . . . . .. 289

[>.4  Unsolved problems| . . . . . . ... ... ... ... ... ..., 293
6 Radial Random Simplices| 295
6.1 Definitions . . . . . . . . ... 295
[6.1.1 Radially symmetric functionals|] . . . . . . ... ... ... 296
[6.1.2  General conditional radial simplices| . . . . . . .. ... .. 298

[6.2  Gaussian simplices| . . . . . ... ... oL 300
6.2.1 Radial volumetric momentsl . . .. .. ... ... ..... 301
[6.2.2  Conditional simplices| . . . . . . .. ... ... ... .... 303

[6.3 Beta and Beta’ simplices| . . . . .. ... ... ... 0. 304
0.3.1 Radial volumetric momentsl . . . . .. .. ... ... ... 304
[6.3.2  Conditional simplices| . . . . . ... ... ... ... .... 307

[6.4  Spherical shell simplices| . . . ... ... ... ... ... ..... 308
6.4.1 Radial volumetric momentsl . . .. .. ... ... ... .. 308
[6.4.2  Conditional simplices| . . . . . . ... ... .. ... .... 308
Appendices 309
[A" Probability distributions and their stochastic decomposition| 309
[A.l  Common I-dimensional distributionsl . . . ... ... ... 309

[A.2  Langford and related distributions|. . . . . . . . . ... .. 310
A3 Radial multi-dimensional distributions . . . . . .. .. .. 311

[A.4  Dirichlet distributionl . . . . . . . . ... ... ... 314

[A.5  Reconstruction of density of random variables from mo- |

[ ments via Inverse Mellin Transforml . . . . . . . . . . . .. 316
[B Integral calculus on real atfine subspaces| . . . . .. ... ... .. 321
(B.1 Cartesian parametrisation| . . . . . . . . . . .. ... ... 322

[B.2  Section integral . . . . ... .00 324




(B.4 Spherical parametrization| . . . . .. ... ... ... ... 326

[C Symmetries and genealogic decomposition| . . . . . . . ... ... 329
(C.1 Configurations|. . . . . . . . . . ... ... ... ... ... 329

[C.2  Weights and orders| . . . . . ... ... ... ... ..... 329

(C.3 Realisable configurations| . . . . . . . ... ... ... ... 330

(C.4 Genealogy| . . . . ... 330

[C.5  Decomposition of functionals{. . . . . . . . ... ... ... 330

[D Selected genealogies|. . . . . . .. ..o 332
[l Codes in Mathematical . . . . . . ... ... ... ... ... 335
.1 General formulae . . . ... ... 00000 335

.2 Tetrahedron area moments . . . . . . ... ... ... ... 335

E3 Pentachoron 4-volume momentsl . . . . . . ... ... ... 336

[£.4 GECRA: Genealogy creation algorithm| . . . . . . . . . .. 337

[F" Auxiliary integrals| . . . . . . ... ..o 341
(Bibliography| 345
Index 351
(List of I'heorems| 355
[List of Figures| 359
(List of Tables| 362
(List of Publications| 365
[Attachments| 367







List of symbols

—e
o ~—

3’1_|Ujl=‘-o
7

3

>

Algebraic closure (of subset of generators) . 265
Euclidean norm............. ... .. .ol

the origin....... ... .. ...
indicator function, 1, = {é: % 11: gllé 2 ........
Beta function.............. ... ... L. 309
Gamma distribution....................... 309
section volume.................. ... ... ... ... 16
volume of a convex hull of n + 1 points ..... 11]
normalised volume A, ............... .. ..... 11
volume of By ............. ... ... ... .. 321
Lebesgue measure on R%.......................
central moments of X;; .......... ... .. |ﬁ
standard Haar measure on A(d,p) ......... 321
Haar probability measure on G(d,p)....... 321

surface area measure on S .. .. ... ... ..
covariance matriX.........oouiinn...

cutting plane; element of Grassmannian. ... IJE
321

permutation table ......................... 127
surface area measure on 1) ................ 315
Golden ratio (1 +v/5)/2. ... 57
area of ST1 . 321
(random) matrix (X )pmxm«-cvevevrennn- 14] [121
affine hull..........o. o 116
affine Grassmannian of p-planes in R? .. ... 321
(random) matrix (Yij)nsm «vvvveverennennn. 161
d-dimensional ball with unit radius........ 321
Beta distribution .......................... 309
d-dimensional cube ............ ... ... ... ... e
dimension .......... .. i .
d-dimensional half-ball with unit radius. ... |286
Dirichlet distribution...................... 314
expected value.................... .. ...
standard Cartesian unit basis vector ........ e
Exponential distribution................... 309
k-moment of the determinant of A .. ... , 121
number of k-facesof H,, ................... 273

k-moment of the Gram determinant of U ... [15]

(21} 15T

permutation tables with k-rows and n columns.

pair-tables with k-rows and p columns on n num-
bers .

3



Py
P,
Sdfl

st
SO(d)

Tq
Ty

wce

Unif

combinatorial structure of permutation tables

with & rows and m; weights........... 128 130
generating function of fi(n)............ 14} [121
generating function of fy(n,p)........ 1121} [151
Catalan’s constant.......................... 31
group of all proper rigid motions in R%. . ... 322
linear Grassmannian; space of p-dimensional
subspaces of R? passing through 0......... 321

k-moment of the determinant of B.............
k-moment of the Gram determinant of V' ......
combinatorial structure of permutation tables
with k rows and p; weights ......... ... ... ...
generating function of gx(n)....................
generating function of gg(n,p) .............. ...
convex hull of n points selected from K, .... [1]]

k-th harmonic number ............ |241|, 290
k-th diharmonic number................... 290
convex hull ................................. e
Gram matrix of U, J=U"U .............. 151
polar body of K ........... .. .. .. .. ... 322
d-dimensional convex compact body ...........
Langford distribution...................... 310
dilogarithm function................ .. ... .. ..
Mellin transform........................... 316
centrepoint (centre of mass) of K4......... 234
non-central moments of X;;............ , 121
Normal distribution ....................... 309

Standard multivariate normal distribution . 311
order of a configuration C, that is &N P; number
of vertices .......... .. ... 330
weight of a configuration C' of Py.......... 329
d-dimensional orthoplex or d-cross-polytope (d-
dimensional octahedron).......................

probability..... ... ...
d-dimensional polytope ........................
the set of all permutations on [n] .......... 123
(d—1)-dimensional sphere in R? with unit radius,
equivalent to OBg......... ... ... ... 321
unit (d — 1)-dimensional half-sphere in R¢ . {326
special orthogonal group in R%............. 321
(regular) d-dimensional simplex............. 11
= conv(ey,...,€q+1), standard d-simplex. ... 11

= conv(0, ey, ...,€y), canonical d-simplex .. |3£
(symmetric) weight of a configuration C' of P;..

(random) matrix (X;;)nxp--c------ |121|, 151
Uniform distribution....................... 309




ol

k)

n
VOld

> e

.

< =

>

(Ka)

(random) matrix (Yi;)msp -« cvovvevvevnenannnn..

metric moments in Kg......................
d-dimensional volume.......................

collection of points x;................. ...
collection/sample of random points X;

point (mostly in RY) ...........................
random point.......... ... i

(real) random variable ................. 14} 121
central random variable X;; —mq..............

nabla vector operator, V = ( 95> 9y D






Introduction

The following paragraphs summarise the core topics constituting the doctoral
thesis of the author. The thesis serves as a comprehensive monograph encapsu-
lating the findings of the author, some of which have been already published as
separated papers in impacted journals, see [5, 6, 7, 8,9, 10]. The complete list of
author’s publications is found in List of Publications at the end of this thesis.

Uniform random point selections and metric moments

Let K4 be a compact and convex body with dim K; = d, the so called d-body.
The most trivial example is By, a unit d-ball (d-dimensional ball with unit radius).
Another such body is Ty, a d-simplex. Note that we can embed T in R such
that Ty is reqular in the following way: Let T); be the convex hull of vertices which
are located at the tops of the unit basis vectors e;, 1 = 1,...,d+ 1 (standard
regular d-simplex). A simple computation reveals that vol; T = (v/d+1)/d!
is its d-volume (d-dimensional volume). Yet another example is Cy, a regular
d-cube and Oy = conv(tey,...,+e,), its dual, a regular d-orthoplex, which is a
d-dimensional generalisation of a regular octahedron. More generally, we write Py
for a polytope of dimension d (d-polytope). Specifically, P, stands for a polygon,
P3 a polyhedron and P; a polychoron. Let X = (X, Xy,...X,,) be a sample
of (n + 1) random points X;, j = 0,...,n selected uniformly and independently
from the interior of Ky and let H,,(K,;) = conv(X) = conv(Xy, ..., X,) (or shortly
H,,) be the convex hull of those points. Almost surely, H, is an n’-dimensional
polytope, where n’ = min{d,n}. The main interest of this thesis is to study the
normalised moments of random variable A, = vol,, H,,. That is, we define the
normalised volume A, = vol,,H,, = vol,, H,/(voly K4)"/® and

v (Kq) = EAY, (1)

we refer to as the metric moments in K;. Normalization ensures that the metric
moments are scale invariant with respect to Ky. Moreover, if n > d, metric
moments are in fact also affine invariant. For a d-ball, v*)(B,) is known for
any n, k and d (see Miles [48]). Obtaining v*)(P,) for various P, is much more
difficult. When n = d, our H, is almost surely a d-simplex and thus vc(ik)(Kd)
represents the volume moments of a random d-simplex (volumetric moment).
Selected exact values when K; = Ty with n = d are shown in Table [1| below.
Throughout the thesis, we will see how these values can be obtained.

Probabilitity that a random triangle is obtuse

Another related problem is as follows: Let us select three points randomly uni-
formly from some given d-body K. What is the probability that the random tri-
angle formed by those vertices is obtuse? We denote this probability as nx,k,k,
and call it the obtusity probability (in K,) for short. Note that the obtusity
probability is not a metric moment, however it can be approached by the same
techniques.

11
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/ )
k
VT | d=1 d=2 d=3 d=4 d

j— 1 1 13 x? 97 217372

- 3 12 720~ 15015 27000 52026975
L —9 1 1 3 1 __da

- 6 72 4000 33750 (d+1)4(d+2)?
=g 1 31 1 (733 + 7972 1 (5866197 + 6306588172

- 10 9000 52500 \ 240 ' 46189 ) 1055\ 800 3108248
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- 15 2469600 123480000 96808320000

2
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Table 1: Volumetric moment v((i )(T 4) of a random d-simplex in Ty

Crofton Reduction Technique

Often, we are faced with a problem in which the objective is to find the mean value
of some functional which depends on random points selected from the interior of
some polytope. An easier problem would be to find the mean value of the same
functional, but now with some of the points being selected from the boundary
of the polytope, from its edges or even being fixed at some of its vertices. We
say the original problem has been reduced. Seemingly unrelated, those reduced
problems are actually connected with the original one by a simple linear relation.
Moreover, to maximalise the simplification, this procedure of reduction can be
applied repeatedly. Although very powerful, the Crofton Reduction Technique
(or CRT for short) still remains fairly unknown, even though the technique itself
dates back more than one hundred years ago to Crofton and it is sometimes
presented in textbooks on random geometry (Deltheil [23], Mathai [46]). The
most influential to us was the PhD thesis of R. Sullivan [69]. Her thesis is fully
devoted to CRT, which is presented there in its most general version of the so
called Crofton Differential Equation (CDE). For even more general known version
of CDE, see Ruben and Reed [61]).

In this thesis, we do not generalise further neither we use the most general version
of CRT. Out of all affine transformations possible in CDE, we only consider sim-
ple scaling, which preserves uniformity of selection of random points. In Chapter
[ we introduce this (special) CRT and developed a notationally compact ma-
chinery enabling anyone to quickly determine the correct reduction equations (as
demonstrated on countless examples). As a result, using our machinery, we are
able not only to reproduce the famous results in just few lines, but also tackle
problems yet unsolved. Those problems are the following:

/ng)(Pg) mean distance in polyhedra and its moments, respectively
n(P) | obtusity probability (of a random triangle selected from a polygon P,)

Hg’;)g perimeter moments (of a random triangle selected from a disk B,)

Table 2: Moments studied using CRT in the thesis

12
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Mean distance

Quantity v%l)(Kd) has the meaning of the mean distance between two random

points selected uniformly and independently from Kj for any d. More generally,
vgk)(Kd) are the corresponding distance moments in K.

In two dimensions, the distance moments vgk)(Kg) have been studied extensively.

In fact, v%k)(Pz) is known for any polygon P, and any integer k (there are many
partial results, see Bésel [4] for P, being a regular polygon, but the same methods

can be applied for any polygon as shown in our thesis).

In three dimensions, assuming K3 is convex, Bonnet, Gusakova, Théle and Za-
porozhets [12] recently found a sharp optimal bounds on vgl) (K3) normalised by
the mean width of Kg However, exact values for specific K3 were scarce. The
only exception was v} (IBS?’) and o' (C’3). The value of the latter is due to Rob-
bins and Bolis [60]. The consequence of author’s investigation by applying the
Crofton Reduction Technique (see Ruben and Reed [61]) is that in fact, ng)<P3)
is always expressible in an exact form for any polyhedron P; and any integer k
(P5 also does not need to be convex). For example, the author showed

i (Ty) = V3 (2 — 32 + Larctan 2 + LBIn3) ~ 0.72946242, (2)
(1) _ 3( 4 13v2  4x 1091n 3 16 arccot v/2 | 158v/2argcoth ~
v?(0s) = /2 (105+W_E L0013 | Lercontva 4 g Q ~0.65853. (3)

The author also applied the Crofton Reduction Technique to obtain the values
of vi (Ps) for all other regular polyhedra. The full investigation of vl (Pg)
covered in [7], which is also shown in Chapter [I] of this thesis.

Obtusity probability

In two dimensions, there are several known results. Obtusity probability was first
solved in a disk by Woolhouse [77]. Later, Langford [42] found 7n(C3) and n(P,)
for P, being a general rectangle. In this thesis, we generalised Langford’s result
to any convex polytope. For example, we found in an equilateral triangle 7%,

25 T 393 . V3
T;) = Vi —1 iN07482 4
W) =5+ 55t (4)

In higher dimensions, apart from the d-ball (Buchta and Miiller [17]), n(K,) was
not known for any K, with d > 3. Unfortunately, CRT becomes less useful in
higher dimensions. Nevertheless, using CRT, we were still able to derive

( )_323338 13G+48597r 737 L?+37r1n2 3mIn(14++/2) 5)
M~3) = 385875 35 62720 16802 105 224 224 ’

where G is the Catalan’s constant.
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Metric moments and random matrices
Moments of random determinants

It turns out that the even metric moments (even k) in Ty can be analyzed only by
tools stemmed from the field of combinatorics. More concretely, there is a natural
connection between metric moments and moments of particular random deter-
minants. Let X;; be independent and identically distributed random variables,
from which we construct matrix A = (X;;)nxn. We denote moments of its entries
Xij as m, = EXJ; and for their central moments, we write p, = E (X;; — mq)".
By k-th random determinant moment, we mean the value fi(n) = E (det A).
This value can be expressed as polynomials in m, (or u,) or as expansion coeffi-
cients of the associated generating function Fj,(t) = Yo% -4 fr(n). If X;; follows
the standard exponential distribution Exp(1) (see Table of distributions used
throughout the thesis in Appendix , that is if m; = j!. Those special random
determinant moments are then intimately connected with volumetric moments in
Ty. For even k as shown by Reed [59)

| n+1
F) (T ) = _n 1). 6
W)= () A ©)
When k = 4, we get for the first ten exact determinant moments fy(n):
4 N
n |1 2 3 4 5 6 7

f4(n)‘ 24 960 51840 3511872 287953920 27988001280 3181325414400

no| 8 9 10
fa(n) | 418846663065600  63399549828464640  10964925305310412800

Table 3: Fourth moment f4(n) of a random determinant with exponentially dis-
tributed entries
G J

When k = 6, we get for the first six exact determinant moments fg(n):

4 )
no | 1 2 3 4
fe(n) ‘ 720 907200 1559900160 3340718899200
n ‘ ) 6
fe(n) ‘ 8515130572800000 25161471058916966400
Table 4: Sixth moment of a random determinant with entries exponentially dis-
tributed

G J

14
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It is more convenient to first study random determinant moments without any
restriction on the distribution of X;;. Moments of Random determinants are
discussed in Chapter 2 A natural generalisation of the problem is to consider
a non-square matrix U = (X;;)nxp. Here, fy(n,p) = E(det UTU)*? are Gram
determinant moments and FJ(t,w) = 3020 >0 ("f;)!tpw”_p fr(n,p) their gener-
ating functions. The exact expression for Fy(t) and Fy(t,w) can be easily derived
using recurrences for any distribution of X;;. By using those, Reed obtained the
second metric moment v?(T},) for any n in an exact form. For higher power
moments, it is not that simple. In the case of fourth moment, Nyquist, Rice
and Riordan [50] found the expression for Fy(t) when m; = 0. The problem of
finding the second and fourth moment of a random determinant was also studied
by Fortet [32], Forsythe and Tukey [31] and Turan [73]. Later, Dembo [24] de-
rived Fy(t,w) when m; = 0. The general case for both Fjy(t) and Fy(t,w) when
my # 0 remained unsolved. However, as it will be shown in Chapter [2| using

several independent proofs (for the original one see [§]), we get

_a9,2
Ey(t) = . <(1 Fmypist) * + 6m2 gt Ut mﬁH?;@tW) (7)

(1_M§t)3 1—pst (1—u§t)2
and
. t(u4*3ug> 4, 6m2ust(1+mpst)? m%t<1+7u§t+4u§t2>
yoemit (2m(mipst)? md (145603 +26°113) 2t%w?m 3
1—w—pt 1—p2t (1—M§t)2 (l—w—ugt)Q(l—M%t)2 .

Hence, as a consequence of Reed’s formula, the fourth metric moment v (T;,)
now also possess a closed form expression for any n. An obvious step further
would be to find the sixth determinant moment (k = 6). However, this case is
much harder to analyse. In collaboration with Aaron Potechin and Zelin Lv from
Chicago University, we obtained the value of fs(n) and Fs(t) when m; = 0 (see
our joint work [5]). However, since the exponential distribution does not satisfy
this criterion of m; = 0, one cannot apply those results on finding the values
of vff) (T},). In order to overcome this, we developed the marked permutation ta-
bles method, which, coupled with the standard analytic combinatorics techniques,
enabled us to express Fy(t) finally also in the general case of my # 0. The full in-
vestigation is however beyond the scope of this thesis. In Chapter [2| the method
of marked permutation tables will be demonstrated to show yet another deriva-
tion of Fy(t) and Fy(t,w), as well as the special case of Fg(t) with u3 = 0. Note
that expressing Fg(t,w) for m; # 0 in general is still an open question.

Even metric moments

The knowledge of even determinant moments enables us to deduce even volu-

metric moments in polytopes. That is v((ik)(Kd) for k even This connection is

demonstrated in Chapter [3]

Odd metric moments in polytopes and integral geometry

Expressing the odd moments turns out be way harder since we can no longer rely
on combinatorial techniques. In the scope of the thesis, we will further analyse
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the first-order metric moments v("(Ps) in dimension three and the volumetric

moments Uék)(Pd) of any order £ and in general dimensions. These quantities

have the following geometrical interpretation:

v (Ps) | mean convex hull volume (including mean tetrahedron volume)

vc(lk)(Pd) mean simplex d-volume (and the corresponding moments)

Table 5: Odd metric moments considered in the thesis

First-order metric moments

In two dimensions, one of the classical problems of random geometry is to find the
mean convex hull area and its moments, that is to express ’U,Slk)(Kg) for various Ko
and with n > 2. A lot of results were made in this direction. For example, Buchta
and Reitzner [19] found a formula expressing v} (P,) for any convex polygon P, a
condensation of an endevour started by Buchta [13] earlier. Although the general
Buchta and Reitzner’s formula for v{!(P;) is not beyond the scope of this thesis,
it is still rather technical so we omit it. A simplified, yet fully general, version of
the same formula appeared in Zinani |78, p. 343].

Apart from a ball, not many exact results were known in three dimensions. Here,
we are interested in expressing v*)(K3) with n > 3, which represents the k-th
moment of a random volume of a convex hull of (n 4+ 1) points. When n = 3,
the convex hull is almost surely a tetrahedron, so vél)(K;;) represents the mean
tetrahedron volume and, more generally, v{!)(K3) represents the mean volume of
a convex hull of (n + 1) points.

By using the Euler polyhedral formula, Efron [26] showed how the first-order
volumetric moment vV (K3) with any n > 3 and K3 being convex can be com-
puted using an integral over cutting planes. Let a sample of random points
X' = (X[, X%, X%) be selected uniformly and independently from the interior of

Kg, then
3

oK) = 2 B [Ty (%) + Ty (X7 )
where I (X') = vol3 K3 / vol3 K3 and Iy (X') = vols K3 / vols K3 are the section
volume fraction of the two parts K3 L K3 into which K3 is divided by a cutting
plane o passing through the collection X' = (X1, X}, X%) of points X; € Kj,
J € {1,2,3}. We may write o = A(X'), where A(-) represents the affine hull.
Using this formula, Buchta and Reitzner [18] calculated

13 w2

o (1) = 720~ 15015

(10)

Moreover, Buchta and Reitzner [20] derived v{)(T3) for any n > 3. Later, Zinanni

[78] found )

_ 3977w (1)
216000 2160

Until recently, the tetrahedron and the cube were the only polyhedra for which the

value ’Uél)(Pg) was known in an exact form. Using the same Efron’s formula, the

v (Cs)
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author of this thesis extended the list of polyhedra for which the mean tetrahedron
volume is known, first of which being the octahedron, where

1929772 6619

T 3843840 184320 (12)

The remaining polyhedra, for which the author found the exact value of vél) (Ps),
are triangular prism, square pyramid, rhombic dodecahedron, cuboctahedron, tri-
akis tetrahedron and truncated tetrahedron. The exact derivation for all of those
polyhedra is rather technical. In Chapter 5| of this thesis, we show a comprehen-
sive derivation for only some of them.

0Odd volumetric moments

The k-th volumetric moment vc(lk)(Kd) for odd k can no longer be solved using

combinatorial techniques. Note that vc(lk)(Kd) represents the mean simplex d-
volume and its moments, respectively. There is a natural overlap with the mean
convex hull d-volume v(V(K,;) when k = 1 and n = d treated in Chapter [5 We

already know that the mean tetrahedron volume 'Uél)(K3> can be derived using

Efron’s formula. However, higher moments Uék)(Kg) (when k = 3,5,7,...) were
aparently not known prior to our work for any 3-body apart from Bs.

In order to deduce higher volumetric moments (and volumetric moments in higher
dimensions), we developed a method of Canonical section integral based on base-

height splitting. The core finding is that any odd volumetric moment vc(lk)(Kd)

. . . k+1
can be written as some integral over even volumetric moments vfl_t )(0' N Ky) on

intersections of K, with a hyperplane o. Eventually, we found v}" (T3), vék)(Cg)
and vék)(Og) up to k = 5.

In higher dimensions (and for higher moments of convex hulls of more than d +
1 points), there is no Efron’s formula analog. However, the Canonical section
integral can still be used to deduce various new results. For example, we found

0 97 217372
T)) = _
vi (Th) = 57000 ~ 52026075

~ 0.0031803708487 (13)

and other odd volumetric moments beyond the Blaske problem. Our new method
of Canonical section integral with comprehensive comments on deriving v&k)(Pd)
for various polytopes P, is discussed in Chapter [4]

Note that, apart of some figures cross-referencing, Chapter |5/ on the first-order
metric moments can be read independently from Chapter 4/on the odd volumetric
moments. We decided to put those two chapters in this order mainly because we
think our Canonical section integral approach is more elementary for readers
new to the subject unaware of Efron’s facet and section formulae. However, we
recommend the readers who would wish to read the content in its historical order
to read Chapter [5] prior to Chapter
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Metric moments in radial simplices

Finally, in the last Chapter [6] we study volumetric moments of simplices whose
vertices are drawn from (special) radially symmetric (isotropic) distributions.
Apart from re-derivation of the known Miles’ results [48], we also introduce condi-
tional radial simplices, in which one vertex is pinned. Those volumetric moments
play essential role in random determinants, connecting Chapter [6] with Chapter

2l

Content overview

With all the chapters introduced, we finish the Introduction with a diagram of
dependencies of the content of the chapters and appendices and how do they
relate to each other.

6. Radial
Random Slmphces

/;Ven Mom&
A. Probability of Random

. B. 1 I calcul
distributions and Determmantq OIrlltii;? a(li?iﬁeu .
their stochastic subspaces
decomposition -

3. Even Volumetrlc
Moments
¥ v \

{ 1. Crofton [ 4. Odd Volumetrlc L 5. First-Order }

Reduction Technique Moments Metric Moments

0 0 \ A

\—

E. Codes in D. Selected
Mathematica genealogies
A
F. Auxiliary C. Symmetries and
integrals genealogic decomposition

Figure 1: Logical dependencies among thesis chapters and appendices.

Acknowledgments. I would like to thank Zakhar Kabluchko for a suggestion to use the base-
height splitting method in order to prove Proposition 256} I also wish to thank my supervisor
Jan Rataj for discussions which turned out to be essential to deduce the odd volumetric moments
by using affine Grassmannians with the correct distributions on ~ .
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1. Crofton Reduction Technique

For then P1 and P2 will lie on two distinct sides of the polygon,
and the remark we have just made shows that when on these sides
P1 and P2 are to be treated as having independent uniform distribu-
tions contributing to the shape-density with weights which are readily
calculated.

— David G. Kendall [39]

1.1 Preliminaries

1.1.1 Definitions

Definition 1. A polytope A C R? of dimension dimA = a € {0,1,2,...,d}
and a—volume vol A is defined as a connected and finite union of a-dimensional
simplices (forming a pure simplical complex). We say a polytope is flat if
dim A(A) = dim A, where A(A) stands for the affine hull of A. Note that any
polytope with a = d is flat automatically.

Definition 2. We denote P,(R?) the set of flat polytopes of dimension a in R?
and denote P(R?) = Uy<o<q Pa(R?) the set of all flat polytopes in R%. Finally,
we denote P, (R?) = P(R?) \ Py(R?) (flat polytopes excluding points).

Definition 3. Let A,B € P(R?) and P : R? x R? — R, we denote
Pyp = E[P(X,Y)|X ~ Unif(A),Y ~ Unif(B), independent|. Whenever it is
unambiguous, we write P,, where a = dim A and b = dim B instead of Pyp. If
there is still ambiguity, we can add additional letters after as superscripts to
distinguish between various mean values P,,.

Proposition 4. For any A € P,(R?) with a > 0, there exist convex 0;A €
Po—1(R) (sides of A) such that 0A = U; 0;A with pairwise intersection of 0;A

having (a—1)-volume equal to zero.

Remark 5. The sides of three dimensional polytopes (polyhedra) are called
faces.

Definition 6. Let A € P, (R?). Let fi; be the outer normal unit vector of 9;A in
A(A), then we define a signed distance hc(0;A) from a given point C € A(A)
to 0; A as the dot product vZ-TﬁZ-, where v; = x; —C and x; € 0;A arbitrary. Note
that if A is convex, the signed distance coincides with the support function
h(A — C,1;) defined for any convex domain B as h(B,1;) = supycz b'1;.

Remark 7. The signed distance has another geometric interpretation. Put
C = 0 (the origin) and 7 = 1 + ¢ (with € small). Denote [z 4y = [5/a — Ja/5
by linearity [p = [4+ J5.4)- Hence

volrA = /TA dz = /A dz + /(TA,A) dx = vol A + 6Ei:vol(8iA)h0(aiA) + O(e?),

(1.1)
or in other words, dvolrA/dr|,—; = > ; vol(9;A)ho(0;A) for A arbitrary (pos-
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1.1. Preliminaries

sibly non-convex).

Definition 8. Let A € P, (R?) with a = dim A. Even though A ¢ P(R?) (it
is not flat), we extend the definition of Py, 4 g to Pyap as the weighted mean

Poap =Y wiPyap (1.2)

with weights w; (may be also negative) equal to

vol 0; A

implicitly dependent on a point (called the scaling point) C € A(A).

Remark 9. Note that this definition is not dependent on the number of sides
of A. That is, if we artificially splif one side 9;A into two sides, the weighted
mean stays the same. This feature enables us to extend the definition to any
convex a-bodies (and their unions) as well. Let A\, _; be the uniform surface
measure on such body A. Then for any scaling point C € A(A),

1
avol A Joa

P8AB = Pthc(X)Aa_1<dX), (14)
where hc(x) is the support function of A evaluated in x and centered at y

and
P =E[P(x,Y)|Y ~ Unif(B)] (1.5)

by definition.

Definition 10. We say a function P : (RY)" — R is a homogeneous functional
of order p € R, if there exists P : (R%)"~! — R such that P(xy, Xy, Xs, ..., X,) =
Z5(X2 —X1,X3 —X1,...,%X, —X;) for all x;,...,%x, € R? and p(rug, CoTay,) =
PP(ug,...,u,) for all uy,...,u, € R and all r > 0. We say P is symmetric
if it is invariant with respect to permutations of its arguments. Finally, if P is
a functional of two points, we say it is bivariate. If it depends of more points,
we say it is multivariate.

Remark 11. Note that if P is symmetric, then P4 = P, for any domains A
and B.

Ezample 12. If P = LP, or more precisely P(z,y) = LP(z,y) = ||x — y||?, then P
is symmetric and homogeneous of dim P = p and with P(z) = ||z||?. Whenever
P = L? we will use P4 and Lff]g interchangeably throughout the sections on
mean distances.
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Chapter 1. Crofton Reduction Technique

1.1.2 Bivariate Crofton Reduction Technique

Lemma 13 (Bivariate Crofton Reduction Technique). Let P : R x R — R
be homogeneous of order p and A, B € P(R?). Provided that A(A) N A(B) is
non-empty, then for any C € A(A) N A(B) it holds

pPap = a(Poap — Pap) + b(Paos — Pag). (1.6)

Figure 1.1: Bivariate Crofton Reduction Technique

\ J

Proof. The formula is a special case of the extension of the Crofton theorem by
Ruben and Reed [61], although it is fairly simple to derive directly. Let r = 1+¢
and put C = 0 (the origin) without loss of generality. The key is to express
P, 4,5 in two different ways:

« By definition,

Poap =E[P(X,Y)|X ~ Unif(rA),Y ~ Unif(rB)]
—E[PGX,rY") | X' € A, Y ~ Unif(B)]
— PE[P(X,Y')| X’ ~ Unif(A), Y’ ~ Unif(B)]
=1PPap = Pap + epPag + O(£?).

e On the other hand,

volrAvolrBP, 4 ,g=volrAvolrBE [P(X.,Y) | X~Unif(rA),Y ~Unif (rB)]

—/ / (x,y) dxdy—// (x,y) da:dy—l—/(rAA)/ y) dady

+/ / P(z,y) dedy + / P(z,y) dedy
(rB,B) (rA,A) J(rB,B)

= vol A vol BPAB + EVOIBZVOI @A)ho(&A)PazAB

+ EVOIAZVOl(ajB)ho(ajB)PAajB + O(EQ).
J

Comparing the ¢ terms of both expressions and using Remark [7] we get the
statement of the lemma. If either of dim A or dim B is zero, the lemma holds
too. |

To find the expectation of P, in the first step, we choose A = K and B = K,
where K is a given d-polytope. Since the affine hulls of both A and B fill the whole
space R?, any point in R? can be selected for C. We then employ the reduction
technique to express Pyp in Py g where A’ and B’ have smaller dimensions then
A and B. The pairs of various A’ and B’ we encounter we call configurations.
The process is repeated until the affine hull intersection of A" and B’ is empty.
In that case, we have reached an irreducible configuration.
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1.1.3 Multivariate Crofton Reduction Technique

Let us instead consider multivariate functionals P (dependent on more that only
two points). One example is area, volume or obtusity. CRT naturally generalises.

Definition 14. Let P = P(xy,z9,...,2,) be a  ho-
mogenous function of n  points. We define Py, a,..4, =
E[P(Xy,...,X,) | Xy ~ Unif(4,),...,X, ~ Unif(4,)], where A;,j =1,...,n
are flat domains from which the points X; are selected randomly uniformly
(according to distribution Unif(A4;)).

Lemma 15 (Multivariate Crofton Reduction Technique). Let P : (R)" — R
be homogeneous of order p and Ay, ..., A, € P(RY), a; = dim A;, then for
any C € Mi<i<n A(A;i) (scaling point) it holds

PPa, Ay a, = a1(Pya, Ay.a, — Pa,.a,) + as(Paoa,. a, — Pa,..a,)

1.7
+ o+ an(PAlAgA..aAn - PA1...An)' ( )

Remark 16. Symmetry of P in points Xy, ..., X, is not required for CRT to
hold. However, we often assume so. As a result, Py,
with respect to permutations of Ay,..., A,.

4, will be invariant

.....

1.1.4 Functional Crofton Reduction Technique

The most general version of Crofton Reduction Technique is availible for functions
of homogeneous functionals.

Definition 17. Let P be a multivariate functional of points X;,i = 1,...,n
selected uniformly from domains A;. Then for any function ¢ : R — R, we

define
Vayasa, = EQ(P)] =E[(P(Xy,...,X,)) [ Xi ~ Unif(4;)]. (1.8)

If ¢ is moreover differentiable, we denote

Uhya.a, = E[PY(P)] = E[PY(P(Xy, ..., X)) | Xi ~ Unif (A7) (1.9)

Lemma 18 (Functional Crofton Reduction Technique). Let P : (R%)" — R
be homogeneous of order p and Ay, ..., A, € P(RY), a; = dim A; and there
exists C € Mi<i<n A(A;). Then for any differentiable function ¢ : R — R, we
have

PVA, 4,4, = 01(Vo4; Agehn — YAy An) T 02(Va,045.. 4, — VA A,)

1.10
SF oo gp a'n(,[?ZJAIAQ---aAn - dJAl---An)' ( )

Proof. We show how we can derive the the lemma for analytic functions. Let
Q = P* then Q is homogeneous of order kp, so Equation (1.7)) turns into

77777 94, )- (1.11)
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Chapter 1. Crofton Reduction Technique

Note that the left hand side may be written as E [pPg—g | X; € Unif(Ai)}. Any

analytic function of P can be written in the form ¢ (P) = 332, oy P* for some
constants ay. Multiplying Equation (1.11)) by «j and summing up over all k
and by linearity, we get Equation , which finishes the proof. The lemma
however extends beyond analytic functions. See Ruben and Reed [61] for more
general treatment. |

1.1.5 CRT for distributions, Dirac kernel method

A direct consequence of the functional Crofton Reduction Technique is the ability
of relating distributions between each other via simple differential equations. We
have the following result:

Definition 19. Let P be a multivariate functional of points X;,7 = 1,...,n
selected uniformly from domains A;. Viewed as a random variable, we write
for the Cumulative Density Function (CDF) of P,

Faay..a, N)=P[P < N=P[P(Xy,...,X,) < \|X; ~ Unif(A;)] (1.12)

and for its Probability Density Function (PDF), fa,4,..4,(A) = SFa, 4,4, (A).

In what follows, we assume that the PDF always almost surely exists and it is
(piecewise) continuous.

Lemma 20 (Distributional Crofton Reduction Technique). Let P : (R%)" —
R be homogeneous of order p and Ay, ..., A, € P(RY), a; = dim A; and there
exist C € Ni<i<n A(A;). Then we have for the CDF of the random variable
P,

—PAF) aya,(N) = a1(Foa, a5..4,(A) = Fa,..a,(N))
+ az(Fa,045..4,(A) = Fay.a,(A) +--- (1.13)

n

) —
+ @y (Fa,45..04,(A) — Fa,..a,(N),

or equivalently, by differentiation, we get for its PDF,

—p (M54, (V) = a1(foa, A2, (N) — far..a,(N))
+ az(fa,04,..4,(A) = fa,.a,(A) + -+ (1.14)
+ an(fa,40..04,(A) = fa,..4,(N)).

. J

.....

.....

(1.15)

77777777777777

which gives the left-hand side of Equation (1.13)) (the coefficient of ). The right
side is obtained by expanding P [P(rXy,...,rX,) < A] in € as a sum over 04;

boundaries, which is an argument equivalent to the one shown in the proof of
Lemma [13] [ |
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Alternatively (and perhaps less rigorously), Lemma [20]is a direct consequence of
the Functional Crofton Reduction Technique. We just select ¢(P) = 1p<y, then

E[p(P)] =E[lpa] =P[P <A = F(A). (1.16)

The right hand side of Equation (1.13]) is obvious since we now have 94, 4, =
Fa, .. a,(A\). To show the left hand side, we have, formally

U*(P) = PY/(P) = —P8(P — \) = —A8(P — \), (1.17)

where 0 is the Dirac delta function. Note that, formally, the probability density
function (PDF) f(A) of random variable P can be written as

fA) =E[6(P —\)] (1.18)

from which E [¢*(P)] = =Af(A), 850 ¥4, 4,4, = —Afa145..4,(A).

1.1.6 CRT for joint densities of more functionals

Definition 21. Let P = P(X,,...,X,) and P’ = P'(Xy,...,X,) be multi-
variate functionals of points X;,7 = 1,...,n selected uniformly from domains
A;. Viewed as random variables, we write fa, a,. 4, (A, A’) for their Joint Prob-
ability Density Function (JPDF). That is, for any measurable M C R? we

have
P[(P,P) € M] = /M FO0LN)AAAN. (1.19)

Similarly, for their Joint Cumulative Density Function (JCDF),

FAlAg...An()\,)\/):P[P S )\, P/ S )\/ ‘ XZ ~ Unlf(Al)] . (120)

----------

Similarly as in the case of the ordinary one-variable Distributional Crofton Re-
duction Technique, we can relate the joint CDF with the CDFs containing the
boundaries. We state the following lemma (without proof)
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Chapter 1. Crofton Reduction Technique

\

Lemma 22 (Joint Distributional Crofton Reduction Technique). Let P, P’ :
(RH)™ — R be homogeneous functionals of order p and p', respectively, and
Ay, ..., A, € PRY), a; = dim A; and there exists C € Ny<icp A(4;). Then
we have for the JCDF of the random variables P, P’,

Faing.a,(A\ N s Favas.a, (AN
\ a)\( ) A a)\/( )
= a1(Foa, Ay a, (M X) = Faya, (N X)) (1.21)
+ a2(Fa,045.. 4, A X)) — Faya, (M X)) + -
+ an(Fay 4. 04, (A X)) — Fay 4, (A, X)),

or equivalently, by differentiation, we get for its JPDF,

ONfay 450, N)) 0N faya,..4, (N X))

) b N
= a1(foa, Az, (N A) = fa,.a, (A X)) (1.22)
+ ao(fa,0a5.. 40 (AN A) = fa, 4, (M X)) + -+
+ an(fas 4004, (N X)) = far.a, (A X)).
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1.2 Overview of functionals

What follows is an overview of the functionals treated in this thesis. Detailed
derivations are found in subsequent sections dedicated to each functional. We
also discuss which results were known and which are novel.

1.2.1 Distance

Denoted as L = L(X,Y) = ||X = Y]], the distance between two random points
X,Y ~ Unif(K,), where K; C R?, is among the most natural bivariate homo-
geneous symmetric functionals we might think of. Note that the order of L is
exactly one. In order to get higher order functionals, we may put P = LP, which
has order p. In the following sections, we often just assume, if not stated differ-
ently, that P = LP. The expected value of P is then the p-th moment of random
distance of two points X, Y. In our notation, we write for the moments

LY =LY =E[LX, Y| X, Y ~ Unif(Ky)]. (1.23)

Those moments are related with the metric moments defined in the Introduction
via the following normalisation

1y

(») _

(1.24)

Two dimensions

The functional of distance in two dimensions is fairly understood and has been
extensively studied (see Bésel |4] and references therein). Recently, Uve Basel
[4] expressed ng) in P, being a regular polygon in R? (that is, d = 2). We will
discuss how we can re-derive those results using Crofton Reduction Technique
(CRT). First-order metric moments of distance in selected K5 are shown in Table

L1 below.

4 )
T
B, disk 0.510826 I
Cy | square | 0.521405 2 1 v2 4 Largsinh(1)
i e%?ii;izzal 0.554364 R
Table 1.1: Mean distance in various 2-bodies with unit area
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Chapter 1. Crofton Reduction Technique

Three dimensions

Let K3 be a polyhedron. Even-power moments Lé%) are trivial to compute. When
p is odd, the value L;(f;,) has been known in the exact form only for K3 being a ball
(trivial) or (for p = 1) a unit cube [60], known as the so called Robbins constant

4 17vV2 23 7 1 4
E[[]= — 4 ¥ _2Vo T 2 thy/2 + = thv/3 ~ 0.66170718.
=105t 705 ~ 35 15 T 5e V2+ 5 A1eC0 V3 o)

Recently, Bonnet, Gusakova, Théle and Zaporozhets [12] found a sharp optimal
bound on the normalised mean distance I's3 = L33/V1(K3) in convex and compact
K3, where V1(K3) = 2 Jo || projs Ks|| dit is the first intrinsic volume of Kj3. A
special case of their result in three dimensions gives % <I'sz3 < %

As stated in [12], although the first intrinsic volume is easy to express in any
polyhedron, number of examples for which an exact formula for L33 is available is
rather limited. We will show that this might not be the case and indeed one can
find L33 (and all natural moments L%)) in an exact form easily for any K3 being
a polyhedron. The main result of our own investigation is thus the following
theorem:

r

Theorem 23. For any given polyhedron, the mean distance between two of its
inner points selected at random can always be expressed in terms of elementary
functions of the location of its vertices and sides. The same holds for all other
natural moments.

.

Remark 24. By elementary functions, we mean a closed field of functions
containing radicals, exponential, trigonometric, and hyperbolic functions and
their inverses.

The theorem is solely based on the Crofton Reduction Technique, see [25] 61|,
which under certain conditions enables us to express L;g%) as some linear combina-
tion of L(j’j)g =E[L?|X € A, Y € B] over domains A and B with smaller dimen-
sion than that of K3. The theorem then follows from the observation that we are
able to decompose all the corresponding terms into computable double integrals,
as we will see in Section[1.4.2] In fact, very recently, using different methods, Ci-
ccariello [21] showed that the so-called chord-length distribution, which is related
to the distribution of L, can also be expressed in terms of elementary functions

in any polyhedron Kj.

Exact mean distances in regular polyhedra

The table below summarises all new results of exact mean distance in various
polyhedra. For completeness, the previously known cases of a ball and a cube have
been added as well. Each solid K3 has vol K3 = 1. This normalisation ensures
the right column displays exactly the first distance metric moment vgl)(Kg) =

Lss//volz K3. As usual, ¢ = (1 ++/5)/2 is the Golden ratio.
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1.2. Owverview of functionals

e N\
Ky | o) (Ks)
ball 18 3/6
0.63807479 35 \/;

1593 (191 280 _ wm fp- o (1722646269V5)r
2\/5 5\525 ' 5255 525 N 157500

icosahedron (2186+1413V/5) arccot ¢ " (82—75+/5) arccot (2 ) n 4(2139+881V/5 ) argosch ¢

0.64131249 15750 5250 7875
(15969+7151V/5) argeoth ¢ | (4449-1685v/5)In3  (75783+37789/5) In5
+ 12600 42000 - 252000

1 1516 2\/% . 124\/% T2 1243 4342 493r
35 175v/5 ' 23625

3 304145 1575 45 175 1575
+ 67 (3977244\/5) arccot 2 4 (24023+11788\/5) (arccos %farccos %)
945/5 18900 94500
(461—}—212\/5) (arccos %—l—arccos %) (1031—}-521\/5) argcosh 1—33
dodecahedron | 1000 - 75600 .
0.64252068 (367+16?1\6/850)0argcosh 9 4 (221974—8149\/5) (aSZgOC(;);h 11 —argeosh 7 )
n (15763+7063+/5) (argeosh £ —argcosh 3) n (288889+129739v/5) In 3
21000 378000
2(423+187V/5) (argeosh 4—argcosh 2)  (109—-3143v/5) In5
875 151200

octahedron 3/3 ( 4 | 13V/2 4x | 109In3 | 16arccot v/2 | 158argcoth /2 \/§
4 \ 105 + + +

0.65853073 105 45 ° 630v2 315 315
cube, [60] LAY e A
0.66170718 155 T Hos — 55 — 7% +  argeoth v2 + 2 argeoth v/3
tetrahedron 5 /3 3 A H31ns
0.72946242 V3 <7 — 35 T g5 arctan V2 + glm)

Table 1.2: Mean distance in various solids of unit volume, ¢ = (14 /5)/2 is the
Golden ratio.
G J

Normalised mean distance

We could select normalisation in which Vj(K3) = 1 rather than vol K3 = 1. In
order to express the normalised mean distance I'33, we just rescale our values in
Table by v/vol K3/Vi(K3). Both vol K3 and V;(K33) can be expressed easily.
The following Table shows the volume of the regular polyhedra with edge
length equal to I. To express V;(K3), we use the formula Vi (K3) = 5= 3 li(m—4;),
where the sum is carried over all edges E; of K3 having length [; and dihedral angle
;. The following table shows the value of V;(K3) for the five regular polyhedra
(Platonic solids) with common edge length I; = [ for all 1.

When Kj is a ball, v/vol K3/Vi(K3) = %\3/% trivially. Finally, performing the
scaling, in Table [1.5| we show numerical values of I's3 for the same solids K3 as in
Table . The lower and the upper bound of I's3 for K3 convex compact (based
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Chapter 1. Crofton Reduction Technique

K; ‘ tetrahedron cube octahedron dodecahedron icosahedron
vol Ky V2 X V2 15+7v5  5(3+V5)
3 12 3 4 12

Table 1.3: First intrinsic volume of Platonic solids with unit edge length

K3 ‘ tetrahedron  cube octahedron dodecahedron icosahedron
Vi(K3) | 3arccos (— %) 5 6 arccos 3 15 arctan 2 15 arcsin 2
[ s s s s

Table 1.4: First intrinsic volume of Platonic solids with unit edge length

on [12]) are set to 5/28 and 1/3, respectively.

K3 ‘lower bound tetrahedron  octahedron cube

Fgg‘ 0.17857143 0.19601928  0.21800285  0.22056906

K3 ‘ icosahedron dodecahedron ball upper bound

Fgg‘ 0.23872552 0.23963024  0.25714286  0.33333333

Table 1.5: Normalised mean distance in Platonic solids with unit first intrinsic volume

1.2.2 Triangle area
Let X,Y,Z ~ Unif(K,), K; C RY. We denote S = S(X,Y,Z) as the area of a

triangle whose vertices are points X,Y,Z. The area functional S is trivariate,
symmetric and homogeneous of order two. For its moments, we write

St =E[S(X, Y. 2)" | X, Y, Z ~ Unif(K)] (1.26)

The question of obtaining Sy4q makes sense only when d > 2. Further more, we
can normalise it such that the solid from which the points are picked is of unit
d-volume. As a result, we get the metric moment of area

SEh

(p) K =
vz (Ka) (voly Kg)2/d-

(1.27)

First-order metric moments of area for selected Ky are shown in Table [I.6] below.
Apart from the d-ball (Miles [48]), vél)(Kd) is not known for any K, with d > 3.

1.2.3 Obtusity indicator

We can use CRT to deduce the probability n(K,) that a random triangle whose
vertices X, Y, Z are independently selected from Unif(K,), K4 C R? is obtuse.
In order to do that, the only thing we need is to consider a trivariate functional
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4 N
o [t o
B, disk 0.0739 427‘22
Bs ball 0.1413 1%4 g 97“
T, | triangle 0.0833 %
Table 1.6: Mean triangle area in various bodies with unit d-volume

n =n(X,Y,Z) being equal to one when the random triangle is obtuse and zero
otherwise. We shall call this functional the obtusity indicator. It is symmetric,
trivarite and homogeneous of order zero. In our convention,

n(Kd) = NKqK4Kq = Tlddd = E [n(Xa Y, Z) ‘ X, Y, Z~ Unif(Kd)] . (1'28)

Note that a triangle is obtuse when exactly one internal angle is obtuse. Hence,
we can decompose the obtusity indicator almost surely as follows

where we denoted 1n*(X,Y,Z) as the obtusity indicator that are equal to one
when the obtuse angle is located at the first vertex X. Furthermore, we can write
out this indicator in terms of a dot product as

77*<X7 Y, Z) = Il(Y—X)T(Z—X)<o (1-30)

since (Y —X)"(Z—X) = ||Y — X||||Z — X]| cos a, where « is the angle at vertex
X of the triangle XYZ. Therefore,

N(X,Y,Z) = Liy_x)Tz-x)<0 + Lz—v)"(x-v)<0 + Lx—z)T(v-z)<0- (1.31)

Taking expectation and by symmetry, we get for the obtusity probability
n(Ka) =3P[(Y = X)(Z-X) <0|X,Y,Z ~ Unif(K,)|. (1.32)
In a given configuration X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C), we write
napc = EM(X,Y,Z) | X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C)]. (1.33)
Additionally, we indicate by * the position of the obtuse vertex, so

nase = E [ (X,Y,Z) | X ~ Unif(A),Y ~ Unif(B), Z ~ Unif(C)]

. . . (1.34)
=P[(Y-X)"(Z-X) < 0| X ~ Unif(4), Y ~ Unif(B), Z ~ Unif(C)|,
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Chapter 1. Crofton Reduction Technique

similarly for nap-c and napc+. Hence, we may write the expected value of the
obtusity indicator in any configuration as

NABc = NA*Bc + Nap+c + NaBc+- (1.35)

Random triangle obtusity probability n44q = n(Ky) in selected K;'s is shown in
Table [L.7 below. In there, G is the Catalan’s constant

00 —1)
G= Z <7)2 ~ 0.9159655941772190150546035149323841 . .. (1.36)
= (2n+1)
e A
numerical
Kd value n(Kd)
By disk, [77] 0.7197 -5
By ball, [34, |17] 0.5286 i
Cy square, [42] 0.7252 L+
Ty | equilateral triangle 0.7482 Ly o 5 1n ?
323338 _ 13G | 4850r _ _73r
Cs cube 0.5427 3858? ;j In2 62210111(1f3%\)/§
~15 T 228 224
Table 1.7: Probability that a random triangle in K is obtuse

In two dimensions, there are several known results. Obtusity probability was first
solved in a disk by Woolhouse [77] as a corollary to the Silvester problem. Later,
Langford [42] found n(K3) for Ks being a general rectangle. Our table only shows
the exact result for the special case Ky = (5. Without stating a complete proof,
we believe it is easy to generalise Langford’s result to any convex polygon. This
is demonstrated in Section on n(Ty), where Ty is an equilateral triangle.

In higher dimensions, apart from the d-ball (Hall [34] and Buchta and Miiller
[17]), n(K4) was not known for any K, with d > 3. In Section we newly
found the obtusity probability in the unit cube Cj (also included in Table .

1.2.4 Perimeter and related functionals of a triangle

Let us (independently) select vertices X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C)
of a triangle XYZ from regions A, B,C' with dimensions a,b,c as usual. We
denote L = |XY|, L' = |XZ| and L” = |YZ] its (random) side-lengths and
O = [£XZY|, © = |£XYZ| and ©" = |LYXZ]| the corresponding (random)
sizes of its internal angles. Then, we denote its perimeter as

I =T1(X,Y,Z) = |XY|+ |XZ| + [YZ| = L+ L' + L". (1.37)
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1.2. Owverview of functionals

The perimeter is a trivariate symmetric homogeneous functional of order one.
Correspondingly, using our notation, we write for its moments

Mo = E[I(X, Y, Z)F | X ~ Unif(A), Y ~ Unif(B), Z ~ Unif(C)| ~ (1.38)
The question to determine the second perimeter moment H§22)2 in the unit disk was
first proposed by Finch [28] who obtained its numerical estimate. Although the
problem of finding exact perimeter moments may seem natural and elementary,
there were essentially no results known (even in the case of the disk). However, by
CRT, we are able to obtain its exact value and also the higher moments (Equation
(1.420))). The exact values of perimeter moments we found in the unit disk are

shown in Table below. In there, ¢(3) = 3°°,1/n3 is the Apéry’s constant .
See Section [L.6.3] for detailed calculation.

p )
numerical (k)
B value Haz
B 64 _ 64In2
k=—-11| 0416744 T
- 128
k=1 2.7162 157
B 3383 | 35((3)
k=2 8.0271 3+ 72 T Tonz
B 93584 | 10241n2
k=3 25.2395 1225m T~ 245
B 49 | 1029¢(3) | 9745549
k=4 83.2737 2 T 322 T 180002
B 62912704 | 327681n2
k‘ = 5 285644 727657 + 6937
Table 1.8: Random triangle perimeter moments H(QI;)Q in the unit disk B9

First moment

By symmetry, we immediately know that
E[M]=E[L+ L + L"] =3E[L] (1.39)

in any Ky. Therefore, the first perimeter moment is trivially deduced from the
first moment of distance.

Second moment
The second perimeter moment turns out to be non-trivial. Taking expectation of
= (L+L+L"?=L*+L"+L"*+2LL +2LL" +2L'L", (1.40)

we get, by symmetry
E[[1°] = 3E [L?] + 6E [LL']. (1.41)
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The functional LL" = |XY||XZ]| is not symmetric with respect to every permu-
tation of points X,Y,Z. However, we may define another functional, namely the
symmetric polynomial

T=T(X,Y,Z)=LL + LL' +L'L" (1.42)

such that E [T] = 3E[LL']. The functional T is symmetric and homogeneous of
order two.

Third moment

Let us consider the following symmetric and homogeneous polynomials of order
three

J=LL'+LL*+ L+ LU+ L?L"+ 'L,  K=LLL'. (1.43)
By symmetry, we have E[J] = 6E [LL"?]. Using those polynomials, we can write
for the third power of perimeter,
IP=(L+L+L"=L"+1"+L"+3J] +6K, (1.44)
from which, taking the expectation,
E 1] = 3E[L*] + 3E [J] + 6E [K] = 3E [L*] + 18E [L*L'] + 6E [LL'L"]. (1.45)
Both E[J] and E [K] are non-trivial to obtain.

Fourth moment

Let us consider the following symmetric and homogeneous polynomials of order
four

U= LSL/+ LL/S +L3L”—|— LL”3 +L/3L”—|—L/L”3
V =LL'L"+LL*L" + LL'L"™ (1.46)
W = LQL/2 + L2L//2 + L/QL//Q
By symmetry, we have E[U] = 6E[L3L'], E[V] = 3E[L?*L'L"] and E[W] =
3E [L?L"]. The fourth power of perimeter is then
M* = L* 4 L* 4+ L™ + 4U + 12V + 6. (1.47)
Thus, the fourth moment of perimeter is then expressible as
E [[I*] = 3E [L*] + 4E [U] 4 12E [V] 4 6E [W]
=3E[LY] + 24E[L’L'] + 36E [L*L'L"] + 18E [L*L"].
Although E [U] and E [V] are non-trivial to obtain, interestingly, the first moment
of W is trivial and it can be actually obtained from the fourth moment of distance

and the second moment of area. Let R = I1/2. By Heron’s formula, we have for
the area S of the random triangle X, Y, Z with side-lengths L, L', L”,

(1.48)

S=/R(R—L)(R—L)(R—L"). (1.49)
Squaring this identity and by rearranging, we get
2W =165 + L* + L'* + L (1.50)

so, taking expectation, we get

EW]=8E[S*|+2E[LY] or E[L’L?]=2E[S*]+iE[LY]. (1.51)
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1.3. Bivariate functionals in two dimensions

1.3 Bivariate functionals in two dimensions

1.3.1 Equilateral triangle

Let us have a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked from and equilateral triangle. We put P = L?
(assumed implicitly throughout this section). For our triangle, we can take

Ty = conv(ey, ey, e3) C R? (1.52)

with area vol, 7y = 1/3/2 and side-length | = /2. Additional, for a given
t = 1,2,3, we denote E; as an edge of T opposite to vertex e;. For the def-

inition of various mean values P, = Efl?, see Figure . We also included the
position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral

corresponding to a given reduction equation in the system of reduction equations.

Figure 1.2: All different ng) configurations in an equilateral triangle

Reduction system

The full system obtained by CRT is

I: pPoy =2:2(Py — Pyo)
IT: pPy =2(P1y — Pa) + 1(Py — Pn),
I : pPyy = 2(Pio — Pao)
IV : pPyy = 2(Pyo — Pry).

By the use of symmetry, the terms can be given as follows: P, = Prsry, Py =
Prsg,, Poo = Prye;, P11 = Pejeys Pio = Prye, - Our linear system is solved by

24Py,
44 p)(3+p)(2+p)

Py = ( (1.53)

The remaining configuration (10) is irreducible (no scaling point available).
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Pio

In configuration (10), one point is drawn uniformly from an edge of T3 while the
other is fixed at one of the opposite vertices. We can parametrise the points as

X2817Y:eg+t(eg—eg), t € (0,1), (154)

from which L = || X — Y| = v/2 — 2t + 2¢t? and thus for P = LP,
1
L® —E[|X - Y|J"] = / (2 — 2t + 22/ dt. (1.55)
0

This integral is straightforward. For example, when p = 1, we get

4+3In3

Lin =
10 4\/§

(1.56)

P22

Substituting Py into Equation (1.53|) with P = L?, we get for general p > —2
(not necessarily an integer),

w245 (2 =2t +23)P/2 dt
L22 =
(4+p)3+p)(2+p)

(1.57)

Normalising the result, we get in an equilateral triangle with unit area,

1( 4 21\ P/?
U1 ( 2) - ®\p/2 ( ’ )
(voly T3)P (4+p)B+p)(2+0p)
For example, plugging p = 1, we obtain for the mean distance between two
random points in the unit equilateral triangle,
(1) /i 4+3In3
v (Ty) = ———— ~ 0.554364. 1.59
1 ( 2) 10\4/3 ( )
Note that, in the equilateral triangle with unit side-length, we have
Loo|,_ 44 3In3
2liyy _ 443003 (1.60)

Loyl =
22|l71 \/§ 20

Distance density

The density fa(\) of the random distance L between two interior points in 75 can
be recovered from moments using inverse Mellin transform (see appendix [A.5]).
It is convenient to first rescale our triangle so its side-length is one (and hence

A € (0,1)). Rescaled Equation ((1.57) yields

LEY 24 fi (1 —t+ )% dt

M| fa] = \/ﬁp—l @A+ pBEp2+p)

(1.61)
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Taking the inverse Mellin transform, we get, formally,

f22(A) = 2411@%[/01 S(A—V1—t+1¢2)dt (1.62)

From Table (see Appendix [A)),

Ma — N\)?
1_11_21_3(5(>\ - Oé) = ( 20/ ) I].)\<a, (163)
via which we can deduce
(VI—t+8-))?
fa2(N) = 12)\/ —i+0) Ly ey At (1.64)

Note that since t € (0, 1), we have v/1 —t + 2 € (v/3/2,1) and thus we can write
Levicge=1-1simge=1- 1/\2\/1—t+t21>\2§- Hence,

(V1—t+1t2
fa (X _12)‘/ (1 t++t2) o dt
1.65
(VI—t+12=)\) (1.65)
— 12\ / Levire At 1, s
0 (1 —t -+ t2>2 A2 2
To calculate the integrals, we substitute ¢t = = + f 3 tan 0, by symmetry,
arccos \/§
fas(A) = 16)\\/_/ —2et)ar 1003 | [T (1-2) dt] N
(1.66)
and hence, immediately, we finally get for the density on A € (0,1),
F2(N) =8\ [ 2 (1+37) -4 (1-3)]
(1.67)

+8\/3 [3\/4;‘2 -1-2 (1+ 2;)\2) arccos \Q/ﬂ 1. .

1.3.2 Square

Let us have a bivariate symmetric homogeneous functional P of order p depen-
dent on two random points picked from K being a square. That is, K = Cy
with vertices V1[0, 0], V2[1,0], V3[1,1], V4[0,1] and edges connecting them FEj,,
Ess, Esq, Ey (Ej; = V;V;). Note that the edge length is ¢ = 1 and the area
vol K = 1 so the mean of P is already normalised. We t P = LP. For the

definition of various mean values P, = Lab , see Figure (1.3l We also included
the position of the scaling point C in cases reduction is possible. The arrows
indicate which configurations reduce to which. Each arrow is labeled by a roman
numeral corresponding to a given reduction equation in the system of reduction
equations.
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| 11
/ / LG

T 0
I £ v f ‘
2 ' 2 _>
Z/ L(p) C\ L(p) 1 L(p)
22 l( — \ 11v 10
llr

Figure 1.3: All different L((fl;) configurations encountered for K being a square

Reduction system

The full system obtained by CRT is

I: pPyy =2-2(Py — Py)
IT: pPyy = 2(Piy — Por) + 1(Pag — Par),
IIT: pPyy = 2(Pio — Px)
IV : pPii, = 2(Po — Pi1v)

with
Py = %Pllv + %Pllr'
By the use of symmetry, the terms can be given as follows: Py = Pgg, Py =

Prp,, Py = Pxv,, Pi1iv = Pgyp,y, Piir = Peypys Pio = Pyg,. Our linear
system is solved by

16 P n 4P,
4+p)B+p2+p) (“A+p)B+p)

Py = (1.68)

The remaining configurations (10) and (117) are irreducible (no scaling point
available).

PlO

In configuration (10), one point is drawn uniformly from an edge of Cy while the
other is fixed at one of the opposite vertices. We can parametrise the points as

X=[0,1-1t],Y=1[1,1], te(0,1) (1.69)
and thus for P = LP,
) 1
L =E[IX =Y = [ (@+epe (1.70)
For example, when p = 1, we get
Ly = % + 5 argsinh(1). (1.71)
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1.3. Bivariate functionals in two dimensions

Pllr

In configuration (117), one point is drawn uniformly from an edge of Cy while
the other is drawn from the opposite edge (Those edges are denoted as A and B
in Figure[1.3). We can parametrise the points as

X =[0,z],Y =[1,y], z € (0,1),y €(0,1) (1.72)
and thus for P = LP, using this parametrization,
L® —E[IX - Y|"] = / / (1+ (z — y)?)?/? dady. (1.73)

Via the change of variables u = x — y, v = y and integrating out v,we get

L 2/ (1= w)(1 +u?)2du = 2L 282 2 (1.74)
= —u u u= - :
For example, when p = 1, we get
2 2
Ly, = 3 \é_ + argsinh(1). (1.75)

P22

Substituting Py and Py, into Equation (1.68)) with P = LP, we get for general
p > —2 (not necessarily an integer),

. 8(1 — 22+1) 8 JL(1 + 2)p2dt
e Tl E R T

Plugging p = 1, we obtain for the mean distance between two random points in
the unit square,

2 2 1
v(Cy) = Ly = =+ \1/5_ + 5 argsinh(1) ~ 0.5214054331647207.  (1.77)

Distance density

The density foo(A) of the random distance L between two interior points in Cy can
be recovered from moments using inverse Mellin transform (see appendix |A.5)).

By Equation (|1.76]), we have

L - 8(1 —2%) 811+ )= dt
- B4+pR+p)(l+p) 2+p)(1+p)

M| fa] = (1.78)

Taking the inverse Mellin transform, we get, formally,
1
faa(N) = 8T 6(A — 1) — 25(\ — \/g)] + 87,7, [/ (A= V1+¢2)dt| (1.79)
0
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Chapter 1. Crofton Reduction Technique

From Table (see Appendix |A),

Ma — )2

11125()\ — Oé) = )\Q_S(a - )\)]]-/\<om IlIQI35()\ - O./) = 204

:H-)\<O¢7 (180)

via which we can deduce

V1I4+t2 =\
Far(N) = AA(1 = A)’Thoy — 2A(V2 — V)2 +8)\/ e beviradt (181

Hence, fy3()) is nonzero only when A € (0,1/2). Note that since ¢ € (0, 1), we can

write for A € (0, \/5) that ]l)\<m =1- HAZ\/W =1- ]1/\2\/@1/\21. Slmllarly,
we write 1y.; =1 — 1,>; and thus

faz(A) = A1 = A)2 = 2)\(vV2 — \)? +8A/ VIHE =X

(L4822 (1.82)
[u (1— A2+ 8\ / \/Ti : /j ILAZ\/thdt] Tys1.
To calculate the integrals, we substitute ¢t = tan @,
Fan(A) = 4A(1 = A)? — 2A(vV2 — A)? + 8X /ﬂ/4(1 ~ Acos6)dd
° (1.83)

arccos(1/\)
- [4A(1 A2 8/\/ (1— Acos@)d@] Tyor
0

and hence, immediately, we finally get for the density on A € (0,v/2),

{ fao(A) =2 A—2(4—X)A%—4) [( 1)2—2v/A2—1+2arccos (%)} Iy>1. (1.84) }

1.3.3 Disk

Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit disk By = {x € R? | ||x|| <
1} with area voly, By = 7. Additionally, we require P to be rotationally symmetric
with respect to the origin. That is, for any x,y € By and any orthogonal matrix
R we have P(Rx,Ry) = P(x,y). This assumption is satisfied by the choice
P = [P (which is implicitly assumed in this section). Table below shows

various explicit LY distance moments for selected p’s (from Equation ((1.93)).

4 N\

—1 0 1 2 3 4 5 6 7 8 9 10
TER U SO 5 R 5 I S R L R R Y

22057 2 311857 5 990997

16 1 128 1 2048

16384 7 524288 42 4194304 29
3 457 525

5
3

(p)

Table 1.9: Mean distance moments Ly, between two random points in Bo
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1.3. Bivariate functionals in two dimensions

Reduction system

According to our convention, we write
P, =E[P(X,Y) | X ~ Unif(A),Y ~ Unif(B)], (1.85)

where a = dim A, b = dim B and the concrete selection of A, B is deduced from
the reduction diagram in Figure below. In this diagram, we also included the
position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral
corresponding to a given reduction equation in the system of reduction equations.

I 2 II Z II1 !
) f .......... > / ) /
Pao - Pa1 e P2 v Pio

Figure 1.4: All different P, sub-configurations in Bo

Reduction system
The full system obtained by CRT is
IZpPQQ :2'2(P21—P22)
11 : P21 = Pgo.
III : ppgg = 2(P10 — P20)7

where the equation II follows from the rotational symmetry of P. The solution
of our system is

8P

CETSCEE) (1.86)

22 =

PlO

In configuration (10), one point X is drawn uniformly from the boundary 0B
while the other Y is fixed at the boundary. Keep in mind that Pj, is defined via
generalization of Remark [9] as a mean weighted by the support function

1

Po=—-——
10 2 V012 :[BQ

/6 POy hy (oM () (1.87)

where the support function hy(x) of By evaluated in x and centered at y € 0B,
(arbitrary fixed point) is given explicitly [69, p. 58] as

hy(x) = 3llx — ylI*. (1.88)
Parametrising the integral using polar coordinates with their center located at y,

X = [2sin pcos ¢, 2sin® o + 1],y = [0, —1], p e [0,m). (1.89)
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Chapter 1. Crofton Reduction Technique

We have dx = 2(cos(2¢), sin(2¢))dy and hence, for the uniform measure on 0Bs,
A1 (dx) = ||dx|| = 2de. (1.90)

Next, note that ||x — y|| = 2sin¢ and thus hy(x) = 2sin® ¢. Furthermore, since
P = LP we get
P(x,y) =[x —y[" = (2sinp)". (1.91)

Overall, putting everything together and by using symmetry in ¢, we get
() Loz o,
L =EIX - Y7 =~ [ @2sing)* dp. (1.92)
7 Jo

P22

Substituting P into Equation (1.86) with P = LP, we get for general p > —2
(not necessarily an integer),

8 s/ (2sin ) dp _ (4+p)(1+p)! _ 2%TT(2f2)?
(4 +p)(2 +p) I'(5+3)2  w(2+p)(4+p)(2+p)!

LE) = (1.93)

Plugging p = 1, the mean distance between two random points in the unit disk
in various configurations is shown in Table [I.10]

L22 L21 LQO LlO

128 32 32 16
451 97 97 3

Table 1.10: Mean distance in By in various configurations

Note that Loy can be normalised to the first metric moment as

Loy 128
= ﬁ = 15 ~ 0.510826. (1.94)

o) (B,)

Distance density

The density faa(A) of the random distance L between two interior points in By can
be recovered from moments using inverse Mellin transform (see appendix |A.5|).

By Equation (1.93]), we have
Ji(2sin )7 dyp

_ 8
M(fo) = LG = 1.95
Taking the inverse Mellin transform, we get, formally,
s TR |
foo(N) = = T4 73 / (2sin ) 0(A — 2sinp) dp|. (1.96)
T 0
From Table (see Appendix [A)),
A
I1236(>\ — Ol) = T./l(CYQ — )\2>]]-/\<on (197)
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1.3. Bivariate functionals in two dimensions

via which we can deduce

4 (/2 A2

This integral is trivial, we obtain that A € (0,2) and we have there
faa(N) = <arccos (%) —2/1- /\42) . (1.99)

1.3.4 General regular polygons

Let K be a regular n-sided polygon (n > 3) with vertices V; = [cos =% 2m sin M],

wheretr =0,1,2,...,n—1, so the polygon is circumscribed by a circle w1th radius
one. For edges, we write E = V;V,11 with convention V,, = Vj. Note that for
the area, we have vol K' = § sin 2—” and for edge length | = vol E; = 2sin . Let
P = L? then P is symmetrlc and homogenous of order p. In order to express P,
we again use the Crofton Reduction technique. First, we select C = [0, 0] as our
first scaling point. That way, pPas = 4(Pa; — Py2), where Py is a configuration
with A = K and B is an (arbitrary) edge of K, we thus choose B = E;. Our
next scaling pOiIlt is C = ‘/0 = [1, 0], we have pPgl = 2<P11 - P21> + (PQ() - PH).
So far,

4(2P11 + Pa)

P = B 1)

(1.100)

where P20 = PKVO and

9 a2 miN | (mw(+1)
P = - sec ( > Z sin <n> sin ( . Pr.g,. (1.101)

The last relation follows from Crofton Reduction Technique and Definition [§ with
hc(0;K) = 2sin ™ sin ”(” ) where ;K = E; with outer normal orientation. To
reduce Py, we Choose C VO and get pPyy = 2(Pyg — Py), where (the weights
are the same)

2 7\ 2 ) m(i+1)
Py=— — in (— | si Pgyv. 1.102
o = = see <n) > sin < - ) sm< =) Peg (1.102)

Finally, we can also reduce Pg,p, into linear combination of Pg,p,. However,
the reduction is dependent on whether n is even or odd. Formally, let us write
PP, g, = 2(Pr,or, — Pr,E,) regardless of parity of n, so overall

_ 16 sec (m/n) m(i+1)
Py, — AT BRI Z sin < > sin ( - ) (2Pg,0m, + PEvp)-
(1.103)
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Chapter 1. Crofton Reduction Technique

Irreducible terms

First, we shall compute the irreducible terms Pg,y;,. These terms can be written
as an integral over all points X selected uniformly from F;. A natural parametri-
sation is of course X =V; + s(Vi41 — Vi), s € (0,1). Thus

1 /!
Povy =7 [ IVi+ s(Vier = Vi) = Voll” ds. (1.104)

However, we may parametrise X in polar coordinates centered in V| instead. Let
us write (@) = || X — Vo|| for X € E;, given that X — Vj points in the direction
of the polar angle . Note that the polar angle of vertex V; is ¢; = § + %
Straightforward calculation reveals that

r(p) = 2sin <7;> sin (W(Z + 1)> sec (W> (1.105)

n n

and

ds =/r(p)? + ( ) dy = 2sin ( ) sin (”“:1)) sec? (M> de. (1.106)

Therefore,
Pp.y, = 2P sin'*? (%) sin'*? (@) csc (%) Jot sec?t? (27”_%”) de. (1.107)

Using reparametrisation (271 — np + 7)/n = ¢, we get

Py, = 2P sin!*? (%) sin!*? (@) csc (%) JEEED/M cge2tp ¢ d¢. (1.108)

i/n

By definition and contrary to its usual meaning, we put Pgy, = Pg,v, = 0.

Odd number of sides
If n is odd, we select for all i the following scaling point

C; = A(E;) N A(Ey) = cos ( ) sec (m) {cos (%) ,sin (’T(ZTH)H (1.109)
from which

Pr.op, = %csc (%) sec (%) (sin (@) Pg.y, —sin (M) P, V1> . (1.110)

We can simplify Equation ((1.103|) in the following way: Note that, rotating K
by 27 /n, we see that Pg,y, = Pg,_,v,, using which we can deduce, after splitting
and then by shifting the summation from ¢ to ¢ + 1,

—16sec (7/n) 2 (wi/m)sin? (7(i + 1) /n)

n(4+p)(3+p)(2+p) ; s (mi/n) cos (m(i + 1) /n) Ppvy, (1.111)

P22

from which immediately in total, for odd n and p > —2 arbitrary,

—2MPgec(I) ese(X) =2

n(4+p)(3+p)(2+p) ;

i . +1 m(i+1)
3+p( ’)51n3+P(7T(ZT+)) l;;SC%_pC dc

P22

||M

s
n
cos(™) cos(

7r(i+1))
! (1.112)
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1.3. Bivariate functionals in two dimensions

Even number of sides

If n is even, then Pg P is irreducible since Fy and E,/, are parallel and we
need two parameters to describe the position of points which are drawn from
those sides. Nevertheless, we can always integrate out one of the parameters (or
use the overlap formula, and adaption of Proposition 27| from the next section in
two dimensions) to deduce that

1
Ps B, = /(h2 2?)P2|l — x| dz, (1.113)

n/ZEO l2

where h = 2 cos(m/n) is the separation between E,,/» and Ey. Identifying Jin?+
2?)P/? dz as Pg, v and solving the remaining integral, we get

+1 2 (m
p _9p _ ¥ eso (n) 1—co2tn (T 1.114)
E, B0 = 2B, ;)Vp 2t Cos ) (1.

The Equation (1.103) is still valid provided we treat Pg, ,om, only formally as
the solution of the equation PP, .5, = 2(PE"/23E0 - PE,L/on)- That is,

Pg, 08, = Q#PE,L/ZEO = (2+p)LE, ;v — 2P csc ( ) (1 — cos*tP (n)) . (1.115)

Exploiting symmetries Pg,y, = Pg, , ,v, and P05, = PEg, .05, and and shifting
1 — 1+ 1, we get from Equation ((1.103]) for any even n and p > —2,

= st () (e () P
) (l_mm( ))- S I
(1.116)

Arbitrary number of sides

Alternatively, if we redefine Pg g, to be equal to lim,_,; Pg, og,, where

Pr,om, = 3 csc (%) sec (%"") (sin (ﬂ””TH)) Pg_v, — sin (”(xn_l)) PEzvl) :

(1.117)
and
1 m(z+1)/n
Ppg,v, = 2"sin' P (m) sin' P <7r(x+)> cse (W> / csc®P ¢ d¢
n n n Tz /n
(1.118)

for x € R. One can show, by taking the limit, that we get the same expression for
Py, 12Vo when n is even. Thus, using this redefinition of Pg,sp,, Equation (1.103)
is valid for n > 3 regardless of n being even or odd.
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Chapter 1. Crofton Reduction Technique

Even moments

Let us briefly discuss the case of even moments. Uwe Bésel [4] found the values
of L) for p = 2 and p = 4, namely
1 2 2m 4
L%) = - <2+COS 7r> , Lg;) = (77+64cos—|—9cos W) . (1.119)
3 n 90 n

Using Equation (1.103)) with redefinition Pg,gp, = lim,_,; Pr,og,, Wwe can rederive
those formulae easily. For example, when p = 2, we get from Equation (1.118)),

5 1 2 2 2 1
ngvo 3 + 3 Cos % — CoS %x — oS (:cn—i-) (1.120)

and from Equation (|1.117]), after simplifications,

8 4 2 2m(e — 1 271 2m(1+ 1
Lgi)aEO =3 - gcos?7r — COSW(Zn) — 2(:05%Z — oS 7T<Zn+) (1.121)

Therefore, plugging those into Equation (1.103) with p = 2,

L%) _ M > sin (m) sin w 7+ 3cos nill
I5n o n n n

| | . (1.122)
2n(i—1) 2 W)

— 5cos — — 3 cos
n n n

— 2cos

Finally, we can sum this series using CAS software (Mathematica of Maple). As
a result, we are able to deduce the following simple formulae for higher even
moments (the formulae are valid for n > 3 regardless of n being odd or even),

ng) = o (628 + 661 cos 2% + 164 cos AT + 17 cos ) — 5;—03 (1.123)
LgBQ) = 1575 (4921 +5936 cos 2° = +1974 cos 7 4x T +3068 cos ° bn " +31 cos ) 1?%" + 22524;:
(1.124)
L5 = 71530476 + 40162 cos 2 + 16072 cos 42 + 4093 cos
(1.125)

+6280058—”+45cosm—“) —%%—45&—%

L5 = iy (15673314 + 21975552 cos 2 + 10006023 cos 42 + 3122432 cos &

+ 661402 cos 5 + 87296 cos 127 4 5461 cos 127 ) — ZitThn +6§§g;n — 125 55n+§673,
(1.126)

308880 (15540360 + 22811745 cos X = + 11429660 cos ir = 44126221 cos &
+ 1081192 cos 5T + 198713 cos 22T + 23124 cos 12T + 1285 cos 147”)

38463, + 181684, _ 305743315 S5 + 1186, __ O7n
n

143 1485 14256 360 6487

LW =

(1.127)

where ;5 is the Kronecker delta. Based on the obtained results, we state the
following conjecture:
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1.3. Bivariate functionals in two dimensions

Conjecture 25. Let K be a regular n-sided polygon (n > 3) circumscribed by a
circle with unit radius. Then for p being a positive even integer,

p/2 27j
Lég) =) (ajp Ccos (n) + bjpéjn> (1.128)
=0

for some numbers a;, and bj,.

Remark 26. Note that, since n > 3, the values of by, b1, and by, are not given
uniquely as we can subtract them from a;j,’s.

Using Equation (1.103)), we also found the following limit

A7
lim (24 p)LY) = ——5
p—31—%+( +p) L2 7, sin 2;” ’

(1.129)

which is in agreement with general statement valid for any compact convex K,

that
2T

lim (24 p)L% = —— 1.130
which is a special case of Corollary [299.1| with d = 2.
Odd moments
When p = —1, we got
(-1) _ csc(m/n) 1 tan(m(i 4+ 1)/n) (1.131)

Eivo = 2 tan(mwi/n)
from which, immediately when n is odd,
(-1 —4sec(m/n) cse(m/n) 2 sin? (wi/n) sin? (7(i + 1) /n) . tan(m(i + 1)/n)

Ly~ = n ; cos (mi/n) cos (w(i + 1)/n) " tan(mi/n)
(1.132)

Limit behaviour for large number of sides

In order to extract the limiting properties of Pss, we let n go to infinity but at
the same time hold o; = i/n as fixed. We denote ¢ = 1/n. By Taylor Expansion

of Equation (|1.108)),
PEiVO :2p<1+p7rs coQt(mri) N pﬂ-252(37p7(12+p) cos(2moy)) CSC2 (7T0'i)> Sinp(ﬂai)+0(53),
(1.133)

from which

PE}@EO _ 2p71(2 +p) (1 . p7r252(6—p7(z211rp) cos(2ma;)) CSC2(7TO'Z')) Sinp(ﬂ'di) + 0(53)‘
(1.134)

All together, by Equation ([1.103)),

4+ n— . T o g
Py = Goprsmis et (3 + p) sin®*?(moy) + 22(2 + p) sin?(moy) sin(270;)

+ B (12— 2+ + (4 + )2 cos(2may) sin? (nor) + O()).
(1.135)
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Chapter 1. Crofton Reduction Technique

Let f(x) be any sufficiently smooth function. Note that for any n, again denoting
e =1/nand o; =i/n,

n—1

/01 — /a (1.136)

=0

.

so by expanding f(z) into Taylor series around x = o; and integrating, we get

/f Jdr= eZ( o)+ 5 o)+ = f”( i)+§1f”’( Do (@) 10 >>

120
(1.137)
Replacing f with f’, f” and so on, we can, by linear combination, invert this
relation to

n—1

SWOEY| F@) = SF@) + @) - S @) + O da, (L138)

which is not surprising since it is essentially the Euler-Maclaurin formula. Since
our sums run from 1 to n — 2, so by subtracting terms with ¢ =0 and i =n — 1
to the right hand side and performing necessary Taylor expansions, we get

2

52 flo;) = /lf(x) dr — E(f(o) +3f(1)) — i(f'(O) _137(1)

L 12 (1.139)
_ S c _(f® 119 £3) (1 5
f (1) + =5 (19(0) +119£9(1)) + O().

Therefore, summing Equation (1.135]) using this relation, we get the following

formula
pr? 1
Py =|1—-—"— O( > Psoq, 1.140
22 ( 32 + > 22d ( )
where

94+pT" (3%)
(2+p)@A+p)VaT (2+2)

is the mean distance p-th moment in a unit disk (Equation ([1.93))). This approx-
imation is valid for all p > —2. Using the same technique, we are able to further
improve the estimate to

Pya = L), = (1.141)

P,y — (1 _pr®  pPB+1p)rt  p(16+p(8+p—15p*)) 7 Lo (1)) P,
3n?  180(1 + p)n* 1890(1 + p)nS 8
(1.142)
with the property that the expansion is valid for p > k — 5 if it is truncated at
1/n* term. The reason why the approximation is not correct there is because f
is not sufficiently smooth at the endpoints for low p. However, we can treat those
cases separately. Most notably, when p = 1, we got

2 19 4
LY = (1—7T+ i +O< )) Pysa. (1.143)
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1.4. Bivariate functionals in three dimensions

1.4 Bivariate functionals in three dimensions

1.4.1 Ball

Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit ball Bz = {x € R? | ||x|| <
1} with volume vol; By = 47/3. Additionally, we require P to be rotationally
symmetric with respect to the origin. That is, for any x,y € B3 and any orthog-
onal matrix R we have P(Rx,Ry) = P(x,y). This assumption is satisfied by
the choice P = L? (which is implicitly assumed in this section). Table be-

low shows various explicit L%) distance moments for selected p’s (from Equation

[L.145)).

4 )

—2 =1 0 1 2 3 4 5 6 7 8 9
Ly Ly" Ly Ly Li L§ Ly L§) Ly Ly L§ L

1 36 6 32 72 32 64 4608 768 1024

35 5 21 35 11 15 715 77 65

o
(S [}

Table 1.11: Mean distance moments ng) between two random points in B3

Reduction system

According to our convention, we write
P, =E[P(X,Y) | X ~ Unif(A),Y ~ Unif(B)], (1.144)

where a = dim A, b = dim B and the concrete selection of A, B is deduced from
the reduction diagram in Figure below. In this diagram, we also included the
position of the scaling point C in cases reduction is possible. The arrows indicate
which configurations reduce to which. Each arrow is labeled by a roman numeral
corresponding to a given reduction equation in the system of reduction equations.

I 8 II P I11 2
— f .......... > — /
Pa3 K P32 = Pso 0 P20

C

Figure 1.5: All different P, sub-configurations in Bg

The full system obtained by CRT is

I: pPs3 =2-3(Psy — Ps3)
I1: Py, = Ps.
III: pPy, = 3(Py — Py),

where the equation II follows from the rotational symmetry of P. The solution
of our system is
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Chapter 1. Crofton Reduction Technique

18P,
= 0 (1.145)

BT (6+p)B+p)

P20

In configuration (20), one point X is drawn uniformly from the boundary 0B3
while the other Y is fixed at the boundary. Keep in mind that Py is defined via
generalization of Remark [9] as a mean weighted by the support function

1

Pyy=——
207 3v0l; By

/3133 P(x,y)hy(x)A2(dx), (1.146)

where the support function hy(x) of B3 evaluated in x and centered at y € 0B;
(arbitrary fixed point) is given explicitly as hy(x) = 3|[x — y[[>. Parametrising
the integral using spherical coordinates (6, @) with their center located at y,

X = [2sin 6 cos  cos p, 2sin 6 cos §sin , 2 cos® O + 1], 6 €[0,7/2),

y = [0, ~1], 0 € [0,27).
Note that [|[x—y|| = 2 cos § and thus hy(x) = 2 cos? §. Furthermore, since P = L?,
we get P(x,y) = ||x — y||” = (2cos#)P. The uniform measure on dB; is given

by Aa(dx) = 4sinfcosfdfdp. Alternatively, integrating out the axial angle ¢
(which P does not depend on), we get \y(dx) = 87 sinf cos #df. Overall,

op+2

p+4

1 rm/2 )
L = BIX = Y[} = 5 [ (2c0s6)* 7sing 49 =

(1.147)

P33

Substituting Py into Equation (1.145)) with P = LP, we get for general p > —3
(not necessarily an integer),

® _ 72 2P

~ G G DB (1.148)

Plugging p = 1, the mean distance between two random points in the unit disk
in various configurations is shown in Table [1.12]

L33 L32 L30 LQO

36 6 6
5

35 5

ot|oo

Table 1.12: Mean distance in B3 in various configurations

Note that L33 can be normalised to the first metric moment as

L 18 ,[6
o (Bs) = —=2 = 22~ 0.63807479. (1.149)
Jam/3 3/
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1.4. Bivariate functionals in three dimensions

Distance density

The density f33(\) of the random distance L between two interior points in B3 can
be recovered from moments using inverse Mellin transform (see appendix [A.5]).
By Equation ([1.148)), we have

M fss) = LV = 2.2 . (1.150)
(5+p)3+p)(2+p)
Taking the inverse Mellin transform, we get, formally,
fas(N) = T2 L T3T50 (N — 2). (1.151)
From Table [A.5| (see Appendix , we immediately obtain
fa3(A) = 2222 = A2 (4 + N ico. (1.152)

Interestingly, this density function is much simpler than fo(\) in the unit disk.

1.4.2 General and special polyhedra

If K = Py is a polyhedron, the following configurations are irreducible in R3:
e Ais a polygon and B is a point
o A and B are two skew line segments
o« A and B are two parallel polygons or one polygon and one line segment
parallel to it

Polygon and a point

In the first case, A is a polygon and B a point. Denote proj,(:) a perpendicular
projection onto A(A). Next, denote h the distance between B and A(A). With
k = x — proj4, B where x € A, we have that

1
L), — 7/ B2+ K22 4k 1.1
AB VOIA A( + ) ( 53)

is expressible in terms of elementary functions. To see this, write and 0;A,7 =
1,...,s for the sides of the polygon A, oriented such that the path through the
vertices of A is counterclockwise. Then, by inclusion/exclusion, and switching to
polar coordinates

T 1 S B phifcose
L(p) — / h2 k2 p/2 dk = / / h2 2\p/2 drd
AB volA; T,-( + k) VOIAZ 0 (R4 77)"r drdy

i=1"7%

(1.154)
where T; is a signed triangle whose one vertex is the point proj B and the other
two vertices are the consecutive endpoints of J;A. Rescaling the vector k by h,
we can rewrite each integral in the sum in a standard way

[ 02 w2 k= 02 (1) (haf o ) = 1) (i) (1.155)

3

where «; and ; are their respective polar angles (in counterclockwise order) and
h; is the perpendicular distance from proj B to 0;A. The polar angles are defined

90



Chapter 1. Crofton Reduction Technique

proj,B @

Figure 1.6: Point-polygon triangle decomposition

such that the closest point on the line A(0;A) from proj B has its value equal
to zero, increasing in the clockwise direction (see Figure [I.6). The integral is
positive if the angle of consecutive vertices of the polygon increased and negative
if it decreased.

Summing all contributions, we finally get our point-polygon formula

1) _ h2+p zs: ([(P) (hi/h, Bi) — @) (hi/h Oz)) ] (1.156)
AB ™ yol A 00 AT 00 T

=1

Two skewed line segments

The second case is in fact equivalent with the first. If A and B are two skew line
segments, write A— B = {u—v|u € A,v € B} (which is a parallelogram). Then,
by shifting, we get for any homogeneous P, denoting O as the origin

Pap = FPoa-5- (1.157)

So we can always reduce this problem to the polygon and a point problem treated
before.

Overlap formula

From now on, in case of no ambiguity, we often write simply proj instead of proj 4
for the perpendicular projection operator onto A(A).

Proposition 27. Let A,B € P.(R?), a = 2, b € {1,2}, such that A(A) and
A(B) are parallel with perpendicular separation vector s having length h = ||s||.
Let P(x,y) be homogeneous and let k be a vector lying in the projection plane

A(A), then

1 ~
o= s -
AB ™ Sol Avol B AJB (v —y) dedy

1 ) .
= v TAvolE Jue L8 T k) vol AN (proj B + k) dk.

Especially, for P = LP, we get Lﬁfg = m Jez (W2 +k2)P/2vol AN (proj B + k) dk.

(1.158)
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1.4. Bivariate functionals in three dimensions

ProjA

X “projB k.

Figure 1.7: Overlap formula

Remark 28. Since vol AN (proj B + k) is a piece-wise polynomial function of
degree at most two on polygonal domains, the double integral is expressible
in terms of elementary functions for any integer p > —3.

Proof. Let A, B C R? be compact domains with dimensions a and b, respectively,
and P be symmetric homogeneous functional R — R of order p > —3. Let
Ap(z) = AN(B+2), ¢ = max,cpa dim Ap(z) and C = {z € R?| dim Ap(z) = c}.
Then, by substitution y = x 4+ z and by Fubini’s theorem,

1 5 1 N
P :7/ / P(x - :7/ P(2)vol A .
A8 = T Aol B Ja Jp T\ —v) dedy = oo g ) PRI vo B(Z)(f 139

=

When A, B are parallel in d = 3, the proposition follows.

Definition 29. An overlap diagram of A (face) and B (parallel face or edge
consists of partitions of R? into open subdomains D; where vol A N (proj B + k)
can be expressed as a single polynomial function in k € R? of degree at
most two. Since A and B are polygons or a polygon and a polyline (a piece-
wise straight curve), respectively. These subdomains D; are also polygonal
(polylinial, respectively). When there is no ambiguity, we denote those sub-
domains D; by numbers corresponding to the number of sides of the polygon
AN(proj B+k) of intersection in case B is a face, or the number of line segments
of the polyline AN (proj B + k) of intersection when B is an edge, respectively

~—

Remark 30. For brevity, we often write vol A N proj B + k as a shorthand for
vol A N (proj B + k).

Auxiliary integrals

Apart from rotations and reflections, integrals encountered in this section have
the following form (h > 0)

p/2
17 (h,C,7) = /D f(x,y) (B 42 +¢?)" dady, (1.160)

(¢)

where D((, ) is the fundamental triangle domain with vertices [0, 0], [¢, 0], [(, ¢ tan ]
((>0,0<~v<m/2) and f(x,y) is a polynomial in x and y of degree at most
two (quadratic in z and y). We can write f(x,y) = ago + ai0® + a1y + axr? +
an vy + agy?®. Based on x and y terms, we have the following

1P(h, ¢, ~) = agl$) (b, ¢, 7) + arolE) (h, €, 7) + a1 (h, ¢, )

(p) (») (p) (1'161)
+ asolsg (h, ¢, 7) + andqy (h, ¢, ) + aoelyy (B, ¢, 7),
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Chapter 1. Crofton Reduction Technique

where p
IP(h,¢,y) = / o'y (B2 + 2 + )" dady. (1.162)

D(¢y)

The parameters of those integrals are not optimal. We only need to consider the

case h = 1. To see this, denote

. 2
1900 =19 0q0 = [ aly (1+22+4?)" dedy, (1.163)
D(g,7)
By scaling © — hx, y — hy, we can write
(p) _ 1 24p+iti ()
L7 (h,¢,7) = BPHHIP(C /R, ), (1.164)

Thus, with ¢ = (/h,
17 (h, ¢, 7) = W7 |ago It (g,7) + aroh I (¢,7) + aoth IS (g, ) (1.165)
+ash®I38) (¢,7) + anh* I (,7) + aeh®I5 (¢, 7)) -

Selected values of the auxiliary integrals Ii(jp )(q, ) and the methods how we can
derive them are found in Appendix [F]

General polyhedra

( D

Theorem 31. Let K € P(R?), E;, Fy,j € {1,...,e},k € {1,..., [}, denote
the edges and faces of K, respectively, and let P : R? x R? — R be symmetric
and homogeneous of order p > —3. Then

2
Prgr=——"— Prrp,wrr, +Y Pkpwkg, |, 1.166
KK 6+9)6+p) (k;;/ FF, WF,F, zj: KE; KEJ> ( )

with weights wap (independent on P and p) given as follows: We fix C any
point in R*, Cy any point on A(Fy) and D; any point on A(E;). Denote
Fijy, Fi () the two faces on which lies the edge Ej, then

vol F}, vol Fj
kaFk' = #(hC(Fk>th(Fk’) —+ hC(Fk’)th/ (Fk)), (1167)
vol K vol E;
WKE; = TKJ (hC(Fk(j))th<j) (Dj) + hC(Fk’(j))th/(j)(Dj)) . (1.168)
Proof. Use the Crofton Reduction Technique twice. |

Remark 32. Note that the weights are not unique as they depend on the
position of scaling points.

Remark 33. Note that if P = L” and for any polyhedron K, all terms Pap in

Equation ([1.166)) are either further reducible or A and B are parallel. In both

cases, we cal express Lff,)g in terms of auxiliary integrals. Theorem [23| follows.

Nonparallel polyhedra

For polyhedra which have some special properties, we are able to further reduce
Theorem [31] above.
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1.4. Bivariate functionals in three dimensions

Definition 34. Let P*(R?) denote the set of all polyhedra having the property
that affine hulls of any of its three faces of meet at a single point. We call them
nonparallel polyhedra. Also, we denote PX . (R3) a subset of those which

convex

are convex.

Theorem 35. Let K € P*R3) and V;,E;, F,i € {1,...,v},j €
{1,...,e},k € {1,..., f}, denote the vertices, edges and faces of K, respec-
tively, and P be symmetric and homogeneous of order p > —3. Then

12
P Py, pw + Pg,g,wE,E,
e <6+p><5+p><4+p><3+p><z wnwn 3 o, )
Vig A(Fl) A(Ej)NA(E;)=0
(1.169)

for some weights wap which are independent on P and p.

Proof. Since no pair of faces nor edges are parallel, we can further reduce Pr, r,
and Pgp,; from Theoremtwice. The weights are easily computable by choosing
appropriate scaling points. Note that again the weights are not unique and de-
pend on the selection of those scaling points. For example, let C € A(Fy)NA(Fy ),
k < K'. Then by CRT, we get

2
4+p
Note that both Pyr r, and Ppor,, are expressible as some linear combination

of Pg,p, with A(E;) N A(F). Finally, we can reduce even this term. Let C' €
A(E;) N A(F}), then

(Porcr, + Proor, ) - (1.170)

PFka/ =

(Pog,r, + 2Pg,0r,) , (1.171)

Pg.p, =

2+0p

which in turn is expressible as a linear combination of Py,r and Pp, B, Wwith
Vi ¢ A(Fy) and A(E;) N A(Ey) = 0. The reduction of terms Pkg, is similar. W

Nonparallel convex polyhedra

In the case of convex nonparallel polyhedra, we can find very simple relations for
weights wap. First, we start with a known formula (a special case of Proposition
298 with d = 3 and the factor of 2 absorbed into integration over the whole sphere
S? rather than the half-sphere S%)

Lemma 36. Let K be a convex and compact set in R and P symmetric
homogeneous of order p > —3, then

~ 1/voI’K vol’ K

P
KK = (4+p 3+ p)

/82/ °(11) vol, (0 N K)MP dyda, (1.172)
nj

where the integration in carried over all directions A on the unit sphere S?
with surface measure dit having [ dit = 41 and over all pointsy on plane 11|
passing through the origin and being perpendicular to fi. Finally, vol; (o N K)
denotes the length of the intersection of K and the line o passing through
point 'y in the direction of unit vector .
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Chapter 1. Crofton Reduction Technique

Corollary 36.1. By Fubini’s theorem,

: 1 SraN 14
pEEI:l)ﬁr(S —|—p)PKK = Vol K Js2 P(Il) di (1173)

Remark 37. Similar formulae as the Lemma above are available in higher
dimensions as well and can be deduced from Blaschke-Petkantschin formula

(see Appendix [B).

Theorem 38. Let K € Pr .. (R3) and Vi, E;, Fy, P,wap be defined exactly
as in Theorem . Denote hjy, the distance between V; and A(Fy), similarly
denote h;j the distance between O and A(E; — E;r) and 0;; the angle between

E; and E; (on the same plane under perpendicular projection). Then

12/ vol K (

Py, 50,5, vol Figh;
6+p>(5+p>(4+p)(3—|—p) Z V;F, MV, F,, VOL L' My

ik
Vig A(Fy)
+ Z PE].Ej,nEjEj, vol Ej vol Ej’hjj’ sin 9jj’>7

i<y’
A(E;))NA(E;)=0

PKK:
(

(1.174)

with weights nap satisfying the following projection relation: Choose a di-
rection i and project K onto a plane perpendicular to it. Then the weights
corresponding to vertex-face pairs which overlap and to pairs of edges which
cross add up to one. Symbolically,

1= Z nkaﬂﬁeka - Z nEjEj,ﬂﬁeEjEjn (1'175)
ik j<j’
Vig A(F) AB)DA(E,)=0

where lacap = 1 if there are points x € A,y € B such that x — y is parallel
with @, otherwise laeap = 0. On top of that, the extreme case where one
of the points x,y lies on the boundary of A or B leaves the value lacap
undefined.

. J

Proof. The key observation is that the weights are independent of the choice of
the function P as long it is symmetric and homogeneous. Let € > 0 be small and
f be a fixed unit vector, Q. = me? + O(e*) then denotes a solid angle with apex
half angle equal to . We define R?) (¢, fi, z,7y) = ||z — y||? if the angle between fi
and x — y is smaller than € and zero otherwise. Alternatively, denote C(e, V,1i)
a double-cone region whose vertex is V', apex angle 2¢ and the axis has direction
. Then for any domains A and B,

R%)B(& n) = /A/B R" (6,0, 2,y) dy do = /A /BﬁC(a,xﬁ)

Note that R is symmetric and homogeneous in z,y of order p. Hence, by Lemma

[36}

|z —y||P dy dz. (1.176)

200,
vol K

1 ~(—
lim (34p)RYy (e, h)= R

= Y. (1.1
p—~—3+ vol K Js2 +O(e). (1177)

g, n,n)di=
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1.4. Bivariate functionals in three dimensions

On the other hand, via Theorem [35]

lim (3—|—p)R§§)K5n (ZRVstnlequLZ REElsnwEE,)

p——37+

Vig A(F) A(E; )mA(E )=0
(1.178)
We are able to express Rg/z 2 (¢,f1) and Rg%)j, (e,11) in the following way:
_ Q. laey r 3 Qelacr,e,
Ryp(e,h) = =W 10, Ry (e,h) = O(=").
AACE) vol Fl.hj, O, EJEf’(g’n) vol E; vol Ejih,jr sin 0, TOE)
(1.179)

We will prove only the first equality as the other one is get simply by shifting
(edge-edge configuration is equivalent to vertex-face configuration by means of
Equation ([1.157))). Let V; ¢ A(Fy) for some (polygonal) face Fj, and vertex V;.
We denote by r the distance between V; and the point of intersection of A(Fy)
and the line passing through the vertex V; in the direction of fi. Note that the
perpendicular distance h;, between V; and A(F}) is independent on the direction
of fi. Since ¢ is small, we can write

A 1 A
R%)Fk(s,n) = VOlF}g/Fk R(p)(e,n,m,Vi) dx

_ rPvol Fy N C(e, Vi, 1)
B vol Fy,

+O(eh)

(1.180)
Assuming i € V;F},, the point of intersection lies in the interior of F}. Hence, for
sufficiently small e, we get that V; N C(e,V;, i) is an ellipse with area

Q.r3

volV; N C(e, Vi, i) = lacvip, —— e + O(eh) (1.181)
Hence
1 7’3+pQ 1a P
RW® AN 7/ R® (a2, V) do = T TleTheViky | (4 1.182
when p = —3, the dependency on r vanishes. Finally, comparing this relation

with Equation ((1.177]), we get the equation for weights

wv; F, Lacv; Fy wg; 5, Lack; b,
— — AT 1.183
vol K ZZ vol Fihy, * Jg, vol Ej vol Ej h;; sin 0 ( )
Vig A(Fy) A(E;)NA(E;)=0

valid for any fi for which all the values 1ac4p are well defined. Lastly, defining
auxiliary weight nap via

vol FkhzanFk vol Ej vol Ej/hjj/nE].Ej, sin Hjj/
= vk B, = 1.184
Wik vol K ’ WE; By vol K | )
we get
1= Z nv,r, Laev,m, + Z ne;E, lace; B, - (1.185)
ik i<j’
VigA(Fy) AB)DAE, =0

This constrain alone enables us to determine admissible weights for any convex
nonparallel polyhedron via set of linear equations got by varying the direction of
. |
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Chapter 1. Crofton Reduction Technique

Tetrahedron

As an example, we express the random distance moments in the case of a tetra-
hedron. There are two possible ways how a planar projection of a tetrahedron
could look like (almost surely) with respect to the number of intersecting pairs
of edges and vertices/faces in the projection (see Flgure 1. 8

Ao

Figure 1.8: Tetrahedron projection orientations

In the first case, one vertex covers one face. There are no other vertex/face
nor edge/edge coverings. Similarly, in the second case, one edge is covered by
another edge. There are again no other coverings. Thus, in order to satisfy
Equation , we can simply choose ny,p, = ng, B, =1 for each vertex V;,
face Fj and edges Ej, Ey. Hence, by Theorem [3§]

Z PVZ'F;C VOlehik
ik

Vig A(Fy)

12/ vol K
Prk = / (

(6+p)(5+p)(4+p)(3+p)

(1.186)
+ Z PE]-Ej/ vol Ej vol Ejlhjj/ sin 9jj’> .

j<J’
A(E;)NA(E;)=0

Regular polyhedra

To apply our general method, we shall derive the mean distance in all five regular
polyhedra (also known as Platonic solids). Among those solids, only the tetra-
hedron is nonparallel convex, so Theorem applies here. Hence, we used this
theorem to find the mean distance in a general (possibly irregular) tetrahedron. In
the following sections, we calculate the mean distance in all other Platonic solids
(including the regular tetrahedron again). Since they are an example of parallel
polyhedra, we cannot use Theorem [38| due to presence of irreducible configura-
tions of type face-face and edge-face. However, we can still calculate the mean
distance. The calculation relies the Overlap formula as well as the symmetries
of those regular polyhedra which drastically reduce the number of configurations
needed to be considered. Throughout this section, we denote v the area of (any)
face of K and [ the length (any) of its edge. These values makes sense because

K is a regular polyhedron. Furthermore, ¢ = 127\/5 is the Golden ratio.

1.4.3 Regular tetrahedron

Let us have P bivariate symmetric homogeneous of order p dependent on two
random points picked from K a regular tetrahedron given by vertices V;[1,0, 0],
V5[0, 1,0], V5[0,0,1], V4[1,1,1], edges connecting them FEio, Ei3, Ei4, Fag, Eou,
Esy (E;; = V;V;, where i # j) and with opposite faces Fy, Fy, F5, Fy. Note that
the edge length is a = v/2 and the volume vol K = 1/3, so if we want to express
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1.4. Bivariate functionals in three dimensions

the mean of P in a tetrahedron of unit volume, we must multiply all our results
by 3P/3. We put P = LP. For the definition of various mean values P, = Lg’;),
see Figure We also included the position of the scaling point C in cases
reduction is possible. The arrows indicate which configurations reduce to which.

Figure 1.9: All different ng) configurations encountered for K being a regular tetra-
hedron

Based on CRT, let us write our reduction system of equations:

where P33 = Pii and by symmetry, we can put Pss = Pxp,, P51 = Pxp,,, P =
PK\/laP22 = PF1F27P21 = PF4V14aP20 = PF4V47P11 = PE12E34- ThlS linear system
has a solution

72(3P11 - 2P20)

6+p)5+p)(4+p)(3+p) (1.187)

P33:

To demonstrate our technique for irreducible configurations, we derive the value
of L33. That means, we choose P = LP with p = 1.

L20

By (1.156), by symmetry and using vol Fy = v/3/2,hy = 1/v/6,h = 2//3,
(» _ Gh>*? @) <\/§ W) ‘

Po=Fiin =g (a3

(1.188)

Using the recursion relations,

V2 7 1 T 1 2 1
18y —,—- | = ——= — — + - arcsin argsinh —, 1.189
00 ( 1'3) 16v2 9 3 96\/_ gsinh 7, (1189)

so, further using arcsin y/2/3 = arctan v/2 and argsinh(l/\/g) =13,

V2 3277 32 251n 3
Log = 42 — 220 L 2% aret .
0= gm Ty T A an V2 + 18v/2

(1.190)
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Chapter 1. Crofton Reduction Technique

Lll

By shifting ([1.157)), we get Li; = Lap, where B is the origin and A is a paral-
lelogram with vertices [1,0,—1],[0,1, —1], [-1,0,—1], [0, —1, —1]. Therefore, by
the point-polygon formula (|1.156)) with A =1 and vol A = 2,

8h3 (1) \/§ s
Ly =—] _— = 1.191
n=coglo |\ 5 ) (1.191)
where by recurrences,
W (V2 T 1 ™ 1 1 7 1
1 —,— | = —= — — + —arcsin — + ——= argsinh —. 1.192
0“(2 4) 6v2 12 3 73T e g (1192)
Hence, writing arcsin (1/\/§> T _ arctan /2 and argsmh(l/\/_) =1 5 1n 3,
V2 4 7In3
Lyi=—+—-——-= t 1.193
n=g +3 g arctan V2 + 62 (1.193)

L33

Substituting Loy and L, into Equation (1.187)) with P = L? and p = 1, we get,
finally

3 V2 3tm 4 113In3
Lis = —(3L11 4 2Lag) = ~— — >~ + — arct
3 = 35 (80 + 2La) = = = 5o 4 g arc an V2 + 210v2

Or, re-scaling to the unit volume tetrahedron,

1) e (V2 3Tm 4 113In3
T3)=V3 |- — =~ + — arcta ~ 0.72946242, (1.194
vr (1) \/—<7 TR i Caerv, (1.194)

which is an ezact expression of an approximation given by Weisstein [75]. Simi-
larly, we would proceed in the case of the second moment:

9
10v/3

Alternatively, we can express the result as the normalised mean distance I' .
Since Vi(K) = 3v/2arccos (—é) /7 (see Table H with @ = v/2), we have

v(Ty) = (1.195)

V2 3Tx 1131n3
P = 33 T (7 = 55 + sy arctan V2 + 5008) ~ 0.19601928. (1.196)
Vi(K) 3\/§arccos (—%)

Of course using the reduction technique, we could get other moments (replacing
[ by L; v integrals), and even for a general edge-length tetrahedron.
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General moments

It is convenient to express our distance moments ng) in regular tetrahedron with

edge-length a = 1. These moments are deduced from our previous formulae via
rescaling by 277/2. By Equation (T.187) and by rescaling,

() e vonn [R5 () (2]

L(p) — =
Pt T (649)(51+9)(449) 3 +) 6+p)5+p)(E+P)G+)
(1.197)
Writing out the auxiliary integrals I(gg) explicitly, we get
Ly, = = [—9” (1)2‘ 7 (2)
a=1" (2+p)(3+p)(4+p)(5+p) (6+p) 2/ V33 (1.198)

1Nz /% 2\E 5 1 9 \5t1
+ 36 (2)/ (H— sec go) dg0+32\/§<3)/0 (1+§sec go) dapl.

Density

The density can be recovered from moments using inverse Mellin transform (see
appendix |A.5)). For the density f33()) of the random distance between two points
in a tetrahedron with unit edge-length a = 1, we have by Equation (1.198|)

p—1

MIN=157,,= (1+p)(2+p)(324;lp)(4+p)(5+p) [_% <;>2_ 35%? @)2
+ 36 (;)172/02(14—; sec? go)%dw + 323 (§>”/ (1+ sec go)p+1dg0]

(1.199)

Taking the inverse Mellin transform, we get, formally,
32m
f33()\) = 24111213I4I5 l—gﬁé(A - \/g)— 75()\ \/;)
36 (14} sec? 6</\— L /14 Lsec? >d 1.200
+ 0(+286C 90) \[2 +3sect | dy ( )
+ 32\/5/03(1+§ sec” ) § </\ — 21+ L sec? w) dgp]

From Table (see Appendix [A)),

AMa — )4

11121314155(/\ — Oé) = 24(1/6

Lyes. (1.201)

via which we can deduce for A € (0, 1) that
4 1
fos) = =720 (VE =) 1, p - 36mE (V3 -A) 1, e

s \/_)\ 4
+ 72)\/4 1-—>2 |1 —d
0 ( L1 Seczg,) rey/Tyf 1z 7 (1.202)
4

™ 3)\
+ 48\/§A/3 1— \f—Q 1 do
0 1 4+ = 3602 )\<\/§\/ 1+%se024p
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Chapter 1. Crofton Reduction Technique

Substituting [ = \/;/1 + 2sec?p and | = \/g\/l + £ sec? @ respectively, by in-

clusion/exclusion and after some simplifications, we get

Fs3(N) = 24V2m\2 = 72V/Br )3+ 144 (24 V2 arctany/2) A =6 (6+5v/37) A’
4 4
727\ 1—>\)]l 367\ 3( 2—)\)1
+7T<\f2 /\>\/g+7r\/_\/g A>y/2
i A 144X (512 — 3) (1 — A)*
X8 [ a3 (202 — 1) (312 — 2) VA2 — 3

(1.203)

Calculating the remaining integral is not hard. We got for all A € (0, 1),

faz(\) = 24v/2m X2 —72v/37 A3+ 144 <2+\/§arctan\/§) -6 (6—}—5\/§7r) A
4 4
72 A( 1—>\)IL 36mA 3( 2—>\)IL
FEAE = 1 e +ERE =) 5
—12)1,_ s lzu%/w —3+ V3 (4+36)\% + 9\') arctan (VI2X? — 9)
— 122\ (2—1—3)\2) arctan <\/8—/\62> —241/2) (1—1—2)\2) arctan ( 2—2§’2)

+6 (1+12/\2+4/\4) arctan (\/ 402 — ) — 3V/3)2 (12+5>\2> arccos (\2/5) 1
(1.204)

1.4.4 Cube

We present a re-derivation of the Robbins constant for K being a cube via our

method. Here, we demonstrate the Crofton Reduction Technique including the

overlap formula. A standard way how to choose its vertices is [0,0,0], [1,0,0],

[0,1,0], [0,0,1], [0,1,1], [1,0,1], [1,1,0], [1,1,1]. Under this choice, the edge

length [ = 1, face area v = 1 and the volume vol K = 1. ut P = LP. For the
1.10

definition of various mean values P,;, = Lfﬁ,), see Figure . Note that in Loy,

configuration, we let B to be four edges (boundary of an opposite face) rather
than just one edge.
Performing the reduction, we get the set of equations, where

pP33 = 6(P3y — Ps3),

pP3y = 3(Pay — Psy) + 2(P31 — Psy),
pPage = 4(P o1 — Pase),

pP3y = 3(Po1 — Ps1) + 1(Pso — Ps1),
pPo1y = 2(P11 — Poy) + 1(Pa — Pa1y),
pP3g = 3(Pa — Pso)
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Figure 1.10: All different Lg;) configurations encountered for K being a cube

with
Py = §P22e + %P22r7
Py = 3Pny + 2Py,
Py = %PQM) + %PQM
Solving the system, we get

B 72(P11 + Py) 48Py, 6 Py,
oo = (3+P)(4+P)(5+P)(6+p)+(4+p)(5—|—p)(6+p)+(5+p)(6+p)‘ (1.205)

When p = 1, we get for the mean distance

1
L33 = £<3L11 + 3L20 + 8L217~ + 5L22T). (1206)

L20

Without loss of generality, we can write Loy = L ap, where A is the cube’s upper
face defined as a square with vertices [0,0,1], [1,0,1], [1,1,1], [0,1,1] and B is
the origin [0,0,0]. Domains A and B are separated by distance h = 1. The face
A is having area vol A = 1. By and by symmetry,

2w ( W)
Log=—1p | 1,— ). 1.207
7 vol AT\ g ( )
Using recurrence relations (see Table in Appendix),
1 4
Loy = "z argcoth v/3. (1.208)

V3 18 '3

Lll

The value Ly; can be defined as a mean distance between egde F; = [0, 0, 0][0, 1, 0]
and edge Fy = [0,1,1][1,1,1]. Shifting E; by vector —FE5 (See shifting relation
(1.157))), we can rewrite this as L3 = Lap, where again A is the upper face of
the cube and B is the origin. Hence Ly = Loy.
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Chapter 1. Crofton Reduction Technique

L21r

Since the reduction technique cannot be applied on AB being parallel, we use
the overlap formula with A being one face of the cube. In case of Lsj,, the other
domain B is an opposite edge. By symmetry, we can add to this edge also three
other edges opposite to A (see Figure . Hence, B is a boundary of the face
opposite to A with length vol B = 4. Let k = (x,y) then proj A = proj B is
a square with vertices [1, 1], [—3, %], [—%,—1%], [3,—3)- In order to proj A and
proj B + k have nonzero intersection, k£ must be confined in the region —1 < x <
1A —=1<y <1 Bysymmetry, we can chose k to lie in the fundamental triangle

domain D(1,7/4) (we then multiply the values by 8).

8 x

projB +k

mmetry
AN

N

I

[
[ —
@

proj A proj A projB +k

Figure 1.11: Overlap of the opposite face and edges of a cube
Setting up the integral,

8
Loy, — 7/ VEZ + 2 vol AN proj B + k dk, (1.209)
vol Avol B Jp

where h = 1,vol A = 1,vol B =4 and D = D(1,7/4) is a domain in Figure [1.1]]
on the right (labeled with the number 2). In this domain, we can write for the
length of the polyline of intersection

volANprojB+k=2—-x—vy, (1.210)

which gives us in terms of our auxiliary integrals

7T m m
21y (1, 3) — 1y (1,4> — 1) (1, 4)] (1.211)

Via recursions (see Table in Appendix), we get

8
Loy = ——M—
21 ol Avol B

7 1 T 1 5
Lyyy=——%————+4—ar coth v/2 + = argcoth v/3. 1.212
T2 V39 4t 318 (1.212)

L22r

Again, we use the overlap formula for AB being opposite faces. By symmetry, we
again integrate vol A N proj B + k over one eighth of all positions of k (see Figure
1.12).

Setting up the integral,

Los, = Vh? + k?vol AN proj B + k dk, (1.213)

8
vol Avol B /D
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projB +k 8

B X ool
i 0 i
1 1
® | 1symmetry ' '
Y \ 0 i
FE 1 4

. Soo—| . . [P R
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Figure 1.12: Overlap of the opposite faces of a cube

where h = 1,volA = vol B = 1 and D = D(1,7/4) is a fundamental triangle
domain (labeled 2 in Figure on the right). In this domain, we have for the
polygon of intersection

volANprojB+k=(1—-xz)(1—-y), (1.214)
and therefore

8
vol Avol B

227 —

m m m m
Iy (1, 4) — Iy (1, 4> Sy (1, 4) +1) (1, 4) ] . (1.215)

Going through all recursions, we get, after simplifications

4 V2 4 2 4
Loy, = = + V) + argcoth (\/5) + 3 argcoth v/3. (1.216)

L33

Putting everything together by using ([1.219)), we finally arrive at Robin’s constant

4 17V2 23 7w 1 4
U%l)(03) — L33:ﬁ+ﬁ — ﬁ—ﬁ—kg argcoth \/5—1—5 argcoth\/§
~0.66170718.
(1.217)

1.4.5 Regular octahedron

A standard way how to select vertices of an regular octahedron the vertices is
[+1,0,0], [£1,0,0], [£1,0,0]. Under this choice, the edge length is [ = /2, the
area of each face is v = v/3/2 and the volume of K is vol K = 4/3. Again, we put
P = LP. For the definition of various mean values P, = ng), see Figure
We also included the position of the scaling point C in cases when the reduction

is possible.
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Chapter 1. Crofton Reduction Technique

Figure 1.13: All different Ll(f;) configurations encountered for K being a regular oc-
tahedron

Performing the reduction, we get the set of equations, where

pPss = 6(Psy — Ps3),

pP3y = 3(Pay — Psy) + 2(P31 — Psy),
pPaoe = 4(Pa1y — Paoe),

PPy = 4(Po1 — Pagy),

pP31 = 3(Pa1 — Ps1) + 1(P3g — Ps1),
pPo1y = 2(P11 — Pory) + 1(Pao — Pa1y),
pP3o = 3(Pao — Pso)

with
Py = ipzze + iP22r + %P22v,
Py = %Pmu + %Pmr-
Solving the system, we get for any bivariate functional P,
72(Py + Pry) 54 Po1, 9 Paa;

Pao= + ) 1.218
5 B )0 64p) | G064 26 )
When p = 1, we get for the mean length
3
L33 =S E(ZLLQO + 4L11 + 12[;217« + 5L22T). (1219)

L2O

More precisely, we can write Loy = Lap, where face A has vertices [—1,0,0],
[0,—1,0], [0,0,—1] and B = [0,0,1] (see Figure [1.13]). Vertex B is separated
from A(A) by distance h = 2/+/3. By (I.156)) and by symmetry,

2h3 (1) \/§ ™ 1) \/§ ™
L= — I | =, = | = Iy | —, = 1.22
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1.4. Bivariate functionals in three dimensions

where vol A = v = \/3/2 is the area of A. Using recurrence relations on Ié(l])(-, ),

7 V2 7 _1_£+73Lmhl:1 W+M‘ (1.221)
4 36 124/2 4 36 124/2

w3y =

The other I(g(l)) integral is already given by ((1.189) (we just write arcsin/2/3 =
7/2 — arccot v/2), hence

Loy = % — ? — 3—7; — 25“11\1}5’ + % arccot v/2 + %\/ﬁargcoth V2 (1.222)

By shifting ((1.157)), we get L1; = Lap, where B is the origin and A is a paral-
lelogram with vertices [1,0, 1], [0, 1,1], [0,2,0], [1,1,0]. Therefore, by the point-
polygon formula (T.156) with h = 2/v/3 and vol A = /3,

W0 (Y2 o (V27
L= —— (4100 S e (55 ). (1.223)

Hence, since the I’s are already given by ((1.189) and (|1.221)), we get, simplifying,

V2 4r 25In3 32
9

14
—t—— == tV2+ —Vv2 thv2 1.224
5 + v 27 arccot v/2 + 27\/_aurgco V2 )

4
L11:§+

L21r

Since the reduction technique cannot be applied on AB being parallel, we use
the overlap formula with A being one face of the octahedron. By symmetry, we
can choose B as all three opposite edges to A instead of just one, the mean value
stays the same (see Figure . This choice makes the overlap formula simpler.
To compute vol A N proj B + k, we slide the projection B across A. To get Loy,
we then integrate over the length of their intersection with respect to all vectors
k. By symmetry, we can integrate over just one sixth of all sliding domains (see
Figure[I.14 for our overlap diagram, in which white numbers represent the number
of line segments in the AB projection intersection with respect to position of the
shift vector k — black dot).

symmetry

Figure 1.14: Overlap of the opposite face and edges of an octahedron

Hence, setting up the integral,

Loy, = Vh? + k?2vol AN proj B + k dk, (1.225)

6
vol Avol B /D
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where h = 2/4/3,vol A = /3/2,vol B = 3y/2 and D is a domain in Figureon
the right consisted of two subdomains D; where j € {2,3} denotes the number
of line segments of the intersection A N (proj B + k), which is a polyline. We
have D = Dy LI D3. Let k = (x,y) with the origin coinciding with the centroid of
proj A triangle with vertices [0, ?], [—@, g], [—@, —?] (see Figure|l1.14)). Let
us denote v; = vol AN proj B + k for all k € Dj, then we have for the subdomains:

« Ds is a triangle with vertices [0, 0], [%, 0], [@, ?] in which vz = v/2

o D, is a triangle with vertices [%, 0], [QSﬁ, 0], [%, \2[] in which vy = M — %
Note that in general, vol A N proj B + k is linear in (x,y) in the subdomams. By

inclusion/exclusion, we can write our integral as

Loty = oas [fnguDQW h?+a?+y? dedy+[[p, (v3—v2) Vh*+ 2% +y? da:dy}

= Vol AvolB UfD3uD2(7—*)\/ h?+x?+y? dxdy+ffD3<2I q\/ h?+ 224y dxdy}
(1.226)

Note that the second integral over domain 3 is already in the form of an integral
over standard fundamental triangle domain since D3 = D(‘G[, 7). The first inte-
gral over domain 3U2 can be written in such manner after rotation and reflection.

To obtain the correct transformation, we let ¢’ to start (be zero) for the half-line
connecting the origin with point [%, ?], increasing in the clockwise direction.
That is ¢ = 7/3 — " and thus z = r cos(3 —¢') and y = rsin(3 —¢’). Expanding
out the trigonometric functions and writing 2’ = r cos ¢’ and ¢y’ = r cos ¢, we get

7 s 7r1,\/§

x—rcosgcosgo —I—rsmgsmgo =1 cos§+y sin — = —a' + —1/,

3 2 2
1.227
T T s Ve o 1, ( )
= rsin - cos ' —rcos —sing’ = 2'sin — — ¢ cos — = —
Y 3 08¢ 3 sine g Yesg T g gy

and so

4 2 4v2
vy = —f—i:—f—i—y’. (1.228)

3 V3 3 V3
Our integration domain D5l Dy in (2/,y') is simply D( 3 ). Note that 2% +
is invariant with respect to this transformation so 22 + y* = 22 + /2. By scaling
with h, we can write Loy, in terms of the auxiliary integrals as

Loy, = volghvgolB [%3/51(()(1)) (g’ %) - %11((1)) (:\g’ 3) hl(l) (EJQ? 3)

(1.229)
- 31 (.5) - 4 (4.9)]

with g = ? and g = %. Via recursions (see Table [F.1]in Appendix), we get

Lo, = -3+ &Tf — 1m 164:1381}‘ + Zarccot V2 4+ £+/2argeothv2  (1.230)

L22r

Again, we use the overlap formula for A and B being opposite faces of K. By
symmetry, we again integrate vol A N proj B + k over one sixth of all positions of
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1.4. Bivariate functionals in three dimensions

symm etry

Figure 1.15: Overlap of the opposite faces of an octahedron

vector k (see Figure in which white numbers represent the number of sides
of a polygon of intersection of AB projections with respect to position of the shift
vector k — black dot).

Setting up the integral,

Loy, = Vh? 4+ k2vol ANproj B + k dk, (1.231)

6
vol Avol B /D

where h = 2/v/3,vol A = vol B = v = v/3/2 and D is a domain in Figure on
the right consisted of two subdomains labeled 6 and 4 according to the number
of sides of the intersection (which is a polygon). That is, D = Dg Ll Dy. Let
k = (x,y) and denote v; = vol A N proj B + k for those k which lie in € D;, then
the subdomain

V6 V2

¥, %] in which vs =

« Dg is again a triangle with vertices [0, 0], [@,0], [
1 V3.2 V3,2
/3 2 2 Y
« Dy is a triangle with vertices [¥8, 0], [2£8 0], [%, g] in which vy = % —
V2w | 2?3y
3 2¢/3 2
Domains 6,4 coincide with 3,2 in Loy, case, that is Dg = D3 and D, = Dy. Note

that in general, vol A N proj B + k is quadratic in (x,y) in the subdomains. By
inclusion/exclusion, we can write the integral as

Loy = wioaip |:ffD6UD4 v/ h?+a?+y? dady + [[p, (ve — va) VI*+22+y? dxdy]

x z? 2
- VOM6V°”3{”D6UD4 (% - 2\? +35 \/gTy) h2+22+y? dady

X ac2
+ Jipy (—35 + 22 - ) VT2 dxdy}

(1.232)

Again, the integral over domain 6 is in a standard form. The other integral must

be first transformed using x = %x’ + @y’ LY = @m’ — %y’ , which gives

4 2v/2 2 31> 4 22 2 2

e
— J— _+_ J— — _
33 3 23 2 3/3 3 3V T3

V4
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and therefore

Lo = ol [stal8) (45) - 1 (£.5) - VIl (£.3)

Going through all recursions, we get, after simplifications

8 V2 32r 293In3 64 124
Loy = — 4+ Y2 — 2 arceot V2 + —o- /2 argeoth v2 (1.235
2 =59 T35 2m0vz 135 V2 eV 2argcoth V2 (1.235)

Ls;
Putting everything together by using (1.219), we finally arrive at

4 13v2 47 109In3 16arccoty/2 158argcoth\/§\/§

_ - g eve Br 1.236
3= 705" 105 45+630\/§+ 315 315 (1.236)

Rescaling, we get our mean distance in a regular octahedron having unit volume

(1) _ 3/3( 4 ,13V/2 4r | 109In3 | 16arccot 2 | 158argcothv2 ~
v (03) = \3/; (T%*'W_E 630v2 T — T \/5) ~ 0.65853073.
(1.237)

1.4.6 Regular icosahedron

Regular icosahedron shares many features with regular octahedron. We have al-
ready seen that the Crofton Reduction Technique itself is very powerful to reduce
the the mean distance until two domains from which we select two points have
empty affine hull. As a consequence, the only remaining terms in the icosahe-
dron expansion are the parallel edge-face and parallel face-face configurations.
Note that these two parallel configurations have the same overlap diagram as the
octahedron has.

Let # = (1 + 1/5)/2 be the Golden ratio. A standard selection of vertices is
[£¢,+1,0] and all of their cyclic permutations. That way, our edges have length
| = 2. The volume is equal to vol K = 10(3 + /5)/3 and the face area v = /3.

Again, we put P = LP. For the definition of various mean values P,, = LY see

ab
Figure [1.16]
Performing the reduction, we get the set of equations:

pPs3 = 6( P32 — Ps3),
pP3y = 3(Pyy — Psp) +
pPs1 = 3(Po1 — Ps1) +
PPy = 4(Pory — Paae),
pPaoy = 4(Para — Pasy),

2<P31 - P32)7
1(Psy — Ps1),
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Figure 1.16: All different Lg;) configurations encountered for K being a regular icosa-
hedron

- P22d)7

pPasg = 4(Pyy
Py — Pag;),

(

pPag; = 4(

pPso = 3(Po — Pyo),

pPo1y = 2(Pr1a — Pory) + 1(Paou — Pa1v),
PPorw = 2(Piiy — Poiw) + 1(Poot — Porw),
pPory = 2(Piy — Poyy) + 1(Pyy — Pary),
pPoia = 2(P{; — Pya) + 1Py — Paia),
pPaie = 2(P{] — Pore) + 1(Pyg — Pare),

with
P — 2Pyq . Poy | Paay | Pre | ¢*Pa;
22 = + ;
5) 10 5) 1092 10
Py  Pouy Py Pog Poiy Py
P, —
2 5 +2¢\/5 5 T 5 e T 106
Pyy  ¢Poua  ¢*Poc
Pl =2
21 7 9 + 5
P2,/1 - ¢2P21r - ¢P2167
Py P Poor

T T T2

Py
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P2/0:¢P20T_Pj;fa
P2H0 = ¢2P206 - ¢P20f,
PQN(; = ¢2P20r — ¢ P,
Py = 2Py — Py,
P1/1 = ¢2P11f — ¢ P14,
Pl = ¢2P11g — ¢ P

Solving the system, we get, after simplifications,

18(12¢* Pr1q—12¢* Py1 p+4¢5 Pr1g+12¢* Priy — 6¢* Page +4¢° P, +6 Paoy)
5643 +p)(4 +p)(5 +p)(6 + p)
+ 108¢2P21r + 9P22r
54+p)B+p)(6+p)  5(5+p)(6+p)

P33:

(1.238)
When p = 1, we get for the mean distance
[ 3Loar  9Luiy  9Looe | 9Laoy | 9L11a
B0 175 350 ' 350¢% ' 17542 (1.239)
9L114 n 184> Loy n 3¢ L1y, n 3¢" Laor '
175¢2 175 175 175
Li1a
Let A" = [1,0,¢][-1,0,¢] and B’ = [0, ¢, 1][¢,1,0] be edges of K, then Li1q =
Ly p. By shifting, LA/B/ = Loa, wher O = [0,0,0] is the origin and A =
A" — B’ is a polygon with vertices [1, —¢, ¢], [—¢, L,¢,[—¢* —1,¢], (-1, —¢, ¢,]

(a parallelogram) having area vol A = 1/10 — 2y/5. Projecting O onto A(A), we

obtain proj, O = [0,—1 — %, %] and separation h = /2 4+ % Point-Polygon
formula yields

Lig = 2% (2]5 N5k Z) - 1) (3.2) + 19 (& 2;)) ~ 2.0431430525135.
(1.240)

Explicitly, after series of simplifications on I(()[l))(-, -) by recursion formulae, we
obtain

Lig = % + ﬁ + %(271’) (3—|— \/3) — é (S—i- \/5) arccot ¢

— 18—5 (3 + \/5) arccot (¢?) + 61 ( 3\/_> In3+ 120 (3 + \/_> Inb. (1.241)

Lllg

Let A" be the same edge as in Ljjq and B’ = [1,0,¢|[—1,0,¢|, then Ly, =
LA’B" By Shlftlng, LA’B’ = LOA, where O = [ i
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a pOlngIl with vertices [07 0, 2¢]7 [17 _gba ¢2]7 [_17 _¢7 ng]? [_2a 0, 2¢] having area
vol A = 2¢/3. Projecting O onto A(A), we obtain proj, O = [0,—2, 2¢"] and

3173
separation h = 4/ 13—4 + 2+/5. Point-Polygon formula yields

Ly = 22 (2[5}} (52 3) + 160 (= g)) ~ 3.1806727116118.  (1.242)

Explicitly, after series of simplifications,
Ly, = %—{—%%—% 2(5—|—\/5)+4i5(9+4\/_)7r——(9+4\/_)arccotgb

(1.243)

Liie

Let A’ be the same edge as in Ly1q and B = [¢, 1,0][¢, —1,0], then L1 = L/ p.
By shifting, Lap = Loa, where O = [0,0,0] and A = A’ — B’ is a polygon
with vertices [—é, -1, ¢, [—é, 1,9, [—¢% 1, ¢|,[—¢? —1, ¢] having area vol A = 4.
Projecting O onto A(A), we obtain proj, O = [0,0,¢] and separation h = ¢.
Point-Polygon formula yields

Ly = V20}1Li:‘4 (Iéo) ( arctan (¢2)) + 18y (gb, arctan <¢2)) ha% (¢2 ,arctan gb)

— Ity (%, arctan ¢)> ~ 2.3977565034445.
(1.244)

Explicitly, after series of simplifications,

Ly = +£ — % ( —l-\/_) (2+\/3) arccot ¢ — & 1 (2—1—\/5) arccot (¢?)
+ 3 (39 + 17f) argeoth ¢ + & (1 - 5v5) In3 — & (17 + 11v/5) In5.
(1.245)
L1t

Again, let A’ be the same edge as in L4 and B’ = [1,0, —¢][¢, 1, 0], then Ly, =
L. By shifting, Ly g = Loa, where O = [0,0,0] and A = A’ — B’ is a polygon
with vertices [0,0,2¢], [—%, —1,¢], [-¢% —1,¢],[—2,0,2¢] having area volA =

2 (5 + \/3) Projecting O onto A(A), we obtain proj, O = [0, —1 — %, | and
separation h = /2 + % Point-Polygon formula yields

e

vol A 275

Loy, = 20 (15{)) (3.7) -1 (3.%) + 10 (o, g)) ~ 2.8940519649490. (1.246)

Explicitly, after series of simplifications,

Lm:g,/1+%—é—§—81(1+\/3)+%(1+\/5)arccot¢

+ % (8 + 3\/5> argesch ¢ — 120 (1 + \/_) In 5. (1.247)
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L2Oe

Let A be the face of K with vertices [1,0,¢], [-1,0, 6], [0,¢,1] (an equilateral
triangle) and let B be vertex [¢, —1, 0], then Log. = Lap. Projecting B onto A(A),
we obtain proj, B = [¢, —3, %] and separation h = 2¢/+/3. By Point-Polygon
formula,

1 1
L208 = ? (I(()(l)) ( 7T> - I(()é) (W’ arctan (\/ 15 + 2\/§)>

2027 3
(1.248)
+ 1§ (%, arctan (V15 — 2/3)) ) ~ 2.688720552544.
Explicitly, after series of simplifications,
L206—g—|—‘[+8” (2+\/5)—m(2+\/3)arccot¢ (1.249)

+ 5 (104 + 47/5) argeoth ¢ — & (112 + 61/5) In5.

L201‘

Let A be the same face of K as in the section on Log, and let B be vertex [1,0, —¢],

then Loy, = Lap. Projecting B onto A(A), we obtain proj, B = [1 2 @] and

» 3773
separation h = 2¢?/+/3. By Point-Polygon formula,
Log, = 22 ( 15 (%:3) = 160 (5= g)) ~ 3.28394367574. (1.250)

Explicitly, after series of simplifications,

Log, = g (5+\/_)—7—§—igg(9+4\/5)+5<9+4\/5)arccot¢
— (2—3 + 2‘[) argcoth ¢ + 5= (23 + 9\/_> argesch ¢ + (14038 + f) In 5.
(1.251)
Laos

Let A be the same face of K as in the section on Ly, and let B be vertex [¢, 1, 0],

then Logs = Lap. Projecting B onto A(A), we obtain proj, B = | ,%3, %] and
separation h = 2/+/3. By Point-Polygon formula,
Lany = 22 (169 (45) - 1) (4. anctan )
(1.252)

— 1Y ( _arctan (\/ﬁ - 2\/3)) ) ~ 2.2472771159735.

Explicitly, after series of simplifications,

LQOf:%O+¥ 81 + 2 arccot ¢ + 22 arccot(¢?) — £/51n 3—|—( %‘ég)lnf).
(1.253)
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L21r

Let A be a face of K and B be a boundary of the opposite face. In icosahedron
K, two faces are separated by the distance 2¢?//3. Since the overlap diagram of
these faces is the same as the one associated to two opposite faces of an octahedron
(see Figure , the coefficients of the expansion of irreducible Loy, term into
auxiliary integrals Ii(jl) match. However, this is only valid provided the edge length
is v/2. Since our icosahedron K has | = 2, we first rescale our icosahedron by
1/ V2. In the final step, since the mean distance scales linearly, we have just
rescale Lo, back by multiplying it by /2. Hence, by using Equation (1.229)),

Loy, = Loy, =2 :ﬂvolghjolB l4f[é )(\/;;9 fjfo) (\/f:’3)

(1.254)

—hI$) (B, 7)) + 1) (B 1) — 21 (6{1;;)] ~ 3.1819213671057,

where h = \/§gb2 / V3, vol A =3 /2 and vol B = 3v/2 are the rescaled icosahedron

opposite faces separation, rescaled face area and face perimeter, respectively.
Contrary to the octahedron case, we now have % =1/¢* and ‘f =1/(2¢?). Via
recursions, we get after some simplifications,

Lot = B+ 4950 = 310+ 7 = 55 (94 4v5) + § (9-+ 4v5) arceot 6

+ (% + 13‘[) argcoth ¢ + (17719 + 77‘/5) argesch ¢ — 7104312328\[ In5.
(1.255)

L22r

Again, Overlap diagram of Ly, configuration matches that of an octahedron.
Immediately from Equation (1.234)), by rescaling and replacing v/2/2 by 1/¢?
and v/2/4 by 1/(2¢?) in the first argument of Ii(f) integrals, we get

Lo = V25 s [wfoo (wv 5) = (3 5) - VAR (50 5)
) ) D () - o (3 8) 2 (1)
- 221 (=, 3)] ~ 3.12998447304770,
(1.256)

where h = v/2¢?/v/3 and vol A = vol B = 1/3/2. Explicitly, after some simplifi-

cations,

b= §(0305) 7 - B+ B (e
— (67 + 30\/_) arccot ¢ + (611 + 164[) argcoth ¢ (1.257)

—@(9+5\/_>argcschd) (%4- f>1n5
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L33

Putting everything together by using (1.239)), we finally arrive at

I 197 239 5 (17226+6269v5)r  (2186+1413v/5) arccot ¢
33 = 535 + 52575 525 V + f 157500 - 15750
(82—75v/5) arccot (¢2) | (15969+7151v/5) argeoth ¢ 4(2139+881v/5) argesch ¢
5250 + 12600 + 7875
(4449-1685V5)In3  (75783+37789/5) In5

12000 - ST ~ 1.66353152568500.

(1.258)

Rescaling, we get our mean distance in a regular icosahedron having unit volume
Ls;
10
/2 (34 /5)

(1)

vy’ (icosahedron) = ~ 0.64131248551. (1.259)

1.4.7 Regular dodecahedron

Finaly, we will calculte the mean distance in the regular dodecahedron. Let us
choose the vertices as [+¢, +¢, £¢], [0, £1, £¢?] and all their cyclic permutations
(¢ = (1 4+ +/5)/2 as usual). Under this choice, each edge has length [ = 2 and

each face has area v = /25 + 10/5.

Performing CRT, we get the configurations shown in Figure Even though
there are less configurations than for the icosahedron, the dodecahedron has more
complicated overlap diagram (see Figure , there is ten-fold symmetry with re-
spect to rotation and reflection). Distance moments are again connected through
CRT via the following set of reduction equations

pP33 = 6( P32 — Ps3),

pP3y = 3(Pay — Psy) + 2(P31 — Psy),
pPy = 3(P21 — P31) + 1(P3g — Pa1),
pPase = 4(Py) — Paoe),

pPao; = 4( P22i)

PPy = 3(P20 — Py),

PPo1y = 1(Page — Pory) + 2(P11 — Pa1y),
pPory = 2(P}; — Pyiy) + (P, — Poyg),
pPora = 2(Py| — Py1a) + 1(Pyy — Paia)

with

1
Py = @ <\/5P22e + ¢ Pagr + ¢2\/3P22i> )

Py, P P. Py
21 21d ‘I‘ ¢ 21f + 21 :
3 3 6 662

¢\/— (P211; + ¢ P21d)

Py =

/
P21_
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\ Ilp
»“ 1']_

JEAN 15BN
5‘35 ) gq; ?? e [z%l 4 i

Figure 1.17: All different L((Ii) configurations encountered for K being a regular icosa-
hedron

1
Pé&:ﬁ(gbpﬂf—i_(bPer_Pﬂd)a
Pao = — (Paoe + 6Paos + &* Paor)

20 = 5 2 20e 20f 20r ) 5

P2/o - ¢2P20r - ¢P20f>
P2/6 = ¢2P20f — ¢ Page,

1
Py = ——= (2Pi4+ ¢Puy),

NG
1
P1/1 = % (2¢P11t - P11f)>
1
P{&:ﬁ(ébpng‘fﬂﬁpnf—ljndf

Solving the system, we get, after simplifications,

_12(2\/5P11d+5¢P20e+2¢3P119—2¢4\/5P11f—5¢5pzof +4\/5¢6P20r+2¢91311t)

—
” /5 (3+p)(4+p)(5+p) (6 +p)
60¢P21r 3P22r

V(4 +p)(5+p)(6 +p) M)

(1.260)

When p = 1, we get for the mean distance
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( R

Loe Li1q i Loge B Lyg Ly
BT 3501 | 14543 35vB¢ 35
Losy  @Loos . 2¢La1,  2¢°Lag, — ¢°Layy

+ — + + :
14 145 75 35 35v/5

(1.261)

Li1a

Let A" = [0,¢2%,1][0,¢?,—1] and B’ = [¢, d, —¢|[1,0, —¢?] be edges of K, then
Li1g = Lap. By shifting, La g = Loa, where O = |0, 0, 0] is the origin and A =
A’ — B'is a polygon with vertices [, 1, ¢?], [~1, ¢%, V56|, [~1, 9%, 8], [, 1,1/¢)]
having area vol A = 21/3. Projecting O onto A(A), we obtain proj, O = [~1 —
%, 2,0] and separation h = (1 + v/5)/v/3. Point-Polygon formula yields

o= 85 (1) (2 5) 4 180 (1) ) (. eeton (V5 2 v5))

— I (¥, arctan ,/2) > ~ 3.1367199950978.
(1.262)

Explicitly, after series of simplifications,

Lndzm—§+5‘9ﬁ—§— (2+\/_> 108(5+2\/_>1n3_%

% (2 + \/_> (2 arccot 2 + 2 arccot v/2 — arccos 3) 108 (5 + 2\/_) argcosh 13
(1.263)

Lllg

Let A’ be the same edge as in Ly14 and B’ = [¢, —¢, ¢][¢?, —1,0], then Ly, =
Lap. By shifting, Lyp = Loa, where O = [0,0,0] and A = A" — B is a
pOlngH with vertices [_¢7 ¢3a _1/¢]7 [_¢27 \/5¢7 1]7 [_¢2a \/g¢7 _1]7 [_¢7 ¢3a _¢2]
having area VolA = /10 — 2¢/5. Projecting O onto A(A), we obtain proj, O =
[—1-— \[ 2+ \/5, 0] and separation h = /10 + \2} Point-Polygon formula yields

3 ™ 1 s
Ly, = 212 (2150) (50 Z) — 160 (552, %) + I (5% ) ) ~ 4.60478605392525.
(1.264)
Explicitly, after series of simplifications,
_5 1 11 1 a7 | 21 1
Lllg_g—v+ﬁ+f— (—+7)w+m(219+97\/3)1n3
+ = (47 + 21\/_> (arccos 2 4 2arccos \ﬁ + 2 arccos \ﬁ — 2 arccot \/_>

1 7
+ — (219 + 97\/_) <argcosh 3 argcosh 3)

120
1 9 7
+ 50 (91 + 33\/5) <argcosh ﬁ — argcosh m) :

(1.265)
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Liie

Let A’ be the same edge as in Ly14 and B’ = [1,0, —¢?|[—1,0, —¢?], then Ly =
LA’B’- By shifting, LA’B’ = LOA7 where O = [0,0,0] and A = A — B’ is a
polygon with vertices [—1, ¢?, v/5¢], [1, ¢, V59, [1, #?, ¢, [~1, $?, ¢] having area
vol A = 4. Projecting O onto A(A), we obtain proj, O = [0, <b2 0] and separation
h = ¢?. Point-Polygon formula yields

Ly = VQO}& (](()0) (¢2,arctan \/_¢) + I( ) (%,arctan qu) — I(()O) (¢2,arctan gb)

¢>> ~ 3.770095521642.

— Ié(l)) <¢, arctan
(1.266)

Explicitly, after series of simplifications,

Lnf:V ,_,_[ f—l—( )7?+48<125+53\/_)arccos\9ﬁ
+ % + %) (2 arccos - \ﬁ + 2arccot 2 — arccos 53— 2 arccos £ — 2arccos f)
+ 15 (23 + 9\/_) argcosh 2 — = (125 + 53\/_> argcosh —~ wn
4i (37 +17v/5) argsinh 2 — £ (23 4+ 9v5) In3 + & (37+ 17/5) In’.

(1.267)

Lllt

Again, let A’ be the same edge as in Ly14 and B’ = [¢, —¢, —¢][0, —¢?, —1], then
L1y = Lap. By shifting, Ly g = Loa, where O = [0,0,0] and A = A’ — B’ is
a polygon with vertices [—¢, ¢, ¢?], [0, 2¢?, 2], [0, 2¢?%, 0], [~ ¢, ¢?,1/¢] having area

volA = ,/2 (5+ \/5) Projecting O onto A(A), we obtain proj, O = [-1 —

%, 2+ \/5, 0] and separation h = ,/10 + % Point-Polygon formula yields

3 T 1 T 1 Y
Ly = 28 (Iéo) (3.2) + 15 (5. 2) - 1% (3% Z) ) ~ 5.04162416571318.
(1.268)
Explicitly, after series of simplifications,

2
Ly =YE 142 S+ Z - x(20413V5)
1—5 (29 + 13\/_) (2 arccot v/2 — arccos %) + (% + %) (argcosh 4 — argcosh 2)

+ ﬁ (133 + 61\/5) (argcosh 3 — argcosh% —1In 3) .
(1.269)

L2Oe

Let A be the face of K with vertices [1,0, —¢?], [, ¢, —&], [0, ¢*, —1], [, ¢, — ],
[—1,0, —¢?] (a regular pentagon) and let B be vertex [0, $?, 1], then Ly, = Lag.
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Projecting B onto A(A), we obtain proj, B = [0, ¢2§/3’ —%] and separation h =
2+ f By Point-Polygon formula,

3 1 - 1 - 1 2 . 1 5—25
Lone = 22180 (3.8) = 80 (3.%) — 180 (35) + 180 (5 ovctan V5525

+ 18 <¢>; arctan /5 (5 — 2\/6)> ) ~ 3.346942678627.
(1.270)
Explicitly, after series of simplifications,

8 arccos %

7./ 2
L2Oe: \3/;+13\/§ 4

4 4w 1 13Inb
15 _Ts_ﬁ+15\/5_<3+10f>1n3_ 505 T 1575
+ (% + ﬁ) argcosh 2 + 2 (25 + 8\/_) (argcosh \/% — argcosh \/%)
__ 16arccot2 8arctanM SarctamM 8arctan 3\1/9170 __ 8arctan/10

15v/5 + 15v5  15v56 155 15v5

(1.271)

L20r

Let A be the same face of K as in the section on L. and let B be vertex
0, ¢2 1], then LQOT = Lup. Projecting B onto A(A), we obtain proj, B =
[0, 15 (\/_ 5) %] and separation h = \/W By Point-Polygon for-

mula,

Ly, = 22 (Iéo) (3:5) + 160 (g %) — 100 (- 5) — 100 (- 25)) (1.272)
~ 1.87605984948,

Explicitly, after series of simplifications,

LQOT_A_M+5I+3\2f+f+ 16W+7_*(20+9\/—)arcc0t\/_
+ (3 + 30\[) In3+ 75 (20 + 9\/_> (arccos g arccos \/% — arccos \/%>
_ ﬁ (85 + 37\/_) argcosh 2 + <g + ﬁ) (argcosh% — argcosh 3)

(1.273)

Laof

Let A be the same face of K as in the section on L. and let B be vertex
[0, —¢?, —1], then Lsgy = Lap. Projecting B onto A(A), we obtain proj, B =
[0, —5+f’0‘/5, -2 — 7] and separation h = 2,/1 + f By Point-Polygon formula,

Loy = 2h3<[(()0) (qﬁ g) [écl]) ( 2% %) +](()0) <2¢2,arctan 5 (5 —|—2\/_)>

27

— I (3. 7) - Iy <¢’ arctan \/85 — 38\/5)> ~ 4.000363965317.
(1.274)
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Explicitly, after series of simplifications,

2

Loy =1+ YE - 2 Ty BT 2(24VB)In3 4 45 (54 2v5) Inb
— % (5+2\/_> arccos 7+% (5—1—2\/_) (arccot 24arctan %—arctan (7\/5))
+ (47 + 155\2f> argcosh (gg + 15\[) argcosh 3 + 150 (35 + 4\/5) argcosh %
— ﬁ (5 + 2\/_) argsinh 2.

(1.275)

L22r

Finally, let us take a closer look on parallel configurations Lsj, and Lasg.. We
start with the latter. Let A and B be opposite faces of dodecahedron K with
separation h = /10 + \f then Loy = L ap with overlap diagram as seen in Figure
[1.18 Note that, due to symmetry, only one tenth of the diagram is sufficient
to be considered. The subdomains where vol A N proj B + k can be written as a
single polynomial are shown in the diagram. Again, they are labeled by number
of sides of polygon of intersection AN (proj B+ k), sliding proj B+ k across proj A
by letting k to vary (vector k is shown by a black dot). Let us denote D as the
union of the labeled subdomains. Then, by Overlap formula,

Logy = —— / VIZ T 12 vol AN proj B + k dk, (1.276)
vol Avol B Jp

Figure 1.18: Overlap diagram for opposite-faces configuration in dodecahedron

Let us express vol AN proj B + k in the aforementioned subdomains. We de-
note v; = vol AN projB + k for all k € D;. Let us restrict ourselves to the
plane A(A), in which we put k= (x,y) and in which proj A is a regular pen-

tagon with vertices {,/2 + fcos mi o 24 2 sm @}, i €{0,1,2,3,4} and area

volA = /5 (5+2\/_ ) Similarly, proj B is another pentagon with vertices

[\/ﬂ coS 27T(iJ5rl/2), \/@sin 2”“;””} and areavol B =vol A = /5 (5 + 2\/5>

Under this projection, the labeled subdomains D; are triangles with vertices
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(subdomain Dy) [,/g + == % ( + \/_ﬂ {,/ %,O} , [,/8 + %,O}, in which

=110<8\/W 4 (5435 :U—I—Wx —5y/5-2/5y )

(1.277)

sudomain D) [ 5.1 (V)] [T V5 -2 [ 2= 3.0]

in which

Ve = 1(8\/145+62\/5—4(5+3\/5>x— 10 (5 4 v/5) 2

20

_4\/my+10(1+\/5)xy—5 2(5+\/5>92>»

(1.278)

(subdomain Dg) {,/ 5, V5 — } {,/ 25, O] , [1 /2 — \%, 0}, in which

08:110<4\/130—|—58 5—8vBz—5,/1+ Za2—5,/5 (5+2V/5)y ) (1.279)

(subdomain Djg) [,/1 — %, V5 — 2] ,[0,0], { 1-— %,O}, in which

V1o = ;\/5 +2v5 (4 - VBa® = Viy?) . (1.280)

In order to use the Overlap formula effectively, that is, to integrate v; = vol A N proj B + k,
k € D; over all subdomains Dj, it is convenient to first perform appropriate ro-
tation transformations and inclusion/exclusions. First, by inclusion/exclusion,

L22r -

_|_

10
vol Avol B

ug\/h? + 22 + y? dady +

(/ U10 h2—|—x2+y2 dZEdy+
Do

ugy/h? + 22 + y? dzdy
D1oUDg
ug\/ h? + x2 + 2 dxdy),

(1.281)

D1oUDgUDg D1oUDgsUDgUDy4

where uy = vy4, ug = vg — vy, ug = Vg — Vg and ug = v19 — vg. Explicitly

Uy =

Ug = —

usg = —

U190 =

=42\/25 4115 — 2 (543v/5) + 5/5 (5+2v5) — /5 (1.282)

2 3 4 2y
: 5—1—2\/54—:10(1—1—\[) Y 2—1—\[ 2(1—1—\/5) (1.283)
22 22 ’

— 2y2 5+%—y4 5 — /5,

1
S

1= ) +u/2+ 2 -2 (1+5) (L8
— 242 2f\/25+ 115,
_2,/5 -2 1+ Z (1.285)

(SN

Note that domain Dy is already in the form of the fundamental triangle domain

D(g,g

) with ¢ = /1 — % Since (/h = 1/(2¢*), we immediately get in terms
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of auxiliary integrals,

10

1 T 1 T
/Du10 h2 422 +y2dady = h3< — 25— 2VBI (5. T) + 2210 (5. 2)

(1.286)

Domain D = D1y U Dg U Dg U Dy in (x,y) is transformed to the fundamental
domain D(¢, T) with ¢ = 2,/1 + % in (2/,y") via polar angle substitution ¢ =
/5 — ¢/, that is ¥ = rcos(§ — ¢') and y = rsin(f — ¢’). Expanding out the
trigonometric functions and writing ' = rcos¢’ and ¢y = rcos¢’, we get the
following transformation relations

a::i(l—l—\/g)x'—i—\/g—\égy', y:\lg—\ggx'—i(l—l—\/g)y' (1.287)

and so

4 4 2 2
== WOV —2' (24 — | =20/ 1+ =+ +2% )1 — —=. (1.2
Uy 5\/50+ NG :v( +¢g> Y/ +\/5+xy+x \/ 7 (1.288)

Since (/h = 1/¢, we immediately get

Jpus/RZ+ 27+ o2 dady = h? <§\/50 +22V51 (3,2) = h(2+ %) 1 (3. 2)
TR (5 )+ D (1) <y TR (9))

S

In order to express the remaining integrals, we write Dyg U Ds U Dg = Ey \ Fs
and DlO U Dg = Eg \ E10> where

e [, is a triangle {\/ﬁ,% (1 + \/gﬂ, [0,0], [%\/ﬂ7 _%],

o Fj is a triangle [ 2 — %,0], 0, 0], [% 1+ %, —%]’

o FEjis a triangle [% g — 21—\}5& (\/5— 1)

e FEy is a triangle B\/ﬁé (\/5 1
Note that EFg C E4 and E;y C Eg and thus
fDm UDsUDgU6 \/mdwdy :fE4u6 \/mdwdy _fE6U6 \/mdxdy,
IpsupsusVR2+a?+y2dedy = [gusy/h2+ 22 +y2dady — [, usv/h?+a2+y2dzdy.

(1.290)

Domains Fy, Eg, Es and Ej can be rotated to fundamental triangle domains after
appropriate rotations. First, let ¢ = ¢’ — /5, so

x = i (1+V5) x'+\/2 - \fy’, y = —\/2 - \fﬂc”ri (1+V5)y (1291)

and thus, after simplifications,

2 1 2
= V5 4+2v5+ 22 [ 1+ — | — 2% /2 + —. 1.292
ug SVO+ V5 + :c< +\/5> z'%y ) +\/5 ( )
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Suddenly in (2/,y'), we have E; = D(¢, %) and Eg = D(C, T) with ¢ = /258,
hence ¢/h = 1/(2¢?) and immediately in terms of auxiliary integrals,

fDlOUDSUD6u6 \ h? + a2 + ygde‘dy: h3<_§ % 2\/_ (IOO <2¢2’ ?) ]00 (L
)))'

5 2427
1

P2 ) (0 (3 %) ~Fu (3 )) =1 255 () (3 )~ 2 (3

m\ﬂ 01\>1

/\m

Next, let ¢ = & — ¢/, from which we obtain transformation relations

1 5 V5, 1 )
x:Z V5 1) \/ +— y:\/§+?x—1(¢5—1)y,(1.294)
SO

:_7\/5_2 ’2,/1+— (1.295)

In (z/,y), we have Ey = D((, %) and Eyy = D(C,%) with ¢ = /1 — 4, hence

¢/h =1/(2¢*) and immediately in terms of auxiliary integrals,

Iprups usVIE+ 224 dady = h3< — V5 =25 (I (5 %) — I’ (35:3))

2610
() (%) 0 (D)~ T () (%) - ) () )
(1.296)

Therefore, in total,

3 ™ 1 P
Logy = vollf%olB< 5+ 2\/51(()0) (ﬁ’ 3) - % 5+ 2\/5-7(()0) (ﬁ 2?)
25 2E (s ) + OBV (3,5) - 25 (o 2B (3. )

wiidls) o) oy (o) + 25 L onrg ()
5 5 ’ 5 ’
e (GE) o (1 2) 4 p2r) (3,2) 2,1 2RI (2, )

~ 4.69357209587.

Or explicitly, after a lot of simplifications,

/2 s 4{ 116 8(1839+820V5)w
LQQT_TS_%_ +25\f 75f+25\ﬁ A
+ & (67 + 30\/_) arccos % + g (388 + 173\/_) (arccos \/% + arccos \/%)

+ 4% (817 + 371/5) (argeosh 2 — argeosh 4) + 51 (1833 +820v/5) In3
+ %0 (3538 + 1523\/5) (argcosh \/% — argcosh \/%) — 55 (67 + 30\/_) arccot v/2
+ -1 (1833 + 820\/5) (argcosh % — argcosh 3)

250
(1.297)

83



1.4. Bivariate functionals in three dimensions

L21r

By definition, Lsi,, = Lyp, where A is a face of K and B is the perimeter of its
corresponding opposite face. Again, we use the Overlap formula to deduce the
value of Lsy,, that is, by symmetry,

Loty = ——— / VA2 ¥ K2 vol AN proj B + k dk, (1.208)
vol Avol B Jp

where volA = /5 (5 + 2\/5) is the area of A and vol B = 10 is the length

of B. The overlap diagram is the same as in the case of Lgg,., although the
value vol A Nproj B + k now corresponds to the total length of polyline A N
(proj B + k) of intersection. In order to keep the naming of the subdomains D;
and functions v; = vol AN proj B + k, k € D; the same as in the case of Ly, we
let 7, exceptionally, to denote twice the number line segments of AN (proj B + k)
in this section. That way, we get D = D1y U Dg U Dg U D4 and

2
U4:4+\[ x,/2+\/5, _4+ N \/3 % ,
vg =24 % —2,/1- 2, v10 = 2V5.

Let uy = vy, ug = vg — vy, ug = Vg — Vg, U9 = V19 — Vg, that is

w=4+% -z /2+Z, ug=—%+2./2+ Z+4(1-5),
up=—-2+ % +2/1- Zz, us=-2+ % +x,/7 - F -4 (1-5).

Overall, by inclusion/exclusion,

Loy, = VoljgolB<fDm uipvVh? + 2% + y? dedy + [, ugv/h? + 2% + y? dzdy
+ [, usVh?* + 2* + y? dedy — [, ugv/h* + 2% + y* dzdy

+ Jg, usVh? + 2* +y? dody — [ usvh* + 2% + 32 dxdy),
(1.299)

The first integral can be immediately expressed in terms of auxiliary integrals

(1 300)
Performing the same set of transformations as in the previous case of Lo, that
is
e o =7/5—¢, we get u4:4+%—x’ 1—|—%—y’,

« p=¢ —7/5, WegetuG:—%er'H,

. <,0:27r ¢, we get ug = 2+%—|—2x’ 1—%
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and as a result, since all the subdomains are now expressed as fundamental tri-
angle domains, we get

I u4¢mdxdy=h3<(4+jg) 15 (3, 2)-h 1+ Z1f

JDrounsuns ugy/h2+22+y? dedy = h3< 2 ([ ( 1 21) _ 7w (L z))

B () (8 ) - 0
fDlOUDS usy h2+l'2+y dxdy - h3< (iﬁ") 2 (](()(1)) (ﬁ’ 2%) ((](1)) (2¢>4’ %))

Therefore, in total Therefore, in total,
Loy, = %((\[ 2) 1§ (% 2%> 4 Qléé)(ﬁ»%) B 213?(%%")
r VO voO 5
+4(5+VB) Iy (3, 7) —hlg (2,7) + 21— 2RI (5, %)

T () + VD (s ) - T (15) )

~ 4.808558828667.

Or explicitly,
L21:149_29§_@_ 166

30 5 15 5v3 + 15v5 + S\F 225 <19 + 8\/_)

— ﬁ (2 +5 ) (arccos % + arccos \/%) + %4068\/5 (argcosh% — argcosh 3)
+ 271+117f

5o~ (argcosh 4 — argcosh 2) + %ﬁgﬁ (argcosh \/% — argcosh \/%)
— % (9 + 4\/3) arccos £ (9 + 4\/_) arccot v/2 + 600 (1043 + 468\/5) In 3.
(1.301)

L33

Putting everything together by using ([1.261]), we finally arrive, after another
series of simplifications and inverse trigonometric and hyperbolic identities, at

&
Lag = 1516 ¢ 2\/_ 124/3 _ T2 12\/§_|_ 342 | A9 | 67r
1575 45 175 1575 175v/5 | 23625 ' 9455
n (397—-244V/5) arccot 2 n (24023+11788+/5 ) ((arccos 2 —arccos % )
18900 94500
(461+212\/5) (arccos %+arccos %) . (1031+521\/5) argcosh 13—3
1000 75600
(367+163v/5) argcosh9  (22197+8149+/5) (argcosh 12
16800 + 84000
(15763+7063v/5) (argcosh L —argcosh 3) n 2(423+187V/5) (argcosh 4—argcosh 2)

57
—argcosh 77 )

21000 375
288889+129739v5) In3  (109-3143V5)In5
378000 + 151200 ~ 2.533488631644.

+ o+ o+
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1.4. Bivariate functionals in three dimensions

Rescaling, we get our mean distance in a regular dodecahedron having unit volume

L33

v%l)(dodecahedron) 33
/30 4+ 14/5

~ 0.65853073. (1.302)
1.4.8 Unsolved problems
Weights

We believe that the equation for weights ((1.183]) possesses a closed form solution
in terms of geometrical properties of convex non-parallel polyhedra. However, we
were unable to deduce that.

General convex polyhedra

Let K C R? then for any fixed p > —d, L%}{ is continuous with respect to
continuous transformations of K. Hence, in principle, we could obtain the formula
for convex parallel polyhedra by a continuous limit from some convex non-parallel
polyhedron. However, were not able to perform this limit.

Bounds on moments

Also, we believe, since the value p = 1 is not special, there could be a bound on
L'?) similar that of Bonnet, Gusakova, Thile and Zaporozhets [12].
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Chapter 1. Crofton Reduction Technique

1.5 Bivariate functionals in higher dimensions

1.5.1 d-Ball
Consider a bivariate symmetric homogeneous functional P of order p dependent
on two random points picked uniformly from the unit ball B; = {x € R? |

|x|| < 1} with volume voly; By = kg = wg/d. Additionally, we require P to be
rotationally symmetric with respect to the origin. That is, for any x,y € By
and any orthogonal matrix R we have P(Rx, Ry) = P(x,y). This assumption is
satisfied by the choice P = LP (which is implicitly assumed in this section).

Reduction system

According to our convention, let P, = E[P(X,Y) | X ~ Unif(A),Y ~ Unif(B)],
where a = dim A, b = dim B and the concrete selection of A, B is deduced from
the reduction diagram in Figure below. In this diagram, we also included
the position of the scaling point C in cases reduction is possible. The arrows
indicate which configurations reduce to which. Each arrow is labeled by a roman
numeral corresponding to a given reduction equation in the system of reduction
equations.

d-1

Pa—10

Figure 1.19: All different P,;, sub-configurations in By

The full system obtained by CRT is
I: pPyy =2d(Pya—1 — Paa)
11 : Pd,d—l = Pd().
I1: pPy = d(Ps_10 — Pu),

where the equation II follows from the rotational symmetry of P. The solution
of our system is

92d2 Py,
(2d+p)(d+p)

(1.303)

dd —

Pa.1,0

In configuration (d—1,0), one point X is drawn uniformly from the boundary 0B,
while the other Y is fixed at the boundary. Keep in mind that F;_; ¢ is defined
via generalization of Remark [0 as a mean weighted by the support function

1
Prig=-—r / P(%, y)hy(x) A1 (d 1.304
d—1,0 dvol, By Jos, (%, ¥) hy(x)Aa-1(dx), (1.304)
where the support function hy(x) of B, evaluated in x and centered at y € 0By
1

arbitrary fixed point) is given explicitly as hy(x) = %||x — y||?>. Analogously
Yy 2
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1.5. Bivariate functionals in higher dimensions

to the 3-ball case, we parametrise the integral using hyper-spherical coordinates
with the axial angle of x — y being 6 € [0,7/2). We have ||x — y|| = 2cos# and
thus hy(x) = 2cos?§. Furthermore, since P = L?, we get P(x,y) = ||x —y||F =
(2cos0)P. Integrating out the axial symmetry from the uniform measure on 0B,

Ai—1(dx) = 2wy_1(2 cos Osin §)*2dd (1.305)

Overall, calculating the following Beta integral and by using Legendre duplication
identity

T(2)0(z + 1) = 2E1(22), (1.306)
we obtain
/2 W) (3(d+p+1
Lff?l 0= i / (2cos0)*Psin®20 df = ( )1 d<2( )) (1.307)
ah ) )
Paa

Substituting P;_; o into Equation (1.303) with P = LP, we get for general p > —d
(not necessarily an integer),

212 (A1) [Esint O cost 0 49 2°d (A (L(d+p+1))

1 -
(d+p>r(1+d) (d+p)r( D T(1+d+2)

. (1.308)

Distance density

The density fgq(A) of the random distance L between two interior points in B, can
be recovered from moments using inverse Mellin transform (see appendix [A.5]).
By Equation (|1.308]), we have

24 (d! 3
G / sin® @ cos™P~1 9 do. (1.309)
1+d) 0

M fad) = LEY =
(d+p—1)T (45

Taking the inverse Mellin transform, we get, formally,
2d (d!)
N2
()

By Equation (A.41)) (see Appendix [A)), we immediately get

faa(N) = Ta [/Oﬂ/2(COS 0sin0)? 6(\ — 2cos @) do|. (1.310)

91—d | arccos 2
faa(X) = d(d)Ad—l/ “sin? @ do. (1.311)
)

This result is not new, see Tu and Fischbach [72].
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Chapter 1. Crofton Reduction Technique

1.6 Trivariate functionals in two dimensions

1.6.1 Equilateral triangle

To demonstrate the approach of CRT for trivariate functionals, we solve the
Silvester problem (c.f. |76]). The objective of the problem is to determine the
expected value of the area S of a triangle whose vertices are three points chosen
randomly from the intetrior of a given triangle 75. In our CRT notation, the
exact result is expressed as

VOIQ T2
12

5222 = Uél) (TQ) V012 TQ =

Although this result holds for any triangle 75, thanks to the scale affinity of areas
in two-dimensions, we can indeed assume that our triangle is equilateral with unit
area.

Beyond the Silvester problem, we also find higher area moments 55’53 for any non-
negative integer k. Table below shows various explicit Sé’;% area moments
for selected k’s (from Equation ((1.333)) or (1.334))).

4 N\

1 2 3 4 5 6 7 8
Ss, G SN G G

1 1 31 1 1063 403 211 13
12 72 9000 900 2469600 2116800 2268000 2646000
. k k
Table 1.13: Values of volumetric moments vé )(T ) = 52)2 for selected k’s
- J

Consequentially, from the knowledge of all moments, we deduce the probability
density function fag9(s) of S using the inverse Mellin transform, a method due to
Mathai (see [45]).

Furthermore, we show how we can deduce the obtusity probability

25 393 V3
LB vE 0.748197 (1.312)

=224 _
n(T3) TR W AT I

in (the standard) equilateral triangle 7. Our approach can be generalised to
obtain obtusity probability n(73) in any other triangle T, though.
Configurations

In general, let P be a trivariate homogeneous symmetric functional of order p (in
case of random triangle area, we have P = S and p = 2). In agreement with our
convention,

Pawe =E[P(X,Y,Z) | X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C)],  (1.313)

89



1.6. Trivariate functionals in two dimensions

where a, b, c are dimensions of domains A, B, C, respectively, from which the
points X,Y,Z € T; are selected. In the case of ambiguity, the specific meaning
of each P, is deduced from the reduction technique itself or it is shown in Figure
[1.20 In there, we also included the position of the scaling point C in cases
reduction is possible. The arrows indicate which configurations reduce to which.
Each arrow is labeled by a roman numeral corresponding to a given reduction
equation in the system of reduction equations. Note that the assumption the
triangle being equilateral gives us a lot of symmetries.

AN

Figure 1.20: All different (abc) configurations for K being a triangle

Reduction system

The full system obtained by the Multivariate Crofton Reduction Technique is

L: pPyy =3 - 2(Paz1 — Paz)

IT: pPyy =2 - 2(Po1y — Pogt) + 1(Pago — Poa1),
III: pPyy = 2(P111 - P211) +2- 1(P210 - P211)
IV : pPyy = 2 - 2(Pa1o — Paxo)

V: pPio =2 1(Pio — Prio)

Solving the system for Pao9, we get for any functional P the following result which
already appeared in Ruben and Reed [61], namely

24(2P111 + 3Ps10)
(4+p)(5+p)(6+p)

(1.314)

222 —

Irreducible terms

Using CRT, we have expressed P,y as a linear combination of Pj;; and Pog.
Those terms cannot be reduced since the configurations (111) and (210) are ir-
reducible (no scaling point available). However, for specific functionals, we can
use some important symmetries to get us to even more reduced configurations
anyway (dashed arrows in Figure [1.20)).

First moment of area

Slll

Although the configuration (111) is irreducible (no scaling point), note that
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Chapter 1. Crofton Reduction Technique

S=1-8-8"-5" (1.315)

where S’, 5", 5" are areas of triangles formed by fixing one vertex and picking
the other two from the adjacent sides (see Figure|1.20)). Taking the expectation,

S1i1 =1-35110
since by symmetry, E [S'] = E [S”] = E [S"] = S110 which is, however, reducible.

Pi10

One of the unreachable configurations is (110). This configuration is reducible
for general functional P by equation V in the reduction system. We get

Py = (1.316)

and therefore with P = S (and thus p = 2), we get Sj10 = %Sloo-

S100

In configuration (100), the point selected from one of the sides divides 75 into two
triangles with areas S and S’ (see Figure [1.20). Therefore, we have 1 = S + 5"
Taking expectation and by symmetry, we get

Sio =E[S] = (1.317)

1
5

S210

This configuration can be solved using conditional expectations. Let P, Q, R be
vertices of T5 and we denote X as the point selected from the interior and Y
as the point selected from the side RQ (see Figure [[.20). Let us denote S’ as
the area of the triangle PRY. The area S of the random triangle with vertices
P, X,Y can be conditioned with respect to S’ (or Y). Since the point Y is fixed,
we split the problem into two cases by the location of point X. Either X is
above or below the line PY. However, each of those separate cases is equivalent
to configuration (200) (apart of scaling so the area of triangle PRY or PQY is
one). Writing down the correct scaling factors and by S" ~ Unif(0, 1), we obtain

So10 =E[S] =E[E[S | §) =E [S2005? + SHy(1 — §')?] = 2S00.  (1.318)

3

S200

Note that the only point selected from the interior of 75 divides T, into three
triangles with areas S, 5" and S” (see Figure [1.20]), for which

1=S+5+5", (1.319)
Taking the expectation and by symmetry, we immediatelly get Sopp = 1

3

91



1.6. Trivariate functionals in two dimensions

S222

Therefore, we find by backtracking and by Equation (1.314]) with P = S (p = 2),

1

— 1.320
=, (1.320)

1
Uél)(T2> = S = 11 (S111 + 35210) =
which is the resolution of the Silvester problem. To conclude, the following Table
[1.14] shows the mean area of a random triangle in all configurations found along
the way.

5222 5221 S211 5220 Slll 5210 SllO SZOO SlOO

1 1 17 4

1
12 9 108 27 4

2 1 1 1
9 4 3 2

Table 1.14: Mean triangle area in 75 in various configurations

Higher moments of area
S® 140
For general k > —1, we have in configuration (100) that S ~ Unif(0, 1) and thus

1

Sty =E [$¥] = e

(1.321)

S(k) 200

In configuration (200), since the area S is proportional with the distance of the
base of Ty, we have for its density f(s) = 2(1 — s) on s € (0,1). Therefore

2
(1+k)(2+Ek)

1
St =E[s] = 2/0 (1 —5) ds = (1.322)

S(1()210

By the same approach as in the Sy1g case, writing down the correct scaling factors,

Siib = E [S50S™F + Siop(1 — 8] = 22800 = orgpns (1.323)

21k = @rk)2(1+k)’
since S" ~ Unif(0,1) and thus E [S"TF] = E[(1 — S")'™] = 1/(2 + k).

S(k)lll

Let X,Y,Z ~ Unif(0, 1) be the (independent) ratios to which the vertices of the
random triangle divide each corresponding side of T5. We can write

S'=ZX. §"=(1-X)1-Y), S"=Y(1-2) (1.324)

SO
S=1-95-8"-98"=X-XY-XZ+YZ (1.325)
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Chapter 1. Crofton Reduction Technique

Taking the expectation by integrating over X,Y, Z, we get

® i 11l i
S =E {S } = /0 /0 /0 (x —xy — xz + y2)" dedydz. (1.326)

Integrating out z,

1+k 1+k
y—yz
st = 5 +k/ / _; )" dzay, (1.327)

We may use the formula a'™ — p1** = (a — b)(a® + a*~1b+ ... + ab*1 + b¥), so

2
S = 1+k2// v—wy)' (y—yz)* dedy= sz (/ (1)~ ldx) . (1.328)

The remaining integral is a Beta integral. Straightforwardly, we finally arrive at
the explicit result which also appeared in a recent paper by Maesumi [43)],

1 & (k—0)122

s = . 1.329
i 1+kl§ (1+ k)12 ( )
Alternatively, note that the integral
ZIHR(1 — )tk g1k 14k
S )
dzd 1.330
L= 1+k / / x—y vy ( )

vanishes, since by substitution + — 1 — 2z and y — 1 — y, we get —I;. Hence,
adding I to Equation (|1.327) and by symmetry,

y) Ik g1k k
—y (1l -y)
= dxd
111 1+k / / T —y vy
1+k y1+k

_ = 1 — 1+RL )
1+k/0/0( v) =y dady

The formula 2% — % = (z —y)(2F + 2* 1y +. ..+ 2y* 1 +¥) leads to another
Beta integral, but only raised to the first power, we get

gk _ 2 /1(1_y)k+1yk—ldy:2
IR =1+

(1.331)

I
=~ +l 2k—l+2)

(1.332)

We do not know whether there is some simple combinatorial explanation why
those sums are equivalent.

S(2)222

For the second moment of area, we simply put P = S2, for which p = 4. By
Equation ((1.314]), we get

2 2 2
Ué )( 1) = 5222 30 (25&)1 + 35512)) = o
Table below again summarises mean square areas of a random triangle in
various configurations.
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1.6. Trivariate functionals in two dimensions

2 2 2 2 2
St S S Sy S Shh STy Sk St

1 5 1 1 1 1 1

1 1
72 216 24 24 12 12 9 6 3

Table 1.15: Mean square triangle area in 75 in various configurations

S 359
For a general k integer, we get by Equation (1.314) with P = S* (so p = 2k),

255%) + 3555
(k+2)(2k +5)(k + 3)°

oi(Ty) = S5y = 6

By the results for S}’f% and Sé’fg), we get explicitly, after some simplifications,

(2+k)? . k 12(kH1—)!?
Geims Lhmo 12k = )1 24 3 SR

(1+k)(2+k) B+k)(5+2k) (1+k)E2+k2B+k)

S = (1.333)

in agreement with Mathai [46 p. 391], Reed [59] and Alagar [2]. Or equivalently,
by rearrangement of the sum as discussed earlier,

(4 2)1 (k5! k+1 Kkl (k+1—j)!
3+ 2+ KTl arpmrm _ BED0 Grier (1.334)

L+ k)2 + k)33 + k) (5 + 2Kk) 2+ k)3 + k)

S =24

Either way, we get a very interesting relation between 5111 and 5222,

24 Sh Y

Sz = 1+k)(2+k)(B+k)

(1.335)

Area density

f111

For the density fi11(s) of the random variable S in configuration (111), we have

by Equation (|1.327)),
_ L otpt(z—ay)f — (y — yx)*
M fin] =St = E// ( Y~y ya) dz dy, (1.336)
00 x—y
so formally,
z —ay)* — (y —ya)*
dxd
|| y (1.337)
Ta(l— —z(l—y))—y(l—z)d(s—y(1— '
. / / o(1=9)8(s=a(1=y)=y(1=a)b(s=y(1=0) |
0o x—y
by Equation (A.41) (in Appendix [Al) with r =1,
1
Tod(s = a) = —lsca- (1.338)
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Chapter 1. Crofton Reduction Technique

via which we can deduce, with o = (1 — y) and « = y(1 — z),

fi(s / / Locai- y) 8<y(1_x) dzdy. (1.339)

We can deduce that fi11(s) is nonzero only when s € (0,1). Evaluating this
integral is not complicated. By using Mathematica, we arrive at

—6\/1—4sargtanh\/17—31ns 0<s<1/4,
Jrls) = Vi ns, 1/4<
5—1(7?—6arctan\/4—)—3ns /4 <s<1.

Althought the derivation of fi1; is already part of Alagar’s work [2], it is worth
to mention that the result was later independently rediscovered by Maesumi [43].

(1.340)

f222

For the density fa(s) of the random variable S in configuration (222), we have
by Equation (|1.335)),

k(1 + k)(z + k)
Taking the inverse Mellin transform, we get
f222(3) = 24101112 M [Slll] = 24101112 [anl(S)] . (1342)

We will write sf111(s) = Ji afiii(a)d(s — a)da. From Table (see Appendix
A),

M| fazs] = S = (1.341)

(a = )’

101-1225(8 - Oé) == W:ﬂ_s<a, (1343)
using which we obtain
1 5\ 2
f222(8) = ].2/ (]_ - a) f111(06> da. (1344)
It is very easy to carry out this integration, we get

12(1 —s) —6(1 +24s+6slns)Ins
—12(1+26s)v/1—4sargtanh/1—4s », 0<s<1/4,
—144s(1 4+ 3)(%2 — argtanh? /T — 45)

fauals) = 12(1 — ) — 6(1 + 245 + 6sIn s) In s
—12(1+26s)v/4s—1(5 —arctan /4s—1) p, 1/4<s<1.
—144s(1 + s)(§ — arctan /4s — 1)°
(1.345)

The computation of the area probablity distribution function fogs(s) was first
carried out by Alagar [2], while the form shown above is due to Philip [51]. A
remarkable feature of Philip’s paper is that he also found the cumulative density
function Fyes(s) explicitly. Note that the methods of both authors relied crucially
on the knowledge of the relation between (111) and (210) configurations. Philip
also found the area probability density function of a random triangle for a regular
pentagon [56] and hexagon [54].
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1.6. Trivariate functionals in two dimensions

Obtusity probability

The probability a random triangle is obtuse in a given triangle 75 is no longer
affine (only scale invariant). Hence, the results of this section holds only for T
being equilateral. We can use the following standard parametrization

Ty = conv(ey, ez, e3) = conv([1,0,0], [0, 1,0],[0,0,1]) (1.346)

of an equilateral triangle embedded in R* with area voly Ty = v/3/2 and side
length /2.

MN111

In configuration (111), the random points X,Y,Z are selected from (different)
sides of T;. We may parametrise the points as

X:€1+U(ez—el), Y:el—l—V(eg—el), Z:e2+W(e3—e2). (1347)
where we introduced random variables U, V, W ~ Unif(0,1). Note that
Y-X)(Z-X)=V -2U+2U? -UV +UW + VW, (1.348)

The probability that the triangle X'YZ is obtuse is obtained by integrating the
obtusity indicators (Equation (1.31))). Moreover, by symmetry,

mi = 3 = 3E [H(YfX)T(ZfX)<O} =3E [1y svovz—vvivwivw<o , (1.349)
which can be written as the following integral,
1,1 g1
it = 3/ / / :H-v72u+2u27uv+uw+vw<0 dudvdw. (1350)
0o Jo Jo

The integral was evaluated by Mathematica (see Code [1.1] below). We obtained

9 3
min = +27In \2[ ~ 0.616292. (1.351)

Code 1.1: Simple code to evaluate 7111 in 75

etalll = 3xIntegrate[Boole|[v-2ut+2u”2-uv+uw+vw<0],
{u, 0, 1}, {v, 0, 1}, {w, 0, 1}1;

7210

In configuration (210), the first vertex X of the inscribed random triangle XYZ is
selected from the interior of 77, the second vertex Y is selected from its side and
the last vertex Z is fixed at the vertex of T3 opposite to Y. We may parametrise
the points as

X:e1+U(e2—e1)+V(e3—e1), Y:el—i—W(eg—el), Z = €3. (1352)

where we introduced random variables U, V,W such that (U,V)" ~ Unif(Ty),
where Ty = conv([0, 0], [1,0], [0, 1]) is the canonical triangle, and W ~ Unif(0, 1).
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Chapter 1. Crofton Reduction Technique

Additionally, in order to obtain the probability that the triangle X'YZ is obtuse,
we recognize three sub-configurations (2*10), (21*0), (210*) based on the exact
location of the obtuse angle (the corresponding vertex domain is indicated by *).
We can express the dot products in the decomposition of the obtusity indicator
(Equation ((1.31))) as follows

(2°10) : (Y = X)(Z — X) = 2U%+2UV —2UW —U+2V* VW =2V +W,
(2170): (Z-Y)"(X-Y)=U+2V - W —2UW — VW 4 2W?
(210%) : (X — Z)T(Y Z)=2-U-2V—-W+2UW + VW.
(1.353)
The probability 7,99 that the triangle XYZ is obtuse is obtained as a sum of

probabilities that the random triangle is obtuse at a specific vertex. Via the
same technique as in the previous case, we obtained for those probabilities

Loom 1 V3 83 V3
210 = 36\/— 5 In 7, T21x0 = E + 48 In 7, 7210 = 0. (1354)

Summing those up, we finally get

89 5m 95 \/§
M210 = Tj2+10 + TJ21%0 + 7210+ + 36\/_ 71 — ~ (0.836134. (1.355)

7222

Inserting 1111 and 7219 into Equation (1.314)) with P = n, for which p = 0,

25 393 3
T s V3 0748197 (1.356)
12\/' 2

1
5 (21111 + 31210) =

T222 =

1.6.2 Square

Next, by usmg CRT we rederive the result of Henze [5.1] that is the volumet-
rlc moments v2 (CQ) of a random triangle area. In our convention, we write

2 (C’g) = 5222 (they are indeed equal, since we already have proper normal-

ization since voly Cy = 1). Table below shows various explicit Sé’;% area
moments for selected k’s (from Equation (1.369))).

4 N\

1 2 ) 4 5) 6 7 8
S 89 89 85 8% 8% &89 82

11 1 137 1 363 761 7129 61
144 96 72000 2400 3512320 27095040 870912000 24192000

Table 1.16: Values of volumetric moments 'Uék)(CQ) = 555)2 for selected k’s

Consequentially, from the knowledge of all moments, we again deduce the prob-
ability density function fags(s) of S using the inverse Mellin transform.
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1.6. Trivariate functionals in two dimensions

Furthermore, we deduce the obtusity probability

97 s
= — 4+ — ~0.7252 1.
n(Ch) = =5 + 4 ~ 0725206, (1.357)
which is a result due to Langford [42]. In fact, Langford obtained the obtusity

probability in a rectangle of any side-ratio.

Configurations

As usual, let Py, = E[P(X,Y,Z) | X ~ Unif(A4),Y ~ Unif(B),Z ~ Unif(C)],
where a = dim A, b = dim B, ¢ = dim C' and the concrete selection of A, B, C is
deduced from the reduction diagram in Figure below. In this diagram, we
also included the position of the scaling point C in cases reduction is possible.
The arrows indicate which configurations reduce to which. Each arrow is labeled
by a roman numeral corresponding to a given reduction equation in the system
of reduction equations.

2 : ) 2 v
* _I>* _H>1  ——— ] 1

P222 Ch ) P221 II 2 P211v —
A 2
IAJB
T Paiir

—

Figure 1.21: All different P,j. sub-configurations in Co

Reduction system

The full system obtained by the Multivariate Crofton Reduction Technique is

L: pPyy =3 - 2(Paa1 — Pax)
IT: pPoy =2 - 2(Poy1 — P221) + 1(P220 - P221)7
I : pPor1y = 2(Piuy — Pont) + 2 - 1(Paro — Ponr)

IV : pPyy = 2 - 2(Pyo — Pao)

with
Paoy = %P221v + %P221r-

Solving the system for Psso, we get for any functional P,

24(Pi11 + 2Ps) 12 P11
(4+p)(5+p)(6+p)  (B+p)(6+p)

Py = (1.358)
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Chapter 1. Crofton Reduction Technique

Moments of area
S® 1,
Let us parametrise the location of the random points in (111) configuration,
X =Ues, Y =e, + Ve, Z =e + Wes, (1.359)

where U, V, W ~ Unif(0, 1). Hence, the area is given by
1
Szi(l—U#—UV—VW). (1.360)
Note that the expression on the right is always positive. Taking the expectation,

111_///<u—v+w—uw> dudwd.

This integral is straightforward, we obtain

g _ 217FHy

N P ATCE L (1.361)

where Hy, = Zle 1/j is the k-th harmonic number.

S(1{)210

In configuration (210), vertices X,Y,Z of the random triangle selected from Cj
can be parametrised (see Figure as

X = Ue1+Ve2, Y:WGQ, Z =e; + ey, (1362)
where U, V, W ~ Unif (0, 1). Hence, the area is given by
1
:§|U—V+W—UW|. (1.363)

Taking the expectation and splitting the integral into two cases based on X being
located above or below the line segment YZ, we obtain

uw u U—V+W—uw
210—// / 2 ) dv +

Integrating out v and u (and also w in case of the second integral), we get

2

() dv] duduw.

u—v+w—uw

2~ 27 fi 15 dw 2k 27k [
Sinh= b e + 2k (1.364)
(1+k)(2+K)2  (1+k)2+k)  (1+k)(2+Kk)2  (1+k)(2+Fk)

S® 11,

The last irreducible configuration (211r) is the hardest since it has an extra
degree of freedom. One point X is being selected from the interior of C5, while
the remaining two Y and Z are taken from the opposite sides. Parametrizing the
location of the points,

X = Ue1 -+ Vez, Y = Wez, 7 = e; + Reg, (1365)
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1.6. Trivariate functionals in two dimensions

where U, V, W, R ~ Unif(0, 1). Hence, the area is given by
1
S:§]RU—V+W—UW\. (1.366)

Taking the expectation and realizing that, by (two-fold) symmetry, we can assume
that the point X is always located above the line YZ,

1 1 1 ru+w—uw — — k
Sé’f)lr = 2/ / / / (ru vtw uw> dvdudrdw.
o Jo Jo Jo 2

Integrating out v and wu is straightforward, we get

21—k Lol p24k g 24k

s = | [ 1.367

M A+ k)24 k) Jo Jo r—w e ( )
Luckily, the remaining integral is trivial, we get
227ka 9

S, = - . 1.368

M 14+ k)24 k)3 +k) ( )

S(k) 222

For a general k integer, we get by Equation (1.358)) with P = S* (so p = 2k) and
after some simplifications, we get Henze’s [35] result

323" Hy oy
(1+k)(2+Ek)2(3+ k)%

0 (Tp) = Sgz = (1.369)

Note that we can deduce this result independently by the Canonical section in-
tegral introduced later in this thesis (see Section in Chapter [4)).

Area density
See Section in Chapter [4

Obtusity probability

MN111

In configuration (111), the vertices of the random triangle XYZ are selected from
three (different) sides. Let X and Z be picked from the opposite sides and Y be
picked from (one of) the remaining sides. Again, we parametrise the points as

X:el—i—U(eg—el)—i—V(eg—el), Y:el—i—W(eQ —el), Z = e3. (1370)

where U, V, W ~ Unif(0,1). We recognize three sub-configurations (1*11), (11*1),
(111*) based on the exact location of the obtuse angle (the corresponding vertex
domain is indicated by *). By symmetry, configurations (1*11) and (111*) give
the same contribution. We can express the dot products in the decomposition of
the obtusity indicator (Equation (1.31])) as follows

(11 (Y -X) (Z-X)=U?~UW -U+V +W,

(11*1) : (Z — Y)T(X _ Y) —UW - U + VE_V W ey (1371)
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The probability 7999 that the triangle XYZ is obtuse is obtained as a sum of
probabilities that the random triangle is obtuse at a specific vertex. Taking
expectations and by Mathematica (Integrate with Boole as an argument),

_ _2 S (1.372)
M1 = Yk i1 = 9’ Mire = Mx11 = Yk .
Summing those up, we get
19
M1t = M1t + M + N = 35 ™ 0.527778. (1.373)

7210

Recall that in the (210) configuration, the first vertex X of the inscribed random
triangle X'YZ is selected from the interior of (Y, the second vertex Y is selected
from its side and the last vertex Z is fixed at the vertex of Cy opposite to Y. We
may parametrise the points as

X =Ue; + Ve, Y = We,, Z =e; + ey, (1.374)

where U, V, W ~ Unif(0,1). We recognize three sub-configurations (2*10), (21*0),
(210%) based on the exact location of the obtuse angle. We can express the
dot products in the decomposition of the obtusity indicator (Equation ((1.31))) as
follows

210): (Y -X) (Z-X)=U?-U+V>*-VW -V + W,
(21°0): (Z-Y)'"X-Y)=U-VW +V+W? -W (1.375)
(210): X-Z) (Y -Z)=2—-U+VW -V —W.

Taking expectations of the corresponding indicators and evaluating the integrals
by Mathematica, we get

13 1

Tox10 = 18’ Thivo = oo 210+ = 0. (1.376)

Summing those up, we get

55
N210 = MN2*10 + M21x0 + N210* = 5 ~ 0.763889. (1377)
N211r

In the last irreducible configuration (2117), X is being selected from the interior
of (5, while the remaining two Y and Z are taken from the opposite sides.
Parametrizing the location of the points,

X = U61 -+ Veg, Y = Weg, 7 = e; + Reg, (1378)

where U, V, W, R ~ Unif(0,1). We get three corresponding sub-configurations
(2*11r), (21*1r), (211%r), out of which (21*1r) and (211*r) give the same contri-
bution by symmetry. For the dot products, we have

2 117): (Y -X)(Z-X)=(R—-V)(W =V)-U(1 -U),

21%1r) : (Z—Y)" (X =Y)=(R—W)(V —W)+U. (1.379)
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1.6. Trivariate functionals in two dimensions

The probabilities that those dot products are negative can be computed by first
grouping the random variables, this is the method of Langford [42]. Let

A=(R-V)(W -=V), Q=U(1-0), (1.380)
then A ~ Lang with CDF (see Appendix [A.1))

0, A< —1
Py = 150 —SOVIF I+ Dargtanh VTN, —1<A<0 o
MY T L (1- 64 802) — 231\, 0<A<t,
1 A> 1

and, trivially, with PDF of Q being fo(w) = ﬁﬂwe(m/@ (see Example [278)).
We can write the obtusity probability in (2*117) sub-configuration as

o1 =P [ (Y= X)T (Z—X) <0] =P[A < :/01/4/_i/4f/\()\)f9(w) dAdw

1.382
1/4F . 1/4 2 (1—6w—|—8w3/2)—4w1nw . 5 (1.382)
=), Prealw) du= [ i “=9 g
Similarly in (21*1r) configuration, we have fy(u) = Luc(,1) and thus
1/4 r—u
7721*”:]}»[(X—Y)T(Z—Y)<o]:P[A+U<0]:// £2(0) dAdu
0 /-1 (1.383)

1/4 1/4 148u 1
:/ Fy(—u) du:/ 3 V1—4u — 4u argtanh /1 —4u du:%.
0 0

Lastly, by symmetry, n11+ = 721+1, = 1/60. Summing up three obtusity proba-
bilities we have found so far, we get

53 T
N211r = Nox11r T N21%1r + M211%r = + — =~ 0.785238. (1.384)

90 ' 16

7222

Inserting 1111, M210 and 7211, into Equation ((1.358]) with P = n, for which p = 0,

1 97 ™
= 2 Moity) = — 4 25 0.7252 1.
1222 5(77111 + 21210 + 272117) 150 + 10 0.725206 (1.385)

as obtained by Langford [42].

1.6.3 Disk

Consider a trivariate symmetric homogeneous functional P of order p dependent
on three random points picked uniformly from the unit disk B, = {x € R? | ||x|| <
1} with area voly Bs = 7. Additionally, we require P to be rotationally symmetric
with respect to the origin. That is, for any x,y,z € By and any orthogonal matrix
R we have P(Rx, Ry, Rz) = P(x,y,z). Table below shows various explicit
55’22 area moments for selected k’s (from Equation (1.426])).
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4 N\

1 2 3 4 5} 6 7 8 9 10
S s, s. S G N G G G )

35 3 1001 1 138567 275 1062347 1911 86822723 2499

487 32 64007 32 20070407 16384 247726087 163840 26644316167 262144

(k)

Table 1.17: Mean triangle area moments 5’2];2 in By

So far, the only known (higher) perimeter moments H(Qg)z are available in the unit

disk (our result in this thesis, see Table [1.18] in which ((3) = >0, 1/n? is the
Apéry’s constant ). Apparently, to our knowledge, the second and also any higher
perimeter moments are still unknown and yet to be determined in any other K.

=1l 1 2 3 4
i =L i i) i

64 _ 64In2 128 3383 | 35¢(3) 93584 1024In2 49 |, 1029¢(3) 9745549
157 157 157 3+ Tor2 ¥ Tox7  1225m T o2a5m 2 T 73272 T+ Ts000m2

Table 1.18: Random triangle perimeter moments Hg;)Q in the unit disk Bg

Also, we are able to deduce statistics for the smallest and the largest internal
angle. As a consequence, we get for the probability a random triangle in a disk
is obtuse (a famous result of Woolhouse [77]),

4
2

n(By) = ~ 0.719715. (1.386)

7

| ©

Configurations

As usual, let Py, = E[P(X,Y,Z) | X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C)],
where ¢ = dim A, b = dim B, ¢ = dim C and the concrete selection of A, B,C
is deduced from the reduction diagram in Figure below. In this diagram,
we also included the position of the scaling point C in cases reduction is pos-
sible. The arrows indicate which configurations reduce to which. Each arrow
is labeled by a roman numeral corresponding to a given reduction equation in
the system of reduction equations. Recall that the vertices X ~ Unif(A),Y ~
Unif(B), Z ~ Unif(C) of triangle XYZ are selected independently and we denote
L = |XY]|, L' = |XZ| and L” = |YZ| its (random) side-lengths and © = |[/XZY]|,
O = [£XYZ]| and ©" = | LY XZ] the corresponding (random) sizes of its internal
angles.
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1.6. Trivariate functionals in two dimensions

P22 P210

"C

Figure 1.22: All different P,;. sub-configurations in Bs

Reduction system
The full system obtained by CRT is
L: pPyy = 3-2(Pyg — Pag)

II . P221 = P220.
III : pPhyy =2 - 2(Po1g — Pago),

where the equation II follows from the rotational symmetry of P. The solution
of our system is

(1.387)

Note that when p = 0, we get Paoo = Psyg, which is essentially Proposition 8.1 of
Sullivan [69, p. 65].

P210

In configuration (210), one point X is drawn uniformly from the interior of B,
the second point Y is drawn uniformly from the boundary 0B, and the last one
Z is fixed at the boundary. Keep in mind that Py is defined via generalization
of Remark [9] as a mean weighted by the support function

P210 = 2(\7011]]32)2 /1532 /8]]32 P(X7YaZ)hz(y))‘Q(dX))‘l(dY)v (1388)

where the support function h,(y) of By evaluated in y and centered at z € 0B,
(arbitrary fixed point) is given explicitly as

ha(y) = 3lly — 2% (1.389)

Let us parametrise our integral using angular coordinates (a, 3, ¢), where a, 3
are internal angles of the random triangle XYZ located at vertex Z and Y,
respectively. We denote v as the remaining internal angle at vertex X, but keep
in mind that + implicitly depends on «, 5 since a + 8 + v = w. The angle ¢ is
the angle between the chord ZY and the tangent lines (see Figure . Also,
we define local perpendicular unit vectors ey, es as shown in the figure.

104



Chapter 1. Crofton Reduction Technique

Figure 1.23: Parametrisation of points in (210) disk configuration

By (twofold) symmetry, we can only consider the case where the point X is
located above the chord ZY (as shown in the figure above). Hence, we get the
following set of inequalities for our angular variables

0<ac<e, 0<pB<e, a+p<e<m. (1.390)
The (half-)domain of integration in (a, 3, €) is therefore a tetrahedron

conv([0,0,0], [r,0,0], [7,0,n],[0,7,x],[0,0,n]). (1.391)

The parametrization of our points x,y,z (Figure [1.23)) is given by

X — 7 = T1€] + T€q, y —z = 2sine (cosc e + sine ey) (1.392)
with
- 2sinﬁsin.5 cos(e — a)j g — ZSinﬁsin.s sin(e — oz)7 (1.393)
sin 7y S 7Y
from which
94 :
Ix— g = 250PSIME i ogine,  ha(y) — 2sin2e. (1.394)

sin 7y
Calculating the Jacobian, we get the transformation of measures

4sin asin Bsin® e

Ao (dx) = dzydag = da dg, A1 (dy) = 2de. (1.395)

sin3

Therefore, we may write for our integral (including the twofold symmetry factor),

Pao= [ [ [ PGcy.z)p(ef] €) dedfda, (1.396)

where we introduced the internal angle trivariate density

~ 2X0(dx) A (dy)h,(y)  16sinasinSsinte
~ 2(volyBy)? dedBda 72 sin3 5 ’

p210(0z,ﬁ | 6) (1397)
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1.6. Trivariate functionals in two dimensions

Angle-only dependent functionals

When the original functional P depends on integral angles «, 5 only, we can
integrate out € to obtain

Pao = | i / " P(x,y.2) pawola, B) dBda, (1.398)

where we introduced the (210) configuration internal angle bivariate density

sin asin 3 (127 —8sin(2y)+sin(4v))
- - . (1.399)

272 8in® ~y

p210(c, ) :/c:rﬁ pato(a, B | €) de

which is the PDF of two internal angles © (at Z) and ©" (at Y). Moreover,
such functional P must have p = 0 (it cannot depend on the scale of the random
triangle) and thus, by the solution of the reduction equations,

Paoy = Payp. (1.400)

Bivariate internal angle distribution

As a simple consequence, we can identify the probability denity function of in-
ternal angles in configuration (222) with that of configuration (210). This is
essentially Proposition 8.1 of Sullivan [69, p. 65]. However, keep in mind that
while «, 5 and « are permutable, this is not the case in (210) configuration. In
order to obtain the correct function for the distribution of internal angles in (222)
configuration, we must first select two vertices whose corresponding internal an-
gles would play the role of @ and 8 in (210) configuration. Symbolically, this
corresponds to the following symmetrization construction of the (222) configura-
tion internal angle bivariate density

paza(c, B) = % [p210(x, B) + paro(a, ™ — a — B) + paro(m — o — 3, B)]
_ sinasin #siny [ 12y — 8sin(2y) + sin(4vy)
B 672 sint v (1.401)
n 120 — 8sin(25) + sin(45) n 1200 — 8sin(2a) + sin(4a)

sin? 3 sin? o ’

where vy =1 — a — [3.

Univariate internal angle distribution
Finally, integrating out (5 from pags (e, ), we get the (222) configuration internal
angle univariate density (PDF of a random internal angle)

csc® o

paz2(a) = /Oﬂ_a pazz(c, B) df = Sy

+ 2 cos(ba) + 8(m 4 2a) sin(a) — (7 — ) (9sin(3ar) + sin(5a))}.

[(24(7T — a)a — 2) cos(a) (1.402)

from which we get the CDF of the (222) random internal angle © of XYZ triangle

o 1
—PO<al- [ ) do’ = ——[11 + 24ra — 1202
Ron(0) =P[0 < o] = | pun(e') dof = 5511 + 2470~ 120 (1.403)
— 5cos(2a) + 6(m — 2a) cot « — 2(7m — «) <3a csc? a — sin(2a)> }
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Internal angle order statistics

Our goal is to determine CDF of the largest internal angle 2 = max{©, ©’, 0"} of
a random triangle X'YZ picked from the unit disk, that is the function Gags(w) =
P[22 < w] and its corresponding probability density function geos(w) = Ghoe(w).
Clearly, the PDF is non-zero only when /3 < w < m. Moreover, trivially [29],

Gooo(w) = 3pae(w) and Gago(w) =1—3(1 — Roga(w)), w € [w/2,m). (1.404)

This fact alone enables us to deduce the probability a random triangle is obtuse

9 4
T222 = 1-— G222(7T/2) = 3(1 — Rggg(ﬂ'/Q)) = é — ﬁ ~ 0.719715 (1405)

as derived by Woolhouse [77]. Finch [29] wrote that the probability density
g202(w) when w < 7/2 is not known. However, Sullivan already found some
partial results with CRT [69, Lemma 8.2]. In Eisenberg & Sullivan |27, p. 318],
they also derived gooo(w) when w > 7/2 but did not give a solution for w < /2.
We finished their calculation and concluded that

1
Gooa(w) = 52 {36w — 127 + 6(7 — 6w — (7 — 3w)w cot w) csc? w
— 2(7 + 9w) cos(2w) + 18 cot w + 3(m — 2w) sec’ w (1.406)
+ 2sin(2w) + 2sin(4w) — 6tanw}, w e (n/3,m/2],

which matches the numerical result of Small [65, Fig. 1]. In order to derive this
result, note that we can write using the (222) bivariate density function

G222 / / P222 max{a,ﬂ,’y}gw dOédB (1407)

for all w € (7/3, 7). When w € (7/3,7/2), this integral becomes

G222 / ) / ,0222 ) dﬁdOZ (1408)

Differentiating this double integral with respect to w, we get
QQQQ(W) =3 ,0222(0[, w) dO[, (1409)

T—2w

which is straightforward. Moreover, integrating back, we got for the CDF,

2
Gogo(w) = W{ (8 2 11— 72w2) cosw — 8(m — 3w)? cos(3w)
32m?
+ 10 cos(bw) + cos(Tw) + (207 — 36w) sinw — 267 sin(3w) (1.410)

+ 78w sin(3w) + 27 sin(bw) + 18w sin(Sw)}, w € [r/3,m/2).
Similarly, the CDF of the smallest internal angle = = min{©, ©’, ©"} is given by

H222 (é) E / / ,0222 mln{@,ﬂﬁ}ﬁﬁ dOédﬁ, (1411)
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hence ¢ € (0,7/3). Writing out the complement of this integral,

Han(©) = 1-PE>( =1~ [ m | T ). (1412)

Immediately, recognizing that the integral on the right was already calculated,

Hyp(€) =1— CSC;;TS;%C&[ (8%2 — 11— 72§2> cos & — 8(m — 3¢)? cos(3€)

+ 10 cos(5€) + cos (7€) 4 (20 — 36¢) sin € — 267 sin(3€) (1.413)
+ 78 sin(3¢) + 2m sin(5¢) + 18¢sin(5¢)], € € (0,7/3)

and for the PDF given as hoga(§) = Higs (), we get

1

hooa(§) = —?{365 — 127 + 6(m — 66 — (7 — 3€)E cot ) csc? €
— 2( + 9€) cos(2€) + 18 cot £ + 3(m — 2€) sec® & (1.414)

+ 25sin(2€) + 2sin(4€) — 6tan£}, €€ (0,m/3).

Perimeter moments
11 (SO P

Let P = II*. In (210) configuration using (o, 3,€) parametrization (see Figure
1.23]), we have for the triangle XYZ side lengths

2sinasine ,  2sinfsine

i = [ =2si 1.415
sin(a+ )’ sin(a+ )’ e ( )
from which, by using a known formula sin a + sin 3 + siny = 4 cos § cos g cos 7,

. . . . a B .
2sin e (sin a+sin S+sin~y) _ 4 cos$ cos§ sine

I =L+ L'+ L= . (1.416
(x.y:2) e sin y sin 5 ( )
Therefore, by Equation (1.396]),
() m o meemo (4cos g cosg sine)”
My = /0 /0 / y — poo(a, B | €) dedBda.  (1.417)
@ 2

e It is convenient to change our independent variables from (o, 5) to (a, 7). Triv-
ially dadf = dady is the transformation of measure and for the integral, substi-
tuting pa1o(a, | €), we get

T - . . . a B\F
nigy = [ 7 E i it (€08 O gy, (L
0 0 T

2 . 3 . 1
—y T4 sin” vy sing

where S =7 —a — 7.
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ITM) 550
Substituting Hg% into Equation (1.387) with P = II* (and thus p = k), we get

w _  24TI
222 (6+k>(4+k)7

(1.419)

so for general k > —2 (not necessarily an integer),

+k

1%, =6 / /M/ A7 eibaeyaiin gt 5<COS Cosﬁ>kdgdad% (1.420)

(6 + k) (4 + k) w2 sin3 v sing

where f = m—a—~. We do not know whether there is a way how we can simplify
this integral for general k’s. However, for any given selected k, the integral can
be computed in an exact form.

I1(2) 55,
For example, when k = 2, we can integrate out € and « in Equation ([1.420)),

37

™ csc® L sec ) ‘ '
g = /0 —a0arT |45 sin(2y) — 9sin(4y) + sin(67) — 607]

X [6(77 — ) cos(27) — 56 siny — cosy(24(m — ) + 26 sin fy)}dfy,

(1.421)

which can be solved using Mathemtica or by using derivatives of the Beta function,

3383 35((3)
7212 1672

I, = 3+ (1.422)

Area moments
S™ 210
Let P = S*. In (210) configuration, we have for the area (see Figure [1.23)),

2 sin arsin B sin? e

S(x,y,z) = (1.423)

sin 7y

Therefore, by Equation ([1.396]),

T m 2 sin asin Ssin? e k
Sai _/ / /Jrﬁ ( - 0 > pa10(c, B | €) dedfda.  (1.424)

sin y

Integrating out [ first, we get the following neat result

(2sin(e — ) sin e sin a)?*k
da de. 1.425
210 2—|—k/ / m2sin’? o @ e ( )
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S(k) 222

Substituting ng% into Equation (1.387) with P = S* (and thus p = 2k), we get
for general k > —1 (not necessarily an integer),

2+k

k) _ 65210 // (2sin(e — «) sin e sin «) dad |49
5222 (2+Kk)( 3+k‘ (24 k)2(3 + k) w2 sin’ « ade. (1.426)

Remarkably, this integral possesses a closed form solution in terms of Gamma
functions. This follows from a result by Miles [48, p. 363, Eq. (29)] (Theorem
in this thesis). We get for any k£ > —1,

(3/2)T(3+ %)
4k(14-k)(3+k)[(2+5)3

Sk = (1.427)

After appropriate normalization, we get for the k-th volumetric moment,

o9 (B) = Sty (3/2)T(3 + %)
2T (volyBo)k  (4m)E(1+k)(3+k)T(2+5)3

(1.428)

Area density

The density fooo(s) of the random area S can be recovered from moments using
inverse Mellin transform (see appendix [A.5). By using the Gamma function
triplication identity

T(2)T(z + HT(2 + 2) = 2551 (32) (1.429)

with z =14 k/2, we can rewrite Equation ([1.427)), in terms of a product of two
Beta integrals as follows

81 / / /_3yz) y1/3z2/3

S(k)
222 T A2 (14k) (24 k) (34 F) —y)/3(1 — 2)2/3

dydz (1.430)

Taking the inverse Mellin transform of 5222 , we get, formally,

L _3 1/3.2/3
Fona(s) = zozlzgl// o (s \/W) - dydz]. (1.431)

y)/3(1 — 2)2/3

From Table (see Appendix [A)),

(a— sy
2a3

via which we can deduce that in the unit disk s € (0,3v/3/4) and

1-01-112(5(5 - Oé) = ]]-s<om (1432)

1/3,2/3

§ 3yz = s) Y
4
/ / y2) (1 = )\ /3(1 = z)2/3ﬂs<4r dydz. (1.433)

f222 \/— 2

Unfortunately, this integral is nontrivial. There exists a closed form expression
in terms of generalised hypergeometric functions due to Mathai [45], but we are
not showing it here since it is not particularly illuminating.
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1.7 Trivariate functionals in three dimensions

1.7.1 Ball

See Finch [29, p. 694] and refferences therein.

1.7.2 Cube

Consider a trivariate symmetric homogeneous functional P of order p dependent
on three random points picked uniformly from the unit cube C5 with volume
voly C5 = 1. Nothing is known about area moments (Finch [29, p. 691-692]).
However, we are able to deduce the obtusity probability,

e )_323338_13G+48597r_ 737 _L?+37r1n2_37r1n(1+\/§)
307385875 35 | 62720 16802 105 224 224 (1.434)

~ 0.54265928142722907450111187258177267165716732602495,

where G =377, (2(;7?17;2 ~ 0.9159655941 is the Catalan’s constant. This result is

new as far as we know [29].

Configurations

As usual, let Py = E[P(X,Y,Z)| X ~ Unif(A),Y ~ Unif(B),Z ~ Unif(C)],
where ¢ = dim A, b = dim B, ¢ = dim C' and the concrete selection of A, B, C is
deduced from the reduction diagram in Figure below.

Figure 1.24: All different P,j. sub-configurations in Cj

111



1.7. Trivariate functionals in three dimensions

Reduction system
The full system obtained by CRT is

L: pPs3 =3 - 3(Ps32 — P33)
IT: pPs3y = 2(Ps31 — Pasz) + 2 - 3(Psaz — Psa2),
IIT: pPs3; = 1(Ps3o — Ps31) + 2 - 3(Pso1 — Pa31),
IV : pPsgy, = 2 2(Pyy; — Psgay) + 3(Pagz — Pagay),
Vi pP33y = 2-3(Ps — Ps30),
VI: pPaoi, = 1(Ps20 — Psoww) 4+ 2(Pa11 — Pao1y) + 3(Paa1 — Paoy),
VIL: pProyy = 3 - 2(Pasie — Pozow)

with
Py = %P3227‘ + §P322v,
P3y1 = 2 Psy1, + 5 Paoy,
Py = %P321r + %P321v7
Py = %P222r + %P222v7

1 2
Pao1 = 5 Poo1r + 5 Paste.

The solution of our system is

( 7

108(4 Pyg1e + Pao1y + 2P311 + 2Ps)

(6+p)(7+p)B+p)(9+Dp)
72(Pagr + 2P321,) 18 P329;

(7T+p)8+p)9+p) B+p)(9+p)

P333:

(1.435)

Obtusity probability

In order to decuce n(Cjs), it is convenient to introduce the auziliary Langford
random variables (see Appendix [A.2)). Let U,U’,U" ~ Unif(0,1) (independent),
we define those random variables as having the same distribution as the functions
of U,U’",U" on the right of the following equalities:

A=U-U)U"-U), S=U-U)U, Z=UU, Q=U(1-U). (1.436)

Moreover, we write A ~ Lang (Langford distribution). Probability and cumula-
tive density functions of A, ¥, = and ) are shown in Table[A.2] By symmetry, we
get for the obtusity probability in Cj

n(Cs) = 3nzeas = 3P [(Y = X)(Z = X) < 0| X, Y, Z ~ Unif(C5)| . (1.437)

We can rewrite n(C5) in terms auxiliary variables introduced above. This is the
method used by Langford [42] to deduce 1n(Cs). In configuration (333), we may
parametrise the random points X, Y, Z as

3 3 3
X = ZXieia Y = ZY%ez‘, 7= Z Ze, (1-438)
i=1

i=1 i=1
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Chapter 1. Crofton Reduction Technique

where X;,Y;, Z; ~ Unif(0,1),7 = 1,2,3. Hence, for the scalar product of the
(3*33) configuration (obtuse vertex at X),

(3733) : (Y = X) (2 = X) =} (Vi — Xi)(Z; — X)) (1.439)

and thus, using our auxiliary random variables,

n(Cs) =3P [A+A'+A" <0]=3 /A oo JAVAA)A(N) dAANAX', (1.440)

where A, A’, A" ~ Lang are independent random variables following the Langford
distribution. Unfortunately, we were not able to find the closed form expression of
the integral in Equation with d = 3 straightaway. The intermediate result
involves dilogarithms with intricate arguments. However, there is a workaround

— CRT.

7322y

In configuration (332r), the first vertex X of the inscribed random triangle XYZ
is selected from the interior of C's, while the other two Y and Z are picked from
(any fixed) opposite faces. We may parametrise the points as

X = X1e1 + Xgeg + Xgeg, Y = Y1e1 + }/282, 7 = Zlel + ZQGQ + €3, (1441)

where X1, Xo, X3,Y1,Ys, Z1, Z5 ~ Unif(0,1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (3*22r), (32*2r) and (322*r),
out of which the last two give the same contribution by symmetry. Expressing the
dot products in the decomposition of the obtusity indicator (Equation ((1.31])),
we get

(322r) : (Y=X)(Z—X)= (V1 —X1)(Z1— X1) + (Yo — X2)(Zy— Xo) — X35(1— X3),
(32°2r) + (Z—Y) T (X=Y) = (X1 =Y1)(Z1— Y1)+ (X = Y2)(Zo—Y2) + X,
(1.442)

The probabilities that those dot products are negative can be computed by the
method of Langford [42]. The method relies on noticing that the dot product
can be written as linear combinations of auxiliary Langford random variables
A, N ~ Lang (two independent copies). We can write the obtusity probability in
(3*22r) sub-configuration as

n3*22r:P[(Y—X)T(Z—X) }:P[A+A'—Q<o]

1/4 w+1/4 d)\/d/\d
_/ /1/4 ./1/4 () fa(w) w (1.443)
1/4 w+1/4
—/ / / M) Fa(w — M) folw) drdw.
1/4

Unfortunately, the leftover integral is far from trivial and even Mathematica is
unable to find its closed form solution straightaway. Nevertheless, via simple

113



1.7. Trivariate functionals in three dimensions

Weierstrass substitution, the integral can be decomposed into linear combination
of special integrals recently discussed on MSE website [47, [74], via which

6739 §+2117r 177 x? 7Tln(1—i—\/§)+7rln2
6750 15 1440 2522 45 24 24

~ 0.576363509,

(1.444)
where G = 0% on +)1)2 ~ 0.9159655941 is the Catalan’s constant. Somehow, the

situation is much more elementary in (32*2r) configuration. We have

N3x22r =

ngg*grzp[(x_Y)T(z—Y) ]=IP[A+A’+U<O]

1/4 A— ,\' )
/1/4 / 1/4/ (X)fu(u) dudXdA (1.445)
121 T
= Fy( W) dA = —— 4+ —— ~ 0.0176313323.
/ A (V) 7350 1 2688

Lastly, by symmetry, 7329+, = 732+2,. Summing up the three obtusity probabilities,

341101 %_’_ 29697
330750 15 20160

N322r = T)3%22r +1N32%2r +1)322%r = N3*227 +21)32%2, =

177 7T2+7T1n2 7ln(14+/2)
252v/2 45 24 24

(1.446)
~0.611626173665235356686.

7321r

In configuration (321r), vertex X is selected from the interior of C5 and Y and Z
are picked from one face and its opposite edge, respectively. We may parametrise
the points as

X = Xlel + X2e2 + Xgeg, Y = Yiel + }/292, 7 = Zlel + es, (1447)

where Xy, Xo, X3,Y1,Y2,Z; ~ Unif(0,1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (3*21r), (32*1r) and (321%r).
Expressing the dot products in the decomposition of the obtusity indicator (Equa-
tion (1.31))), we get

(3721r) : (Y=X) (Z—-X) = (V1= X1)(Z1 = X1) + (X5 —Y3) X5 — X3(1— X;),
(32°1r) : (Z=Y) " (X=Y)=(X1-Y1)(Z1 - Y1)+ (Ya— X2) Yo+ X5,
(Y-Z)=(X1i—Z1)(Y1—2Z1) + XYoo+ 1 = X3,
(1.448)

Using auxiliary Langford random variables, we can write the obtusity probability
in (3*21r) sub-configuration as

- :P[(Y—X)T(Z—X) < o} —PA+Z—-Q<0)
1/4 pw+1/4
= [ B0 fale) dodrd (1.449)

1/4

1/4 pw+1/4
- /0 [ ;4 FrO)Fa(w — ) fo(w) drdw.
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Chapter 1. Crofton Reduction Technique

By using the MSE integrals, we get

49043 8G 1567w 677 w2 wln2 wln(1++2)
= — 2 - - - ~0.5816795685,
T 2r = 50000 T 15 11520 72002 240 192 96
(1.450)

Next, in (32*1r) configuration,

U32*1r:P[(X—Y)T(Z—Y)<O] =PA+X+U < 0]

1/4 A— 0'
/1/4/1/4/ () fu(u) dudodA (1.451)
37 T
= Fi( =—+—=0. .
/ M=NFS() dA = T 4 o & 0.03380008

At last, in (321%r), configuration, since 1 — X3 ~ Unif(0,1), we get

77321*r=P[(X—Z)T(Y—Z)<0} —PA+Z+U <0

-/ / / =(€) fur(u) dudga (1.452)
. 43
= = — =~ (.00292517.
/ FE(V) dA = 0 ~ 000292517

Summing up the three obtusity probabilities we obtained in all sub-configurations,

2494097 & n 110297 67
2646000 15 80640 7204/2
72 wln2  7wln(l+2)

— — ~ (0.61840481814327429018.
240+192 9% 0.61840481814327429018

N321r = M3+21r T N32+1r + N3215r =
(1.453)

T222r

In configuration (222r), vertices Y and Z are selected from opposite faces of Cj
and X is selected from another face in between the two. We may parametrise the
points as

X = X2€2 + X3e3, Y = Y1e1 + }/262, 7 = Zlel + deg -+ es, (1454)

where Xy, X3,Y1,Y3, 71, Z5 ~ Unif(0,1). Based on the exact location of the
obtuse angle, we recognize three sub-configurations (2*22r), (22*2r) and (222*r),
the last last two of which give the same contribution by symmetry. Expressing
the dot products in the decomposition of the obtusity indicator, we get

(2722r) : (Y =X)(Z—X)=Y1Z1+ (Yo — X3)(Zy— X3) — X3(1— X3),

(22%2r) - (Z=Y) (X=Y)=(Y1—Z))Yi+(Xo—Y5)(Zo—Ys) + X;. (1.455)

Using auxiliary Langford random variables, we can write the obtusity probability
in (2*22r) sub-configuration as

Moz =P [(Y =X)(Z = X) <0 =P[E+ A - Q <]
- / O fafe) detrds (1.456)
_/1/4/1/4 L(w = N faO) fo(w) dAdw.
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1.7. Trivariate functionals in three dimensions

By using the MSE integrals, we get

B 14393 2G n 117 2 n mln?2
r2r = 97000~ 15 ¢ 1152 72 96

Next, in (22*2r) configuration,

~ 0.326548524. (1.457)

Mozvar =P [(X = Y)(Z=Y) < 0] =P[S+ A+ U < 0] =nse1,

37 ™ (1.458)

= 1176 + 1344 ~ (0.03380008.

At last, ngggw, = M990, by symmetry. Summing up the three obtusity probabilities,

Nog2r = Ta=22r + Na+ar + N222xr = Nox2p + 20222y

788507 2G° 897 w2 7In2 (1.459)
_ _ ey D ~ 0.39414868337494.
1323000 15 | 8064 72 T 96

7320

In configuration (320), X is selected from the interior of C3, Y is selected from a
face and Z in one of the vertices opposite to the selected face. We may parametrise
the points as

X = X1e1 + X282 + X3e3, Y = Y1e1 + Yé@g, 7 = es, (1460)

where X1, Xo, X3,Y7, Y5 ~ Unif(0,1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (3*20), (32*0) and (320*). Expressing
the dot products in the decomposition of the obtusity indicator, we get

(3720) : (Y -X)(Z—X)=(X; — Y1) X1 + (Xy — YV2) Xy — X3(1 — X3),
(32°0) : (Z—=Y) " (X=Y)=(Y1 — X))Y1 + (Vs — X;)Ys + X3, (1.461)
(320") : (X—Z) (Y —Z)=X1Y1 + X5Ys + 1 — X3,

Using auxiliary Langford random variables, we can write the obtusity probability
in (3*20) sub-configuration as

7,3*20:1@[<Y—X>T(z—x><o} =P[E 4+ - Q<0

1/4 pw+1/4 do'dod
_/ /1/4 /1/4 )fﬂ( ) ooy (1'462)
1/4 w+1/4
_/ / / ) Fs(w — 0) fo(w) dodw.
1/4

By using the MSFE integrals, we get
42977 TG w2

13:20 = 51000~ 30 1440
Next, in (32*0) configuration,

~ 0.075291173117. (1.463)

7732*0:19[(X—Y)T(Z—Y)<0] =P+ +U <0

/ 11//44/ 1/4/ ” (o) fo(u) dudo'do (1.464)

23
— [ Ry(—0)Fu(0) do = == ~ 0.0511111.
/1/4 5(=0)Fs(0) do = =5
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At last, in (320%), configuration, since 1 — X3 ~ Unif(0, 1) and both independent
copies = and Z’ are positive, we get trivially

N320+ = P [(X ~-Z2)(Y-2) < 0} =PE+Z +U <0]=0. (1.465)
Summing up the three obtusity probabilities we got,

45737 TG 2
— s . = — — — —— ~(.6264022842. 1.466
N320 = 13+20 + M32+0 + 7320 51000~ 30 1440 ( )

7311

In configuration (311), X is selected from the interior of C5 and Y and Z are
selected from perpendicular edges which do not share a common vertex. We may
parametrise the points as

X = X161 —+ Xgeg + X3€3, Y = }/3637 7 = e, + ZQGQ, (1467)

where X1, Xo, X3,Y3, Zo ~ Unif(0,1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (3*11), (31*1) and (311*), out of
which the last two give the same contribution. Expressing the dot products in
the decomposition of the obtusity indicator, we get

(3*11) : (Y-X)(Z-X) = —(1-X) X1 + (Xo—Z5) Xo — (X3—Y3) X3,

(317°1) : (Z—Y)T(X—Y) = X1+ XoZo + (Y3 — X3)V5, (1.468)

Using auxiliary Langford random variables, we can write the obtusity probability
in (3*20) sub-configuration as

My =P (Y = X)T(Z = X) < 0] =P[-0Q+ 3+ % < 0] = 5

B . (1.469)
_ 4977 TG T s7s001173117,

© 54000 30 1440

Next, in (31*1) configuration,

i =P[(X=Y)(Z-Y) <0 =P[U+E+X <0

0 —o pr—0—¢&

-/ y [ fef=(©)fslo) dudedo (1.470)
1/4 17

_ /0 Fy(~0)Fz(0) do = Joos ~ 000944444,

At last, by symmetry, 1311+ = 131-1. Summing up the three obtusity probabilities,

43997 TG w2
= Pas ) L= ~(.5941800620. (1.471
M320 = M3+20 1+ M32+0 + M320 51000 30 1440 ( )

M221r

In configuration (221r), X and Y are selected from opposite faces of Cs while
Z is selected from one of the edges connecting them. We may parametrise the
points as

X = X1e1 + XQEQ, Y = }/161 + }/262 + es, 7 = deg, (1472)
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1.7. Trivariate functionals in three dimensions

where X1, X5, Y],Ys, Z3 ~ Unif(0,1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (2*21r), (22*1r) and (221*r), out of
which the first two give the same contribution by symmetry. Expressing the dot
products in the decomposition of the obtusity indicator, we get

(2°217) - (Y-X)"(Z—X) = (X1 Y1) X1 + (X5 —Y5) X, + Zs,

e . - (1.473)
(2217r) « (X=Z) (Y—-Z) = XiY1 + XoYa + Z3(1 — Z3),

Using auxiliary Langford random variables, we can write the obtusity probability
in (2*21r) sub-configuration as

23

—. (1.474
450 (1.474)

Mororr = P [(Y=X)T(Z—-X) < 0] =P[S+ X' — U < 0] = nzgeo =
By symmetry, ngg«1, = 72+21,. Finally, in (221*r) configuration,

Ma2rer =IP[(X—Z)T(Y—Z)<0] —PE+E - Q<0

1

— e F=() f=(&) fs(o)dode'de= [ * i_glnglng' 1—4(£+¢) de'de
A -1 v

+¢'
i(1— 45 3/2 788 w2
= 1—-4£)-8)1 dé = —— —— ~ 0.151234778.
/ In(1=46)=8)In& dg = 322 =75
(1.475)
Summing up the three obtusity probabilities,
1133 w2
r = N2x21y 1y o = —— — —— =& 0.2534570004. 1.476
M221 Nox21r + No2+1r + To21 3375 120 ( )

72216

In the last irreducible configuration (221e), X and Y are selected from adjacent
faces of C5 while Z is selected from an edge opposite to the face on which Y
reside. We may parametrise the points as

X = X161 -+ XQGQ, Y = e + }/282 + }/363, 7 = deg, (1477)

where X7, X5, Y5, Y3, Z3 ~ Unif(0,1). Based on the exact location of the obtuse
angle, we recognize three sub-configurations (2*21e), (22*1e) and (221%¢). Ex-
pressing the dot products in the decomposition of the obtusity indicator, we get

(2721e) : (Y-X)(Z—X) = =X (1 — X1) + (Xy — Y2) Xy + Y375,
(2271e) : (X=Y)(Z-Y) =1 - X; + (Yo — Xo)Ya + (Y3 — Z3)Ys,  (1.478)
(221%) : (X=2) (Y =Z) = Xy + X,Ys + (Z3 — Y3)Zs,

Using auxiliary Langford random variables, we can write the obtusity probability
in (2*21e) sub-configuration as

772*21e:P[(Y—X)T(Z—X)<0] —P-Q+X+E<0]

_/“/m/“” (0)f=(€) dédodw (1.479)

= /01/4 » fa(w)fs(o)Fs(w — o) dodw.
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By using the MSE integrals, we get

32629 TG w2
- — — — — = 0. ) 1.4
21000~ 30 360 0.3630998677 (1.480)

T2+21e =

Next, in (22*1e) configuration, we have since 1 — X; ~ Unif(0, 1),
23

M1 = P[(X=Y)(Z=Y) < 0] = P[U+5+% <0] = ngae0 = o (1481)
Finally, in (221%¢) configuration,
17
Moaree = P[(X=2)"(Y=2) < 0] = P[U+E+T<0] = g1 = mog. (1482)

Summing up the three obtusity probabilities,

35899 TG w2
.= Toealr ‘1 = — — — —— ~(.4236554232. (1.483
1221 Nox21r + M2+ 1, + Mo221 54000 30 360 ( )

71333

Inserting mzo1e, 2217, M222r, M311, M320, M321r and 7320, into Equation (|1.435) with
P =n, for which p = 0, we finally obtain

n(C3) = n333 = %(4772216 + 2217 +47202, + 21311+ 21320 +8M301, + TN3227 )
B 323338_13G+48597r_ 73w _LZ+37T1H2_37T1H<1+\/§)
© 385875 35 62720 16804/2 105 224 224

~ (0.54265928142722907450111187258177267165716732602495 . . .,

S J

(1.484)

which is a natural generalization of Langford’s n(Cy) [42].
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2. Even Moments of Random
Determinants

In this chapter, we study the moments of random determinants. It turns out that
they are closely related with moments of volumes of random simplices. We will
see this correspondence later in Chapter |3 For now, we shall study the moments
of random matrices on their own, the usefulness of which will be apparent later
on.

2.1 Preliminaries

2.1.1 Definitions

Definition 39. Let X;;’s be independent and identically distributed (i.i.d.)
random variables with (non-central) moments m, = E XJ;, from which we
construct two (random) matrices A = (Xij)nxn and U = (Xij)nxp- Let
fe(n) = E(det A)* and fi.(n,p) = E(det UTU)*/? be their k—th determinant
moment and k-th Gram moment, respectively. By definition, we set f,(0) =1
and fi,(n,0) = 1 (we put det(UTU) = 1 when p = 0). Also, we define their
corresponding generating functions

Remark 40. This definition of generating functions makes sense only for k£ < 5,
otherwise it does not in general define an analytic function of ¢ on any interval.
Although, we can still treat them formally.

Remark 41. Notice that, when n = p, that is when U = A, we get by the
multiplicative property of determinant, det(UTU) = (det A)2. Therefore,
fr(n,n) = fr(n) and thus Fy(t,0) = Fi(¢).

Ezxample 42. When n = 2 and k = 4, we have

4

X1 Xio = E (X1 X5 — X12X21)4 =K (Xflxgz

X21 X22
— 4XT X X12Xo1 + 6.XF X3 X35 X5 — 4X 11 Xoo X7, X5, + X75X5,)

f1(2) =E(det A)* =E

(2.2)

— 2 22 4 2,2 2 _ o2 2,2 4
= my — 4dmzm] + 6my — dmims + my = 2mj — 8mzmi + 6ms.

Definition 43. Sometimes, we restrict the distribution of X;;’s:

« We say X;;’s follow a symmetrical distribution, if the odd moments are
equal to zero up to the order k (that is, mgy; = 0 for 20 + 1 < k).
We denote f.™"(n) and F;"™(t) the corresponding k-th moment of the
random determinant formed by those random variables, and its generating
function, respectively. Similarly, fx(n,p) = fi7"(n,p) and Fi(t,w) =
F}:ym(t’ w) if mip =m3=ms = ... = Ma[k/2]-1 = 0.

« We say X;;’s follow a centered distribution (or equivalently, we say X;;’s
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are centered random variables) if m; = 0. For those variables, we consider
e (n) and Fge"(t) in the same way. Similarly, fx(n,p) = Ce“(n p) and
Fi(t,w) = Ff™(t,w) if my = 0.
2.1.2 Polynomial nature and scalability

We present some general statements about the random determinant moments.

Proposition 44. Let k be even, then

fk(n) - ¢k<n7m17m27m37‘"Jmk—17mk)7 (23)
where . 1s a polynomial in my, ..., my. Equivalently, there exists a function @y
whose expansion coefficients are polynomials in myq, ..., my, we can write
Similarly, fi(n,p) is also some polynomial pr(n,p,my,...,my) and Fi(t,w) =
O (t,w, my,...,my) for some functions @y with polynomial expansion coefficients.
Corollary 44.1.
() = pr(n,0,maq,0,my,0,mg, . ..), (2.5)
F™(t) = @k (t,0,mo,0,my4,0,mg, . ..), (2.6)
M (n) = pr(n,0,mq, mg, my, ms, mg, . . .), (2.7)
FEoR(t) = ®(t, 0, ma, mg, my, ms, me, . . .), (2.8)

similarly for fy(n,p) and Fj(t,w).

The following proposition allow us to fix one m, and still retain the full generality:

Proposition 45. Let ¢ and @ be defined as in Proposition [44), then for any
B €R and k even,

or(n, Bmy, Bma, Bms, ..., BFmy) = B or(n, mi, my, ms, ..., my) (2.9)
and as a consequence,
Dy (t, By, BPma, . .., f¥my) = Op(B*t, my,my, ..., my). (2.10)
Similarly for the non-symmetric case,
or(n,p, Bmy, f2ma, BPms, ..., B'my) = BPpp(n, my, mg, ms, ... ,myg)  (2.11)

and
(I)k(ta Bmlv /62m27 s 76kmk) = @k(ﬂkta my, M2, ... 7mk)‘ (212)

Proof. Let X5 = X5, m; =E(X};)" = 8"m,, A= (X}5)nxn, U= (X])nxp- On
one hand, by deﬁmtlon

E (det A*)* = pr(n,m},...,m}) = or(n, Bma, ..., "ms) (2.13)
E (det U*TU 2 = @p(n,p,m?t,...,m}) = or(n,p, Bmy, ..., fFme).  (2.14)
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Chapter 2. FEven Moments of Random Determinants

On the other hand, by linearity of determinants,
E (det A*)* = B™E (det A)* = ™ pr(n,my, ..., my) (2.15)
E (det U*TU*)¥/? = PYE (det UTU)? = P pr(n, p,my, . ..,my).  (2.16)

The assertion for the generating functions follows simply by plugging those results
into Definition [39 [ |

Corollary 45.1. Assume we know fr(n) and Fy(t) with mqy = 1, that is

fk(n)|m2:1 == Sok(nymlalam&mlla"'amk)v (217)
Fk(t)’m2:1 = @k(t,ml,l,mg,m4,...,mk), (218)
then
. nk/2 my ms3 My mg
fk(n) QO].C( > 1/2,1, 3/2, 4/2""7k/2>7 (219)
moy mo My mo
k/2, Th mg My My
F() <I>k< t, 1/2,1, 330 Az k/2> (2.20)
my my My my
Similarly
k/2 ma m3 My mg
fk)(n7p) p SOk < 7 1/2717 3/2a 4/27"'? k‘/2> (221)
my my My my
_ k/2 my ms My my
Fk(t,w)—CI)k( tw 1/2,1, 3/20 _4j20 k‘/2> (222)
my my My my

2.1.3 Permutations and derangements

Definition 46. Let P, be the set of all permutations (that is, bijections) of
order n on [n] = {1,2,3,...,n}. An inversion is a permutation which only
switches two elements. We define the sign sgn 7 of a permutation 7 to be the
number of inversion necessary to get m from the identity. This definition is
unambiguous.

A permutation can be represented in the Cauchy notation. It is well known
that the permutation can be decomposed in cycles. This is becomes obvious by
showing the same 7 in the previous example in its cycle representation of w. Both

representations are shown on Figure 2.1]

Figure 2.1: A permutation m € Py being represented in (tabular) Cauchy notation
(left panel) and the cycle notation (right panel)

—
©
AN
- o
RN
S e
X o

Let C(r) be the number of cycles which 7 decomposes to, then sgn 7 = (—1)"~¢(™),
where n is the order of the permutation 7. We can write this formula as the prod-
uct over cycles. Let m = m Uma LI+ - - L7, be (disjoint) decomposition into cycles
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2.1. Preliminaries

7,7 =1,...,m, where we denoted m = C(7). Then
senm = (~1)" T[(1) = [J(~1=, 2.23)
r=1 r=1

where |m,| is the order of m, (that is, the length of the cycle ). Note that,
technically, 7, are not permutations since they are not bijections on {1, ..., 7|},
but rather on a subset of n. In fact, our permutation 7 from Figure is also a
special special case of another set of permutations called derangements.

Lemma 47. Let D,, be the set of all derangements of order n on [n]. That
is, D, are permutations in P, which have no fixed points (cycles of leghth
one). If we let C(m) denote the number of cycles in a permutation m and take
Cr(u) = Y rep, u€™, then

Cn(u) = (n — 1)(Cr-1(u) + u Cra(u))

and
e*’U“T

T (=)

Proof. See the chapter on Bivariate generating functions in the textbook “An-
alytic Combinatorics” by Flajolet and Sedgewick [30]. For completeness, we
present our own derivation. We proceed recursively based on the position of
the node n in the cycle representation of 7. We can create a derangement m € D,,
by either:
1. Adding the node n to one of the cycles of a derangement 7’ € D,,_;. That
is, if ¢ — m(7), then we insert n as i — n — 7(i). Since there are n — 1
nodes in 7', there are n — 1 different 7 € D,, we can create. In this case,
the number of cycles is unchanged, i.e., C(mw) = C(7').
2. Adding a cycle (n,n — 1) of length two to #”” € D,,_5. We can then replace
n — 1 by any ¢ € 7. This gives n — 1 new derangements © € D,, created
from 7", all of them having C'(7) = C'(7") + 1.
We can obtain all derangements D,, in this way. These two possibilities are shown
in the figures below.

Figure 2.3: D, o — D,.
Figure 2.2: D,y — D,,.

In terms of C,,(u), we get the desired recurrence relation

C’n<u> — Z uc(ﬂ) — (n _ 1) Z uc(ﬂ'l) _|_ (n _ 1) Z uc(ﬂ.//)+1

€Dy ' €Dy T €Dp_2

= (n — 1)(Cp-1(u) +uCps(u)),
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Chapter 2. FEven Moments of Random Determinants

from which one can deduce its generating function easily. |

2.1.4 Analytic combinatorics

We follow the notation from the textbook Analytic combinatorics [30] by Flajolet
and Sedgewick. Let A be a combinatorial structure with weight wy : A — Nj.
The structure is said to be labeled if any of its members o € A (an object of
structure 4) is composed of atoms numbered by [w ()] = {1,2,3,4,...,wu(a)}.
Moreover, we assume that A, = {a € A | wa(a) = n} is finite for any natural
n > 0. We also define a,, = |A,| as the number of objects with weight equal
to n. Combinatorial structures can be composed together. If a structure C is
composed out of structures A and B, we can depict this dependency in a form of
a structural relation (or structural equation)

C = (A, B) (2.24)

One common composition of labeled structures is the star product. Note that a
tuple («a, B) cannot represent a labeled object of any structure, since the atoms
of a and S are labeled by [w4(a)] and [wg(/5)], respectively. Relabeling our a,
g into ', ', so every number from 1 to wy(a) + wp(B) appears once, we get
a correctly labeled object. There are of course many ways how to re-label the
objects. The canonical way is to use the star product. We say (o, ') € a* 3
if the new labels in both o and ' increase in the same order as in o and 3
separately. An example is illustrated below in Figure

6 5 3 4 3 2
o 7 3/ e «Q * 3/
2 4 1 1 2 1

Figure 2.4: Star product

The key concept in labeled structures is their generating function (EGF for short)

defined as
R tw(@)

Aty =" wala)l ianz. (2.25)

acA IU_A(O{

Generating functions encode the relation between combinatorial structures (i.e.
how are they composed). In general, there is often a relation in the form

C(t) = o(A(t), B(t)) (2.26)

for some function (or an operator) ¢. The following Table enlists the most
common constructions.
Let us make some further comments of the constructions in the table above.

» SEQ(A) is a shorthand for a sequence and indeed it can be represented as
(re-labeled) k-tuples of objects taken from A. Note that since everything is
re-labeled, even though «;, a; might be the same for different i, j, the cor-
responding o, o are always distinct. Formally, SEQ,(A) = {(of, ..., a}) |
a; € A,i € [k]}, where (o, ..., a}) € ag -+ x qy.
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e ™
C representation of C we(y),7€C C(t)
w.A<’Y) if Y € “47 1 >
A+ B AUB At) + B(t
’ {w3<w> ity e | 400
AxB |{y|v€axBacABeBY wala)ws(d) | AMB()
SEQy(A) AL A Ax- % A Ak(t)
k
SET;(A) L Ak LA%t)
Cycy(A) L gk LA @)
SEQ(A) >0 SEQL(A) 171A(t)
SET(A) > o SET,(A) exp A(t)
Cyc(A) e, Cycy(A) In 1711%(15)

Table 2.1: Composition of combinatorial structures and the corresponding expo-
nential generating functions
G J

» SETk(A) is a structure of sets of k relabeled elements, that is, the order of
objects « is irrelevant. Formally, SET,(A) = {{a],...,a}} | s € A,i €
[k]}. Alternatively, SET,(A) can be represented as the structure of classes
of k-tuples in SEQ(.A) which differ up to some permutation.
o Cvci(A) represents the structure of classes of k-tuples in SEQ(.A) which
differ up to some cyclical permutation.
For completeness, we briefly explam these results. To see that the exponential
generating function for A x B is A( )B( ), let ay, bn, and ¢, be the number of
elements of weight n in A, B, and A x B. We have that

n n R
j=0 \J

S0
. . Gt" B AN
) =3 = Z Z : J—, = A(t)B(t)
n=0 v n=0j=0 -7)
The generating functions for SEQ(A), SET(.A) and Cyc(A) come from the Taylor
series —— = 300 tF el =300 ';:, and In (—) =3y %
Tagging

Often, we asign a parameter (real or complex) when a given combinatorial sub-
structure appears in a more general construction. Let us say that each time a
substructure o € A appears, we multiply the weight by p4. The generating func-
tion for a labeled combinatorial structure A, = 14 X A is then A W(t) =p AA(L).
Similarly, let us attach a parameter up to a substructure B and let us create the
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following construction

Cp=P(ua x A, pug x B). (2.27)
In terms of EGF’s, this translates to
C(t) = ¢(uaA(t), usB(t)). (2.28)

Example 48. Let us denote D as the combinatorial structure of all derangements.
Any derangement can be decomposed into cycles of length at least two. Attaching
a tag u to each cycle, we get a structure D,, which can be also constructed as

follows
D, = SET (u CyC>y (@)) (2.29)

and thus immediately in terms of generating functions,

e—ut

Dy (t) = exp(—ut — uln(1 —t)) = -

(2.30)

This is an alternative proof of Lemma [47]

2.2 Permutation tables

We can express the value of fy(n) = E (det A)* as a sum of terms over permutation
tables. Permutation tables are well known and have been used to find older
results [50][24]. However, they have never been used as a tool, but merely as a
visualisation. The main ingredient how to obtain random determinant moments
thus still remained a plain recursion. Although recursions are versatile (the author
of this thesis found Fy(t) and Fy(¢,w) in his original work [8] by recursions only),
they have a major disadvantage — they hide the underlining structure. Simply
because there are so many of them and they are connected nontrivialy (see Figure
1 in [8]). After finding Fy(t) and Fjy(t,w), the author begun a collaboration
with Zelin Lv and Aaron Potechin, who found f§¥™(n) earlier the same year.
Together, we are able to deduce a slight generalisation, namely f§(n), using a
clever handling of generation functions. In our paper [5], the bijection between
random determinants and permutation tables is used extensively. For the first
time, the overall structure of permutation tables played a crucial role in obtaining
the moment of a random determinant. Nevertheless, the paper still relied only
on recursions (coupled with exclusion/inclusion technique), which again made the
derivation incredibly technical and hided some crucial insights. It was only later
after publishing our work that we realised that each block of our final generating
functions Fy(t) and Fg§*"(t) have a concrete combinatorial meaning. Rather then
top to bottom, the natural question is how we can build our permutation tables
from bottom up from generating functions. The new approach is thus to view
permutation tables as a standalone combinatorial structure on which we can
perform analytic calculations in the spirit of Flajolet and Sedgewick [30]. This
is the method of permutation tables in its present form as it arose from the
collaboration with the aforementioned authors. We will show how the method
works in the remaining sections.

Definition 49. We say 7 is a k by n permutation table, if its rows are permu-
tations m;,7 = 1,...,k of order n. We denote Fj,,, the set of all such tables.
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2.2, Permutation tables

Definition 50. We define the sign of a table 7 € Fj, as the product of signs
of permutations which form its rows.

Definition 51. We define the weight of the i-th column of 7 € Fj, as the
expectation E H§:1 Xix, (i) Then, we define the weight w(7) of the whole table
7 as the product of weights of its individual columns.

Definition 52. Finally, we denote Fj, as the set of all permutation tables with
k rows with the above weights and signs. That is, structurallylFl

Fy = Fin- (2.31)

n=0

Example 53. The following example in Figure [2.5) shows a permutation table
T € Fyg with weight w(7) = mi*mimim,. Weight of each individual column
is shown below each column. For instance, the second column corresponds to
term Xog X0 X26X03, whose expectation is obviously m?ms since EXZQG = my and

EXQQ = ]EXQg =m;.

1 6 3 9 ) 2 7 8 4 +
3 2 1 9 4 6 7 ) 8 +
4 6 1 9 3 2 7 ) 8 +
2 3 1 ) 4 6 7 8 9 —
77’L[1’L m%mg mimsg 1Mmims m%mg m% Ty m% mfmg
Figure 2.5: A permutation table 7 € Fy g with w(7) = m{?mIm%m, and sgnr = —1.
Proposition 54. For any distribution X;;,
fr(n) =E(det A)F = Y w(r)sgn(r). (2.32)
TGka

Proof. Follows directly from the expansion det A = 3> cp sgn 7 [[;cp,) Xir) raised
to k-th power and by taking expectation. |

Ezample 55. The correspondence between fi(n) and permutation tables is shown
below in Figure [2.6| for n = 2 and k = 2 showing f2(2) = 2(m3 — m{) = 2!(mq +
m?)(my —m?) by summing the contributions from all permutation tables.

e N
(det A)? = X4 X2, — X11X02X12Xo1 — XX X11 X0 + X3HX5,
Fyy: 1|2 1|2 211 201
’ 12 211 1(2 2|1
Weight: MMy mim? m2m? Moy
Sign: - — — +
. /

Figure 2.6: Correspondence between determinant moment f2(2) and permutation
tables F2’2
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2.2.1 Exponential generating function and analytic com-
binatorial nature of permutation tables

Note that our generating functions (see Definition are double exponential,
meaning they have a factor n! squared in the denominator, where the usual expo-
nential generating function (EGF) has only first power of n! in the denominator.
It turns out there is a simple way how the tables so their generating functions
are EGF. In order to achieve this, we relax the assumptions of knowing the order
of the columns.

Definition 56. Let A, be some set of £ x n nontrivial tables with usual
weight defined as a product of weights of its columns. We denote A ,, as tables
formed from Ay, in which the order of the columns is irrelevant. That is, Ay,
is split into equivalent classes of tables which differ only by some permutation
of columns. The set Ay, can be then viewed as the set of representats (one per
each class). Or equivalently, in Ay ,, tables which differ up to permutation of
columns are treated as the same table. Accordingly, we define

ar(n) = > w(r)sgnr, ar(n) = > w(r)sgnt

TeAk,n TeAk’n

and their corresponding generating functions

n=0 """ n=0

Lemma 57. Let a,(n), ax(n), Ag(t) and Ay(t) be defined as above, then

ap(n) = nlag(n)  and  Ag(t) = Ap(t). (2.34)

.

Proof. Let 7 € Ay,. Since k is even (otherwise ag(n) is zero), permutation of
columns of 7 does not change the sign nor weight of 7. Select one representant 7’
from each class of tables whose columns differ only by permutation of columns.
Since there are n! ways how we can arrange the columns,

ar(n) = > w(r)sgnt= > nlw(r)sgnt = nlay(n), (2.35)

TeAk,n TIGAI%”

from which immediately

n=0 """ n=0
|

Definition 58. Finally, we denote A; as the combinatorial structure of all
permutation tables with k rows with the above weights and signs (whose column
order is irrelevant). That is, structurally,

A= Apn. (2.37)

n=0
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2.2, Permutation tables

Definition 59 (Tables Fj). According to the above definition, we write Fy,,
for the set of all permutation tables with k rows and n columns with irrelevant
order. Similarly, Fi, = > 02, Fkn is the combinatorial structure of all such
tables regardless of the number of columns (including zero columns).

Ezample 60. Let us compute fo(3). We may write fo(3) = 3!f,(3), where f,(3) =
Yrer, w(T)sgnT. Figure enlists all elements of F, 3 and shows their weights
and signs. Summing the contribution, we get f,(3) = m3 — 3mom? + 2m$ =
(ma + 2m?)(my — m?)? and thus f5(3) = 3!/(my + 2m?)(my — m?)2.

( N

Fos: 1123 1123 1123 1123 1123 1123
7 1123 1132 3121 2113 311|2 2|13|1

Weight: momaoms  mam2mi  mimom? m2mimy mimim? mimim?
Sign: + — — — - -

Figure 2.7: Correspondence between fQ (3) and permutation tables F5 3

Remark 61. Since the order of the columns in any 7 € F} is irrelevant by
definition, we often sort them by the first permutation (the first row in the
given table 7).

Sub-table factorization

Let n(7) denote the number of columns (which is the same as the number of
elements) of a table 7 € Ay. Using this definition, we can write the exponential
generating function from Equation (2.33)) more compactly as

(1)

Ax(t) = Z n(r)!

TEA

w(T)sgn T, (2.38)

Any table 7 can be viewed as being build up by smaller constituents. Those
constituents are sub-tables, which we define as the smallest subsets of columns
not sharing any element which cannot be further divided. The following propo-
sition underlines the property of tables with irrelevant column order A being a
combinatorial structure with the usual property of the star product, namely that
the (exponential) generating functions factorise over sub-tables.

Definition 62. Let 7 be a Ay table. We denote EGF[r] as the contribution
of 7 to Ax(t) (Equation (2.38))). By definition,

(1)
n(r)!

EGF[r] = w(T)sgn . (2.39)

Similarly, if B C Ay is a subset of tables from Ay, then EGF[B] =
ZTEB EGF[T]
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Chapter 2. FEven Moments of Random Determinants

Proposition 63 (sub-table factorization). Let 7 be a Ay table build up from
exactly two disjoint sub-tables 7 and o, then

EGF[r * 1| = EGF|1|EGF|1). (2.40)

Proof. Let ny and ny be the number of columns of 7, and 7, respectively. We
also denote n = n; + ny as the total number of columns of 7 (See Figure .

n = ny columns + ns columns

Figure 2.8: Table 7 consisted of two dis-joint sub-tables 7 and 7.

Any 7 from the set 7, x 75 (with elements shuffled) gives the same contribution to
Ag(t). Since there are (:1) ways how can we select elements for 71 and 7,

t’I’L

EGF[r *] <n>EGF[T] _ (”)f:!wm sant— —w(r)sent. (2.41)

sl sl nllngl

On the other hand, we already know that both weight and sign factorises over
sub-tables, that is w(7)sgn 7 = w(m )w(m2) sgn 71 sgn 7o. Hence,

ni tn2 tn1+n2
EGF[n]EGF(r] = nT!w(Tl) sgn 71772! (T2) sgn o = nllnglw(T) sgnT, (2.42)
which concludes the proof. |

2.2.2 Highest moment recursion formulae

The following statement and its proof due to Prékopa [57] enables us to replace
my with any arbitrary value and still not loose any generality:

Proposition 64.

ag 7’;(:) R, (2.43)
from which, for mj € R arbitrary,
By(t) = ™D E () oy o), (2.44)
or equivalently
Oy (t,ma, ..., mp_1,my) = e TD L (Emy, ... mp_y, m]) (2.45)
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2.2, Permutation tables

Proof. For each factor of my, there must be one column filled with the same
elements in a given permutation table (a k-column). The columns of Fj can be
depicted in the diagram below.

( 0

Type:  k-column other columns

fki

Weight: my

. J

Crucially, these k-columns are disjoint from the rest of the table. If we denote F
as the structure of tables not containing k-columns, we can write the following
structural equation

(2.46)

Note that the star product arises naturally, since it handles relabeling. The first
term in the star product is precisely the structure of k-columns with EGF equal
to exp(myt), where myt is the EGF of a single k-column. For the second term,
we have for its EGF that Fj(t) = Fj(t)|m, 0, since we can erase the k-columns
by setting m; = 0. Combining those generating functions together,

Fy(t) = ™" (Fy(t) lm,—0), (2.47)
which is equivalent to the assertion of the proposition. |

Dembo (Lemma 2 in [24]) showed that a similar result holds also for Fj(t,w),
namely

Proposition 65.
8Fk (t, w)

o = Rt (2.48)
from which, for mj € R arbitrary,
Fy(t,w) = e E(t,0) oy ) (2.49)
or equivalently
Op(t,w,my, ... ,mp_1,myg) = e(m’“’mz)t@k(t, Wy My .oy M1, M) (2.50)

Remark 66. There is a general pattern found throughout the thesis. Namely,
if a table is composed of two disjoint sub-tables, its EGF is a product of those
EGF’s for the two sub-tables. This is because not only weights decompose
into product over sub-tables, but also the signs (as shown in Proposition .
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2.2.3 Second moment general

The following formula for f>(n) was derived by Fortet [32] as a special case of a
more general setting by recursions, although it could be derived in a much more
elementary way [68]. In this thesis, however, we shall prove this formula using
permutation tables and their corresponding combinatorial constructions.

Proposition 67 (Fortet [32]). For any distribution of X,j,

fo(n) = nl(my +m2(n —1))(mg —m3)" 1, (2.51)

Fy(t) = (1 +m3t)elmamdt, (2.52)
Proof. In order to deduce fo(n), we can add up weights and signs in tables Fs.

Let us examine their structure. Let a,b be different integers, then there are two
types of columns in F» (see the diagram below).

( N

Type: 2-column 1-column

H

Weight: mo m?

k J

A crucial observation is as follows: Each table 7 € F; can be decomposed into
sub-tables (disjoint sets of columns). This should be obvious since any 7 can
be associated with a corresponding permutation 7 in the Cauchy notation. The
fixed points of 7 correspond to 2-columns and the cycles of 7w are created by
connecting the 1-columns (first row to second row). An example of 7 € F, with
its corresponding permutation is shown in Figures and — since the order
of columns in 7 is irrelevant, we grouped the columns into sub-tables right away.

Figure 2.9: 7 € F39 with two 2-columns  Figure 2.10: The corresponding permu-
and seven 1-columns (5 sub-tables) tation 7 € Fy for table 7

—_
W
\]
[\
w
ot
Nej
(@]
(0¢]

As a consequence, we can write down a structural equation for the structure of
all 2-tables F5 as follows

Fy = SET () * SET (—CY022 (—mf @)) : (2.53)

That is, the second term in the star product is exactly the structure Fo. Based
on analytical combinatorics, we immediately get in terms of generating functions,

Fy(t) = exp(mat) exp(—m2t + In(1 + m2t)) = (1 + m2t)em2=m)t, (2.54)

133



2.2, Permutation tables

This concludes the proof. By using Taylor expansion, we immediately recover
also fo(n). For completeness, let us discuss how the signs are handled in the
EGF of F,. Those tables are decomposable into sub-tables, each sub-table of 7 is
identified with a corresponding cycle. Each cycle 7 of length n has the sign equal
to (—1)""! and this must be the same sign of the sub-table of 7 of the same size
(n columns). We can therefore write for the EGF of all tables composed of one
cycle only

—t)? —t)? —t)*
- <m§(—t) +m‘1*< 2') + m?( 3|> +m§( 4') + - ) =In(1+mft). (2.55)
Note that the power of the minus sign at ¢" is exactly (—1)""! as it should be.
Finally, since the cycle of length one is impossible (a single 1-column can never

be disjoint), we have to subtract the first term in the series expansion above.

2.2.4 Fourth moment central

Note that when m; = 0, the number of tables with nontrivial weight is reduced
significantly. As a consequence, we can easily derive the result of Nyquist, Rice
and Riordan [50], namely F;*™(¢) and the corresponding f3"™"(n).

Proposition 68 (Nyquist, Rice and Riordan [50]).

et(m4 —3m3)

O T

(2.56)

Corollary 68.1.

) = ()Pt~ ( )j (”_g+2>. (2.57)

]0‘]

Remark 69. In fact, those formulae hold even if X;;’s follow just a centered
distribution. That is, f{(n) = f;"™(n) and F{(t) = F;""(t). This is due to
the fact that ms appears always as a product myms in the fy(n) polynomial.

Proof of Proposition[68 Let a,b be different integers, then there are two types
of columns we need to consider which give rise to tables with nontrivial weights
(see the diagram below). It is convenient to denote those tables as F,;*™ (or F,;”™

if we do not care about the order of columns).

( 0

Type: 4-column 2-column

FSym o

Q@ 2 2 2

Q2

Weight: My ms
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By definition

~Sym

Dr(n) =nlf, (n)=nl > w(r)sgnt. (2.58)

Sym
7'6.7:4’n

Again, we can write down a structural equation for the 4-tables F;"™ as follows
1

Fi = SET } * Q. (2.59)
1

The first part of the star product corresponds to tables with 4-columns only. Its
EGF is equal to exp(myt). The second term Q4 denote the tables with 2-columns
only. Let us further examine how we can construct the latter tables using disjoint
sub-tables. Let b be a number in the first row of a given column of table 7 € Q.
Since it is a 2-column, we denote the other number in the column as &'. We
construct a permutation 7 to a given table 7 as composed from all those pairs
b — b'. Note that since b and b are always different, the set off all admissible
permutations corresponds to the set of all derangements. On top of that, since
the first row of 7 can be assumed to be fixed to identity (we simply reorder the
columns), there are 3 possibilities how to arrange the leftover numbers in the
2-columns of a given cycle of 7 as the number in the first row of each 2-column
can reappear either in the second, third or in the fourth row. For each possibility,
we draw a vertical box with four slots filled with two dots representing in which
rows the number in the first row appears (see Figure [2.11]).

Figure 2.11: One-to-one correspondence between a table 7 in Q4 9 with nine 2-columns
decomposable into three disjoint sub-tables, and its associated derangement 7w with
cycles labeled according to the repetitions of the number in the first row of 7

W W |~
— = W W
DD N O N
~N 3 D
N~ DN
O O
U | Ot
oo Ut Ut Co
© 00 00| ©

Any derangement can be decomposed into cycles of length at least two. Those
cycles correspond to disjoint sub-tables of 7. Since each permutation appears
twice in any sub-table, the sign of those sub-tables is always positive. Hence,

Q= SET (3Cv0se (m3 (D)) (2.60)
and thus immediately in terms of generating functions,
svm 9 ) e(m4—3m§)t
FP™(t) = exp(myt) exp(—3mit — In(1 — mjt)) = 0= 3mite (2.61)
— omj

This concludes the proof. By using Taylor expansion, we immediatelly recover
also f;""(n). [ |
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2.2, Permutation tables

Remark 70. By considering all tables, one could theoretically tackle also the
case m; # 0. However, this approach is rather ineffective since it turns out
the problem drastically simplifies if we shift the random variables X;; by their
first moment m,, as we will see later on in the section on marked permutation

tables (Section [2.4).

2.2.5 Normal moments

In the case of X;; being normally distributed, we know much more. In fact we
know all determinant moments (even for the Gram case as we will see later).

For now, we focus only on the special case of the standard normal distribution
Xi; ~N(0,1).

| Definition 71. If X;; ~ N(0,1), we denote fx(n) as ngy(n) and Fj(t) as Ni(t).

Proposition 72 (Prékopa 1967). For any even k = 2m,

Nom(n) = WlL:[O W (2.62)

For now, we take this proposition as granted. It was first derived in this form
by Nyquist, Rice and Riordan (Equation (3.12) in [50], their treatment even
covers the case of arbitrary complex moment), although much more elementary
derivation of this result was later given by Prékopa (Section 3 in [57]). Both proofs
rely on a deep connection of random determinants with volumetric moments of
random polytopes (see Chapter @ The proposition is also a special case of

Lemma with p = 0.

Fourth normal moment

When k = 4, we get ny(n) = n!(n+2)!/2 and thus

Ny(t) = ;nio(n +2)(n+1)t" = a _1 ik

(2.63)

Alternatively, we can deduce N4(t) independently from Proposition by us-
Sym

ing the general formula for ;"™ () (Proposition [68), since the standard normal
distribution is modeled by plugging its moments ms = 1 and my = 3 into F;""(¢).

Sixth normal moment

When k£ = 6, the function

1 oo

Ns(t) = e
n=0

(n+1)(n+2)(n+4)t" (2.64)

is no longer analytic. In fact, it diverges everywhere except ¢ = 0, however,
we can still treat it formally. Note that in this case, there also exists a fully
combinatorial proof (independent from Proposition due to Potechin and Lv
(see Appendix A of [5]).
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Chapter 2. FEven Moments of Random Determinants

2.2.6 Sixth moment central

The proof of the following theorem was already established by B., Potechin and
Lv [5]. In this section, we provide a more compact version of the proof, based
on inclusion/exclusion, analytic combinatorics and the fact we know the EGF for
the special case X;; being normally distributed.

{ 3

Theorem 73 (B., Lv, Potechin 2023). For any central distribution of X,;,

t(me—15mama—10m3+30m3) 34
F5o(t) = (1+m30)'0 ( : 2 ) .

(14 3mit — m4m2t)15 1+ 3m3t — m4m2t)3

Furthermore, via Taylor expansion,

n LU (144)(244) (4+0)! (10N [1445420\ isk i—i &
s (n) = (n!)*m3" s T g,
’ ;;kzo 48(n — j — k)! k J—1 3

2

m m m

where qﬁzi—107—15—+30 GBu=——3  q=—2
m2 m2 m2 m2 m2

Proof. Without the loss of generality, we assume my = 1 throughout the proof.
The fact we have m; = 0 reduces the number of tables with nontrivial weight. It
is convenient to denote F5°" as the set of those tables (irrelevant column order),
which in turn contribute to the sum f§®*(n). These tables can be constructed out
of the following columns (apart from permutation of rows):

( 0
Type: 6-column 4-column 2-column 3-column

a | a | a | a |
a a a a
Frcen a a b a
6 - a a b b
a b c b
a b c b

Weight: me my 1 m3

First, we examine the special case when also mz = 0. It is convenient to denote
FT™ C Fs™ as the set of tables which contribute only to the sum fg"™ (n). These
are precisely those tables which are composed out of 6-, 4- and 2-columns only.
In order to utilise inclusion/exclusion, we further divide the columns into two
types known and unknown. An unknown column is a column where the numbers
are, in addition, paired up (only the same ones). Let a,b, ¢ be distinct integers
different from integers a’, ', ¢ (which themselves are not necessarily distinct,
so we might have o’ = b'). We construct our new structure of tables F¢ build
up from the following columns (apart from permutation of rows) with carefully
designed weights:
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2.2, Permutation tables

Type: known known unknown
ype: 6-column 4-column column
a \
.Fg : a C/ b/
°
/
Weight: me— 15 my—3 1

Example 74. Below, in Figure there is an example of a table 7 € Fg4 with
two known four-columns (each having weight m4 —3) and one known six-column.

R

e
a\. o—-e

! 2

3 $9 63 68
42131\_ /s \_/
s e o\ o o o
\ 56 $ 43
L e o e o o

Figure 2.12: A table 7 € F§ o with weight w(7) = (mg — 15)(my — 3)*.

Note that since a 4-column in any 7 € F¢'™ can either be known (weight m4 — 3)
or unknown (there are 3 ways how we can pair up the four identical elements), the
total contribution from all F"™ columns is my — 3 + 3 = my, which is precisely
as in plain F¢&™. This decomposition is shown in Figure [2.13]

. A
; | o
a| = + |4 + + |4/
b L] L] L] *
b b b b
A L] ¢ L ®] L ¢ ]
my my— 3 1 1 1

Figure 2.13: Inclusion/Exclusion of 4-columns

Similarly, the weights add up to mg from each known and unknown 6-column.
To see this, note that there are in total 15 pairings of the six identical elements,
this gives us the factor of mg — 15+ 15 = mg again (known 4-columns with a = ¥’
are forbidden!). Overall, we must get the following matching

() =n! > w(r)sgnTt=n! > w(r)sgnr. (2.65)

Sym *
TEFS TEFS
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Chapter 2. FEven Moments of Random Determinants

Even though the set F¢ is much larger, we will see how it can be constructed out
of Ng we saw earlier (tables constructed out of unknown columns only). First,
notice that the the known 6-columns are disjoint from the other columns, we can
therefore write

Fi = SET * Fg, (2.66)

where we denoted ]-:Z as the tables constructed out of known 4-columns and
unknown columns only. In terms of EGF’s,

~ %k

F;(t) = exp((mg — 15)t) Fg(t). (2.67)

Let T € F, Z, we construct its associated oriented graph g using the following rules:
Let a be the number which appears four times in a known 4-column of 7, this
number must appear elsewhere in table 7 as a pair of connected a’s, then in g,

o there will be a vertex associated to each known 4-column labeled by the
number a.

o Apart of that, our graph will have one special vertex v.

o If the remaining pair of a’s is located in a known 4-column, we draw an
oriented edge a — b, where b is the number which appears four times in
that known 4-column,

o else if the remaining pair of a’s is not located in some known 4-column,
then we draw an edge a — v.

An example how the graph is constructed is shown in Figure [2.14

/ (9) (D
i . . ®
o| 13| |7 581
o
10 9 (10) (5

Figure 2.14: A table 7 € ]:"2711 with its associated graph g of known 4-columns
(columns in the core v are shown in grey)

*—J
[ ZNeR
o-Co-e

w

Upon seeing an example above, we discover the following structure — any graph
g must be composed out of

« disjoint cycles of length at least two

« a (single) tree whose root is v
Disjoint cycles of g directly correspond to disjoint sub-tables found in 7. This
correspondence is not a bijection. Luckily, for a given cycle, there are exactly
(g) = 15 ways how a sub-table corresponding to a given cycle can look like based
on the location of the remaining pair in the known 4-columns. These ways can

be depicted using the following diagram in Figure [2.15]
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2.2, Permutation tables

NEREEEERE RN

Figure 2.15: Positions of the remaining pair in a given cycle of known 4-columns

We may write the following structural equation

Fy=SET | 15CYCsy D * R, (2.68)

!

where we denoted R as the set of all F, Z tables whose graph contains no cycles
of known 4-columns. In terms of generating functions, we must have

F5(t) = exp(—15(myg — 3)t — 151In(1 — (my — 3)t)) Re(t). (2.69)

Although the known 4-columns in some 7 € R4 do not form sub-tables since they
are not disjoint from the remaining unknown columns, they are still very tightly
associated with them. We can consider the following operation of collapse
e each chain of 4-columns attached to v in ¢ corresponds to a subset of 4-
columns in 7.
e These columns contain an unmatched pair of a’s not equal to any number
tagging the chain.
o By deleting those columns and inserting the unmatched pairs into the known
columns, we get a collapsed table 77 on unknowns columns only.
An example how a table is collapsed is shown in Figure [2.16]

é” %
‘5
/ﬁ

M
'

21 13| |7 8H 1
\ §¢a

e e [

Figure 2.16: A table 7 € Rg 9 with its associated collapsed table 7/ € /\/'673.

e

—
O

|

. « o so0 e
&
4\g e-00-0

co
*—

- O-e

In order to create (any) 7 from 77, notice that we can mount a chain of 4-columns
to a pair in the collapsed 7/. The chains stem out of 7/ almost like branches
out of a trunk. A chain (with length including zero) of known 4-columns can be
described as a structure (we always have positive signs)

SEQ D (2.70)
!

with the corresponding EGF equal to

1

1— (mg —3)t° 271)
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Chapter 2. FEven Moments of Random Determinants

Each unknown column has three pairs to which we can attach a chain of known 4-
columns. Since it is also equipped with the factor of ¢ in the generating function,
we can simply replace ¢ in Ng(t) with

t
0 =90 272)
Structurally,
! !
Re=Ns | ||  SEQ * SEQ * SEQ D . (2.73)
! !

In terms of generating functions

Re(t) = Ne <(1 - (mi - 3)t)3> . (2.74) J

All together, by Equations (2.65)), (2.67)), (2.69) and ({2.74)

sym . e (me—15ma+30)t ;
P @:%@ZO4MrWWM<@wm%mQ' -

Finally, we generalise our approach to deduce Fg§*(t). Relaxing the condition
mg = 0 by making ms arbitrary, we get one extra column type which appears in
the structure of all tables F¢*" with nontrivial weight and that is the 3-column.
These 3-columns, however, form a disjoint set of sub-tables. This is because they
are the only columns in which a number can appear in a triplet. Denote Qg as the
set of all tables constructed out of 3-columns only (with column order irrelevant),
then

Fo =T * Qe (2.76) J

Our goal is to find the construction relation for Qg. The triplets in 3-columns
can be connected in a similar way as the columns in tables F». Hence, we can
associate a derangement m whose cycles correspond to disjoint sub-tables into
which 7 € Qg decomposes. This association, however, is no longer a bijection.

NN

Figure 2.17: Positions of the number which appears in the first row

5
2

(see Figure [2.17)) how we can arrange the remaining numbers in 3-columns in the
sub-table corresponding to that cycle. The correspondence is shown in Figure

2.18

To make it a bijection, notice that for a given cycle, there are ( ) = 10 ways
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W W W |
— = =0 W W
DD OO NN
N o> BN o)) Ne!
(NI NCIIEN BN NI N FIEN|
= O = O Ok
U = O = | O
co Ul Co Ot Ut 0o
© 00 © 00 0| ©

[eegq

[ o9

Figure 2.18: One-to-one correspondence between a table 7 in Qg g with nine 3-columns
decomposable into three disjoint sub-tables, and its associated derangement 7w with
cycles labeled according to the repetitions of the number in the first row of

For a given sub-table of size n, there are three rows which are themselves cycles
of size n and sign (—1)"~!, so the overall sign of a sub-table is again (—1)""!. All
together, we can write the following construction relation

Q¢ = SET (—10 CYCsy (—m§ @)) : (2.77)
Hence, the EGF of Qg must be
exp(—10m3t + 10In(1 + m3t)) = (1 + m3t)'0e10mst (2.78)
and therefore, restating Equation in terms of generating functions,
Fen(t) = (14 m3t) et 7 (¢), (2.79)

This concludes the proof (see Corollary - 45.1) how we can get from mg = 1 to my
arbitrary). By using Taylor expansion, we immediately recover also f§*(n). W

2.2.7 Mounting argument for higher moments

Note that the previous approach enables us to generalise the result of Dembo
[24] (Note that we present a slightly extended version since in fact, the result is
correct for any value of my_; as it always appears in a product with m; which
vanishes).

Definition 75. Denote m, the moments of a N(0,1) variable, that is m, =
(¢ — 1) when ¢ is even and m, = 0 otherwise.

Proposition 76 (Dembo 1989). Let k > 2 be even and let X;; have moments
mg which coincide with moments my of the Normal distribution upto ¢ < k — 2.
That is, mq = m, for ¢ < k—2 (we thus have two free parameters my and mg_1 ).
Then

Fi(t) = eme=mt N (1), (2.80)
where
o 2! (n —I— 2r
Ni(t) = Z 2 H (2.81)
n= 0 =0

is the generating function Fy(t) for the full normal distribution X;; ~ N(0,1).

However, by mounting to tables which have normal weights (unknown columns
only), we can extend this result so my;_» can attain any value. From a corre-
sponding functional equation, we deduced:
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Chapter 2. FEven Moments of Random Determinants

Proposition 77. Let k > 4 be even and let X;; have moments m, which coincide
with moments m, of the Normal distribution upto ¢ < k — 3 (we thus have three
free parameters my, my_1 and my_s). Then

Fy(t)= exp| (11— (o) et (5 mi2)1 N (( t )k/2> ,

(1 + my_ot — my_t)(2) 1y _ot — ot

(2.82)
where Ni(t) as before.

Proof. The same argument as in the case of the sixth moment. Even though we
assume m; = 0, the structure of all nontrivial tables F;"™ still contains a lot of
types of columns. However, when the condition imposed on moments enables us
to make the same inclusion /exclusion argument by carefully designing the weights
for their known /unknown counterparts. As a result, we replace the structure 7,
with the structure F; of tables build up from the following columns (a, b distinct):

known known unknown

Type: 4 olumn (k — 2)-column column

] I

’ [ Jwpl )
*—=e

Weight: m—my Mp_o—Mg_9 1

k J

The matching of columns assures that generating functions F;*™(¢) and Fj(t)

coincide. The known k-columns are disjoint (each), so we get the factor exp((my—

(;) mk_Q_mk+(§)mk_2)t). There are (g) of known (k — 2)-columns based on the

position of the only pair in this column. These columns can either form cycles of
length at least two, from those we get the factor exp(—(’;) (mg_o — my_o)t)/(1 —

(mk_Q_mk_Q)t)<§). Or, they could be mounted to pairs of Ny tables. In each
column of Ny, there are k/2 pairs, from which we can grow a chain of known
(k — 2)-columns. This gives us the last factor in EGF of F}. [ |

Remark 78. Note that when k& = 6 this result has enough freedom to give us
the value of Fg(t) for any symmetrical distribution — the condition ms = 1 can
be relaxed by scaling and m,4 and mg are already free. For k£ > 8, that’s not
the case though since my is no longer free (it must be equal to 3 in order the
argument to work).

2.2.8 Direct mounting without inclusion/exclusion

Notice how the inclusion/exclusion turned out to be crucial in the proof above.
Without is, the collapse would not work since we could not guarantee that the
collapse is surjective. However, by carefully working with structural compositions,
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2.2, Permutation tables

we can avoid the inclusion/exlusion entirely. Although at a cost of getting a
functional relation for Fg*™(t) rather than a direct expression. See the proof

below.

Alternative proof of Theorem[73. Let us consider all F¢o™ tables with their usual
6-, 4- and 2-columns (weights mg, myms and m3, respectively). We denote JFg°
as the subset of all tables F¢°™ which lack 6-columns and whose 4-columns do
not form cycles. Those tables are composed out of the following columns:

Type:  4-column 2-column
a a
a a
ree . a b
T a b
b c

na K

Weight:  myms 1

However, not all compositions of columns are allowed in F{™° since we must
ensure there are no cycles of 4-columns. Note that now the cycles of 4-columns in
F&7™ must be of length at least two (otherwise we would end up with a 6-column).
Considering this, we can write down the following structural relation

Fm — SET *SET | 15 CYCxy * Fgree. (2.83)

QAL
IR

From the structural equation, we get immediately in terms of EGFs,

e(mﬁ— 15m4m2)t

ngm(t) :6m6t€_15m4m2t_151n(1_m4m2t)Fgree(t) _ (1 — m3t>15 Fgree(t). (284)
2

Analogously, we can collapse all of the 4-columns in 7 € F*® to get a new table
7/. An example of this procedure is shown in Figure [2.19|

4]3(7]2]5]1]9]6]8 2]51716]3
2/4/7/3|8/1/9|5]|6 218756
2/4/1/3|8|7/9|5]|6 2/8/7/5|6
413(1]2|5/7|9|6|8| "|2|5]7|6|8
413/1]5/6/9|7|8]2 516|7[8]2
413/1]5/6/9|7|8]2 516|7]8]2

ree Sym

Figure 2.19: A correspondence between table 7 € ]:&9 and its collapsed 7/ € Fes -

Notice that, although 7 does not contain any 6-columns, the corresponding col-
lapsed table 7" can. Similarly, 7/ can contain 4-columns which form cycles. Hence,
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Chapter 2. FEven Moments of Random Determinants

in general, 7/ must be a F¢'™ table. In fact, we can get any Fg ' table by collaps-
ing a larger F¢™° table so the operation is surjective. This observation suggests
we can construct F¢"¢ tables out of F¢g'™ tables by mounting a chain of 4-columns
to appropriate pairs of identical elements. Unlike in the previous proof, we dis-
tinguish between 4-column chains of length at least one and at least zero. We
will call the former as improper chain structure and the latter as proper chain
structure. The improper chain structure is constructed as follows

SEQ (2.85)

TR QR

so its EGF is equal to 1/(1 — mymat). The proper chain structure is given by

SEQs; (2.86)

IR QR

and its EGF equals 302 | (mymat)™ = mymat /(1 —mymot). Now, we are ready to
construct any F¢'° table by enlarging a specific (collapsed) Fg™ table. Note that
the generating function Fg"™ (¢) is in general a function of parameters (¢, mg, my, ms).
In fact, we can write it as a function of only three combinations of those param-
eters, namely

F™(t) = Q(mgt, mamat, mat) (2.87)

for some function 2. This is because we have the following options for the con-
tribution of a column in the overall generating function:

e G-column, factor mgt,

e 4-column, factor mymot,

e 2-column, factor mit.
Alternatively, assuming mo = 1, we can write

Fﬁsym(t) = A(t, me, m4) (288)

for some function A. Now, we proceed to actual mounting. In order to get a
larger F{° tables from a smaller Fg™™" table, we must
o turn each 6-column of the Fg™ table into 2-column by mounting three
proper chains in 15 ways or by mounting two proper chains in %(S) (;1) =45
ways. There cannot be just one proper chain as the column would become

a 4-column. Overall, we get the following replacement rule

1—m4m2t 1—m4m2t 2 (]_ — m4m2t) 3
(2.89)
e turn each 4-column of an Fg'™ table into 2-column by mounting either
two or one proper chains to four copies of a single number in the column.

met — [15 (TW>3+45 <W)Q] 3, _ 15mim3t® (3—2mamot)
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Remember that we can mount an improper chain to the remaining pair in
both cases. Overall,

mamot 2 mymoat 1 2
o () O )| ()
11tz [ 1-— m4m2t + 1-— m4m2t 1-— m4m2t s

_ 3mymiat? (2 — mymot)

(2.90)

(1 — mymeot) 3

e turn a 2-column into another 2-column, but this time we mount an improper
chain to each of the three pairs in the column, so

3 3
t
) mit =2 (2.91)

3
t— .
Mz ( (1 — m4m2t)3

1-— m4m2t

Note that, we can rewrite this set of replacement rules as

3
me 3 2, 2,2 mat
?m2t — |:15m4m2t (3 - 2m4m2t):| m,
3
my 3 mit
—mst — 3 t(2— ) —m——= 2.92
3113 [3mamoat (2 — mymot)] (0= mymt) ® (2.92)
3
t
mat — b

(]_ — m4m2t) 37

Thus, by dividing the first two rules by the last m3t rule and letting my = 1, we
get the following corresponding set of rules for all valid chain mountings

me — 15mit? (3 — 2mymat)

my — 3myt (2 — m4t) s (293)

t— ——.
(1 —m4t)3

In terms of generating functions, we get

Fécree(t) — A ( 15mit2 (3 = 2m4t) , 3mgyt (2 — m4t)> . (294)

(1 — m4t)3’

Together with Equation (2.84]), we get the following function equation

€(m6—15m4)t

t
A(t, me,my) = = m4t)15A<(1—m4t)3’ 15m2t* (3—2myt) , 3myt (2—m4t)> :
(2.95)
We can check this functional equation is satisfied by
. et(m6—15m4+30) t
F7 () = A(t, mg, my) = A ,15,3). (2.96
o (1) = At me, ma) (143t — myt)? ((1+3t—m4t)3 ) (2.96)

However, note that A(¢,15,3) = Ng(t) and thus

et(m6—15m4+30) t
A(t, me, ma) = FE™(t) = ( (

15 V6
(1+3t—m4t) 1+3t—m4t

)3> . (2.97)
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Chapter 2. FEven Moments of Random Determinants

Expressing Fg"™(t) in terms of Ng(t) = Fg"™ (t)|mg=15ms—3 essentially solves the
problem as we can now take advantage of the fact we can express Ng(t) exactly
(normally distributed entries X;;). The remaining argument how we can obtain
Fgen(t) from Fg"™(t) by attaching cycles of 3-columns to Fg”™" remains the same.

|

2.2.9 Chain counting generating function

We consider the following generalisation of the problem of finding the sixth mo-
ment of a random determiant: Let us select a table 7 randomly uniformly out of
the set of all Fg'™ tables. We can then ask the following questions:

o What is the probability of 7 having a chain?

o What is the mean number of chains in 77
Those questions are at heart of analytic combinatorics. In order to answer them,
we can attach a tag z (a variable) to each proper chain and then we can just either
determine if there is a label to answer the first question or collect the labels in
order to answer the second question. We are interested in finding the following
quantities which generalise the notion of a moment

Definition 79. Let 7 € F"™ (or F5™), we denote p(7) as the number of chains
of 4-columns found in it. We define the chain-tagged moments as

Folm). = 3 #ur)sent, fio(me= X #w(r)sent
TEFGN TEFE e
(2.98)
Correspondingly, we write for their generating functions
Sym =t ASym ree ™ stree
F. =3 SR e 0= e (299
n=0 """ n=0 """

We can consider another generalisation of the sixth moment problem as follows

Definition 80. We define the chain moment pg(n) = 3 ervm p(T)w(7) sgn

and Ps(t) = Y02 5pg(n) its exponential chain counting generating function.

As usual, we can sum over tables with distinguishable column position and get
Po(n) = Speporm p(r)w(7) sgn 7 = nlp(n).

Lemma 81. For any symmetric distribution X;,

e €30 (1 — myt)'s t(1—t(1— 2)my)?
B0 = o m s —m) B <<1+<3—m4>t—3<1—2>m4t2)3>

and

e(me — 15m4+30)t

om0 i1t )

(1+(3—muq) t—3(1—2)mut2) 15 ° <(1+(3—m4)t—3(1—z)m4t2)3

\ J

Proof. Since we are working with generating functions, we can build up the struc-
ture of tagged tables (F¢'™), from bottom to top simply by the rules of combinato-
rial constructions and deduce its corresponding EGF. That is, the corresponding
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exponential generating function Fg ™ (¢), is obtained by attaching z to each in-
stance where a chain appeared in the original construction of non-tagged Fg"™ (1).
Separating 6-columns and closed loops of 4-columns (they contain no chains), we
can write

e(m6— 15mame)t

F&™(t), = Fgree(t)., (2.100)

(T —mdt)s 6

where F{*(t), is the EGF of chain-tagged F¢™° tables. These tagged loop-free

tables (we can denote them as (F¢™°),) can be composed out of chain-free Fg'™

tables by mounting chains to their pairs of identical elements. Dependent on

the type of a chain (proper or improper), their EGF’s get updated accordingly.

Attaching a tag z, the tagged proper chain generating function will be now
ZMmymot

)= —————. 2.101
zszzl(m4m2 ) T gt ( )

Next, for the tagged improper chain generating function, we get

1 — (1= z)mymot

14 2) (mamat)® =

s=1

2.102
1-— m4m2t ( )

Notice that the first term in the sum did not receive the tag z as we did not
increase the number of chains (no chain was mounted). By mounting the chains,
we then build up (F§°), from Fg™ by the following updated replacement rules:

t\?3 t \?
et — [15 (zwmz) 5 (W) ]mgt

1 — mymot 1 —mymot
zm4m2t )2 < zm4m2t > 1—(1—z)m4m2t 2
t— |3 —— 6 t .
11ammz [ (1—m4m2t + 1—myamot 1 — mymot mst - (2.103)
3
1—(1-— t
miat — ( ( 2)mams ) mit
1-— m4m2t

By dividing the first two rules by the last m3t rule and setting ms, = 1, we get,
after simplification, the following corresponding set of rules

152°m3t% (3 — (3 — 2)myt)
(1—(1—z)myt)?
3zmyt (2 — (2 — 2)myt)
(1—(1—z)myt)?

Ly <1 —(1- z)m4t>3

me —

my — (2.104)

1-— m4t
Hence, in terms of generating functions

oo/ 1— (1= 2)matY 1522m2t% (3— (3= 2)mut) 3zmut (2— (2— 2)mat)
ks (t)Z_A(t< 1= mat ) (- (—2mt) (1= (1= 2)mt) )

Since we already know A(t, mg, m4), we can substitute for it from Equation (2.97)
and get Fir°(t), and Fg ™ (t), by Equation (2.100)). |
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Chapter 2. FEven Moments of Random Determinants

Proposition 82. For any symmetric distribution of X;; with mg =1,

l(me—15m4+30) 9 t 0 t
Py(t)=mat e | (L= mat ) NZ| o | — 45N - ||
) =t S e [( ) 6((1+3t—tm4)3> 6<(1+3t_’5m4)3>]

where NZ(t) is an auziliary function defined as

d 1 &

N(t) = 3t =N (t) = G n(n+1)(n+2)(n+4)!1t" (2.105)

dt
Proof. Clearly, pg(n) = 8f2ym(n)z/82|z_>1 and thus Ps(t) = 0Fg ™ (t)./02|.-1-
Differentiating Fg"™"(¢), from Lemma [81] gives the desired result. [ ]

We will establish the precise combinatorial connection of NZ(¢) to permutation
tables later.

2.2.10 Position approach

We will introduce another approach to tables. Instead of treating each col-
umn separately (column-approach), we focus on individual numbers (position-
approach).

Definition 83. Let 7 € Fg)," (or F5',"), we denote I;(t) as the set of numbers
i € [n] which appear in j different columns of 7.

Proposition 84. Let 7 € Fg)" (or Fg") have ¢ 6-columns and d 4-columns.

Then [n] = Li(t) UL (t)UI3(t) and #1,(t) = ¢, #1(t) = d and #15(t) = n—c—d,

where # denotes the number of elements in a set.

Proof. In each table 7, there are three types of numbers. Either number ¢ appears
in three different columns (and thus belongs to set I3(t)), or it appears in two
different columns (and belongs to I3(t)) or it appears alone in a column (and
belongs to I;(t)). These sets are disjoint. Obviously, numbers in #I;(¢) are
the ones that form 6-columns, thus #I,(t) = c. Similarly, numbers in I5(t) are
precisely those which appear in exactly four copies in some column (the remaining
pair is displaced in some other column of 7). This forms a bijection between 4-
columns and numbers in I5(t), thus #15(t) = d. Finally, from the disjoint union
property, #I3(t) =n —c —d. [ |

Definition 85. Let 7 € Fg'™ (or F¢'™). We denote v;(t) the number of 4-
columns in 7 in which ¢ appears.

Example 86. To see how the definition works, consider the following table 7 &
F§T in the figure below. In here, we have I;(t) = {10}, I5(t) = {1,3,4,7,9,11,12}
and I3(t) = {2,5,6,8}. Next, v;(t) = 0ifi € {5,10}, v;(¢t) = 1ifi € {1,2,3,4,7,9,12},
vi(t) =2if i € {6,11} and v;(t) = 3 if i € {8}.

1214181213 |5|1{9]6 | 7 11|10
1214181235196 | 7 11|10
12163524189 | 7 11|10
121635124189 | 7 [11]10
6 (4315|789 ]12|11] 2 |10
6 ([4|3|1|5|7]8[9(12]11| 2 |10
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2.2, Permutation tables

Proposition 87. Let 7 € Fg)" (or Fg") have ¢ 6-columns and d 4-columns,
then v;(t) = 0 if i € I1(t), vi(t) € {1,2} if i € Ir(t) and v;(t) € {0,1,2,3} if

i € I3(t). Moreover,
S i(t) = 2d. (2.106)

i€[n]

Proof. 1t i € I1(t), v;(t) = 0 as this number ¢ automatically forms a 6-column (six
copies of i’s). If i € I5(t), then one of the columns is automatically a 4-column as
it has four copies of i’'s. The other column with displaced pair of i’s can be either
a 4-column or a 2-column depending on the remaining numbers in the column. If
1 appears in three different columns, each of this column is either a 4-column or a
2-column. To prove 3¢, vi(t) = 2d, note that each 4-column is counted twice in
the sum (there are two different numbers in any 4-column). Alternatively, denote

. (2.107)
0 otherwise

1 j-th column contains ¢

Xij =
and fj = ]lj—th column is a four-column- On one hand, Vi(t) = Zje[n} Xijfj7 on the other
> i) Xijf; = 2f; since there are two numbers in each 4-column. Immediately,
by changing the order of summation Y ;cp, vi(t) = X, jeim Xisfi = 2 X em fi =
2d. |

Lemma 88. Let 7 € Fg" (or Fg),") with ¢ 6-columns and d 4-columns out
of which p() form chains of 4-columns (the remaining d — p(7) of 4-columns
form cycles). Then

> vi(t) =2d — p(7) and > vi(t) = p(7).

i€la(t) i€l3(t)

Proof. First, notice the sum ;e vi(t) increases by one if it encounters a 4-
column, but when the residual pair forms 4-column elsewhere, it does not con-
tribute to the sum. Adding all occurrences of pairs in 4-columns, we get d
(this is precisely the number of 4 columns). This number is then reduced by
the number of numbers in those four-columns which form four-columns them-
selves. Let 7 have p total chains of lengths ji, jo, ..., j, (each j, > 1) and denote
J = Jji1+j2+ -+ jp. The total number of cycles is then d — j. The number
of pairs which form 4-columns themselves is then equal to the number of cycles
d—jplus 30— (jqg — 1) = j — p, that is d — p. Hence,

Yo ut)y=d—(d—p) =p

1€13(t)

Finally, using Proposition [87|and since v;(t) = 0 if ¢ € I;(t), we have immediately
Siets(t) Vilt) + i@ vi(t) = 2d, from which 35, ¢ vi(t) = 2d—p(7) follows. W

Ezample 89. In Example [86] we have d = 7 of 4-columns, which form p = 6
chains, out of which 4 have length one and one has length two. There are no
loops of 4-columns. We have 32;cp, ¢ vi(t) = 8 = 2d —p and X, vi(t) = 6 = p.
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Chapter 2. FEven Moments of Random Determinants

2.3 Gram moment and permutation tables

So far, we only considered determinant moments for square matrices. Recall
the generalization we introduced earlier (see Definition , restating its relevant
part:

Definition 90. Let U = (X;j)nxp, be rectangular random matrix and
fe(n,p) = E(detUTU)*? be its k-th Gram moment. We may rewrite the
Gram moment using scalar product of random vectors as follows: Let X; =
(X1, Xojy o, Xpnj) Ty s0 U = (Xy | Xg | -+ | X,,) and for the Gram ma-
trix J = U'U = (X]Xji)pxp, that is J; = XX, By definition, we set
fe(n,0) =1 (we put det(UTU) = 1 when p = 0). Note that if p > n, det(U"U)
vanishes, that means that fr(n,p) = 0 whenever p > n. Also, we define the
corresponding generating function

Fult,w) = i fj =Py s fi(n,p). (2.108)

Ip!
oo nip!

Again, restricting the distribution of X;;’s, we write
o (centered distribution) fr(n,p) = fi"(n,p) and Fi(t,w) = F"(t,w) if
my = 0; and similarly
o (symmetrical distribution) fr(n,p) = f27"(n,p) and Fi(t,w) = 7" (t,w)
ifmi=mg=ms=...=0.

The fact that fi(n,p) is a polynomial in m; leads to the important instant equality
M (n,p) = 7 (n, p) valid for  k =24. (2.109)

Therefore, we also have F5(t,w) = F5""(t,w) and F*(t,w) = F;"™(t,w). When
k > 6, fi™"(n,p) contains extra products of even powers of odd m; moments
(m3,m3,m2,...).

Ezample 91. When n = 3 and p = 2, we have X; = (Xy;, Xo;, X3;)", j = 1,2

and thus J = j” j” with Ji; = X2 + X3, + X3, J = X2, + X2, + X2,
21 22

and J12 = J21 = X11X12 + X21X22 -+ X31X32. For example when k = 6, we get

3

Jin Ji2 =E (Ji1Jo2 — J122)3

Jo1 I
=E (Jf1(]§)2 - 3J121J222J122 + 3J11J22Jf2 - J162)~

f6(3,2) =E(det J)> = E (2.110)

Computing the expectations of individual terms is straightforward, but tedious.
We only show how the term E [J} J3,] is obtained: Expanding J7;, we get
Jig1 :X161 + X261 + X??l + 3X121X§1 + 3Xi11X221 + 3X121X§1

2.111
+ 33X} X3, 4+ 3X5, X5, + 3Xy, X5, + 6X7, X5, X3, ( )

Taking expectation, we get E[J3] = 3 (mg + 6mamy + 2m3) and by indepen-
dence, E [J}, J3,] = E[J3] E[J3,] = E? [J}] = 9(me + 6mamy + 2m3)?. Overall,
f6(3,2) = 6mZ + 36mamyme + 162mam3 + 216maymy — 36m$ — 60m;
— 144mimim; — 144mymams + 288mimamamy — 72mimimy  (2.112)

— 144m?m2m3m5 — 72m‘;’m4m5 — 36m%m§.
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2.3. Gram moment and permutation tables

For centrally distributed X;;’s, we get simply by putting m; = 0,
€1(3,2) = 6ma + 36mamyme + 162mim7 + 216mymy — 36m$ — 60ms. (2.113)
Similarly, letting also ms = m5 = 0, we get
™ (3,2) = 6mg + 36mamyme + 162mam3 + 216mymy — 36ms. (2.114)

Notice that f§(3,2) # f&7™(3,2) which we indeed expect for k > 6.

The aim of this section is to present a combinatorial construction associated
with the Gram moments defined above. Again, the central role is played by
permutation tables. We will see how they naturally arise in the Gram case via
Cauchy-Binet formula.

Lemma 92 (Cauchy-Binet formula). Let L = (l;j)nxp and M = (mi;)nxp
be real n by p matrices and let C' = {iy,is,...,i,} denotes a subset of [n] =
{1,2,3,...,n} with p elements i; taken from [n] such that iy < iy < -+ < ip.
Denote Lo and Mg to be square matrices formed from matrices L and M by
selecting the rows iy, 19, .. .14,, respectively. Then
det(L"M) = > det(L¢) det(Mc). (2.115)
CCln]
ICl=p

2.3.1 Gram second moment

Cauchy-Binet formula offers an elementary derivation of fy(n,p), generalizing
Fortet’s fa(n) (Proposition [67).
Proposition 93. For any distribution of X;;,

n
o) = () tna iy = )oma =iyt (210
1+ mit
Fy(t,w) = ;F_T’Zje(mm?)t. (2.117)
Proof (Stanley [67]). Choosing L = M = U in Cauchy-Binet formula,
det(UTU) = > det(Uc)*. (2.118)
CC[n]
ICl=p
Taking the expectation and by linearity, we get (Z) identical terms, each attending
the value E det(Ug)? = fo(p) from which fy(n, p) follows immediately. [

2.3.2 Pair-tables

In general, taking k/2-power of Cauchy-Binet formula with L = M = U and
taking expectation,

k/2

fu(n,p) =E det(UTU)*? = E l > (det UC)2] : (2.119)
CcC[n]
|Cl=p

This formula has a nice permutation tables interpretation due to Dembo [24]:
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Chapter 2. FEven Moments of Random Determinants

Definition 94. We define Fiy .., as the set of all k& (even number) by p pair-
tables on n numbers. We say 7 € F ., is a pair-table, if there are subsets
01,02,...,Ok/2 C [n] with |01’ = |02| = = |Ok/2| =D, such that 7 is a
k by p table whose first two rows are permutations of numbers from C', next
two rows are permutations of numbers from C5, and so on. As in the case
of regular tables, we define weight w(7) of table 7 as the product of weights
of its individual columns (we multiply corresponding X;;’s) and sgn(7) as the
product of sign of the corresponding permutations. Correspondingly, we also
define Fi;) as the pair-tables on n numbers with k& rows and p columns whose
column order is irrelevant and we denote Fy = Ug>o Fk)np to be the set of
all irrelevant column order pair-tables (with k rows).

We state the following analogue of Proposition
Proposition 95. For any distribution of X;;, assuming k even,
fe(n,p) =E det(UTU)*? = > w(r)sgn(r) (2.120)

T€F (k) n.p

or alternatively, defining fr(n,p) = fu(n,p)/p!

frlnp) = 3 w(r)sgn(r) (2.121)
TG.F(k)’,LJJ
Proof. The right hand side of Equation (2.119) can be expanded as
k)2
fotn,p) =E [ > det(Uc,)*. (2.122)
j=1C;Cln]
ICj1=p

The proof follows simply from realization that the square of det(Uc;,) possesses
the meaning of two identical rows of (permuted) elements C;. |

Ezample 96. Let us compute f4(3,2). We may write f4(3,2) = 2!f4(3,2), where
f4(3,2) = Xrer 4, w(T)sgnT. Let a,b, ¢ be distinct elements of {1,2, 3}, Figure
enlists all members of Fy) 32 and shows their weights and signs.

Ci: {a,b} {a,b} {a,b}  {a,b}  {a,b} {a,b}  {a,b}
Cy: {a,b} {a,b} {a,b}  {a,¢} A{a,c} {a,c} {a,c}
a|b a|b a|b alb alc a|b a|b
F lalb bla bla alb alc bla bla
@321 p bla bla alc bla cla alc
a|b alb bla alc bla alc alc
Weight: 3m2  9m3  12m2m2 6mym3  6m3  12mim3 24m3myms
Sign: + + — + + + +

Figure 2.20: Correspondence between f4(3, 2) and permutation tables 4 3 9

Each member is displayed apart of (valid) permutation of rows and selections
of a,b,c. The first three members build up tables Fs,. Since there are three

ways how we can select for a,b from {1,2,3}, their contribution is 3f,(2). The
remaining terms are only found in F4 55 tables. Summing the contribution up,

we get f4(3,2) = 3m2 + 15mi — 12m2m2 4 6m3my + 12mim2 — 24m3myms.
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2.3. Gram moment and permutation tables

2.3.3 Sub-table factorization
The choice of the EGF for Fiyy (which is the same as for Fy), namely

ey P =3 Y ‘p " P fi(n,p) (2.123)

n=0 p=0 n=0 p=0

as introduced by Dembo [24] may seem arbitrary. Because of the additional
variable w, it seems we are no longer able to use the factorization property of the
star product. However, we will see that the unique feature of Fy(¢,w) is, after
appropriate transformation in w, that it again factorises over sub-tables. First,
let us introduce a few definitions.

Definition 97. For a given subset Ay C Fy of pair-tables with k& rows and
irrelevant column order, let A, be the subset of Ay with p columns and
elements selected from the set [n] = {1,2,3,...,n} of the so called potential
elements. As usual, we define a(n,p) = Xrca,,np w(7)sgn T with the corre-
sponding exponential generating function

Ap(t,w) = (n— p ——2tPW" Pay(n, p)
n=0 p=0
(n(T> — p(T) P () =p(7) (2.124)
= > ' w(T)sgn T,
T€A<k> n(T)

where we denoted p(7) as the number of columns of 7 and n(7) as the number
of potential elements.

Note that the number of potential elements n(7) one chooses from to fill table 7
may be arbitrarily large and it is always at least equal to the number of actual
elements in 7 (the number of distinct elements in 7), which we will denote as
q(7). With this said, we construct another generating function of A, (modified
generating function) as follows

Definition 98 (Modified generating function). Let A,y C Fy, then we define

(1) ,a(r)=p(7)

Ak (t UJ) =
’ |
TEA (k) q(7)!

w(T)sgnT, (2.125)

where Ay C Agy are pair-tables with all of their potential elements being
used up (all potential elements are in fact actual elements).

There is a simple connection between Ay (t,w) and Ay(t,w).

Definition 99. Let 7 be a A, pair-table. We denote EGF[7] as the contri-
bution of 7 to Ax(t,w) and MGF[r] as the contribution of 7 to Ag(t,w). By
definition,

EGF|r] = Mtp(ﬂwn(f)—p(f)w(,r) sen T
oy | (2.126)

MGF[r| =

Similarly for subsets B C A
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Chapter 2. FEven Moments of Random Determinants

Definition 100. Let €2 be a linear operator acting on formal power series in
w such that for any integer r, we have Q[w"] = rlw".

Proposition 101.

Ai(t,w) = Qle” Ai(t, w)]. (2.127)
Proof. Applying Q7! where Q7 !{w"] = w"/r!, to Equation ([2.124)), we get

(r) (7)) =p(7)

—1 _
QA w)] = > TG w(T) sgn 7. (2.128)
T€A<k>
In a given table 7 € Ay, we can replace its g actual elements [¢] = {1,2,3,...,q}
by another ¢ actual elements from a larger set [n] = {1,2,3,...,n} forming a

general table T € Ay with n > ¢ potential elements (all of which have the same
weight and sign). Hence, Ay is split into classes of tables which only differ by
selection of actual elements. Since there are (Z) ways how we can substitute for

the actual elements from the potential ones, we get that the total contribution of
T € Ay to QHAL(t,w)] is

0 PP 1P,0—P
> (n) d w(T)sgnt = e i (2.129)
= \4 n! q!

Summing over all 7 € Ay, we get Ay (f,w) = e “Q 1A (¢, w)], which is equiva-
lent to the statement of the proposition. |

Moreover, it is exactly the modified generating function Ak(t, w) which satisfies
the star-product factorization property (an analogue of Proposition , turning
Ay into proper combinatorial structure.

Proposition 102 (sub-table factorization in pair-tables). Let 7 be a Ay pair-
table build up from exactly two disjoint sub-tables T, and T, then

MGPF|r * 1) = MGF[n|MGF|r). (2.130)

Proof. Let p; and py be the number of columns and ¢; and ¢ be the number of
actual elements of 7, and 7, respectively. We also denote p = p; + ps as the total
number of columns of 7 and ¢ = ¢; 4+ ¢2 as the total number of actual elements

of 7 (See Figure [2.21]).

T = 1 L T2
q = ¢, elements 4 g> elements
p = p1 columns + po columns

Figure 2.21: Pair-table 7 consisted of two dis-joint sub-tables 7 and 7o.
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2.3. Gram moment and permutation tables

Any 7 from the set 7 x 75 (with elements shuffled) gives the same contribution to
Ag(t,w). Since there are (i) ways how can we select elements for 71 and 7,

P, ,4—Pp P 4P
MGF[Tl*TQ]:<q>MGF[T]:<q>tw w(T)sgnT:tw w(T)sgn .

0 0 q! 71'go!
(2.131)

On the other hand, since w(7)sgn 7 = w(7)w(7m2) sgn 71 sgn o,

P1 )T —P1 P2, 22— P2

MGF|n|MGF || = ' w(T) sgn 1y ' w(T2) Sgn Ty
{P1+DP2 ,q1+q2—pP1—Pp2 ’
= w(T)sgnT,
q1'go!

which concludes the proof. |

2.3.4 Gram fourth moment central

Note that when m; = 0, the number of pair-tables with nontrivial weights is
reduced significantly. As a consequence, we can easily derive the result of Dembo
[24], namely F,*™(t,w) and the corresponding f;"™(n,p).
Proposition 103 (Dembo, 1989). For any distribution X;,

et(m4—3m§)
(1 —mit)%(1 — w —mit)

EY™(t,w) = (2.133)

Corollary 103.1.

P 1 (m T n—j+2
Y, p) = pl2 () mZ S = (2 3 I 2.134
o) =l <p>m2 = ! <m§ ) (n—p+2 (2.134)

Remark 104. Note that, letting w = 0 (or p = n), we recover the formulae of
Nyquist, Rice and Riordan (Proposition we saw earlier

et(m4—3m§)

"1 my j n — j + 2
My — Z sym _ I 2,.2n —_ == _3 .

=07

Proof of Proposition[103. Let a,b be different integers, then there are again only
two types of columns in tables with nontrivial weights assuming m; = 0 (see the
diagram below). It is convenient to denote those tables as Fii" (or Fj\" if we
do not care about the order of columns).

( 0

Type: 4-column 2-column

Sym |
Fuay

Q@ 2 2 2

Q2

Weight: my m3
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Chapter 2. FEven Moments of Random Determinants

By definition

sym pSym
D (nyp) =plfy (n,p) =p! E w(T)sgn 7. (2.135)
TeFI™
(4),n

Let us consider only tables Fzzylgn C ]—'%m which use up all their potential elements

as actual elements and whose modified generating function F, " (t,w) factorises
over sub-tables. Based on Exmaple[96] it is not hard to see that any 7 is composed
out of single 4-columns, closed cycles of 2-columns and open chains of 2-columns

(see Figure below).

MGF[r]  tmy tmy  J'mi  Gt'm§  ftwm  Gifemd
51 [9] 4[7] [10] 3712 11| [9[1]
T 5l |8 47| |3 |1210 11| 9|1
| bl |8 7|4| | 3]12|10 61 [12
5] |8 7]4] |10]3 |12 61 [1]2
4-columns cycles of 2-columns open chains of
2-columns

Figure 2.22: Table 7 € Fyyy with C1 = {1,3,4,5,7,8,9,10,11,12}, Cy =
{1,2,3,4,5,6,7,8,10,12} and its decomposition into sub-tables 7;

In general, we can write the following structural relation
FOr = B« Loy, (2.136)

where we denote L4y as the structure of open chains with modified generating
function L,(t,w). Since we already know that the generating function of all 4-
columns and cycles of 2-columns is F;*" (¢) this follows immediately from the fact
that ¢ = p for those sub-tables and thus MGF|-] coincide with EGF|[-]. The
only remaining part is to deduce the modified generating function of open chains
of 2-columns. However, there is one to one correspondence between a single
open chain and a permutation of its (actual) elements (in Figure above, the
permutations are 11 — 6 and 9 — 1 — 2). Hence, the single open chain modified
generating function is given by, summing all M GF[7] terms,

00 tq_lwq_(q_l)q!mg(q_l) B wmit

q=2

Since the structure L4y is merely a concatenation of all possible chains (in view
of the SET operation), we immediately get

. wm?t
Ly(t,w) = exp <2> (2.138)
1 —mit
and thus
B N t(m4—3m%) szt
F™ (W) = FY O L™ w) = < 2 ). 2.139
4 (tw) 2 () Ly (tw) (1—m%t)3eXp 1— mit ( )
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2.3. Gram moment and permutation tables

Finally, by using definition of €2,

F Qe ™ Q 7€t(m4_3mg) Y
Sym t — w t —
4 ( 7("']) [6 4 ( 7(“'))] [(1 _ m%t)S CXp <1 _ m%t)]

et(m4—3m§) 00 WT/T! et(m4—3m%) 00 W
(1—mdt)? = (1 —m3t)"| (1 —mit) Tz:(:) (1 —m3t)

This concludes the proof. By using Taylor expansion, we immediatelly recover
also f;"™(n,p). |

(2.140)

=

Remark 105. Somewhat similarly to the fy(n,p) case, we can derive Dembo’s

2™ (n,p) = E det(U"U)? by taking expectation of Equation directly.
What we obtain are recursion relations (based on the overlap of C} and Cy)
which are trivial to solve using Binomial transform (see Section 3.3 of our

older work [g]).

2.3.5 Normal Gram moments

We have the following generalization of Prékopa’s result for ns,,(n) (Proposition
due to Dembo [24].

Definition 106. When X;; ~ N(my,1), we denote fy(n,p) as ng(n,p) and
Fi(t,w) as Ni(t,w).

Proposition 107 (Dembo 1989). For any even k = 2m,

m L (n+2r)!

Nom (n p H

o (n—p+2r) (2.141)
Dembo’s proof is an adaptation of the simplified proof of ng,,(n) by Prékopa [57].
It relies again on a correspondence with Gaussian random polytopes. Hence,
the proposition t is also equivalent to the well known result of Miles [48| p. 377,
(70)] — see Proposition in Chapter [6] of this thesis and its proof (our own).
Proposition is also special case of Theorem with ¢ = 0.

Fourth normal Gram moment

When k£ = 4, we get

n!(n + 2)!
= 2.142
and thus
n l 2 1¢P P 1
ZZ" (n 1+ D7 _ (2.143)

= plin—p+2)! (1—12(1—w—t)
Alternatively, we can deduce N,(t,w) independently from Proposition by
using the general formula for F;"™(¢,w) (Proposition [103) with ms = 1 and

m4:3.
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Chapter 2. FEven Moments of Random Determinants

Sixth normal Gram moment

When k£ = 6, we obtain

nl(n+2)l(n+4)!

ng(n,p) = . 2.144
o0 P) = T = p £ 2l —p D) (2.144)
However, its generating function
XL PP 2 4)!
=y (nt2ln+4)' (2.145)
oo p(n—p+2)l(n—p+4)!
is no longer analytic.
2.3.6 Gram sixth moment central
Theorem 108. For any distribution X;; with m; = 0 and mg = 1,
t(me—10mZ —15m4+30) ¢ w
Fs(t,w) = (1 2410 € N, ( )
o(t:w) = (14 mst) (1+3t —mgt)® ~ °\1+3t —myt’ 1+ 3t —myt

FEzpanding, we get for any distribution X;; with my = 0, my = 1, that

W L ey
fG(np ggoz::ﬂn p—|—2) (n p+4) (p J— k)

10\ (14430 —3p+j+20\ , j ;i
><<k>< P )qé”'“qf; @,

where gs = mg — 10m2 — 15my + 30, g4 = my — 3, and g3 = m3.

\ J

The proof is rather technical and rely on decomposing tables into disjoint sub-
tables. Any table 7 € Fg contains sub-tables already present in Fg (cycles of
3-columns, cycles of 4-columns and a core of 2-columns with attached chains of 4-
columns) and also extra sub-tables consisted of open chains of 4-columns similar
as in Fy)

2.4 Marked permutation tables

2.4.1 Shifted basis

Instead of expressing determinant moments in m,, there exists another basis
which turns out to be much more convenient.

| Definition 109. Let Y;; = X;; — m; with moments p, = EY};.
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2.4. Marked permutation tables

Remark 110. By expanding Y;; = (X;; —my)" and taking expectation, we get

Ho = M2 — mf,

3 = mg — 3mims + 2mi’,

g = my — 4dmyms + Gm%mg — 3m‘1l

s = ms — bmymy + 10mimg — 10m3my + 4mS,

e = mg — 6myms + 15mimy — 20m3ms + 15mimy — 5mé.

Note that p; = 0 always.

Proposition 111. Let k be even, then

fk(n) :¢k(n7m17:u27u3)'"7:U’k—1)/~Lk)7 (2]—46)
where Yy is a polynomial in my, pa, . . ., ux. Equivalently, there exists a function
U whose expansion coefficients are polynomials in mq, pa, . . ., g such that

Fk(t) == \I/k(t,ml,,uz,,ug...,;Lk_l,uk). (2147)
Similarly, fr(n,p) is also some polynomial g (n, p, my, pa, . . ., ) and Fi(t,w) =
Uy (t,w, my, o, ..., pug) for some function @y with polynomial expansion coeffi-
cients.

Proposition 112. Let ¢, and Vi be defined as in Proposition then for any
b€ R and k even,

Ur(n, Bma, B2 g, s, . .. ,5kﬂk) = B”kwk(n, M, flas J13 - - - 5 flk) (2.148)
and as a consequence,
Ui(t, Bmy, f2ma, ..., Bmy) = W (B, my,ma, ..., my). (2.149)
Similarly for the non-symmetric case,

¢k(n7pa Bmly /82M27 /83M3) s 75klvbk) = /Bpkqu)k(na may, o, 43, - - . 7Mk) (2]—50)

and
\Dk(tv 5m1762/1’27 s 7ﬁkl“l’k) = \Ijk(ﬁktv ma, 2, - .. 7#’]{?) (2151)

Proof. We only show the statement for the symmetric case. Write X, = X,
m; =E(X})", A" = (X})nxn- Note that p = E (X} —m})" = "E (X —mq)" =
B" .. Therefore, on one hand,

E (det A*)* = ¢ (n,mb, pb, ..., p}) = Ur(n, fmy, B, ..., 5w,  (2.152)

on the other hand, by linearity of determinants,
E (det A*)* = 8™ E (det A)* = ™ (n, my, pa, - - ., pi). (2.153)
[
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Chapter 2. FEven Moments of Random Determinants

Corollary 112.1. Assume we know fi(n) and Fy(t) with ps = 1, that is

fk(n)’ﬂ&:l = djk(n,mh 17,u37,u47 S ,,LLk), (2154)
Fk?(t)’p,g:l = \Ifk<t,m1, 1,,&3,/14, e ,uk), (2155)
then
nk/2 m M3 Ha HE
fr(n) = wk<, 75 L 372 4/2,...,m>, (2.156)
Ha Ko Mo Ha
k/2y n M3 4 Ui
Fi(t) = T </L2 b e e k/2> (2.157)
Ha Ko Mo Ha
Similarly
k/2 my M3 4 Hok
fr(n,p) = 13 m(, s L 5 am m), (2.158)
) Mo M2 Ha
k/2y m M3 4 Mok
F.(t,w) = \I/k<u2 , W, 1/2,1, 330 42 k/2>. (2.159)
Ha Mo Ho Ha

Remark 113. Without loss of generality, we put uy = 1 from now on (if not
stated differently).

It is convenient to extend the definition of random matrix moments to Y;; vari-
ables:

Definition 114. From Y;;-s, we construct two (random) matrices B = (Y};)nxn
and V = (Yj;)nxp- Let gi(n) = E(det B)* and g(n,p) = E(det VTV)*?2 be
their k—th determinant moment and k-th Gram moment, respectively. By
definition, we set gx(0) = 1 and gp(n,0) = 1 (we put det(V'V) = 1 when
p =0). Also, we define their corresponding (formal) generating functions

o 4n O " (n—mp)l B
Glt) =Y “man),  Giltw) =33 (,{”tpw" Pgu(n,p). (2.160)
n=0 n. n=0 p=0 n.p:

Proposition 115. For any distribution of X,;,

Gk( ) ( )’ml =0,mr—>pr = Flgen<t)’mrﬁur7
Gk(taw) = Fk(taw)’m1=0,mr—>ur = Flgen(t>w)|mr—>ur-

Proof. We only show the square matrix case, since the Gram case is analogous.
Since Y;;’s are independent and identically distributed (i.i.d.), we may replace
Xij by Yy and m, = E X, by p, = EY]} in the definition of Fj(t). Hence

Gk(t) = (I)k(tvl“?u??"'vﬂk—la/’l'k’)v (2161)

which is equal to the right hand side of the proposition as p; = 0. |

2.4.2 Finite decomposition

Crucial observation, which appeared in our previous work [8], states

161



2.4. Marked permutation tables

Proposition 116. Let ¢, and V. as in Proposition then . and W, are
polynomials in my upto order k only. That is, there exist functions t;(n) and
Ti(t),r =0,...k whose only parameters are s, . .., py, such that

k k
t) =Y miTy(t) or equivalently, fe(n) =>_ mity(n). (2.162)

The fact that the expansion of Wy, in m; is finite enabled us to deduce Fy(t) and
Fy(t,w) in general (see B. [8]). The former was deduced using recursions for T} (t).
The latter, however, was much harder to deduce because we thought there is no
analogue of Proposition applicable for Fy(t,w). Instead, we showed that the
Binomial expansion of Fy(t,w), that is

Zoﬂ (,@t)j“ O, (t) (2.163)

1—w— pit

with expansion functions ®,(¢) (not related with @, introduced earlier), has in fact
finitely many terms. The proof of this assertion is highly nontrivial and combines
the Cauchy-Binet formula with the Binomial transform, which we showed they
are in fact closely related, as well as various recursion relations. For an interested
reader, we reffer to our original work [8]. In this thesis, we show a much simpler
proof based on marked permutation tables. It turned out that the functions
Ty (t) in the Fy(t) expansion are generating functions associated to some kind of
combinatorial construction similar to that of Niquist, Rice and Riordan [50].

In this thesis, we shall interpret the combinatorial meaning of functions 7} (t)
using permutation tables construction, we first show that det A is in fact linear
in my. To see this, we use the following lemma.

1, ned{0,1}

Lemma 117. SN T =
Z =50 {O, n>2

ﬂ'EPn

Proposition 118.

det A = Z sgn T H Yir) + M Z Z H Yin(i)- (2.164)

TP, i€[n] J€n] m€Pn i€n]\{j}

Proof. Write X;; = Y;; +m; in the definition of determinant. Multiplying every-
thing out,

det A= > sgnm [[ Xirey

TeP, i€[n]
=S sen7 [ Viey +m1) = > senm Y. [ mi"View),
TEP, i€[n] TeP, MCin]ie[n]\M

where #M denotes the number of elements in M. However, by Lemma [I17] the
terms with #M > 2 vanish. [ |

Note that the proposition is actually a special case of the Matrix Determinant
Lemma
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Chapter 2. FEven Moments of Random Determinants

( D'

Lemma 119 (Matrix Determinant Lemma). Let C' = (¢;j)nxn be any real
matriz, u = (U;)nx1, ¥ = (V;)nx1 real (column) vectors and \ € R, then

det (C'+ duv") = (det C) + o' C*u, (2.165)

where (C*Y);; = (—1)" det C}; is called the adjugate matriz of C' and Cj;
denotes a matrixz formed from C' by deleting its j-th row and i-th column, as
usual.

. J

In fact, we have

Proposition 120.

det A = det(B) + m4 5, where S = Z 1) det(B;;). (2.166)

Proof. By the definition of Yj;’s and B, we can write
A= B+muuu', (2.167)

where u is a column vector with n rows having all components equal to one.
Hence, by Lemma (117},

det A = det(B + mquu') = (det B) + myu' B*y
= (det B) +mq »_u;(—1)" det(Bj;) u; = det(B) 4+ myS. (2.168)

ij

[ |
Remark 121. Also note that S can be expressed as S = X", det BI*l, where
we define
Yo Y ... Yipa Y
Yioip Yem12 o0 Yerp1 Yeoan
B = 1 .. 1 1. (2.169)
Yorip Yori2 o0 Yerino1 Yspin
Ynl Yn2 s Yn,n—l Ynn

Corollary 121.1. Rising Proposition to the k-th power and taking expecta-
tion, we get

Y (k
fe(n) = E(det A)F = E (det(B) + my )" =3 ( )m’{E (det B)*™"S". (2.170)
r

r=0

This statement already proves Proposition we take

£ (n) = (ff)E(det BFTST,  TI() = fjo t:;t;(n) (2.171)
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2.4. Marked permutation tables

2.4.3 Marked permutations and tables
In this section, we uncover combinatorial nature of the functions ¢},(n) and T} (n).

Definition 122. We say o is a marked permutation if it was formed from some
m € P, in which we replaced at most one element by the mark “x”. We define
sgno = sgnm and Y7, = mq if ¢ is marked and Y7 ;) = Yir) otherwise. We
write P for the set of all marked permutations.

Proposition 123. Restating Proposition in terms of marked permutations.

det A= > sgno H Y
cEPY i=1

Definition 124. We say ¢ is a k by n marked table, if its rows are marked
permutations oj,j = 1,...,k of order n. We denote Gy, the set of all such
tables (in the case the order of columns is irrelevant, we write G, instead). We
define the marked weight w of the i-th column of 7 € G}, as the expectation
E IT5_, io;(i)- Similarly, we define the sign sgn(r) of table 7 as the product of
signs of 0,5 =1,..., k. Also, we define the marked weight wy (¢) of the whole
table 7 as the product of weights of its individual columns. Finally, we define
another weight w(7) as w(t) in which we put m; = 1.

Example 125. The following figures show two example marked permutation tables.

1| x (134|527 |8]9 X | 2134|567 [8]9

3121119146 |7|5]8 X 12111946 |7|5]8

1 x (1319427518 2 | x|1|19/4/6|7]5]|8

312111456 |7|81]9 2 | x|3|4|/5|6[7]8]9
Figure 2.23: An example of a table 7 €  Figure 2.24: An example of a table 7 €
Gig with weights wy (t) = miuy°us and  Gig with weights wy (t) = mipg®p3 and
w(r) = plPua, w(r) = pi?i

Remark 126. Note that since only one number is marked in any row, we can
recover the original permutation in the row uniquely. That is, a column of
a table 7 € G}, is created by marking an (unmarked) original column of a
corresponding table in Fj . Alternatively, we can show the numbers covered
by marks in a special curly bracket column alongside tables. The same tables
as above would look like

6 1(x|3|4]5|2|7|8]9 1 x[2|3(4/5|6|7|8/|9
31211[9|4(6|7|5(8 3| [x|2]1]9(4][6|7|5]|8
6 1(x[3|19(4|2|7]|5]|8 3 2|x[1]914(6|7|5]|8
31211(4|5(6|7|8|9 1 2/x|3(4|5/6|7|8|9
Proposition 127. For any distribution X,;,
fr(n) =E(det A)" = >~ w,(¢)sgn(r). (2.172)
TEG:JL
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2.4.4 Nontrivial marked tables

Since p; = 0, it turns out that most tables in G}, have zero weight.

Definition 128. We say a table 7 € Gy, is trivial if its weight vanishes,
otherwise the table is nontrivial. The set all all nontrivial tables form a subset
Ty, € Gy, Similarly for tables with irrelevant column order, we write 7%, C

Grn:
Proposition 129. For any distribution X,;,

fr(n) =E(det A)" = > wy(t)sgn(r). (2.173)

X
TeTk,n

Ezample 130. The correspondence between fi.(n) and marked permutation tables
is shown below in Figure for n = 2 and k = 2 showing once again f»(2) =
2(m2% —m{). Note that in the expansion of det A, only terms which give nonzero
expectation are listed.

( N
(det A)* = VY5 + Y5Ye + miYe + miYy + Yami + Yimy
Ty 1|2 2(1 P x|1 1]x 2] x
’ 1|2 211 x| 2 x| 1 1|x 2|
Wy [i2fta oy m3 i m3 i pam3 fram3
Sign: + + + + 4 4

Figure 2.25: Correspondence between determinant moment f2(2) and marked per-
mutation tables 755

By summing the contribution from all marked tables, we get
f2(2) = 2ua(pa + 2m3) = 2!(my — m7)(ma +m3), (2.174)

where we have used py = mg — m?.

Remark 131. In terms of tables with irrelevant column order, Proposition [129
can be written alternatively fy(n) = n!f,(n), where by definition

Feln) = > wx(t)sgn(r). (2.175)

X
T€7;€’n

Erample 132. Let us derive f4(2). We may write f4(2) = 2!f,(2) and sum the
contribution from tables 7,% with irrelevant column order. Figure below
shows the members of 7,5 with the corresponding sign and weight including
multiplicity (#) as the members are displayed apart of permutation of rows and
substitution of {1,2} for elements {a, b}.
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2.4. Marked permutation tables

alblla|b] |x|b X|b| [x|[b||x|b| |x|b| |x|b] |x|b| |x|b| [x|b
« lalbllalb| |alb] |x|b| |x|b]||a|x| |a|x| |x|b| [x|b] |x|b] |x|b
L2 |bl|blal |alb albl |blal||a|lb| |a|x| [x|b| [x|a]||b|x]| |a|x

albl|blal| |a|lb alb| |blal|a|b| |a|b] [x|b| |x|a]| |b|X]| |a|x
Wit W pa MapapaMifiofis M MG gty MY g Ty i T )
Sign: + +  + + o+ o+ 4+ o+ o+ o+ o+
# 1 3 8 12 12 12 24 2 6 6 6

Figure 2.26: Correspondence between determinant moment f4(2) and marked per-
mutation tables 7%

By summing the contribution from all marked tables, we get

Ji(2) =y + 33 + 8mupuspia + 12m3 papua + 12m34i3

‘ 2.176
+ 12mips + 24mipops + 2mi g + 18mip3. ( )

Plugging po = mg—m%, U3 = m3—3m2m1+2m§’, = m4—47713m1+6m2m%—3m‘11
and expanding, we get

F4(2) = 21£,(2) = 2(m? — 4m2m2 + 3m3), (2.177)
which coincides with the introductory Example [42]

Definition 133. Let 7}, C T, be the subset of those tables which have
exactly r marks.

Definition 134. In accordance with Beck, Lv and Potechin [5], we write T}, =
Ty, for nontrivial permutation tables (with no marks). More generally, we often
omit 7 when we have r = 0.

Definition 135. We define

th(n) = > w(r)sgn(r) (2.178)

s
TGTkn

and its corresponding generation function

o0 tTL

Ti(t) =) mf,;(n). (2.179)

n=0 """

Proposition 136. For any distribution X,;,

fr(n) = zk: miti(n) and thus Fi(t) = Zk:m’{T,:(t). (2.180)
r=0 r=0

Proof. Write

k

S we(t)sgn(r) => Y wy(t) sgn(T):;)m’l" > w(r)sgn(r). (2.181)

rery, r=07eTy, rely,,
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Chapter 2. FEven Moments of Random Determinants

2.4.5 Second moment general (alternative proof)

We are ready to rederive Fortet’s formula (Proposition in by means of marked
permutations tables. Restating the proposition,

{ '

Proposition 137 (Fortet [32]). For any distribution of X,

fa(n) = nl(mg + m2(n — 1)) (mg — m)" 1, (2.182)
Fy(t) = (1 + m2t)elme—mit, (2.183)

- 7

Proof. We consider writing fo(n) as a sum over all (nontrivial) marked permuta-
tions tables Ty, with two rows and n columns. Note that Ty, = T3, UT;, UT3,
and thus

f2(n) = t3(n) + myty(n) + mits(n). (2.184)

However, as j; = 0, we get t3(n) = 0 since T3, is empty. In fact, there are only
two types of columns which give rise to nontrivial weights, namely the 2-column
(the same two numbers a) and the x2-column (the same two numbers marked).

( 0

Type: 2-column x2-column

X

T -
2 X
2
my

Wyt 2]

k J

There are n! possibilities how the permutation in the first row of a table can look
like. Since tables T3, only contain 2-columns, the second row must be filled with
the same permutation (thus the sign is always positive). This gives us the factor

t5(n) = nluy (2.185)

to the overall sum fa(n) = 32 .7 wx(t)sgn7. As a consequence,
TH(t) = > —t3(n) = e, (2.186)

Let 7/ € T3, have ¢ two-columns. The weight of this table is given as w(r’) = 5.
Note that for the weights w(7) of a marked table 7 € T3, created from 7’ by
marking one of its two-columns by two marks, we have w(7) = p5~'. Thus, from
7/, we get the following contribution to t3(n) = Y erz w(7)sgn,

cps . (2.187)
Summing up this contribution over all tables 7’ € Tzom, we get

_ 0t3(n)
Oz

t5(n) = nlnuy ™ (2.188)

or in terms of generating functions,
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Tﬂ
TZ(t) = 0 ai(;) = tei?! (2.189)

from which
Fy(t) = TO() +mu T3 (8) +m3T2(t) = (1+m2t)e’t = (1+m3t)el™ 1 (2.190)

Alternatively, since there can be only one mark per row, there can be only one
x2-column. For a given permutation of the first row, there are n positions for
this marked column and thus we get the factor

ninuy = m3. (2.191)

In other words, t2(n) = n!nus~'. Summing the two factors together, we get

n—1

fa(n) = nlpy +nlnug='mi = nl(us +nmi)uy =", (2.192)

from which follows the first assertion by putting ps = mo —m?. Note that we can
also get Fy(t) by directly inserting fo(n) into the definition of generating function
Fy(t).

Yet another, the shortest proof is given by analytic combinatorics. Note that we
can formally write the following construction relation for the set 75° of all marked
tables (with column order irrelevant)

T =T +7’20* = SET () * <(Z) + ) (2.193)

from which immediatelly, in terms of generating functions,

Fy(t) = exp(uat)(1 + mit). (2.194)

2.4.6 Even marked tables

Definition 138. We denote S;;, as the subset of tables 7}, which have still
nonzero weight when pus = pus; = --- = 0. As a consequence, their columns
have only even number of marks (since k is even). We call these tables even
(marked) tables or simply S tables.

Definition 139. For any distribution of X;;, we write

sp(n) = Z w(T) sgn(T) (2.195)

TES;n

and its corresponding generation function

o0 t’n

Spt)=>" WSZ(TL) (2.196)

n=0
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Remark 140. Summing over Sy, is equivalent of summing over 7}, and then
putting g3 = ps = --- = 0. That is sj(n) = ¢},(n)|y=ps=—=0 and Sj(t) =
T,;“ (t) |#3=#5=~~~=0-

Remark 141. In the case of the sixth moment, even marked tables are the
notrivial tables under intermedial distribution of entries (with usz = 0).

2.4.7 Shifted normal moments

In the case Y;; ~ N(0,1), or equivalently X;; ~ N(my,1), we can find fj(n) and
thus ¢} (n) and T} (t) explicitely for all r and k.

Definition 142. When Y;; ~ N(0, 1), we denote t}(n) as nj(n) and 1} (t) as
Ni(#).

Lemma 143 (Square matrix Wishart expansion). Let X;; ~ N(u,0?) and
k = 2m be an even integer, then

\ J

The lemma is a special case of Theorem [181] with n = p and follows from known
properties of the non-central Wishart distribution (see Theorem 10.3.7 in [49]).

Corollary 143.1. Selecting i = my and 0 = 1, and comparing m; powers, we
get that when k or r is odd, then nj(n) and N[ (t) vanish. Otherwise, if k = 21
and r = 2s for some integers m,s, then

9% 1\ n*¥(n—2)1 Z(n+2j)
nat (n) = <s> (n+ 25— 21l ]UO (2‘7')117 ‘ (2.198)

Proposition 144. When Y;; ~ N(0,1), then sj(n) = nj(n). Or in terms of
generating functions, Sp(t) = Nj(t).

Proof. We already know that by definition for any distribution of Xj;,

th(n) = > w(r)sgn(r). (2.199)

TeTY
However, since p3 = ps = --- = 0 in the case of the normal distribution, we have
that all tables in T}, /Sy, are trivial (their weight equals zero), as the weight
w(7) of each column with odd number of marks vanishes. [ |
Fourth shifted normal moment

We will examine two special cases. First, when, k = 4, we have the following:

Proposition 145.

n +2)! Snl(n + 1)!
ny(n) =0, ni(n) =0,
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Corollary 145.1. By summing the series,

1 Gt t(1+ 7t + 4t%)
NJ(t) = Ni(t) = Ni(t) =
4() (l_t)ga 4() (1_t)47 4() (1—t)5
Ni(t) =0, Ni(t) =0,
Sixth shifted normal moment
Next, when k = 6,
Proposition 146.
nl(n+2)!(n+4)! nl(n+2)!(n+4)!'n
n3n!(n+1)!(n+4)! . nSn!(n+1)!(n+3)!

ng(n) = ng(n) = ng(n) = 0.

Proof. Directly from Corollary [143.1] or by Lemma [143| with © = m and o = 1,
fo(n) =" (1 9) (n+4) + 3mIn(n+2)(n+4) + 3min® (n+4) + min®).
Comparing m; powers, we get ng(n) for r =0,...,6. |

Corollary 146.1. By summing the series

NY(t) = ;§(n+ D(n+2)(n+4)t",
NZ(t) = ;in(wr 1)(n+2)(n+ 41",
Ni(t) = 11653:0713(71 +1)(n+ 4",
NO(t) = 41872)715(% 1)(n + 3)! ",

N5 (t) = Ng(t) = Ng(t) = 0.

Remark 147. Note that those series (with even r) have zero radius of conver-
gence, so they have to be treated formally.

Remark 148. Note that those auxiliary series are not independent. For exam-
ple, it holds

d

N§(t) = 3t &Ng(t), (2.200)

d
t? ENg(t) = (1 —8t) N3(t) — 45t NJ(¢), (2.201)
t Ng(t) = (462 — 10t + 1) N3(¢) + 15¢(4 — 3)NE(2), (2.202)
3t2NS () = (1 — 23t + 125> — 120¢%) Ng(t) — 3¢t (15 — 210t + 344¢%) N9(2).

(2.203)
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Note that these are not the only relations between Ng(t)’s. For example, NZ(t)
can be also expressed using N{(¢) but the relation involves rather complicated
rational functions.

2.4.8 (Odd-end marked tables

Definition 149. We say a marked column is x}_,, when it is consisted of one
mark and k£ — 1 copies of some identical number.

Definition 150. We denote Oy, as the subset of nontrivial tables T}, which
lack x;_; columns. Equivalently, O}, are the tables which stays nontrivial
when pp_1 = 0. We call these tables as odd-end marked tables or simply O
tables.

Definition 151. For any distribution of X;;, we write

op(n) = Z w(T) sgn(7) (2.204)

’TEOZ‘n

and its corresponding generation function
O (t) =Y —=op(n). (2.205)

Remark 152. Summing over Oy, is equivalent of summing over T;7, if we
put px—1 = 0, that is, oj(n) = t;.(n)|u,_,=0 and O} (t) = T} (t)|u,_,=0. Note
that, however, as u;_; always appear alongside with p; in unmarked tables,
0d(n) = t2(n) and OY(t) = Tr(t).

Remark 153. In any nontrivial table, every x} ; column must be originally a
column with k£ identical copies of the same number a that gets covered by a
mark. The other option would be that the covered number is different. That
would mean, however, these is a single displaced number a elsewhere in the
table. But since u; = 0, this would turn the table to be trivial (zero weight).

2.4.9 Decomposition into odd-end marked tables

It turns out that instead of all marked tables T}, , we can only consider the tables
pn @s there exists a natural decomposition.

Proposition 154. For any distribution of X;; with po =1,

tr(n) = 27’: (k T 8) MOZ_S(TL — ). (2.206)

s=0 s

Proof. We collect the terms according to the number of X} ; columns. Let there
be r marks out of which s form x}; ; columns. According to Remark they
are disjoint from other columns (they do not share any numbers). We can select
(Z) positions for those columns. Also, (Z) is the number of selections of concrete
numbers from [n] = {1,2,3,...,n} to fill in those X} _, columns, there are then
s! permutations of those numbers. Erasing xi , columns, what we are left with
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2.4. Marked permutation tables

is a table 7' € O | (lacking X}, columns). To construct a table 7 € T}, from
7', we select rows where the marks of X;_; columns will be. Since r — s marks

are already placed, there are (k_(z_s)> ways how to place our s marks. Thus

> w(r)sgn(r) = ZT: (n) (k T S)s!QuZ_l > w(r')sgn(r').  (2.207)

S S
TET,;n s=0 TIGO:L:SS

63| x|[1]4/5]2|7|8]9 6) x|1/4]5]2(8|9
7312 |1]9]4]6]x|5|8 - 211/9(14(6]5(8
6 (|3 |x[1]9/4]2|7|5]|8 6 (| x]|1]19]4]2]5]|8
3)x|2(1]4|/5]6|7]8]|9 211/4|15(6[8]9

Example: n=9,r =4, s =2

Corollary 154.1. In terms of generating functions, we have for any distribution
Xij with M2 = 1,

HOESS (k o ) £ 05 (1), (2.208)

s=0

Proof. Changing the order of summation, we get from the definition of T} (¢),

D=3 Lo =23 () M

n=0 n=0 s=0 S

. —r+s s,.8 r—s
Z( >t pi1 O (1)

S

(2.209)

Corollary 154.2. In terms of generating functions, we have for any distribution
Xij with M2 = 1,
k
Fu(t) =Y mi(1+ map_1t)" O (t), (2.210)
r=0

Proof. Using Proposition [136] and by substitution 7 = s + j in the previous
corollary,

k r —Tr+s 7S s r—s
SNICUED 9 vl (AR TSl
r=0 r=0s=0
= _; | | (2.211)
=> ( )mi“mz_l(w»
j=0s=0 \ 5
[ |

To finish this section, let us state an inverse relations between tables Ty, and
O; -
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Chapter 2. FEven Moments of Random Determinants

Proposition 155. In terms of generating functions, we have for any distribution
Xij with M2 = 17

s

O5(t) = S (-1y (’“ o ) P AT (1), (2212)

r=0

One can deduce a generalisation of Corollary [154.2] connecting generating func-
tions for distributions with two different py_4.

Corollary 155.1. In terms of generating functions, we have for any distribution
Xij;

k
(31 Fe () =y, = Dm0 (1 ma (g — 1)) [ F(8) =y,
r=0
(2.213)

2.5 Fourth moment general

In this section, we derive the general fourth determinant moment:

Theorem 156 (B. 2022). For any distribution X,;,

et(ma—3p3)
(1 — p3t)®

Fy(t)=

14+mq pugt)? 14+ Tplt+4uat?
((1—|—m1u3t)4+6m%,u2t( 14131) 4 HabtT =t )

T3t N (1 @ty

Corollary 156.1. For any distribution X;;,

22: H“’"i 4= 2w\ (L+c)my"™ 5" p (1 — 3p3) "~
(n—c—s)I(2 —w)w!

fa(n) = (n})* dw(c),

where
do(c) = (2+4¢),  di(c)=c(2+¢),  dyfc)=¢

When m; = 0, we recover the original special case F;""(t) derived by Nyquist,
Rice and Riordan (Proposition [68).

Ezample 157 (General Gaussian distribution). If X;; ~ N(u, 0?), we have my = p,
(o, pi3, pra) = (02,0,30%), from which we get

fi(n) = ;(n!)2(1 +n)o '™ (nPpt + (24 n)o? (2np® + 0%)) . (2.214)

Example 158. ((0,2) matrices). Let X;; = 0,2 with equal probability, thus
(mq, mg,mg,mg) = (1,2,4,8) and (pe, 3, t4) = (1,0,1). As pointed out by Ter-
ence Tao [70], the determinant of a random n x n (—1,+1) matrix is equal to the
determinant of a random n—1 xn—1 (0,2) matrix for which (my, ms, ms, my) =
(0,1,0,1). In terms of generating functions, that means

a0 [ OF™(t) a( 0 e e 2 (1 4 5t + 2t* + 4¢3)
Fit)= =t ———> == [t = = ,
ot ot ot \" ot (1—1t)3 (1—1t)5
(2.215)
where in F}”™(t) we put (mq,mg,mg,my) = (0,1,0,1). This result coincides

exactly with our general formula for Fy(t) with (mq, mg, mg, ms) = (1,2,4,8).
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2.5. Fourth moment general

Ezample 159 (Exponential distribution). If X;; ~ Exp(1), that is if m; = j!, we
have (ueo, tis, 1a) = (1,2,9). For n large, we get an asymptotic behavior

fa(n) = ;66(71!)2 (n4 —5n® —27n? + 141n + 450 + O(l/n)) : (2.216)

The first seven exact moments are shown in Table 2.2] below.

n |1 2 3 1 5 6 7
fa(n)| 24 960 51840 3511872 287953920 27988001280 3181325414400

Table 2.2: Fourth moment of a random determinant with entries exponentially dis-
tributed

2.5.1 Structure of marked tables

Let a,b denote different numbers selected from [n] = {1,2,3,...,n}. Up to
permutation of rows, the only way how the columns of 4 by n tables with nonzero
weight could look like is the following:

e 1
Type: 4-column 2-column x!-column x2-column x*“-column
a a X X X
a a a X X
i
a b a a X
a b a a X
: : 2 4
Weight w,: g 1 my i3 mj m3
- J

Figure 2.27: Structure of 7, tables

See Example showing the full 7% for better illustration.

2.5.2 0Odd-end tables decomposition

Since the odd-end and even marked tables coincide when k& = 4, we can only
consider the sums over even marked tables S; C T,°. By Corollary |154.2]

Fu(t) = (1 +myust)*S2(t) + (1 4+ mypst)*miSi(t) + miSi(t).  (2.217)

As the only nonzero terms are S9(t),S2(t) and Si(t) in the expansion of Fy(t)
(see Equation (2.217))), we have the following options (upto permutations of rows)
how to nontrivially place marks in a table 7 € Sy,
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Chapter 2. FEven Moments of Random Determinants

X X X
X X X
X X
X X
Figure 2.28: Marked columns Sin Figure 2.29: Marked columns S’in
Definition 160. We define tables Sif,f C S}, such that their r marks occupy
s columns. Accordingly, we define
T/S T/S > tn T/S
si%mn)= 3 w(r)sen(r) and St =3 5 Vin).  (2.218)
resy) n=0
Remark 161. Note that S7, = i/nl and Sj,, = i/nl L Si/,? disjoint union as
shown below in Figure [2.30
X X X
y X X X
A X X
X X
4/1 4/2
Sy St s/ s/

Figure 2.30: Structure of S;° tables

2.5.3 Covering technique

Zero marks

Sym

The generating function SY(¢) coincides with the already obtained F;"™(t) of
Nyquist, Rice and Riordan (see Proposition replacing my with pg, that is

et(ﬂ4_3)

T-0"

S(t) = Gu(t) = (2.219)

Two marks

Proposition 162. Tables Sin are formed by marking one pair of numbers Sy,
in a given column.

Proof. Let T € Sin, then the numbers which are covered by one pair of marks are
the same numbers. If they were different, say a, b there would have been another
a elsewhere in the table, making the table trivial in Sin (since we would have
odd number of a’s uncovered). |

Corollary 162.1. For any distribution X;; with ps =1,

asg(t) ey 852(15) _ 6t et(ha=3) (2.220)

SZ(t) = (6 - 2M4> Opis ot (1 _ t>4
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2.5. Fourth moment general

Proof. Let 7" € Sy, have ¢ four-columns. Thus, there are n — ¢ two-columns.
The weight of this table is given as w(7') = pg. Let us find the weights w(7) of
all marked tables 7 € Sin created from 7/ by marking. There are the following
possibilities where we can put those two marks:

o in 4-column of 7/ in 6 ways, creating a table 7 with weight u§ !,

e in 2-column of 7/ in 2 ways, creating a table 7 with weight ug,

2 0 .
S4m — 547,1 g

e & X X

Q@ 2 2 2

>t o XX
St o Q

6 ways 2 ways
. J

Thus, from 7/, we get the following contribution to s3(n) = 3 .¢ 52, w(T) sgn(r),
6eus™t 4+ 2(n — c)us. (2.221)

Grouping the terms, this is equal to
cp§ (6 — 244) + 2nu5. (2.222)

Summing up this contribution over all tables 7/ € Sy ,,, we get,

0
2(n) = (6 — 2u) 25 4 9050(m) (2.223)
Opta
or in terms of generating functions,
0S9(t) 0S9(t)
2(t) = (6 — 2 4 ot L 2.224
S0 = (6 - 2m) 758 =+ 2 (2.224)

By substituting Equation ([2.219)), we get, by computing the derivatives, the state-
ment of the corollary. |
Four marks

Proposition 163. Similarly, by marking, tables Si/nl are formed from Sy, by
marking one of its columns with four marks.

Corollary 163.1. For any distribution X;; with s =1,

050(8) _ t(1+20) y3) (2.225)

0S9(t) oy

Sjll/l(t) = (1 - :u4) 6#4 ot (1 _ t)4

Proof. Again let 7' € S, have ¢ four-columns and thus n — ¢ two-columns. Its

weight is then w(7’) = uj. To create a table 7 € Si/nl , we can put four marks
o in 4-column of 7/ in 1 way, creating a table 7 with weight p$*,
e in 2-column of 7" in 1 way, creating a table 7 with weight u,
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Chapter 2. FEven Moments of Random Determinants

4/1 0 .
547,,1 — S47n c

X X X X

X X X X
/]\

S e 2

Q@ 2 2 2

k J

Thus, from 7/, we get the following contribution to si/l(n) =2 g w(T)sgn(r),
4,n

cpt+ (n—c)us. (2.226)
Grouping the terms, this is equal to
cp (1= pua) + npi§. (2.227)
Summing up this contribution over all tables 7" € Sy ,,, we get,

0s3(n) 0
diis + nsy(n) (2.228)

4/1
34/ (n) = (1 — pa)
or in terms of generating functions,

05y(t) , , 0S3(t)

4/1 —(1—

(2.229)

Proposition 164. Tables Si/nQ are formed from Si/nl by swapping two marks in

x* column with a pair of numbers in some other column. Via this swapping, each
4/2 . .

table from Sy, is counted twice.

Proof. Let 1 € Sfff . There are two options how the table can look like based on
the uncovered numbers in x? columns. Either they are the same (a) or they are
different (a,b). In the first case, by swapping two marks with two a’s, we get a
corresponding table 7/ € Sfffnl with a four-column filled with a’s. In the second

option, by swapping, we get a two-column with numbers a and b (see figures
below).

X | a X | a X | a X | a
X | a X | a X | a X | a
— —

a | X X | a b | x X |b
a | X X | a b | % X |b

/2

,n

4/2

Figure 2.31: First option for Sff Figure 2.32: Second option for S,

Corollary 164.1. For any distribution X;; with ps =1,

4/1 4/1
e oS asi

6t*(1 +¢
V() = (1(_;5)&(“4—3). (2.230)
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2.5. Fourth moment general

Proof. Let 7' € Sj/nl have ¢ four-columns, its weight is then w(7') = u§. However,
now there are only n —c — 1 two columns as one column is covered with four
marks. To create a table 7 € 54 'n» We can swap two marks of x4 column with

o a 4-column of 7/ in 6 ways, creating a table 7 with weight u§ ',

e a 2-column of 7" in 2 ways, creating a table 7 with weight pg,

( N
X | a X | a X | a X | a
X | a X | a X | a X | a
254/2 — Si/nl : a|x || x|a b|x|T[x]|b
a | x X | a b | x X | b
6 ways 2 ways
= J

Thus, from 7/, we get the following contribution to si/Q(n) =3 res!? w(T)sgn(r),

6eus™ +2(n —c — 1) us. (2.231)
Grouping the terms, this is equal to
e (6 — 2p4) + 2npu§ — 245, (2.232)

Summing up this contribution over all tables 7/ € Sig (note that as each table

in Si/nQ is counted twice, we get twice the sum),

4/2 884/1( ) 4/1 4/1
25,/ %(n) = (6 — 24 )T + 2ns, " (n) — 2s,' " (n) (2.233)
Ha
or in terms of generating functions,

4/1 41
25,%(t) = (6 — 2;@85 (1) | 9 9% (1) _ 2571 (t). (2.234)

Oftg ot
[

Corollary 164.2. For any distribution X;; with s =1,

t(1 + 7t + 4¢3
((+1—$ ) etus=3) (2.235)

Proof. As Si, = 4/1 L S4 disjoint union, we have that S(t) = S;/'(t) +
Si2(b). |

Si(t) =

Corollary 164.3. For any distribution of X;;, we get the statement of Theorem
with py = 1, that is

Fy(t) = ez;‘ft‘)? (14 mypigt) * + 6m3tUEmsts y pdy ETE2) —(2.936)

Proof. Asall S{(t), S2(t) and S§(t) have been found, we use Equation (2.217)).

178



Chapter 2. FEven Moments of Random Determinants

Corollary 164.4. By Corollary|154.1] or by T; (t) = [m]]Fa(t), we get explicitly

0 0 et(u4_3)
Ty(t) = S4(t) = (1— t)ga

) o et(ta—3)
Ty (t) = 4pstSy(t) = 4N3tma

2 242 0 2 ela=9) 2,2 6
Ti(t) = 6p3t™Sy(t) + Si(t) = m <6“3t + l—t) ’

t(na—3) 12415t>
T (t) = 6pst> SP(t) + 2ustS; () = Ty <6u§t3 + - " ) :
etlra=3) 6t 14+Tt+4t

TY0) = iSO HBPSHO 4510 = T (it P )

Remark 165. Note that we get Fy(t) in its full generality (Theorem [156) by
simply using the scalability property given by Corollary [112.1

2.5.4 Addition technique

We present an alternative technique how to obtain S%(t) and Sji(t) by finding
a correspondence between marked tables with n columns and unmarked tables
with one extra added column.

Let 7 € S;,. Then, we construct 7/ € S, in such a way we replace two x’s
by the number “n + 1”7 and add an extra column filled with “n + 1”’s and the
covered numbers (see Figure below). The crucial observation is that these
two covered numbers must be the same, so the added column is always nontrivial.

6y 4 x|5]217]31 118(5]2]71613]1
1]2]4|6|7|5]3 1/2/4|6|7/8|5|3
6(|1|x|4l2/7|5!3| "|1/8]4]|2(7|6|5]3
4l2|5|6|7|3[1 4l2|5/6|7!8|3]|1

Figure 2.33: A correspondence between table 7 € 5217 and table 7" € 5278

Given a table 7’ € Sffm 1 with ¢ 4-columns and thus weight p§, there are 2(n+1—c)
ways how we can select one 2-column and one pair of numbers in this 2-column.
We then erase this column and turn the other pair found in 7" into two marks.
As there are n+ 1 ways how we can place back the erased column and n+ 1 ways
how we can select n numbers from n 4 1 numbers, each table 7 € S, is counted
(n + 1)? times, thus

sin) = > w(r)sgnt= 3}

Tesin T’ESE’TH_I
siin+1)  2us Osi(n+1)
n+1 (n+1)2  Oug

2(n+1—-2¢)

(a1 taseT

=2

Or in terms of generating functions,

0S(t) 2wy OSI(t) 6t N
2 — 4 . 4 — t(/.u; 3)
Sit) =2 ot t oun (1—1)R° '
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- . 4/1 -
Similarly, there is a correspondence between S4£Z and SY ., as shown in Figure

2.34] below.

6 41 x 1952731 418|512|7(6|3]|1
2 1|{x|416]7]|5|3 1/8|14/6|7(2(5]3
—

6 1|x|412]7]5|3 1181412/ 7(6[5]3
2 4|1 x|5]6[7|3]1 41815167231

Figure 2.34: A correspondence between table 7 € Si/ " and table 7/ € Sig

Now it depends whether previously covered numbers (in the gray column above)
form a 4-column or a 2-column. Let 7" € S}, have ¢ 4-columns. To count the

number of tables 7 € Si/nl , first, we select one 4-column in ¢ ways and mark all
of its entries, next, either we select
 one 2-column in n + 1 — ¢ ways and erase it, creating table 7 with w(7) =

w(T')/ pa
« or one 4-column in ¢ — 1 ways and erase it, creating table 7 with w(7) =
w(r')/p
In total,
c(n+1—c) + 0(0—21)
si/l(n): > w(r)sgnt= Y “‘E +1)2H4 pgsen 1’
resi/! TSy
_on o 0si(n+1)  1—pg 9PsYn+1)
S (n+1)2 0 Oy (n+1)2  Jui

In terms of generating functions,

S = O?S3(t)  10SP(t) | 1—pa PS3(t) _ t(1+2¢) oHna—3)
1 oot T o P P R

And finally, there is a correspondence between Si/nz and Sffm +1 as shown in Figure
below. Again, a column formed by covered numbers must have nonzero
weight.

64 x[5]2]7]3]1 1185271631
6l|1]24]|x|7|5]3 1|124|8|7]6|5]|3
6(|1|x|4al2|7|5/3| |1/8|4]2]|7|6]|5]3
6)al2|5|x|7|3]1 412587631

Figure 2.35: A correspondence between table 7 € Si/ % and table 7/ € 52,8

Again it depends whether covered numbers form a 4-column or a 2-column. Let
7' € 57,41 have ¢ 4-columns. To count the number of tables 7 € Si/nl , first, we
select one 2-column in n + 1 — ¢ ways and one pair of numbers in it. We then
mark those numbers and the other pair found elsewhere. By symmetry, however,
there is only n + 1 — ¢ pairs which can be marked. Next, either we select
« one 2-column (other than the two with marked numbers) in n — 1 — ¢ ways
and then erase it, creating table 7 with w(7) = w(7’)
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e or one 4-column in ¢ ways and erase it, creating table 7 with w(r) =

w(r')/pa
In total,
n+1—c)(n—1-c)4 e
si/Q(n) = Y w(n)sgnt= > ( I 5 ) g sent’
65’4/2 T'ESS i1 (n + 1>
_ (n+1)(n—1)so<n+1) | Pa=2npatn Osi(ntl) | pa(pa—1) Osi(nt1)
(n+1)2 ™ (n+1)2 Dy (n+1)2 oui

In terms of generating functions,

02S2(t)  9SY(t) 0259 (t) N 3uq — 10S9(t)

V() = - 1—2
ST =t o = 2m) e . om
. pra(ps — 1) 9°S)(t) _ 6t%(1 + 1) )
t o (1-1¢)° '

2.5.5 Inclusion/Exclusion

Finally, we show yet another derivation whose only ingredient to deduce Fy(t) is
the Wishart expansion (Lemma [143). The method of inclusion/exlusion shown
here was introduced in the context of permutation tables by Lv and Potechin in
[5]-

Definition 166. Denote S}, » the subset of tables S}, such that if 7 € 57, »
then C' C [n] are numbers which only appear in 4 columns of 7 with no marks.
Those 4-columns are reffered to as known 4-column. The other columns of 7
can be also 4 columns or other columns, marked or unmarked. In contrast, we
denote S;nyc, a subset of S}, -, such that if 7 € §27n70,, then C” is the set of
all numbers appearing in unmarked 4 columns of 7.

Remark 167. Clearly, we can write the following disjoint union representation

S = U Sroc (2.237)

C'2C

Remark 168. As all columns other than C’ have weight w(-) equal to one, we
have for any 7 € Sz,n,c' that w(r) = uf, where #C’ denotes the number of
elements of set C".

Definition 169. We define the residual normal weight we(t) of a table 7 €
Sin.c as the product of weights w(-) in columns other than C' in which we treat

Proposition 170 (Inclusion/exclusion). For any distribution of X;; with ps =1,

sitn) = Y w(n)sgn(r) = > Y (ua — 3)* we(t) sgn(r). (2.238)

Tes;’l,n CC[TL} T€S4, ,C
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Proof. Directly, via a chain of equalities and by using Remark [168]

Y w(r)sgn(r)= > > M#C/Sgn(T)

TES}LR C'Cln] 7—6547%0,

= Z Z Z (g — 3)#(]3»#(’”/C sgn(7)

C'Cln] res),, or CSC"

= > 2 X (pa—3)"wo(t)sen(r)

C'Cln) CCC" €5,

=2 2 > (m—=3)"we(t)sen(7)

CC[n] C'2C T€S4 n.C!

Z Z (s — 3)"Cwe(t) sgn(r).

Corollary 170.1. For any distribution of X;; with po =1,

sy(n) = z": Mni(n —c). (2.239)

= (n—c)2!

Proof. There are (Z) ways how we can select C' € [n]. As the sum depends only
on #C,

TS e e = 3 () s

OCln] 7€S] ¢ =0 TESY n,c
(2.240)

for C € [n] arbitrary. Next, since the columns C' in 7 € S}, - are disjoint from

other columns, we can write, as there are (Z)c! ways how we can arrange the
corresponding unmarked 4 columns in a table,

S wewsan) = (M)a ¥ w0l = (*)ebitn -0 @20

TeST . €] resy

4,n—c

Corollary 170.2. In terms of generating functions, for any distribution of X;;
with py =1,
Sh(t) = eI NT(1). (2.242)

Proof. By definition and using the previous corollary,

. o0 tn oo n tn( ) o0 c C .
510 = £ i) = 5 00Dt £ -3
(2.243)
[ |

Corollary 170.3. For any distribution of X;;, we get the statement of Theorem

with us =1 (Corollary .
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Proof. Directly from Equation ([2.217]),

4 4
Fy(t) = S mi (L mapiat) S50 = €04 S mi (14 mapst)* NG (1)
r=0 r=0

= !0 (1 mapst) NY () + m3 (1 + mypst)® N7 () + miNJ (1)) .

Remark 171. Note that, in this new derivation of the general fourth moment,
we do not require the knowledge of the formula for Fy(t)|,,,—o of Nyquist, Rice
and Riordan [50].

Remark 172. Tracing back the definitions of auxiliary variables, we can write
the following expression for any distribution X;; with s =1,

" on—s | 12 -3
ZZZ r+s Imin!? s (pa >n£—8(n—s—c), (2.244)

e r)(n — s —c)!2cls!

which is equivalent to Corollary [I56.1] using scalability property again.

2.6 Paired Marked Permutation Tables

2.6.1 Marked pair-tables

Shifting the random entries by their first moment, we can again find a simplifi-
cation in terms of marked permutation pair-tables.

Definition 173. We define G<Xk>’n7p as the set of all marked pair-tables with
at most one mark per row. For them, we define marked weight accordingly as
in the previous non-Gram case (expectation over products of Y;’s). Also, we
denote T}y, . as the subset of all tables G, which are nontrivial (having
nonzero marked weight). Finally, we define 7, ,  as the subset of tables Tp;,
having r marks.

Proposition 174. For any distribution of X;;, assuming k even,

fr(n,p) =E det(UTU)k"/2 = Z Wy (t) sgn(T). (2.245)

X
T€T<k>7n1p

Remark 175. In the case of marked pair-tables, as the selection in pairs of rows
is a subset of [n], there could be ambiguity if what numbers are covered if we
would depicted the tables using just marks. Thus, instead of just using “x”
for marks, we always append a column showing the numbers hidden under
marks alongside our tables (in curly brackets).
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2.6. Paired Marked Permutation Tables

6 1| x|4|5|7]8]9 4 2| x[3|6|78]9
6 1| x1914]7|5]|8 4 X 12136789
3121914758 9 X[ 2|1]6|7]|5|8
31214157 [8|9 9 2| x|1/6|7]5]8

Figure 2.36: An example of nontrivial ta- Figure 2.37: An example of nontrivial ta-
ble 7 € T<24>79,7 with weights w (t) = m3us ble T € T<44>7977 with weights w (t) = miju2
and w(r) = g, C1 = {1,4,5,6,7,8,9}, and w(r) = p2, C1 = {2,3,4,6,7,8,9},
Cy=1{2,3,4,5,7,8,9}. Cy=1{1,2,5,6,7,8,9}.

Definition 176. We define

tr(n,p) = Z w(T) sgn(T) (2.246)

-
7'€T<k> p

and its corresponding generation function

T — 1" r
n=0 """

Proposition 177. For any distribution X;; with py =1,

k

k
fu(n,p) =>_ mity(n,p) and thus Fr(t,w) =Y miT}(t,w). (2.248)
r=0 r=0

2.6.2 Even marked pair-tables

Definition 178. We denote S, ., as the subset of nontrivial tables Tp,
whose weight does not vanish when pus = us = --- = 0. As a consequence, the
columns of those tables must have only even number of marks. We write 57, .
as the subset of tables S <Xk>7n,p having r marks.

Definition 179. For any distribution of Xj;, we write

sp(n,p) = > w(r)sgn(r) (2.249)

TGSZM,n,p

and its corresponding generation function

o0 n

Spt,w)=>" Wsi(n,w). (2.250)

n=0 """

2.6.3 Shifted normal Gram moments

The case of Normal distribution is the only one for which we know fi(n, p) exactly
for any k,n and p. We have the following generalization of Dembo’s result for

Nam(n, p) (Proposition [107)).

Definition 180. When X;; ~ N(my,1), we denote tj(n,p) as nj(n,p) and
T7(t,w) as Nj(t,w).
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Chapter 2. FEven Moments of Random Determinants

( D'

Theorem 181 (Wishart expansion). Let X;; ~ N(u,0?%) and k = 2m be an
even integer, then

mb o+ 2e) NI (m) (n—=2)1 [(npp)’
sutnn= (T o255 ) % (0 o () - e

. J

The assertion follows from the properties of the Wishart distribution, see Theorem
10.3.7 in [49]. For completeness, we will show our own derivation later in Chapter

6] on Random simplices (see Proposition and Remark [257)).

Proposition 182. When X;; ~ N(my,1), then sj(n,p) = nj(n,p). Also, in
terms of generating functions, S} (t,w) = Nj(t,w).

Proof. Since any table 7 € 17y, . ./S(y ,,, has weight zero when X;; ~ N(my, 1),
we can replace 17, by S7, , , in Proposition . [ |
Fourth shifted normal Gram moment

Proposition 183. Selecting p = my, 0 = 1 and k = 4, we get when X;; ~
N(ml, 1)
nl(n+ 1) (np*mi + (2 + n) (2pmi + 1))

fi(n,p) = (n—ln—pt2) (2.252)
Corollary 183.1.
2n!(n + 2)!
i) = () =0, np) = o
B nl(n + 2)!  ap*al(n+1)!
) = i Y T G g 2

Proof. Comparing m, powers in Proposition with Proposition [183] [ |

Proposition 184. By summing the series,

Ni(t,w) = N}(t,w) =0,
1
(1—-1)2(1—w—1t)’

1 6t 2tw
N; =
i) (1—1¢)3 (1—w—t+(1—w—t)2>’
1 t(1+7t+4t%) t(1+5t+2H)w N 2202
(1—1t)* l—w-—t (1—w—1t)? (1—w—1)3)"

Nf(t,w) =

Nf(t,w) =

2.7 Gram fourth moment (general)

Surprisingly, using the method of marked tables and inclusion/exclusion, we can
derive the full Fy(f,w) in an elementary way, thus generalizing both Nyquist’s,
Rice’s and Riordan’s F;"™"(t) (Proposition [68) and Dembo’s F;*™(t,w) (Proposi-
tion [L103). We show that:
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2.7. Gram fourth moment (general)

Theorem 185 (B. 2022). For any distribution X,;,

. t(,u473u§) 4 6m2u2t(1+m1ltat)2 m%t(l+7u%t+4ﬂ%t2)
Fy(t,w) = (l—ugt)Q(l—w—ugt) [(1 + mypust)” + —2 1—p2t (1-p3t)?
+ wmit [ 2us(14mipst)? + mi (L+5t5+2t°p13) 262w mi 3
T—w—p2t T—p2t (1-431)2 (1—w—pdt)2(1—p3t)2

Remark 186. Letting w = 0, we recover Fy(t). On the other hand, letting
my = 0, we get F,"" (t,w).

Corollary 186.1. Defining q; and j1; as above, we get, by Taylor expansion,

4

ﬁmmwwﬂ@ﬁgéﬁ(%—3fE:@+@m—m+@m—mm=p+nXLﬁa

i=—2
where
~ _QW%/A%, ~ 2m:f(2,u§/43+3m1,u§7m1,u%) ~ mf(3m%u:372,u%78m1,ug,u376m%u§)
4o = a0 = 5 y  da 5 5
~ om3(2pdam pdpsem?pd—m2ud) <~ om! ~ _ omi ~ _ omi
qs s ) 42 mE qs R q4 12

and Gy, q; otherwise zero.

Ezample 187 (General Gaussian distribution). If X;; ~ N (u, 0?), we have my = p,
(o, pis, pra) = (02,0, 30%), which gives, after series of simplifications,

n!(n + 1)lg4P=b
n—pln—p+2

fa(n,p) = ( I (Pt + (n+2) (2p20® + 0%)) . (2.253)

This formula agrees with the general case given by Theorem [I81]
Example 188 (Exponential distribution). If X;; ~ Exp(1), that is if m; = j!, we

have (:u27 M3, M4> = (17 27 9) and (Q—27 q-1,490,491,92, 93, 44, q~07 q~17 q~27 q~37§27§37§4) =
(16,—96,192,—124,—26,27,12,—8,30,—39,17,1,—2,1). The exact moments f;(n,p)
for low n and p are shown in Table [2.3] below.

e N\
p

fa(n,p) 1 — ) 3 1 5
0l 24 | 960 51840 3511872 287953920
1| 56 | 3744 297216 27708480 3004024320
21 96 | 9432 | 1022400 124675200 17182609920

p_p | 3| 14| 19320 | 2724480 | 419207040 71341240320
41200 | 34920 | 6189120 | 1169602560 | 240336875520
5|264 | 57960 | 12579840 | 2858913792 | 696776048640
6336 | 90384 | 23538816 | 6325119360 | 1801876285440
7| 416 | 134352 | 41299200 | 12939696000 | 4256462960640

Table 2.3: Fourth moment of a random Gram determinant with entries exponen-
tially distributed
G J
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Chapter 2. FEven Moments of Random Determinants

From now on, we assume pus = 1 in this section. What follows is the proof of

Theorem [185]

2.7.1 Structure of marked pair-tables

From now on, we put £ = 4. As columns of 7 € Ty np do not see what resides
in other columns, the column types there must be the same as in 7 € Ty,. The
structure of all nontrivial (nonzero weight) tables T, (1),n,p 18 however cumbersome,
as there might be many nontrivial marked pair-tables formed by marking trivial
unmarked pair-tables.

Remark 189. If 7 is nontrivial, there is again only one possibility for a column
to have odd number of marks, and that is it is a x! column (all number were
the same before marking).

2.7.2 Decomposition over even marked columns

Proposition 190. For any distribution of X;; with po =1,

" (d—r+s nlplu;
tyn,p) = sy *(n—s,p—s). 2.254
4( p) SZ;)( S )(TL—S)!([)—S)! 4 ( p ) ( )
Proof. The proof is a modification of Proof of Proposition This time, how-
ever, if we assume the number of x! columns is s, we can select for them (?
numbers (with s! permutations), but only (:) column positions. To create a table
TE T<’"4>7n7p, we start with a table 7/ € S&_)fn_&p_s as we decreased the number of
possible positions and numbers by s. Thus

> e =3 % (7)) () seusut s

r — Z S S S
TET(4>,7L,P s=0 TlESZAL)infs,pfs

(2.255)
|

Corollary 190.1. In terms of generating functions, for any distribution X;; with
M2 = 17

T 4 _
Ty (tw) = ( r 8) t°u3Sy °(t, w) and thus (2.256)
5=0 §
4
Fy(t,w) =>_mi(1+ mypst)* " S;(t, w). (2.257)
r=0

2.7.3 Inclusion/Exclusion

Definition 191. Similarly as in Section , we define 7, .~ the subset of
tables 57,y ., with numbers which are in " C [n] are in 4 columns of 7 with
no marks. The other columns of 7 can be also 4 columns or other columns,
marked or unmarked. In contrast, we denote 51@’”%0, a subset of 57y, o S0
that C” contains all numbers of unmarked 4 columns.
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2.7. Gram fourth moment (general)

Remark 192. As all other columns have weight one, we have for any 7 €

S<4>,n7p,0” o
w(r) = pt° (2.258)

Definition 193. We define the residual normal weight we(t) of a table 7 €
Staynp,c s the product of weights in columns other than €' in which we assume
normal distribution.

Proposition 194 (Inclusion/exclusion).

Yoo w(r)sen(r)= > Y (ma—3)*we(t) sgn(r). (2.259)

TES<4> np CC|n] TES 14),n,p,C

Corollary 194.1. For any distribution X;; with po =1,

= nlpl(pg — 3)°
sy(n,p) = w(T)sgn(T) = ny(n—c,p—c). (2.260
4( ) T@%ﬂp ( ) ( ) ;) (TL—C)!(}?—C)!C! 4( ) ( )
Proof. There are (Z) ways how we can select C' € [n]. As the sum depends only
on #C,

n

> % a9 uctsa) =3 (-3 ¥ wewsa

CCln) TE€ST, e c=0 (4y,n.p.C

(2.261)

for C' € [n] arbitrary. Next, since the columns C in 7 € Siaynpc are disjoint

from other columns, we can write, as there are (’Z)c! ways how we can arrange
the corresponding unmarked 4 columns in a table,

> uelt)sstr) = () T ) - (D)etaitn-cr-o),

C
Tes&%mp,c (4),n—c,p—c,C

(2.262)
m

Corollary 194.2. In terms of generating functions, for any distribution X;; with
M2 = 17
Sh(t,w) = eMINT (¢t w). (2.263)

Proof. By definition, and then by consecutive summation (we first extend the ¢
summation to oo, as negative factorials in the denominator force the terms to
vanish after finitely many c¢’s),

o0 n

= (n— p)'t%" P(pa — 3)°

n= Op 0c=0 (p_ )'C'

ny(n—c,p—c) (2.264)

[e.9]

_ Z '<:u4 - CNZ(@ w) = et(ﬂ4*3)NZ<t7 w)'
C
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Chapter 2. FEven Moments of Random Determinants

Corollary 194.3. For any distribution of X;;, we get the statement of Theorem
with ps = 1, that is

Hpa=3) 6m2t (1+myust)?  mit (1+Tt+4¢2)
Fy(t,w)= (1 t) —2 L
(tw) (1-1)2(1—w— t[ Frfist) 1—t¢ 1—1)2
wmit (21 +mapst)?  m? (1 + 5t + 2t2) 2t%w?m]
I —w—_t = T (I—w—12(1-1)7?

Proof. Directly from Corollary [190.1}
Fy(t,w) = e+ [ (14+-mapist)* No(t, w) + mi(1+mapst)*Na(t, w) + miNa(t, w)] .
[ |

By scaling, we get for any distribution X;; the statement of Theorem for any
H2-

2.7.4 Covering technique

The fact the column types of tables 57, , , are the same as in S, tables enables
us to find Fy(t,w) in elementary way. By Dembo [24], we already know SY(¢,w),

SO et(lhl*g) 2 2
t = . .
Next, per analogy, we must have
Proposition 195. For any distribution X;; with py =1,
S (t,w) S (t,w)
2t w) = (6—2 Ak 2t 2.2
‘94( ,LU) (6 M4> 8[1,4 + 8t ) ( 66)
Ot ot
51t w) = (1= 28] 5] (2.267)
Oy ot
SY2(tw) = (3 — )22 (bw) | 057 (@) gy (2.268)
0 144 at
Si(t,w) = Si (tw) + St w). (2.269)
Corollary 195.1. For any distribution X;; with ps =1,
Hna=3) 6t 2tw
2 6
t 2.2
Saltw) = (1—t <1—w—t+(1—w—t)2>’ (2270)
Hra=3) [ ¢(1 + 2t) tw
Sy (¢ 2.271
(tw 1—t <1—w—t 1—w—t)2> ( )
Hra=3) (612(1 ) 2t3(3 + t)w 2t%w?
Sy (¢ 2.272
(t,w 1—t ( —w—t (1—w—1t)? +(1—w—t)3 ’ ( )
Hna=8) (¢ (14 7t +4t%) ¢ (1 + 5t + 2t2 267>
Si(t.w) + Tt + 4t%) (1+5t+2t°)w N w .
1—t l—w—t (1 —w—1)? (1—w-—1)3
(2.273)
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2.7. Gram fourth moment (general)

Corollary 195.2. For any distribution of X;;, we get the statement of Theorem
with py = 1.

Proof. By combining this result with Corollary [190.1] we get
Fy(t,w) = (14 myust)* ST (t,w) +m3(1 4+ myust)? S (t,w) + miS;(t,w). (2.274)
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Chapter 2. FEven Moments of Random Determinants

2.8 Ordinary sixth moment (intermedial)

In the last section of this chapter, we show how to obtain the sixth determinant
moment Fg(t) when pz = 0 and m; arbitrary.

( D'

Theorem 196 (B., 2023). For X;; with my =0,y =1 and ps = 0, we have

Fy(t) = vt 00) (N2 (ogrtss ) (m (1 — 8¢ — 462 4 726 — 216t
+243t° — t (5 — 13t — 23t* — 129¢® + 81t*) g + % (10 + ¢ — 37t — 54¢%) 13
—t3 (10 4+ 9t — 18t%) pd + t4(5 + 3t)ut — t°u3) + 3tm3 (1 + 3t — tpg) (1 — 4t
t2 = 2¢(1 + t)pa + 2p3) (1 + tmaps) * + 3mi (1 + 3t — tpua) (1 + tmaps) *)

+ 3t N (trarams ) (M8 (—15 + 120t + 106t> — 1659¢ + 2304+

+1t (30 — 105¢ + 598t — 15361%) g + t* (—15 — 15¢ + 256t2) pi3)
—15tm7 (1 + 3t — tpg) (3 — 13t + 3tpug) (1 + tmypus) 2

+15t*m3 (pg — 3) (1+3t —tpy) (1+tmyps) + ¢ (1+3t—tpg)? (1—|—tm1,u5)6))

\ J

What follows is the proof of this theorem.

2.8.1 Structure of marked tables

In T§ ,,, the only nontrivial tables are the ones consisted of four types of columns:
e 6 column: six identical copies of the same number, weight ug
e 4 column: four identical copies of the same number and a pair of another
number, weight 1y
e 3 column: two triplets of two distinct numbers, weight ps
e 2 column: three pairs of three distinct numbers, weight 1
Additional columns with nonzero weight in marked tables, based on number of
marks, are
e x! column: two marks, we distinguish two sub-types:
* X} column: one mark and five identical copies of the same number,
weight ps
* X3 column: two marks, three same numbers and one pair of distinct
numbers, weight 3
e x?2 column: two marks, we distinguish two sub-types:
* x2% column: two marks and four identical numbers, weight 14
* X2 column: two marks and two pairs of two distinct numbers, weight
1
¢ x3 column: three marks and one triplet of the same number, weight f3
o x* column: four marks and one pair of the same number, weight 1
o x5 column: six marks, weight 1
In general case, Sg,, is a proper subset of Og,,. However, assuming p3 = 0, we get
that x} and 3-columns vanish. In that case, corresponding nontrivial tables from
Og.,, coincide with Sg,,, which only contain the following columns (with weight

Wy ):
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2.8. Ordinary sizth moment (intermedial)

( 0
6-column 4-column 2-column x2-column x3-column x*-column x5-column
a a a X X X X
a a a X X X X
a a b a a X X
a a b a a X X
a b c a b a X
a b c a b a X
2 2 4 6
He Ha 1 Hamy iy Ut i
& )

Note that, based on our earlier result (Theorem , we can determine the fol-
lowing

Proposition 197. For any distribution X;; with pe =1,
- 35— 00 . . N
OQ(t) = Gs(t) = (1 + uzt)met(% I ) 8 (1 8)(2 4 ) (4 + i)l
6 Tt —t)? Z (L3t put)®
#( 16 —1013 —1514+30) . ( y )
6 :
(

N,
(14 3t — pugt)® 1+ 3t — pyt)’

~ (14 0)E

(2.275)

From now on, assume that pg = 0. In this case, og(n) = sg(n) and Of(t) = S§(t)
as nontrivial tables of Og,, contain marked columns with even number of marks
only (marked column types with odd number of marks disappear). That is,
nontrivial Og,|u;—0 = g, (Which additionally do not contain 3-columns).

Corollary 197.1. For any distribution X;; with 1o =1, u3 =0,

et(u6—15u4 +30)

So(t) = )15Ng (( ! 3) : (2.276)

(1+3t—u4t 1+3t—u4t)

Proposition 198. In terms of generating functions, we have for any distribution
Xij with ps = 1 and pz = 0,

Fy(t) = 32 mh(1+ mapst ) S5(6) .27

r=0

2.8.2 Displacement of marks in S tables

We use the covering technique described in the fourth moment scenario. As
the only nonzero terms are S§(t), Sz(t), Sa(t),S¢(t) in the expansion of Fg(t)
when p3 = 0, we have the following options (upto permutations of rows) how to
nontrivially place marks in a table 7 € Sg,:
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Chapter 2. FEven Moments of Random Determinants

X X X X
X
X X X X X
X X X X
X

X X
X X X

52/1 S4/1 S4/2 Sgﬁ 56/2 56/3

Figure 2.38: Marked Figure 2.39: Marked Figure 2.40: Marked columns
columns ng columns Sén Sgyn

Definition 199. We define tables Sr/ , € Sg, such that their 7 marks occupy
s columns. Accordingly, we define

T/S T/S > tn /S
st/ (n)= > w(r)sgn(r) and sy/ ) => n'256/ (n).  (2.278)
resyls n=0

Remark 200. Note that Sén = é/nl, and S, = 4/1 L 56 ? disjoint union and
Sen = 6/1 U 56/2 L 56 disjoint union (see ﬁgures above and Figure [2.41]).

' N
X X X X X X
X X X X X X
SGX X X X X X
X X X X X
X X
X X
SP sz s Sir Sin S? S/®
g J

Figure 2.41: Structure of S tables

2.8.3 Zero marks
We already know Sg(t) since it equals Gg(t) with g = 0. That is,

o ot (16 —1544+30) o ¢
SO(t) = Ge(t)]is0 = N, . 2.279
80 = GoOlomo = g™ () (220
Expanding the right hand side (see [5]), we get
n J o i i
sg(n):(n!)2zo %%W(ﬁﬁ?l) (p6—1504+30)" 7 (ug—3)""".  (2.280)
J=0 i=

2.8.4 Two marks

Proposition 201. Tubles Sﬁzm are formed by marking one pair of numbers in
Sen n a single column.
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2.8. Ordinary sizth moment (intermedial)

Proof. Let T € Sg’n, then the numbers which are covered by one pair of marks are
the same numbers. If they were different, say a, b there would have been another
a elsewhere in the table, making the table trivial in S@?’n (since we would have
odd number of a’s uncovered). |

Corollary 201.1. For any distribution X;; with o =1, u3 =0,

ot (16 —15114+30)

t t
St)= e ING [ | + 15t (g — )N [
0 (1+3t—puat) ' [ ’ ((1+3t—u4t)3> (s =) (143t —puat)’
(2. 281)
from which, via Taylor expansion,

nﬂzz (HEDUEICHIED (1H420) (1 1570,430)" (g —3) . (2.282)

7=0i=

Proof. Let 7" € Sg,, have ¢ six-columns d four-columns. Thus, there are n —c—d
two-columns. The weight of this table is given as w(7’) = pépd. Let us find the
weights w(7) of all marked tables 7 € Sg,, created from 7/ by marking. There are
the following possibilities where we can put those two marks:
« in 6-column of 7’ in 15 ways, creating a table 7 with weight pu& ' ug*!,
e in 4-column of 7" in 6 ways by covering one pair of four identical numbers,
creating a table 7 with weight pugud *,
e in 4-column of 7/ in 1 way by covering the remaining pair of two numbers,
creating a table 7 with weight ugud
e in 2-column of 7/ in 3 ways, creating a table 7 with weight p¢ud.
Thus, from 7/, we get the following contribution to sg(n) = ¥ eqz w(7)sgn(r),

5eps ™ + 6dpgus ™" + dugpd + 3(n — ¢ — d) g (2.283)
Grouping the terms, this is equal to

cpg (150 — 3pg) + dugus(6 — 24uq) + 3nuéud. (2.284)

Summing up this contribution over all tables 7" € S ,,, we get

dsY ds3
se(n) = (154 — ) s6(n) + (6 — 2414) s6(n) + 3nsg(n) (2.285)
e Opy
or in terms of generating functions,
0SY(t) 0SQ(t) 0SQ(t)
Se(t) = (1504 — 3 K 6— 2 L 3t : 2.286
6(t) = (1504 — 3pe) D + (6 — 2p4) o T o (2.286)
Using Remark [148] we get the statement of the corollary. |

Remark 202. Note that when uy = 3 and pg = 15, then S3(t) = NZ(t) as
expected.
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Chapter 2. FEven Moments of Random Determinants

Alternative proof of Corollary[201.1. Another derivation of SZ(t) can be done via

the addition technique described earlier in section devoted to Fy(t). In this way,
1959(t)
T aZ4

T € 5§, We then construct 7/ € 5S¢, ., in such a way we replace two x’s in 7 by

the number “n+1” and add an extra column filled with “n+1"’s and the covered
numbers in 7. The crucial observation is that these two now exposed numbers
must be the same, so the added column is always a (nontrivial) 4-column (see

Figure below).

we would get a very simple relation S2(t) = . To see how it is derived, let

38|14 (2|7|5]|6 318(1(4]|2[9|7|5]|6
38|14 (27|65 318114129765
2 3161 | x[4][7|8]|5 PN 316(1/914]2[7[8|5
416121 [3|7(8]|5 416121 3[9|7]8|5
2 31811 | x[4[7|6]|5 318(1(9(4[2]|7|6]|5
418|121 (3|7(5]|6 41812]1|3[9|7|5|6

Figure 2.42: A correspondence between table 7 € S3 ¢ and table 7/ € 5879

Vice versa, given a table 77 € Sin 41 with ¢ 6-columns and d 4-columns (and thus
with weight péud), there are d ways how we can select one of its 4-columns. We
then erase this column and turn the remaining pair other pair found in 7’ into
two marks. That way, we get back our original 7 (after appropriate shifting the
names of all elements so the missing element is “n+17). Since each table 7 € ngn
is counted (n + 1)? times, thus

1 1 9si(n+1)
2 c,d-1 ! 6
sg(n) = E w(T)sgnrT = ——5 E dugpy™ " sgnt = .
5(n) = (1) (n+ 1) s 674 (n+1)2  Ouy
(2.287)
Or in terms of generating functions,
19S(t)
Sg(t) = —~ =2 2.288
5= (2289)

Equation ([2.282)) is obtained from Equation (2.287]) and by differentiating Equa-

tion ([2.280) by 4.
[ |

Corollary 202.1. For any distribution of X;; with s =1,

Ps(t) = pat (1 = puat) S3(£) — 15t SQ(t) ) -

Proof. Straightforwardly, as we alr)eady know from Proposition [82] that we have
. . o et(re—15u4+30
Alternatively, we could use Equations (2.286)) and ([2.288]) and differentiate chain

generating function Pg(t), (see proof of Proposition [82)). |

2.8.5 Four marks

Proposition 203. Similarly, tables Sé/; are formed from Sg, by marking one of
its columns with four marks.

195



2.8. Ordinary sizth moment (intermedial)

Corollary 203.1. For any distribution X;; with pio =1, u3 =0,
e/ (t) = (1+1 — puat) Sg(t) — 15 (pa — 1)  S(t)

et(MG"15N4‘F3O) )
e R

t t
— )30t NY | ——||.
(1+3t—u4t)3> ’ <<1+3t—u4t>3>]

Proof. Again let 7" € Sg,, have ¢ six-columns d four-columns. Thus, there are
n — ¢ — d two-columns. The weight of this table is given as w(7’) = uéu$. Let us

find the weights w(7) of all marked tables 7 € ngnl created from 7' by marking.

There are the following possibilities where we can put those four marks:
e in 6-column of 7/ in 15 ways, creating a table 7 with weight u§ *ud,

e in 4-column of 7" in 1 way by covering its four identical numbers, creating

a table 7 with weight ,ug,ui’l,

o in 4-column of 7/ in 6 ways by covering one pair of its four identical numbers
and the two different numbers, creating a table 7 with weight pgu$

e in 2-column of 7’ in 3 ways, creating a table 7 with weight p¢ud.

Thus, from 7/, we get the following contribution to s¢’' (n) = > gt w(T)sgn(r),
6,n

c—1 c,,d—1

15epg " pg + Tdugus ™" + 3(n — ¢ — d)ugus.
Grouping the terms, this is equal to
cpg Hg(15 — 3pe) + dpguy™ (T — 3pua) + 3npgps.
Summing up this contribution over all tables 7/ € Sg,,, we get

9s3(n) ds3(n)

4/1 0
Ss¢ (n)=(15—-3 +(7-3 + 3nsg(n
() = (15 = 3y10) 750 T2 4 (7= Bpa) “p 4 Bmsi(n)
or in terms of generating functions,
i 9S5(t) 0S5(t) | o, 9S5(1)
= (15— — .
Se' (1) = (15 — 3pe) D + (7= 3pa) s +3t—

(2.289)

(2.290)

(2.291)

(2.292)

Using Remark and/or Equations (2.286) and (2.288)), we get the statement

of the corollary.

lished in Figure [2.43

Remark 204. There is an alternative way how we can express s’ *(n) (will be
useful later). We use the addition technique and the correspondence estab-

N = — b
[GURRICHEN BN RINQRN
Ul Ot Ot W U1 W
~ 1 00 00 ~1 ~J
oM N
RO = O N O
— 00 = Ul 00 O
B R R O O
[SURGUEEN BEN (NN
Ul Ol O W O W
O d»O O OO
~ —~J 00 00 ~1 ~J
00N DO N

oo X X X X

N — W N W

— 00 = Ot o Ut

O© O N = =N

L S S e @)
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Chapter 2. FEven Moments of Random Determinants

Let 7" € Sgpn41 has ¢ 6-columns and d 4-columns (and thus weight w(7’) =

péud). In order to get a table 7 € ng,zl , we start by selecting a number ¢ which
appears in two different columns of 7. These numbers form a set I5(¢’) (there
are d such numbers). Note that in one column i appears in fours. The other
column with two displaced ’s can be either a 4-column or a 2-column. Next,
we erase this other column and turn the remaining four ¢’s into marks. That
way, we get a table 7 € Sg{,} . The weight of 7 is given as w(7) = ,ug,ui_'/i(t/) :
However, since v;(t") equals to one or two only, it is convenient to write it as

27 oy

w(T) = psps? (2 1y vi(t) (1 — 1)) : (2.293)

Thus, by adding all contributions,

d—1

4/1 6
56/ (n) = Z w(T)sgn T = Z sgn T"ZST‘DQ Z (2 — i + (1) (i — 1))
st <G =g
. / 1 1 /
= Y iz senT |d|2— — —l—(m—l) > ou(th] .
T/GSGO,n+1 2z i€l (t!)

(2.294)

Proposition 205. For any distribution X;; with pe = 1, 3 = 0,
1
Sg%(t) = (t —5— Q2+t + Mit) Sg(t) — 1585 (t)pa (1 +t — pat)

et (16 —1544+30) ) 9.9 9 t
= 1 — 5t — 24t — gt t°) N,
t(1+3t—u4t)16l( pat = pat? =+ i) 6((1+3t—u4t)3>

t
_45t(1—5t+u4t)N69<(1+3t_u4t>3>].

Proof. We use the addition technique described in section on Fj(t). First, we

seek the correspondence between ng and Sy, (see Figure [2.44) below). The

crucial observation is that no matter which table 7 € ng we select, if we put the
covered (under marks) numbers into a single column together with two (n+ 1)’s
(the column in grey), then this column has nonzero weight.

2 413 | x |7 81|56 413|19|7|8|1|5|2]|6
1 415 | x| 712[13|8|6 4151917123816
1 71316 |8 x|2|5]|4 RN 713681912514
2 7156 8| x|3|1]|4 7156893124
3151672184 31916 |7]12(1(8|9]|4
35|16 |7[8]2]1)4 315167812194

Figure 2.44: A correspondence between table 7 € Sé/ ® and table 7/ € 5879

Let 7/ € S9,,,, have ¢ 6-columns and d 4-columns. Hence, w(7') = pgug. Count-

ing the number of tables 7 € ng is rather intricate. First, we select a number
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2.8. Ordinary sizth moment (intermedial)

which appears in three different columns (three pairs). As the number of 6-
columns is ¢ and 4-columns is d, there is n + 1 — ¢ — d numbers satisfying that
criterion. However, we don’t know whether those pairs are in 4-columns or 2-
columns. Say the number i was selected and denote v;(t') the number of pairs of
i’s which lie in 4-columns. In the example above, v;(t') = 1. We mark every oc-
currence of i and then erase one of the columns with pairs of ’s (in three ways as
there are three such columns). The contribution of 7/ to (n+1)? Zresg/f w(T)sgnT

for a given 7 is then

C — C c 1
e () (3 — () = (3 ) (M - 1)) 22w
In total,

c,,d 1

sép(n) = Y w(r)sgnt= > %42 sgnt’ Y <3+ vi(t) ( — 1))
resi/? Tesg H(n +1) i€l3(t") Ha

Z pg s 1 Z
/ /

= ———— sgnrT 3(n+1—c—d)—|—<—1> vi(t| .

est (n+1)2 Ha iel3(t')

(2.296)

where I3(t') is the set of numbers of 7/ which appear in three different columns.
To sum the series exactly, we use Lemma [88] We get

s2(n) = e; M?zfgll;T l?)(n +1—c—d)+p(r) (;4 -~ 1)] . (2:297)

where p(7') is the total number of 4-column chains in 7. This can be written as

1
4/2 90 (1p+1 959 (k1 -1
562 (n) = 2psh(n1) — e SOl S Ol 4 ps(nt1), (2.298)

where pg(n) = X es,,, P(T")w(7') sgn 7. In terms of generating functions,

850( ) BugdSY(t)  BusdSH(t) ;1

S?(t M Pyt

o (1) =3=, t Oug P (1)
Since by Corollary [202.1| we know the value of Ps(t), we are done (in the end we
also employ Remark [148 and/or previous propositions). |

Alternative proof of Proposition|205. There is another derivation of Sg/ 2(75) not
involving knowing the value of Ps(t). Let 7/ € Sg 41 have ¢ 6-columns and d

4-columns. Since
South+ Y w(t) =24, (2.299)

1€l3(t’) 1€la(t’)

by combining Equations (2.294)) and (2.296]), we get the following remarkable

connection

¢ d—1
sé/l(n)—l—isém(n) =) ipsent [d (2——) +3(n+1—c—d) + (t—l) Zd}
T’ESgYnJrl
B 3 L+ 1) — 3= 9sd(n +1) _ 3ug Osg(n+1)
(n+ g (n+1)2 O (n+1)%us  Ipe
(2.300)
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which in terms of generating functions gives
1
54/1( £ + 54/2( £) = 3558(’5) o 3 - pa 058 (t) o %&S‘g(t)
Ha M4 ot t 8[14 [L4t 8%
which gives, after simplifications of derivatives of Sg(t) (see Equations (2.286))

and (2.288))),

Selt (1) + isg/Q(t) = w%(t} — 1559(t). (2.302)
Ha fat

(2.301)

Rearranging the terms and using the already known value for Sg/ 1(t), we get

Sg/?(t) = (3 =5 — (24 O + pdt) S2(t) — 1589 (E)pa (1 +t — pat)  (2.303)
as before. ]
Corollary 205.1. Summing Sg/l(t) and Sg/Q(t), we get

So(t) =15 (£ — (14 200 s + t13) S9(t) + (3 = 4+t — 200 — 2t + t13) S5(2)
et (16 —15114+30)

Tt (143t — pat) 16

t
1 — 4t + 12 — 2uyt — 2uqt® + 12t?) N2 .
‘I‘( + Ha g +/~L4 ) 6 (1+3t—,u4t)3

t
[— 15t (3 — 13t + 3uqt) Ny <(1 T u4t)3>

Remark 206. Note that the previous result gives N (¢) for ug = 15 and py = 3
since

t Ng(t) = (4> — 10t + 1) N3(t) + 15¢(4t — 3)NS(t).

2.8.6 Six marks

Proposition 207. Similarly, by marking, tables ngnl are formed from Se, by
marking one of its columns with siz marks.

Corollary 207.1. For any distribution X;; with ps =1, u3 =0,

1
8§ (t) = (1= bua) £ Sg(t) + 5 (1= 3t — pat) S5(1)
:M[(l 3t —puat) NZ (*) 6t (7—24t+8pst) N (*)}

3(143t—p4t) 16 (143t—pat)3 (143t—pat)3

Proof. Againlet 7' € Sg,, have ¢ six-columns and d four-columns and thus n—c—d

two-columns. Its weight is then w(7') = usud. To create a table 7 € ng,} , We can
put six marks

e in 6-column of 7/ in 1 way, creating a table 7 with weight u§ ' ug,

e in 4-column of 7/ in 1 way, creating a table 7 with weight uu,

e in 2-column of 7/ in 1 way, creating a table 7 with weight uu,

Thus, from 7/, we get the following contribution to s ' (n) = > cgon w(T)sgn(T),
6,m
cpg g+ dpgug T 4 (n — ¢ — d) g (2.304)
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2.8. Ordinary sizth moment (intermedial)

Grouping the terms, this is equal to

cpg (1 — pe) + dpgps™ (1 — pa) + npgpas. (2.305)
Summing up this contribution over all tables 7’ € Sg,,, we get
6/1 _ 638(71) 538(”)
() = (1= ) 2 S
or in terms of generating functions,
9S(t)
Ope

+ (1 — pa) +nsg(n) (2.306)

oSY(t) 0801

6/1 .

(1= ) (2.307)

Corollary 207.2. After some simplification, we have for any distribution X;;
with py =1,

n I (140)(240) (4+0)! (144542 .
6/1 2
2(7 42 -
ZZ B ) Sl G =)
+i (g — 154 +30) ) (pt— 154 +30)" 77" (pa—3)""
(2.308)

Proposition 208. Tables Sg,/f are formed from Sg/nl by swapping two marks in
xS column with a pair of numbers in some other column. Via this swapping, each
table from Sgﬁ is counted once.

Proof. Let 17 € ngj . There are four options how the table can look like based on
the uncovered numbers in x* and x? columns. Either

o Identical number a everywhere in both x* and x?2

e Number a in x* column and numbers a,b in x? column

e Number a in ><4 column and four numbers b in x2 column

e Number a in x* column and numbers b, e in x? column
Swapping two marks i 1n %2 column with numbers in x* column, we get a corre-
sponding table 7/ € S 1 (see figures below).

X | a X | a X | b X | b
X | a X | a X | b X | b
X a X | a X a X | a
— —
X a X | a X a X | a
a X X | a a X X | a
a X X | a a X X | a
. . . 6/2 . . 6/2
Figure 2.45: First option for S4', Figure 2.46: Second option for Sg/,
X | b X | b X | b X | b
X | b X | b X | b X [ b
X | b X | b X | e X | e
— —
X | b X | b X | e X | e
a X X | a a X X | a
a X X | a a X X | a
. . . 6/2 . . 6/2
Figure 2.47: Third option for Sg', Figure 2.48: Fourth option for Sg,
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Chapter 2. FEven Moments of Random Determinants

[ |
Corollary 208.1. For any distribution X;; with s =1, u3 =0,
t(pue—15p4+30) t
SR = — N[ ) (1—-3t— 112+ 36 —81¢1 —4¢
() = t(1+3t—puat) 17 |70\ (143t —puat) 3 ( Ha
=3t g — 126 ja - BAE g 6715 + 126 1 — 441 — 6t 1§ -1}
t

—15tNg< )(3 9t — 48t2+144t3—3p4t+16t2,u4—96t3u4+16t3u4)]

(1+3t—u4t) 3

Proof. Let 7" € ng,} have ¢ six-columns and d four-columns, its weight is then
w(7') = pud. However, now there are only n — ¢ — d — 1 two-columns as one
column is covered with six marks. To create a table 7 € ng , We can swap two
marks of x®-column with
e a 6-column of 7’ in 15 ways, creating a table 7 with weight pu§ 'ud™?,
e a 4-column of 7/ in 6 ways, swapping marks with one pair of four identical
numbers, creating a table 7 with weight ,ug,ui_l,
e a4-column of 7’ in 1 way, swapping marks with the remaining two numbers,
creating a table 7 with weight u&ud,
o a 2-column of 7/ in 3 ways, creating a table 7 with weight pu&ud,

Thus, from 7/, we get the following contribution to s&/*(n) = > g0 w(T) sgn(7),
6,mn

15cp g™ + 6dpcud™ + duspd +3(n — ¢ — d — V) psud. (2.309)

Grouping the terms, this is equal to

e 15 (150 — 3pis) + dpgpy™ (6 — 24ua) + 3npgpg — ugus. (2.310)

Summing up this contribution over all tables 7’ € 527/,3 , we get

955/ P
s&/2(n) = (1504 —3pe) Sa (E n) +(6—244) Sa i )+3n52/1(n)—3sg/1(n) (2.311)
or in terms of generating functions,
6/1 6/1 6/1
6/2 150, — 3 M 6 — 2 M 3taS <)_3 6/1
8120) = (150 = 30) 5+ (6= 2 5 4 3 350" ),
(2.312)

Using Corollary 207.1] and Remark [148], we get the Statement of our corollary.
Note that in this proof we rely on the already derived 56 ( ) thus we need to
compute the second derivative of NJ(#). [ |

Remark 209. If we instead used the addition technique, we would have found
another relation for 56 ?(t). First, we develop a correspondence between 56 n
and SY, ., (see Figure - 9 below). The crucial observation is that if we put
the covered number into a single column (in white), this column has nonzero
weight.
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2.8. Ordinary sizth moment (intermedial)

2V 43 x]7(8]1]5]6 4]3]9]7]8]1]5]2]6
1]a]s5|x|7/2]3]8]|6 4l5/9|7|2/3|8]1]|6
1| 713|x|8|6|2]5]4 713/9(8|6|2|5]|1]4
2 (| 7|5 x|8[6|3[1]4| "|7|5|9|8|6|3|1]2]4
3||x|5|l6|7/2|1]8]4 9|5/6|7|2/1|8|3]|4
3] x|5|6|7/8|2]1]4 9/5/6|7|8/2|1]3]|4

Figure 2.49: A correspondence between table 7 € 567/82 and table 7' € S§4

Let 7/ € SO, have ¢ 6-columns and d 4-columns. Hence, w(r') = pgug. We

now count the number of tables 7 € ng . First, we select a number ¢ which
appears in two different columns. There is d such numbers (they form a set
LI(t')). In the one of the columns, there are always four copies of i (making
it a four column). The other column with two i’s is either a 4-column or a
2-column. Tt is convenient to define v;(t') again as the number of four columns
in which the selected number i appears (it is either one or two for i € I5(t')).
We then select a column other that these two and erase it. Finally, we turn
the selected number ¢ to marks. That way, we get our table 7 € ng,f . To
count the overall contribution of 7/ to w(7) sgn 7, we could either select
e one 2-column (not the ones in which i’s lie) in n — 1 — ¢ — d + v;(t') ways
and erase it, creating table 7 with w(7) = w(7')/ps (remember all i’s
are turned into marks which have weight one)
« or one 4-column in d — v;(t') ways and erase it, creating table 7 with
w(r) = w(r')/
« or one 6G-column in ¢ ways and erase it, creating table 7 with w(7) =

w(t')/(Hepa)
In total,
c 4=l gon 7/ v (t c
so2(n) = > w(r)sgnt= e > n—l—c—d—l—ui(t')—f—d#f)-l—g
TGSS/S /€S i1 ielz(t')

= Y e g edt A e)  (1- 1) Y w(t)

Ha
T’ESg’n_H i€l (t)
(2.313)
This can be written as
6/2, \ _ n—i dsg(n +1)
S6 (n) - (n+1)2 8#4
52 0( ) . (2.314)
1— se(n+1 -
H42 6 ~ . u;; pa(n + 1).
(n+1) opg (n+1)2ps

This relation will be useful later.
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Chapter 2. FEven Moments of Random Determinants

Proposition 210. For any distribution X;; with pe = 1,3 = 0,
et(ﬂ6*15ﬂ4+30)

CO3t2 (14 3t — tuy) V7

+ 25ty + 3483 11y + 165t 1y — 24385 1y + 108203 — 178302 — 74842

Se’(t) l(l — 11t + 482 + 105¢% — 315t* + 486¢° — 5ty

t
— 542 — 106303 + 343 + 3665113 + 5t it — 743 N2 (wwﬁ)

— 45t(1 — 11t + 2 + 1593 — 288t — 2tpuy + 1021y — 563114
t
192t 2l 32 = 32t AN | ——— | |
+ g+ L7y + 17y 113) Ng (143t — puat) ®

Proof. We use the addition technique described in section on Fj(t). First, we

seek the correspondence between ng and S, ., (see Figure 2.50| below). The
crucial observation is that if we put the covered number into a single column (in
grey), this column has nonzero weight.

2 4 13| x |7, 8|1|5|6 413197181526
1 415 | x|712|3|8|6 4151971213816
1 713|168 x|2[|5]|4 713168192514
2 71568 x|3|1]|4|  |7|5|/6/8]|9|3|1|2]|4
3 X|9516 72184 9567|2183 |4
3 X567, 8[2|1]|4 9/5|6|78[|2(1]|3]|4

Figure 2.50: A correspondence between table 7 € Sg/g‘g and table 7/ € Sgg

It depends on whether previously covered numbers (in the gray column above)
form a 6-column, a 4-column or a 2-column. Let 7" € Sy, ., have ¢ 6-columns and
d 4-columns. Hence, w(7') = péud. We now count the number of tables 7 € Sg,/i’ .
First, we select a number which appears in three columns (three pairs). As the
number of 6-columns is ¢ and 4-columns is d, there is n + 1 — ¢ — d numbers
satisfying that criterion. However, we don’t know whether those pairs themselves
lie in 4-columns of 2-columns. Say the number i was selected and denote v;(t') the
number of pairs of ¢’s which lie in 4-columns. In the example above, v;(t') = 1.
We mark every occurrence of ¢ and then select either
e one 2-column (not the ones in which i’s lie) in n+ 1 — ¢ — 3+ v;(t) — d ways
and erase it, creating table 7 with w(7) = w(7’)
o or one 4-column in d—v;(t') ways and erase it, creating table 7 with w(7) =

w(')/pa
e or one 6-column in ¢ ways and erase it, creating table 7 with w(r) =
w(')/ e
In total,
¢y sgn 1’ v (t c
so3(n) = > w(r)sgnT= 7“6(’;11%2 > n—2—c—d+uy(t) + Lpfit) +
Tesg/j T/ESgYnJrl i€l3(t")

= % (n+1—c—d) (n—2—c—d+u%+u%s) + (1 — i) > u(t)

T'ESS i iels(t)



2.8. Ordinary sizth moment (intermedial)

where 7 is summed over all numbers which lie in three different columns (there are
n+1—c—d such numbers forming the set I3(¢')). By Lemma |88 3¢/, 1 vi(t') =
p(7'), where p(7’) is the total number of chains of 4-columns in 7/, thus

0= 3 R [+ 1 emd) (n-2memd ) 1) (1-55))
o (2.316)
Note that
(n+1—c—d) (n—2—c—d+i+i> =c(c—1) (1—i)+d(d—1) (1—i)
ted(2-L-L)tc(2-2n+2)+d(2-2n+ L)+ (n+1)(n—2)
(2.317)

Thus, by Corollary [202.1],

32/3(71): % [(n +1—c—d) (n—2—c—d—|— ;%—i_i) +p(7) (1_t>}

/ 0
T 65’6 a1

_ pe(ue—1) 8%s ("+1) + pa(pa—1) 9%sg(n+1) + 2464 —pe—pa 9759 (n+1)
T (nt+1)? (n+1)2  Ouj (n+1)2 dpedpa
1

(22n)petn s (1) | (2-2n)patn 9sg(ntl) n—2 0
+ (n—i—f)GZ S T (n+{‘)4 St (n+1)+ﬁp6(n—l—l).

Or in terms of generating functions,

§5 (1) = 1o (e = 1) 8°55(t)  pa(pa = 1) O°55(1) | 2ptopta — o — 114 O S5(1)

t g t opg t OpigOfiy
A — 1080(1) 92S0(t)  dpy — 19S0(t) 9250(t)
1—-2 1-2
T o TG T o, T Ay
PSSy 1o
Tt T T B

This finishes the calculation of Sg/ 3(t). Simplification of derivatives is cumber-
some, but straightforward. |

Corollary 210.1. Summing S¢'*(t (1), 56/2( t) and 52/3@), we get

et (16 —1514+30)

Se(t) =

3t2 (14 3t — tpuy) 17

+ 2383y + 129ty — 8185y + 108702 + 32 — 37t 12 — 5482 — 106% 13

4 3 5 3 4 4 5 4 5,5

— Ot i + 18t°p15 + 5ty + 367y — €743 ) NZ (m) - 3t(15 — 120t

— 106t + 1659t> — 2304t* — 30ty + 105t% 11y — 598> 11y + 1536t g + 15t 12

[(1 — 8t — 4t% + 7213 — 216t* + 243t° — Sty + 13ty

+ 156342 — 256¢* 4 )NO(t)].

1+3t7tu4)3

Remark 211. Note that the previous result indeed gives N8(¢) for pg = 15 and
s = 3 since

B2NG(t) = (1 — 23t + 125¢> — 120%) N3(t) — 3t (15 — 210t + 344¢>) N¢().
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Chapter 2. FEven Moments of Random Determinants

2.8.7 Complete sixth moment and its generating function

Proposition 212. For any distribution of X;; with ps = 1,3 = 0, we get the
statement of Theorem 196

Proof. Follows directly from Proposition [198 which states
Fo(t) = (14mapust)®Sg(6)+m3(1+mapst) SF(t) +mi (1+mapst)Sg () +mT S (t).

wherein we insert S9(t), Sz(t), Sg(t) and Sg(t) as expressed before. [ ]
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3. Even Volumetric Moments

As we will see, the problem of finding v(¥)(K,) when k is even can be treated as a
purely combinatorial problem. For even k£ and any n < d, volumetric moments are
trivial to obtain, especially for polytopes. First, note that A,, can be expressed as
an absolute value of a determinant of the coordinates of the n+ 1 points forming
the vertices of the convex hull H, (or as a square root of Gram determinant
when n < d). Rising this determinant to some (even) power k, we obtain some
polynomial in coordinates. This is then integrated over the original polytope P;.
For completeness, we enlist in Table |3.1| the first three even moments Uc(lk) (Py) for
the families of polytopes Ty, C; and O, and the unit ball B; upto d = 5.

4 N\
k
(T | k=2 k=4 k=6
_ 1 1 1
d=1 6 15 28
_ 1 1 403
d=2 72 900 2116300
d—=3 3 871 2797
4000 123480000 11202105600
d—4 1 2083 28517
33750 96308320000 264649744800000
d=5 5 24995 11490716929
5445468 682923373461504 618668393733836328960000
W@y | k=2 k=4 k=6
a (Ca = = =
d = 1 1 761
- 96 2400 27095040
d— 1 701 29563
2592 839808000 7466363412480
d—4 5 887 6207797
497664 1146617856000 38533602917272780800
d=5 1 2899 3591192719
4976640 7166361600000000 1348676102104547328000000000
(k) _ _ _
vy (Oq) | k=2 k=4 k=6
d— 3 4259 7200523
- 8000 5268480000 1835352981504000
d—4 1 3959 74002087
108000 5664669696000 462508951339008000000
d— 5 228685 7261177207
29042496  699313534424580096  405955079162673083006928814080000
k
VB, | k=2 k=4 k=6
d— 3 1 275
3272 3274 1638476
d— 3 117 17
- 100072 27440007 1481760076
d—4 5 475 161
777673 19110297678 7644119040712
d=5 45 325 3875
430259277 40148346470478 24632119418683392712
k .
Table 3.1: Selected values of v((l )(Pd) with Py = T,;,C4,04,By, even k and d < 5.
\ J
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3.1. d-Cube even volumetric moments

3.1 d-Cube even volumetric moments

As a simple application of the results on moments of random determinants, we
deduce a general formula for vd )(C,) when k = 2,4,6 and d > 2 arbitrary for the
unit d-cube defined as Cy = [0, 1]¢.

d+1
Ut(iQ)(Od) = 1od g (3.1)

Table shows the second volumetric moments UéQ)(Cd) for low values of d.

d |2 3 4 5 6 7 8
U(Z)(C R 5 1 7 1 1
d d 96 2592 497664 4976640 2149908480 22574039040 1926317998080

Table 3.2: Second volumetric moment in d-cube

We are able to deduce the fourth moment

d+1 & =7 (j+1)%(j+2)
' (Ca) = 1447(d1)? Z( ) S 2(d-j)

J=0

(3.2)

Table shows the fourth volumetric moments vd (C’d) for low values of d.

d | 2 3 4 5 6
((7 ) 701 387 2899 24257939
d 2400 839808000 1146617856000  7166361600000000  180551034077184000000000

Table 3.3: Fourth volumetric moment in d-cube

The case k = 6 with P; = () is somehow clearer than for Pd =T, as we will see
later. In fact, we can find a relatively simple formula for vd (Cd) for any d,

d+1 L2 14+)2+i)@d+id) 7V /7 5\
#(Ca) = 2524 dMZ% 168 (d+ 1 — j)! <_40> <_6> - 33)
14 + 2 '

( j_ZZ+J>(24z'+7(j—1—d)(7+2i—|—j)).

Table shows the sixth volumetric moments vd (C’d) for low values of d.
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Chapter 3. Even Volumetric Moments

d | 2 3 4 5
(6) ( C ) 761 29563 6207797 3591192719
d) | 27005040 7466363412480  38533602917272780800  1348676102104547328000000000

Table 3.4: Sixth volumetric moment in d-cube

3.1.1 Shifted determinant formula

Let X = (X, ..., Xy) be a collection of (d+1) random points X; = (X1;,... X4)' €
R? with X;; ~ Unif(0,1) i.i.d. and let Hy; = convX be their convex hull and
Ay = voly Hy its volume, then

1
Ad:iadet<X1—X0|X2—Xo||Xd—X0) (34)
and from which (vol; Cy = 1) we get vd (C’d) Afl. It turns out we can express

Agin a different form. Let X/ = (Xy;,..., X4, 1) € RY, H); = conv(0,X,..., X)) C
R and V41 = volgq Hg On one hand, by base-height splitting, V.1 = ﬁAd.

On the other, Vg1 = det(Xj | -+ | X). Comparing, we get

d+1)'
A=+ det (X | X4 | X5 || X)), (3.5)

By linearity of determinants, we can subtract the last row m; = [E X;; times from
every other row. We then get

1
Ag =t det (Y5 | Y| Yy |- | Y5, (3.6)

where Y’ = (Yy;,...,Y4,1)" and Yj; = X;; — my. Note that, when Xj; ~
Unif(0,1), we have m, = EX]; = 1/(r + 1). Since Yj; ~ Unif(-1/2,-1/2), we
also have explicitly

1+ (-1)"
L =RY, = :
K ) 2T+1(T + 1) (3 7)
somy =1/2 g = 1/12, u3 = 0, gy = 1/80, s = 0, ug = 1/448. Note that
t/ (d+1) = (d+ 1) E (det (Yo [ Y1 |-+ | Y)", (3.8)

since the (even) k-th moment of the determinant on the right hand side corre-
sponds to a marked permutation table with all £ marks in the first column. The
factor (d 4+ 1) then comes from symmetry. Hence,

d+1

k L1 % k
v (Cy) = @I 1) = = [T ). (3.9)
When k = 2, we have by Equation (2.189) that 75" (t) = T2(t) = te*** and thus
d+1
05 (Ca) = (d+ D[t ters! = (d + D[t]er>! = =5, (3.10)

When k = 4, we take advantage of the fact that us = 0, so T;/'(t) = S/ (t). By
Corollary [163.]] m I and by scaling,

1+ 2u3t
S4/1( £ = t;’fet(m—?w%) (3.11)
(1 - MQt)4
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3.2.  d-Simplex even volumetric moments

and thus

d+1_ . 14 2ut _ d+1&
5 [td] /;2 46t(u4 3u3) _ = [
(d!) (1 — p3t) (d!) j=0

1+2udt  d+1 K (g —3pud) 91 5. 9
S5+ 1)+ 2)p
(1 — pst)t (d!)2 j=0 (d—j) 2 ?

Uc(l4) (Cd) _ d—j]et(lm—fwg)
(3.12)

x [t/]

Finally, when k = 6, we take advantage of the fact that us = us = 0, so T 6/ Y(t) =
56/1( t). By Corollary [207.2| and by scaling,

so/M(d+1) d+1 L I (140)(24+i) (4+14)! <14—|—j—|—2z

T dr)@ye - d D) Bd+1—j)l \ j—i )X (3.13)

7=0 =0
(274204 —d=1)+i(3g 153 +30)) (3g-1504430) ™ (33-3) "

3.2 d-Simplex even volumetric moments

The objective of this section is to deduce a general formula for vc(lk) (T4) when
k = 2,4 and d arbitrary. The case k = 2 was obtained by Reed [59]:

@ d
v 1) = Gy e

(3.14)

Table shows the second volumetric moments v[(f) (Ty) for low values of d.

d o1 2 3 4 5 6 7 8
0(2) (T ) 1 1 1 3 1 5 45 35 7
d \+d 6 72 4000 33750 5445468 1027561216 69657034752 747338906250

Table 3.5: Second volumetric moment in d-simplex

In fact, Reed showed that the problem of determining vc(ik) (Ty) for even k is

closely related to even moments of determinants of some random matrices (Reed’s
formula, Proposition [215)). Using this connection, we are able to deduce

0(4) (Td) _ (d + 1)!2
I ((d+ 4)(d + 3)(d + 2)(d + 1))*" e
2 42wdtl—s /4 9, (1 + )256d+lfcfsd (C) ’
2% 5 (Ve e
where
do(c) = (24 ¢), di(c) =c(2+¢), do(c) = c*. (3.16)

Table shows the fourth volumetric moments %(14) (Ty) for low values of d.
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Chapter 3. Even Volumetric Moments

d o 1 2 3 4 5 6
v 4) (T ) 1 L L 871 2083 24995 54793
d d 15 900 123480000 96808320000  682923373461504  1422757028044800000

Table 3.6: Fourth volumetric moment in d-simplex

Finally, for completeness, Table shows the sixth volumetric moments vc(lﬁ) (Ty)
for low values of d. In this case, there also exists a general formula, the scope of
which is however beyond this thesid]

d o 1 2 3 4 5
U(G) (T ) 1 L 403 2797 28517 11490716929
d \+d 28 2116800 11202105600  264649744800000  618668393733836328960000

Table 3.7: Sixth volumetric moment in d-simplex

Note that the values v (T3) and i (T3) were already known to Mannion [44].

3.2.1 Uniform and Dirichlet simplices

See section in the Appendix which covers the Dirichlet distribution first. In
there, T is defined as conv{eg,ey,...e4}, that is, T is a d-simplex embedded
into R4*1,

Definition 213. We say a collection Y = (Yy,...,Y,) is a standard Dirichlet
random sample if the points Y; are independent and follow the same symmetric
Dirichlet distribution with concentration parameter ae. We call the convex hull
Hu(T;) = conv(Yo,...,Yy) of those points as a Dirichlet random simplex with
volume Ay, = volgHy(7T;) and normalised volume A;, = Agq/volyT; with
(T = EAY,.

its usual moments vfw

{ )

Theorem 214. Let X;; ~ I'(a) be i.i.d. random variables, A = (X;j)nxn and
fr(n) = E(det A)¥ as usual. Let Yo, ..., Yy be a standard Dirichlet random
sample with concentration parameter a. Then

® e Dla(d+1) ™
vd@(Td)_(F(a(dHHk)) fu(d+1). (3.17)

. J

Proof. Note that the distance form 0 to A(Yo,...,Yy) is

1 1\ 1
(oY .
d+1 d+1 d—+1
Denote B = (Y| --- | Ya), then, by base-height splitting,
|det B| = (d + 1)!volgy1 conv(0, Yo, ..., Y,)
1 1 3.19
= (d+1)! volgconv(Yo, ..., Yq) = Ay, (8.19)

d+1d+1

lat the time of submission of this thesis, the formula has not yet been found, however, the
current progress with Potechin and Lv suggests the formula will be available soon
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3.2.  d-Simplex even volumetric moments

Set n = d+ 1 and write A = (Xg| --- | Xy) with X; = (Xo;,...,Xg)". Denote
S, =%, Xij;, that is, S; equals the sum of coordinates of X;. Then, by Lemma

J
S; ~T(a(d+1)) and

X Xy
B=(Y,|- ---1Y i( ) 3.20
(Yol 1Y) £ (2] |52, (3.20)
from which, taking determinant and writing S = H?:o S;,
X X det(Xq| --- | X det A
detBidet<°\m d): et °d| [Xa) _ detA (3.21)
So Sq I15-0 S; S

Moreover, by Lemma , X,/S; and S; are stochastically independent, so are
B and S. Hence, for even k,

fe(d4+1) = E(det A)* = E (S det B)" = ES*E (det B)*

T(a(d+1) + k)>d+1
['(a(d+1))

. (3.22)
Ugjg (T7)-

— (E5) EAY, = (

3.2.2 Reed’s formula

There is a connection between moments of random matrices with a certain dis-
tribution of entries and moments of volume of a random simplices in a regular
tetrahedron. As a consequence of Theorem [214] we obtain Reed’s formula we
have already seen in Introduction which establishes this connection:

Proposition 215 ([59] Reed 1974). Let X;; ~ Exp(1) be i.i.d. random variables,
A = (Xij)nxn and fr(n) = E (det A)* as usual. Let Yo,..., Y, be i.i.d. random
points uniformly distributed in Ty. Then for k even,

Ty = (&) fu(d+1). (3.23)

Proof. From Theorem [214{ with =1 and upon noticing vc(l]fl)(Tj) = vc(lk) (7). N

Remark 216. Note that the formula also holds for any real £ > —1 if we
replace determinant moments fi(d+1) = [E (det A)* with absolute determinant
moments E | det A|¥. However, since we can expand the absolute values only
for k being an even positive integer, the problem of finding these moments for
general k is no longer a combinatorial problem.

Example 217. Let X;; ~ () i.i.d. and A = (X;;)nxn. Note that m, = E X} =
I'(a+ k)/T(a), so m; = a and my = a(a + 1). Since we know that in general
fa(n) = nl(my —m)"(my +my(n — 1)), we get fo(n) = a"n!(an + 1) and thus

T'(a(d+ 1))
(a(d+1) +2

wENT;) = (F )> ' a1 (d+ Dl(ald+ 1)+ 1). (3.24)

Especially, when aw = 1 (uniform simplices on 7;), we get (Reed [59])

v ) = g e

(3.25)
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Chapter 3. Even Volumetric Moments

Ezxample 218. Using or previous results on random matrices, we can also obtain
the value for the fourth moment for general d. Let X;; ~ () be i.i.d. random
variables, A = (Xj;)nxn, then m, = I'(a +7)/T'(a) = a(a +1)--- (a +r —1).
By Corollary with my = a, me = a(a+ 1), mg = ala+ 1)(a+2), my =
ala+1)(a+2)(a+3), from which we compute us = «, pg = 2, gy = 30(2+ ),
we get

—2w n— 4—9 1 DSGN—C—5 ¢y n+s+w—+c
( w>( 9 do(c),  (3.26)

(n!)? ZZZ (n—c—s)I(2—w)hw!

w=0 s=0 c=0

where
do(c) = (2+¢), di(c) =c(2+¢), da(c) = c*, (3.27)
from which i
1) = (o) (3.29

Especially for a = 1, we get as promised

- (d+1)"
(A +4)(d+ 3)(d+ 2)(d+ 1)

2 4—2wd+1-s 4 — 2w (1+C)286d+170*3d (C)
e ( ’ >(6““1—0—8)(2— w)hw!”

c=0

vy ()
(3.29)

3.3 d-Orthoplex’s and even moments in general

The aim of this section is to deduce vd (Od) for £ = 2,4,6. We briefly discuss
how we can obtain even volumetric moments for various polytopes efficiently in
a computer. Note that Oy = Cy (although with different area), so we can restrict
ourselves to the case d > 3. We got

(d+1)!
24(d +2)H(d 4+ 1)¢

$(0q) = (3.30)

Table |3.8 shows the second volumetric moments vd (Od) for low values of d. We

d | 3 4 5 6 7 8
(O ) 1 5 45 35 7
d 8000 108000 29042496 17623416832 1114512556032  21257640000000

Table 3.8: Second volumetric moment in d-orthoplex

are able to deduce also the fourth moment

d  3979(1445)(2+5) [ j(d+4)(d+3)
d!(d + 1>! E]’:O Q(d—jj)! : ( (d+2)(d+1) + 1)

224(d + 4)4(d + 3)4(d + 2)4(d + 1)4

o@D (0,) = (3.31)
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3.3. d-Orthoplex’s and even moments in general

d | 3 4 5 6
U(4) ( 0 ) 4259 3959 228685 1940773
d d 5268480000 5664669696000  699313534424580096  20720401019987558400000

Table 3.9: Fourth volumetric moment in d-orthoplex

Table [3.9 shows the fourth volumetric moments vd (Od) for low values of d.
Flnally, for k = 6, we obtain the following formula for vd (Od) for any d,

dd+1 7 . N\
() _d!2<15>d d! (1+3)(24+¢)(4+19)!
va Q=5 \7) \{@re ZZ 3109 (34 d) (4 +d)(2+d) |

(M) g« {3+d (4+d)((14d) (2+d)+(
(d—j+1)! +30(5 + d)*(6 + d

5+d)(6+d)(22’+j))(1+d—j)}
(1 + d+ 2i — 2j) '

(3.32)

S /

Table shows the sixth volumetric moments vd (Od) for low values of d.

d | 3 4 5
U(6) ( 10) ) 7200523 74002087 7261177207
d d 1835352081504000  462508951339008000000  405955079162673083006928814080000

Table 3.10: Sixth volumetric moment in d-orthoplex

3.3.1 General numerical technique

Let x = (xo,...,Xq) be a collection of points x; € P, C R%, j = 0,...,d with

coordinates x; = (x1;,...,24)  and let Ay = voly conv(x). Denote
D= AR 3.33
€a (Pt 4 (dx), (3.33)
so then
ngk)(Pd) = eﬁf’/(vold Pyt (3.34)

We have seen that we can express Ay using determinants as

1 1
Ay = :i:E det(x) —xq | -+ | X4 —x0) = j:a det(xp | x| -+ | x}), (3.35)
where X = (215, ..., Tgj, 1)". Denote y = (y1,...,yq) € RY, then
Griiseia = [, UIUE -+ Y Aaldy) (3.36)
d

form a basis of egk), in fact eg )is a polynomial of homogeneity d + 1 in a;, .,

with 43 4+ --- + 44 < k. The total sum of indices i, in each product of a’s must

214



Chapter 3. Even Volumetric Moments

be equal to k for any position p. We can obtain these polynomials separately via
combinatorics in a computer, for d = 2 with £ = 2,3 and d = 3 with k& = 2,

@ _ 3 > > 5
& =3 2a10a11001 — Q2007 — Qo207 — Aoy, + AooGo2020 ) (3.37)
3@00&%2 + 12&%26L20 + 12&%16@2 + 12a§1a02 +12a03a11a30
2
w 3 +3a40a59 —4apsa10a30 +6a20a22002 +4ag1 a13a30 +4ap3a10a31
2
& =g +3agsa5y+12a01a12a31 —4agoaizaszs —4ap Gozaao +agoostao ¢, (3.38)
—12a12a30a02 — 12a11a31002 — 12a11a13020 — 12011012021
+12a10a13a21 — 12a03a20a21 — 12a10a12a22 — 12a01a21a22,
2 2 2 2
5100701 — @000QH11 @200 — A(p1 20204200 T A000200200200200
@ 92 —2a010001101000101 + 2000200100100@110 — 2G001A011A1000110
¢ =3 +2a001001000110200 — 2000100100101@110 + 20000@01101010110 (3.39)

2 2 2 2 2
+ag501a710 T A5110790 — @00200200799 T 20001 02041002101
2 2 2
—Q00200100200 — A0002020071091 — 000200247110

and so on (see Code . A substantial simplification is achieved when we place
the center of our coordinates in the centroid of P;. In that case, all the values
a;,..;, with exactly one index equal to one and with remaining indices equal to
zero vanish. Then

2 _ 3 5
€y = 5 Apop2ad20 — Apodqq | » (340)
2 2
w 3 3ag0apy+12a3, a2 +6az0a22a02 — 12a12a30a02 — 12a11a31002
_ 2 2
62 = g +3a00a22+12a12a20—12a11a13a20—12a11a12a21—4a00a13a31 y (341)
2 2
+3apsa5y+12a7, a2 +12a03a11a30 — 12003020021 + A0 A0a G40
6(2) . 2 2a000@1010110@011 + Q0000020020020 (3 42)
3 =5 2 2 2 .
3 | —@000@002a719 — 00002000711 — G000202007 01 5

00002000220020%020042000 — 200000%011041001 4110000011
0000431108001 + @000045101@T010 + @0000¢1100%0011
+2a0000@020001001 0101000011 — a0000a0200a2000a(23011
(2) 5 —2a0000@0101@10102110000011 — a0000a0020a0200a%001 (3 43)
24| +2a000000101901103200000011 — G0000%0002¢02004] 010 '
—2a000000101 2011021001 41010 — a0000a0002a0020a%100
+2a0000200200101 2100141100 — a0000a002oa(2)101(12000
+2a0000@0002001100101001100 — a0000a0002a(2)110a20007

3.3.2 Octahedral symmetry

Finally, we assume that P; has octahedral symmetry. That is, P, is symmetrical
with respect to any permutation of axes and any reflection y; — —y; for any ¢
and (y1, ... ,yd)T € Py;. In that case, a;, ;, is invariant under any permutation of
indices 41, ...,74. Also, all a;, ;, with at least one odd 7, vanish. As a consequence,
we get much more simplified formulae. When k = 2,4,6, we can write those
polynomials explicitly in that case. Let us define by = a._ o9 = voly Py, by =
a. 002, b4 = a...004; b6 = A...006; b22 = a.. 022, b42 = .. 042, and so on. In general, the
indices of b’s are the nonzero indices of a’s in decreasing order (with the only
exception by where there are no non-zero indices). That is for any bis ig,...ips WE
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3.3. d-Orthoplex’s and even moments in general

have iy > iy > -+ >4, > 0and by, ;, = ai;...i,,000,.,0 (d—p zeros). Or explicitly,

Divinis...iy = /P yitys -y Aa(dy). (3.44)

From this integral expression for b;, . ;,, it is clear why all indices must be even
otherwise 0;, . ;, vanishes (follows from the substitution y; — —ys for a given s for
which i, would be odd and the octahedral symmetry of P;). We may associate
eﬁ,’“’ with a sum over marked permutation tables Ej 4, which we define as row
permutations of d + 1 elements [0,1,...,d] with k& rows and in total k& marks
covering the element 0. This is contrary to the d-cube case as ;;, zi; may no

longer be independent. We have

= @ > w(r)sgnr, (3.45)

( ) T€ER4

where w(-) is given as a product of the corresponding a;, ;, factors. When k = 2,
there is one column with two marks in Es 4 (weight b), the remaining columns are
columns with weight by. The sum of weights over all those remaining columns
yields the Fortet’s second moment s3(d) with py = by. Since there are d + 1
positions for the marked column, we have

1 d+1 d+1 d + 1
e? = T o w(r)sent = —p=lys 0(d) = —p bod! bl = bobd (3.46)
T€E2,d
and thus, by Equation (3.34)),
1d+1 (b
P, . 4
Piry = g 421 (B (347

Tables Ey 4 (with octahedral symmetry assumed) have the following structure:

( )
Type: 4-column 2-column x2-column x*-column
a a X X
a a X X
a b a X
a b a X
Welght w: b4 b22 bg bo

Note that the requirement of containing £ = 4 marks means that a table 7 € E, 4
either contains one x*-column (covering four zeros) or two x2-columns. Let
7' € 59, have ¢ four-columns (and thus d—c two-columns), we have w(7) = b5b5; “.
The first case is obtained by appending a column filled with 4 marks (covering four
0’s) to 7/, we get w(T) = bbby ©. The second case is obtained by additionally
switching two marks with two elements from
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Chapter 3. Even Volumetric Moments

e a four-column of 7/ in 6 ways, yielding w(7) = b2b5 b3y

e a two-column in 2 ways, selecting one of its pairs, w(7) = b2b5bly “~".
In total, we get the following contribution of 7' to 3> ¢, , w(7)sgn 7. Note that
by symmetry, we have to multiply the second case contribution by 1/2.

1
(d+1) {bobjbggc + o (0chps b+ 2(d - c)bgbjbggc—l)] . (3.48)

Summing up the contribution from all tables 7/ € S ;, we get

d+1 ds ds
eg‘*):Cm[bosg(d) + 3b2 511)(4) b2 a‘é;)] (3.49)

where s9(d) is the Niquist, Rice and Riordan’s fourth moment given by Corollary

(68.1)) with g = by and p3 = by, SO

0(d) = (@) Z : (d N 2) (b — 3 b (3.50)

Hence, after some simplifications,

oD _ d+1zd: 1+J (2 + 5)bd,
=0 b22

Y (ba = 3b2)™ <‘]b2 + bo) (3.51)

from which, by Equation (3.34]),

d d—j / .19

1 (boy 1+7)(2+y) <b4 ) (j62 >
- ——3 +1]. (3.52
<b )Z d ]) bao ba2bo ( )

Jj=0

U (Pd)_b

g;

Alternatively, we can extract s§(d) as s3(d) = (d!)?[t%]S{(¢), where the generating
function S9(¢) is given by Proposition [68 Explicitly,

50 et(a—3u3) et(ba—3b22)

t) = = . 3.53
it (1= p3t)® (1= bat)? (3:53)
In particular,

3
st = g (6b4b3 + 6ba2b3 + bob + 3bob3, ) , (3.54)

el = 571 (bobs + 9b3b3 + boboba + 18b3basbs + Gbobs, + 45b303,) (3.55)

T 13824 | 126303 + 36b2baobd + 180b2b3,by + 252023, ‘

Lastly, Eg 4 tables have the following structure:
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3.3. d-Orthoplex’s and even moments in general

( 0
6-column 4-column 2-column xZ%-column x3-column x*-column x%-column
a a a X X X X
a a a X X X X
a a b a a X X
a a b a a X X
a b c a b a X
a b c a b a X
be bao b222 by bao by bo
& )

Note that all marks cover the element 0 only. The requirement of Eg 4 containing
k = 6 marks means that a table 7 € Fg 4 either contains

o case I: one x®-column (covering six zeros),

« case II: one x? and one x* column or

o case III: three x2-columns.
Let 7 € Sg’d have s six-columns and f four-columns (and thus d — s — f two-

columns), we have w(7) = bbby . The first case is obtained by appending a

column filled with 6 marks (covering six 0’s) to 7/, we get w(7) = bobgbigbggfff
The second case is obtained by additionally switching two marks with two ele-
ments from
« a six-column of 7/ in 15 ways, yielding w(7) = bybsbs 'blybys 7
e a four-column of 7" in 6 ways selecting two from its four identical elements,
creating a x2-column and yielding w(7) = bybaobibly bips *
o a four-column of 7/ in 1 way selecting the remaining lonely pair of two

elements, creating a x i-column and yielding w(7) = bybsbsbly boys !
« a two-column in 3 ways, selecting one of its pairs, w(7) = boboybiblbles ¢ '

We get the following contribution of 7" to 3 cp, , w(7)sgn,

(d + 1) [bobiblabias ™" + 155bobabi~ blabas  + 6 fbobaabibls 'bhas !

e o (3.57)
+ Foababibly b5 4 3(d — 5 — [)babaabiblubis .

Summing up the contribution from all tables 7/ € Sg}d, we get that the contribu-
tion of cases I and Il to 3, cp, , w(T)sgn 7 is

Os5(d)

0 0
Osg(d) + 3bybag Osg(d)
Obg

ab42 a17222

+ b2<6b22 + b4)

(d+1) lbosg(d) + 15byb, ] . (3.58)

where s0(d) is the sixth moment for symmetrical distributions given as coefficients
s3(d) = (d")?[t4S2(t) of the corresponding generating function

t(#6—15#4u2+30@)
SO( ) € N ( IU“Q >
(1+ 3t — puapiat)” (1+ 3udt — prapuot)”
with pg = be, papts = bso and p3 = bagy. Explicitly (our f5™(d) formula),

( )= d'QZ Zw(14ﬂ+2l>(56—15542—0—30b222)d j(b42—35222> b222 (3.59)

oz W)
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Chapter 3. Even Volumetric Moments

Lastly, the third case can be obtained by the position approach. We start with a
larger table 7" € S§ ;,, and assume it has s six-columns and f four-columns (and
thus d + 1 — s — f two-columns), we have w(7) = bibl,beay *~/ for its weight.
First, we select a number 7 which appears in three distinct columns (three pairs),
these numbers form a set I3(t"”). There is exactly #3(t") = d+1—s — f of
those numbers. However, we don’t know whether these three distinct columns
where the elements i reside are 4- or 2-columns. Denote v;(¢”) the number of four
columns from those three distinct columns. Then, we turn all six ¢’s into marks.
The weight of the resulting table 7 € Eg 4, based on the number of four columns

covered, is

LGl e e LGOI () (3.60)

Since v4;(t") € {0,1,2,3}, we can write this as a quintic polynomial in v;(t").
Unfortunately, we are currently only able to find explicit generating functions
when the polynomial in v;(t”) is at most linear. Let us further assume bagoby =
basbyo so the factor above equals

bbls *bogs b (3.61)

Summing over all 7 € I3(t") and by symmetry, we get the following contribution
of 7" to (d+ 1) Xrep, , w(T)sgn,

(d+1—s— f)bghls bty b3 (3.62)

Finally, summing over all 7 € S§ ;. ,, we find that the contribution of case III to
(d+1) X g, w(T)sgnT is

bQQQbi 8sg(d + ].)
bf’g 8b222 ’

(3.63)

Note that the factor (d + 1) comes from symmetry, since we require a specific
number (zero) to be covered. In total, putting together cases I, IT and III,

1 0 0
e = dr1 [bosi(d) + - 15byb, 250 s(d) by (6bag + 64)056(@
16 dbg Dbss (3.64)
b dsg(d) L1 bagob3 DsY(d + 1)} '
2 Obyyy (A1) bl by

Keep in mind that even though s3 appears as a function of d and d + 1, we treat
b’s as a function of d (and not d + 1) since they were derived combinatorially.
Alternatively, we may write sJ(d + 1) derivative in terms of sd(d) derivatives.
Plugging the explicit formula for s8(d), we arrive at the following formula

6(6):1+dd§§jj 1+z )2+ i) A +0)! (144542
d " =S 8(d—j+1)! j—1

X by (bg — 15bgg + 305222) 473 (b — Bbgga) 7 x (3.65)

% (d—j + 1)b222 (b42 — 3b222) (bgbggbggg (2Z—|—]) —|—3Ob%2 +b0b%22)
+b35 (bg — 15b42 + 30D292) (1bsa — 35b2a2)

and from which by Equation (3.34) immediately
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3.3. d-Orthoplex’s and even moments in general

( 7

14+d B (1+6) 2+z)(4+z) 14 + 5 + 2
(©) Py) = J X
Vg ( d |4bd+7;)§ 4 j+1). j—1
X b3 (bg — 15b4s + 30bggs) 47 (b42 — 3bygs) I x (3.66)
(d j + 1)b222 (b42 —3b222) <b2b22b222(2’i+j> +30b§2 +b0b322>
+b22 (b6 15b42 + 30b222) (ib42 - 3jb222)

both valid as long as byobos = byboss. Finally, let us list the values of 626) for small
d. With no assumption on b’s (i.e. we relax byoboy = bybazs), we have

o = 3 = ((bobg—90b3+90b3bart 180babanbaz+ 15bobiy+ 30bababaxt30bababs ), (3.67)

32

bob? + 90byob? + 270bgbasb? + 540baobasb? + 45b,b2by
F765b9b%,bs~+3240b%,b49bs +540b2basbyzsbs~+90bybgbasbs
—810b2,baa2bs + 3240b3basbasbany — 270b6h3, + 30bb3, .  (3.68)
+45bobgb2, 4 1350D5Dy3b%, — 810babasb2,, — 1620b3,b4
+540b2l)6b22b42 ‘I’ 4320()3 b222 + 270[)0622()222 - 90()06%22

NONIS
3 1944

3.3.3 d-Cube

As an example of a solid with octahedral symmetry, let us consider C; a d-cube
with vertices [+1,+1,...,+1], so C = [-1,1]%. Let y € R%. Via symmetry and
by simple integration, by = volg C% = 2¢ and

1 1
i1+l g+l

..... b= [ )= [ ity dya=2" (3.69)

from which we deduce the moments vc(lk)(Cd) as before (Equations (3.1)), (3.2)) and
(3-3)).

3.3.4 d-Orthoplex

For d-orthoplex O, = conv(=+ey,...,+ey), it is an easy exercise (see Remark [277))
to deduce the following general formula

, . 241 )
— Y Aa(d zzd/ iy g (dy) = P (3.70
..... /1y a(dy) Lt Aa(dy) CE——— (3.70)
Hence,
2d 2d+1
b — vol, O — 2 by — 71
0 = volg Oy o 2= T 2) (3.71)
and thus by Equation (3.47), summing over Ej 4 tables,
@) 1d+1 (b (d+1)!
— = . 72
v Od) =520 5y ) = 2+ 2+ 1) (3:72)
Similarly, we have
2d+2 4! 2d
27 (d+4)0 ERCED] (3.73)
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Chapter 3. Even Volumetric Moments

Thus, by Equation (3.52), summing over F, 4 tables,

d 3% 9(1445)(247) (7(d+4)(d+3)
di(d+ 1)1 74, D) (D 4 1)

@) — 2(d=)! 3.74
va(Oa) 224(d + 4)%(d + 3)*(d + 2)4(d + 1)4 (374)
Finall
Aty d+3 | 9d+1 1 9d
2 412 6!2 (3.75)

bages = ———, bgo= ——— = .

22T d+6) TP (d+6) T (d+6)!
Crucially, d-orthoplex also satisfies the condition on moments boooby = boobys.
Hence, we use Equation (3.66) to deduce

6 o d? 15N (dl YL (14 q) (2 4 0) (4 4 0)!
u’ (00 =7 (4) ((d+6)!> ;; 31107 (3+-d) (4+d)(2+d)

14+j+2i (3.76)
(1) {(3+d)(4+d)((1+d)(2+d)+(5+d)(6+d)(2i+j))(1+d—j)}
(d—j+1)! +30(5 + d)*(6 + d)*(1 + d + 2i — 2j) '

3.3.5 d-Ball

Another interesting example possessing (among others also) the octahedral sym-
metry is the unit ball B,;. Let y € RY, then

bireiy = [ 91+ Naldy) (3.77)
d

A common trick how to solve types of integrals like this is using the Gaussian
integral [*_exp(—x?) dz = /7 and related integrals in higher dimensions. First,
let us take advantage of the homogeneity of our integral by making the substitu-
tion y = rx, where r € (0,00) and x € S9!, Splitting the measures into radial
and spherical part, that is \g(dy) = r?1dr o4(dx), we get

I , . . Joa 8- 2o g(dx)
b :/ / i, e pd=ltiatetip g dx) = 28 P 3.78
e s xy Trr rog(dx) dtirt -+, ( )
Note that when iy = --- = i, = 0, we get by = wg/d as expected since by =

volyBy = kg = wg/d. In order to utilize the Gaussian integral trick, let us
consider the integral

I= [ gyt yre Vi) (dy). (3.79)
Rd

This integral can be solved via two methods. First, we can split it into a product
of one-dimensional integrals in each of the variables y,. This gives

144
I = 7_[_d/2 ﬁ F( ( )
s=1

2
On the other hand, by splitting the measures into radial and spherical part,

) (3.80)

F(d+i145“'+ip> A ‘
—/gdl'zll Tt [L’;)pO'd(dX).

_ * i ip o d—1iyFotip 12 _
[_/Sd/o xyt P ! e drog(dx)= 5
(3.81)
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3.3. d-Orthoplex’s and even moments in general

Comparing, we get [wa 22! - - - 2 04(dx) explicitly and as a result,
g get Jga L1 p y

PTG PRI TEENE)
TV (d i) (T (2
Hence,
/2 Ko
bo = VOldBd = R4 = @, bg = 21 d (383)
and thus by Equation (3.47), summing over Es 4 tables,
d
gy LTI () _ 1 d+1 3.84
va- (Ba) B2 d\b k2d!\(d+2)d (3:84)
Similarly, we have
Kq 3Ky
by = ———, by = ——. 3.85
27 A+ d)(2+d) T A+ d)(2+d) (3.85)

Thus, by Equation (3.52) (only j = d term survives), summing over E, 4 tables,

1 (1+d)*(d*>+5d+2)

(4) _ -
va- Ba) = 25T (@t ) 1 ) (3.86)
Finally,
b . KRq by — 3/€d by — 15/£d
2T 24d)(4+d)(6+d) P 2+d)(A+d)(6+d)’ ° (2+d)(4+d)(6(+d) ')
3.87

Crucially, d-ball also satisfies the condition on moments byooby = boobys. Hence,
we use Equation (3.66) to deduce

(14+d)P2+d)(3+d)(d*+7d+2) (d2+7d+4).

R - L
va (Ba) = 18(d (2 + d)(4+ d)(6 + d))*

(3.88)

Note that the values vc(lz) (Ba), 216(14) (By) and 116(16) (B4) obtained via this method

agree with the more general result of Miles expressing v((ik) (Bgy) for any k& > —d
(see the consequence of Theorem in Chapter [4)).

3.3.6 Polygon triangle even area moments

By similar treatment as before, we can find an explicit formula for Uék)(K2> with

even k in terms of planar moments
Ay s :/ z"y® dady (3.89)
K>
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Chapter 3. Even Volumetric Moments

for any planar shape K, (possibly not convex). By Equation (3.34)), we have
Uék)(Kg) = e /(voly K3)3™* where el is given by Equation (3.45]) as a sum over
E}, 4 tables. Hence

vgk)(Kg) = > w(r)sgnr. (3.90)

Tables Ej o consist of three columns and k£ rows. Each row is a permutation of
{0,1,2}. For each 7 € Ej, the weight w(7) is equal to a product of three a,s’s
(for each column) such that r is the number of 1’s and s is the number of 2’s in

this column. Let E,(;JQP ) c Ej 2 be the subset of tables with 7 ones and p twos in

the first column and j ones and ¢ twos in the second column and denote E,%p ol

as tables E,gfépq) whose total number of (012),(201), (210) rows is {. Table [3.11
E,giéPQ)ll-

below shows the number of specific permutations appearing in any 7 €

row | (012) (201)  (210) (021) (102) (120)

sign + + — — — +
count | l—p [—3 j—Il+p k—1t—1 k—1l—q i1—k+1l+q

Table 3.11: Structure of E,E:”Qp 7! tables

o N
For any 7 € E,E,gpq)' , we have w(7) = ;)0 4ap—i—jrp_qand sgnT = (—1)Hi+pratt,

Therefore, we deduce that

) 271{? k k-p k k—j
vy (K2) = (vol, )P+ DD DD CiipekipGiqGh—i—jh—p—g  (3:91)

p=0 ¢=0 j=0 =0

where
k

Ciquk; — Z SgnT — Z(_l)i+j+p+q+l’E]if§pq)ll’. (392)

TeEl(ciépq) =0

The number of E,(;sz D tables is equal to the number of placements of specific
permutations into rows. By simple combinatorial argument, we deduce that

k!
=N Grp—Dk—i— D) (k—q—D)(I+itq—Fk)!

B = (3.93)

and thus

min(k—i,j4p,k—q) (_1)i+j+p+q+lk[

Cijpgk = ; ; ; ; .
P lmax%;,kﬁ)(lj)!(lp)!(j+pl)!(k:zl)!(kql)!(l—i—z—i—qk)(! |
3.94

Note that this result can be also derived more directly with the help of random
variables. Let V; = [X,,Y;] ~ Unif(K5), ¢ € {0,1,2} be random points selected
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3.3. d-Orthoplex’s and even moments in general

from K, independently. Note that E [X], Y] = a,s/vols K, i € {1,2,3}. For the
area Ay of the convex hull conv(Vg, Vi, V,), we have

1 Xo Yo 1))
Ag=—|det | X1 Y1 1||=2|XoY1+X1Yo+XoYo— X Y- XoY1 — XoYs|.
2 Y v, 1)| 2

(3.95)

By multinomial formula, we get for even k,

vols Ko vola K2)

k _
(1) =E | ()| = e B (XoYi+ X1+ XaYo — X1Y = Xa¥i - Xo¥a)!

2B Y e (XY (X V) (XaXo ) (X Yo (Y1 2 (X Y o

~ (volz K2)F K1 ez Vs g lles!

ki+-+ke=k

2~k —1)katksthe gl k1+key ks+k ko+kay ki+k ks+ksy ka+k

~ (voly K2)F Z (klll)cg!kglk4!k5! B[y oYy T E[X T Y T B [X G Y]

k1+--+ke=k
o 9—k 1)katks+ke k|
= ol K2)F+3 Z mak1+k6 k3+ka Qhg+k k1 +ks Cks+ks ko+ke s

ki+-+ke=k
(3.96)

which is precisely Equation (3.91]).
Ezample 219. Let US” = conv([e, 0], [0, 5], [1,0],[0,1]) with o, 8 € (0,1) be the
canonical truncated triangle having VOIQ( Uy = %(1 — af3). Hence, for even k,

k k—p k k—j

ék)(Ugﬁ) = ( B3tk Z Z Z Z CijpakQipQj,qAk—i—jk—p—q; (3.97)

p=0 ¢=0 j=0 =0

where, by inclusion/exclusion, by scaling and by Remark , we have

_ 7"+1/65+1

1
Ups = / , 2"y dedy = (1—0/”“6“1)/ 2"y dady = rls! , (3.98)
Uy

T2 (2+T+S)'

from which we obtain when k£ = 2 and k£ = 4,

a*Bt —8aB3 + 8a3B?% — 408 + 8a2 33
o2 (Us?) = —10a23?% + 8a?B3 — 4aB3 + 8a % — 8af + 1
2T 72(1 — af)? ’

abB3% —6a°B—6a3°+18aB3*+32042 —19a3+1
—31a3® — 19a°3° + 32a°B* — 31053 4 18a° 32
—310®f + 32a%B° — 4Ta*B* + 4604 5% — 34a* B2
+18a3 — 31a35° + 4603 3% — 500383 + 4603 32
+18a23% — 3402B* + 460232 — 470%B% + 32023

(4) o8y _
Wi (Us?) = 9001 — 2B} . (3.100)

(3.99)
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4. Odd Volumetric Moments

In this chapter, we are going to investigate how we can deduce polytopes P; when

k is odd and d = 3 and higher.

4.1 Summary of known and new results

4.1.1 Known results

Extending the work of Crofton, Hostinsky [36], p. 22-26] considered and solved
many problems concerning geometric probability. One of them is the ball tetra-

hedron picking, which was the first metric moment obtained in d = 3, it reads
((By) = 2 4.1
The result was generalised to higher dimensions by Kingman [40]. For the mean

volume of a d-simplex picked from a d-ball, Kingman got
d+1)2
v(l)(Bd) = dez(( 5 : ) r*i(d+1)
d -_— B .
(d+ 1)1 T((d 4 1)2) T2+ (451)

The result above can be obtained as a special case of even more general formula
by Miles [48], p. 363, Eq. (29)]

(4.2)

Theorem 220. [Miles, 1971] Denote Vc'l(i’j) as the r =1+ j — 1 dimensional
content (vol,) of an r-simplex formed by a convex hull of randomly selected
i points from the interior and j points from the surface of By (ball with unit
radius). If 2 <r < d+ 1, then fork=1,2,3,...

B0 ) P8 () )

ot \dtk) (@R 1) \T(2E)) i T(e)

. J

As a consequence of Miles” formula, we get for d-ball volumetric moments,
d k d (d+1)(d+k) d\ \% g1 [ ket
OB, P(441)\ /g V9 T(Ceh ) op(d) dHl r(%). w3
d 1d/2! d+k F(d(d+k+1)+1) F(‘“‘T’ﬁ i F(é)

2
Table[4.1]shows odd volumetric moments obtained by this formula for small values
of k (even volumetric moments for k = 2,4,6 are already shown in Table [3.1).

v By | k=1 k=3 k=5 k=7
d=?2 35 1001 138567 1062347
4872 640074 200704076 2477260878
d=3 9 _3 1 63
715 2939372 47545674 90978800076
d —4 676039 73465381 192875738341 32283434353859
388800074 21242511360078 91746673612554240712 1403572817879673864192716
d= 5 20000 3125 2025 2625
90751353 3903256048644 192912787565977678 9466435811358343168712

Table 4.1: Selected values of vc(lk) (Bg) with odd k and d < 5.
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4.1.  Summary of known and new results

Less is known about polytopes. In two dimensions, however, Buchta and Reitzner
[19] found a formula expressing v{"(P;) for any convex polygon P;.

In three dimensions, there was a famous difficult problem proposed by Klee [41]
and popularised by Blaschke, which concerns finding Uél)(Tg), the mean volume of
a tetrahedron formed by four uniformly selected random points from the interior
of a fixed unit volume tetrahedron. The first attempt was made by Reed. In
[59], he uses the Crofton reduction technique |61] which enables him to express
the exact value of vél)(Tg) = V3333 as a linear combination of mean volumes of
four irreducible configurations (3320), (2222), (3311), (3221), in which the points
forming the random tetrahedron are chosen from sets of lower dimensions.

« (3320) : two points inside, one on a face and the fourth being a vertex,

e (2222) : points on faces only, one on each face,

e (3311) : two points inside and two on the opposite edges,

« (3221) : one point inside, two points on adjacent faces and the fourth being

a vertex.

The specific form of the linear combination can be deduced as an easy exercise
from the Crofton Reduction Technique developed in Chapter [I} First, we con-
struct a reduction diagram corresponding to the aforementioned configurations
(Figure below). In this diagram, we also included the position of the scaling
point C in cases reduction is possible. The arrows indicate which configurations
reduce to which. Each arrow is labeled by a roman numeral corresponding to a
given reduction equation in the system of reduction equations.

V3321 VII -

V3322

Figure 4.1: All different (abed) sub-configurations in T3

The full system obtained by the Multivariate Crofton Reduction Technique is

I: 3Vis33 =4-3(Vagzo — Vazsg)
IT: 3 V3330 = 3 - 3(Viz00 — Visso
IIT : 3 V3331 = 3 - 3(Vazar — Vazan
(
(

)+ 2(Vasz1 — Vassa),
)
IV : 3Vi300 = 2 3(V3920 — V3392)
)
)

+ 2
+ 1(Vasz0 — Vas31)
+2-2(Va321 — Vasao)
V3 V3330 = 3+ 3(Va320 — V330
VI : 3Vasor = 2 - 3(Vaaar — Vagor) + 2(Vasin — Vasar) 4 1(Vazao — Vasar)
VII : 3 Vagpn = 3(Vaozz — Vaaz) + 3 - 2(Vazar — Vazoz)

Solving the system for V3333, we get,
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Chapter 4. Odd Volumetric Moments

2TVh900  108V3991  18V3317  12V339
Vasss = .
3333 55 455 455 T 455

(4.4)

Reed was, however, only able to express V330 = 3/64 in a closed form (he also
attempted to find Vag9e but obtained an erroneous value). The remaining config-

urations were only solved by Mannion [44] using a clever handling of improper
2m? 11 w2

integrals. TheiQr exact values are Vaggy = % + G55 Va1 = 515 — 345 and
Vazoo = ﬁ — 310" As a consequence, Mannion concluded that
2
(7= 22 T 0017398 45
vs (1) = 730 ~ Ts015 = - ‘ (45)

However, Buchta and Reitzner [18] obtained this value earlier using the Efron
section formula [26], c.f. [46, p. 372], which relates the mean volume of a convex
hull of random points picked from a given body with an integral over section
planes. This integral over section planes can be then transformed, after some
nontrivial algebraic manipulations, into set of some calculable double integrals.
The same technique enabled Zinani 78] to deduce

3977 2

1)
_ 0 T 0.01384277. 4.6
vs(C3) = 51600 ~ 2160 (46)

The derivation of vél) (C3) itself is straightforward, but at the same time unworldly
difficult, containing millions of intermediate integrals necessary to solve (to do so,
Zinani used the package Mathematica 4.0). No other values of odd volumetric
moments in three dimensions were known.

In higher dimensions, there were no results for polytopes. The Efron formula
completely breaks down because of the existence of cyclic polytopes.

However, Efron’s formula is not the only approach to volumetric moments. The
original method by Reed and Mannion to obtain ’Uél)(Tg) was the Crofton’s re-
duction technique. Another derivation of ’Uél)(Tg) and Uél)(C:),) which appeared
recently and was not using Efron’s formula (but equally difficult) was due to Philip
[52, 53]. As we shall see later in this thesis, there is yet another way. Had it not
been for Philip’s work, the author of this thesis would not have been convinced
that there might still be another method for obtaining volumetric moments.

4.1.2 New results

The objective of this section is to extend the number of polytopes for which the
volumetric moments are expressed exactly and to present the method to find it
efficiently. The key approach is the method of section integration. That is, instead
of integrating over points, we integrate over a section in the spirit of Blaschke-
Petkantschin formula (see Appendix . In fact, there are two approaches. The
first is based on the Efron section formula, which enables to deduce v()(P;) for
any integer n > d in dimensions d = 2 and d = 3 (see Theorems and [235)).
Efron’s approach will be discussed later in Chapter 5] As there is no analog of
the Efron section formula for higher moments and dimensions, we might use the
second section integral approach applicable to volumetric moments 'Uc(lk)(Kd) for

227



4.1.  Summary of known and new results

any k (picking a d-simplex from a d-dimensional body K). The second approach
is based on base-height splitting (Theorem 221]) which is discussed in this chapter.

4.1.3 Three dimensions

First, we found higher volumetric moments in the tetrahedron, cube, and octa-
hedron. That is v§”(T3), v{(C3) and v{”(03). The results are summarised in
Table .2 below.

4 N
(1) (3) (5)
Ps‘ vy’ (Ps) vy (P3) vy’ (Ps)
T 13 r? 733 4 7972 5125739 . 54772
3| 720 15015 12600000 ' 2424922500 4356374400000 8943995970000
C 3977 w2 8411819 x2 30674917335172  2225580641145943786613
3| 216000 2160 450084600000 3402000  124439390208000  91479676456923955200000
1929772 6619 162835570972 81932629 635636454439972 205491225433
O
33843840 ~ 184320 19864965120000 103219200000 1611922729697280000  5287025049600000
k k k
Table 4.2: Selected values of vé )(Tg), v:(,) )(Cg) and vé )(03) for odd k.

Next, we considered finding vél)(Pg) for various other polyhedra P; shown in

Table (including the case of a tetrahedron and a cube).

S 7 <

r

h
T3, tetrahedron O3, octahedron te‘Fra edrf) - e
bipyramid pyramid
triangular triakis
Cs, cube - totrahedron* cuboctahedron
truncated rhombic tetrakis truncated
tetrahedron dodecahedron hexahedron* octahedron*

Table 4.3: Polyhedra for which we considered Uél)(Kg)

To be honest with the reader, the polyhedra indicated by * have not been com-
puted yet (section integrals are availible only in some particular genealogies), but
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Chapter 4. Odd Volumetric Moments

they will surely appear in an updated version of this thesis. Interestingly, in
contrast to the well known tetrahedron and cube case, Uél)(Pg) often involves
logarithms and special values of the so called dilogarithm function Lis(z) =

>, 2?/n?, especially
Liy (%) ~ 0.2676526390827326069191838284878115758198570669 . . . (4.7)

Table [£.4] below summarises all new results of exact mean tetrahedron volume
in various 3-bodies Kj3. For completeness, the previously known cases of a ball,
tetrahedron and a cube have been added as well. Each K3 is having volume one
or alternatively, the right column displays vél)(K 3).

e ™
(1)
K3 vy (K3)
ball, [36] 9
0.012587413 (e
rhombic 2421179003623 3706186372 _ 9406373047 In2
dodecahedromn 17933819904000 ' 20889699840 9340531200
. 1
0.012938482 _ 17572205931n%2 | 2825808311n3 _ 6078271 Lia (3 )
: 2490808320 283852800 8515584
117410162173 | 875219972 _ 192040695481In2
cuboctahedron 525525000000 ' 2402400000 105105000000
. (1
0.013002516 __ 3187506012 | 5063163049173 __ 648098487 Li> ( } )
250250000 280280000000 500500000
octahedron 1929772 6619
0.013637411 3843840 184320
cube, [78] 3077 _x2
0.013842776 216000 2160
truncated 85604506258521 __ 134470207797 | 9972537226592In2 | 34854427121n?2
tetrahodron | 162358039443600 96641690145 3382459155075 1400604205
s (1
0.014845102  80536230271n3  53493528168In2In3 , 53162662164 Li; (1)
: 7884520175 32213896715 32213896715
triangular 1712190087 | 81471636487 _ 185777703053 In2 __ 909434448983 In” 2
bipyramid 16812956160 ' 907899632640 50438868480 121053284352
. (1
0.015082427 | 3498264683In3 | 20012895In2In3 _ 1887867In?3 62045573287Liz (§ )
: 2401850880 2050048 585728 57644421120
triangular prism 1859 _ _x?
0.015357705 116640 17010
square pyramid 94172 977
0.015782681 72072 8640
tetrahedron,|18] 13 _ _x?
0.017398239 720 15015
1 . . .
Table 4.4: Mean tetrahedron volume vé ) (K3) in various bodies K3

4.1.4 Higher dimensions

Also, our another goal is to present a new technique and deduce the values of
vék)(Pd) for various odd k and d = 3,4,5 in the most elementary way (for even k,
they are trivial). The results for T; are shown in Table

229



4.1.  Summary of known and new results

4 N
(1)
vy (Ta)
_ 97  2173x2
d=4 27000 52026975
d=5 2207 2441292 + 7352274
- 3265920 14522729760 ' 541513323351
4 —G 26609 _33961466097> | _ 1318349152808y
217818720  621871356506400 ' 12180206401298390455
(3)
vy (Ta)
d—4 1955399 | 630658812
- 3403417500000 ' 39669996140775000
d=5 362173019 + 1021781856385772 + 6023635162437
— | 98363448852480000 ' 557436796045056999751680 ' 569934065465972279392320
(5)
vy (Ta)
d—4 12443146181 _ 126270180337 17>
9803685146371200000  3557043272871373325040000
Table 4.5: Selected values of v((i )(Td) for odd k and d = 4,5, 6.

In higher dimensions in general, other higher order polylogarithm functions will
appear, that is Lig(z) = Y00, 2" /n®. As a consequence, in four dimensions for
example, many exact formulae involve Apéry’s constant (which coincides with

Lis(1)):

1
— ~ 1.20205690315959428539973816151, . . . (4.8)
n3

An example is the volumetric moments of Cy, which are shown in Table [4.6]

‘ N
k)
(Cy)
k, _ 1 31874628962521753237 2600372 610208In2 536557((3)
_ 1058357013719040000000 1399680000 1913625 2592000
k, _ 3 19330626155629115959 5227689772 + 10004540239 1n 2 6155594561((3)

1682723192209145856000000  216801070940160000 ' 77977156950000  73741860864000

Table 4.6: Values of vflk)(C4) for k=1,3.
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Chapter 4. Odd Volumetric Moments

4.2 Canonical section integral

Theorem 221. Let K4 be a d-dimensional convex body, x' = (X1,...,Xq) a
collection of d points in K4 and o = A(x') € A(d,d — 1) be a hyperplane
parametrised by = (n1...,ng)" €ERY asx € 0 & n'x =1, then

d—1)!
) =S [ e nK) @ o) @M (@)
d

for any real k > —1, where

VOld,l(CT N Kd> (k)

Glo) = o) = [ T 1frld)  (410)

|| volg Ky

and K3 ={x e R?|x"y < 1,y € Ky} is the polar body of K.

J

Proof. Let X = (Xq,...,X,) be a collection of random n + 1 i.i.d. points taken
uniformly from Ky, let H,, = conv(X) be their convex hull and A, = vol; H,,
then we have in general (n > d)

E [AF]

F(Ky) = ——n 4.11
v ( d) (VOld Kd)k ( )
When n = d, H, is almost surely a d-simplex. That means that any d-tuple of
points X; from X form a facet. Let X' = (Xy,...,Xy), 0 = A(X') as in the
statement of the theorem and let dist,(Xy) be the distance from o to the point
Xy, then by base-height splitting,

1
Ad = g diSta(Xo)Ad_l, (412)
where Ay_; = vol;_; conv(X'). See Figure [4.2] below.

Figure 4.2: Base-height splitting

Fixing X', we get by conditioning,
E [E [disty(Xo) | X'JAS_]

k) ()¢ ) = 413
va~ (Ka) d* (voly K o)k ’ (4.13)

where ]
E [dist? (X,) | X'] = oL . dist? (x0) Aa(dxo) (4.14)

is the k-th distance moment from (fixed) o. If o is parametrised Cartesianely,
that means by n = (1,...,74) " such that x € o < 1'x¢ = 1, we may write
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4.2. Canonical section integral

disty(x0) = |70 — 1|/||n|| (4.15)
and thus
1
E [dist" (X X’:—/ Txto — 1[*Ag(dxo). 4.16
[ ( 0) | ] ||’I’]||kVOlde K, ‘Tl 0 | d( 0) ( )

Note that since E [dist®(X,) | X’] is only a function of o, we may use Blaschke-
Petkantschin formula in Cartesian parametrisation (Corollary [296.2)), that is

E [g(0) Ak =(d = Divola K)* [ o0 (a1, )G+ (@) g(@) Im“Aa(dm),

RI\K

where o, = o N K,. Selecting g(o) = E[dist® (X,) | X'] and by definition of
L&k)(O'), Equation (4.13) then becomes the desired assertion of the theorem. W

4.2.1 Limit behaviour

Lemma 222. For any k > —1, we can write in terms of geometric quantities

iP(e) = Inll* [ volas((o + tid) N K |t . (4.17)

Proof. By definition, we have for a given plane o € A(d,d — 1) parametrised by
a corresponding n € R?\ K3,

LE,’“)(J) = /Kd In'x — 1" Ag(dx). (4.18)

Let ) = n/||n|| be the unit normal vector perpendicular to . We can decompose
any point x € K; as x =y + tn for some ¢ € R and some y € o, which yields

n'x—1]=In"y —1+tn'q| = [t||n]. (4.19)

By Fubini’s theorem, we get, plugging into LE,’“’(U),

k oo
@) =l [ [ ek, Aar(dy) d. (4:20)
—o0 JoNKy
The lemma follows by integrating y over o N K. |

Remark 223. Let r € R\ {0}, we define ro as another section plane whose
Cartesian parametrization vector is n/r (the plane o gets scaled by r). Then
o +tn = (1+t|n||)o and also

VOld_l((O' T t’f)) N Kd)
[Imllvola Kq

By substitution » = 1 + t||n|| and by Lemma , we may also write Lék)(a')
in terms of (4(o) for any k > —1 as

L&k)(a') = voly Kd/

(4.21)

Ca((1 +tlnlDer) = [1 + ¢[|m]l]

Ca(ro

= ) Ir—1|" dr. (4.22)

Finally, let us obtain the limit behaviour of vfik)(Kd) when k — (—=1)*.
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Chapter 4. Odd Volumetric Moments

Proposition 224.

k—(—1)*

lim (14 &) ol (Ky) = 2d!volyK, / e G @) Nal ). (4.23)
K

Proof. The function Lﬁl’“) (o) = [x, In"x — 1|FA4(dx) becomes singular as k — —1
because of the points on o which satisfy n'x — 1 = 0. For any fixed (small)
e > 0, we get by Lemma and by continuity of vol;_1((o 4 tf)) N Ky),

W (a) = /_ voly_i1((o + t7) N K[t dt + O(1)

2<d(0'> VOlde
k+1

(4.24)

. 2V01d_1(0' N Kd)
Inll(k +1)

as k — (—1)". Since Lglk)(a) is the only singular term in v((ik)(Kd) when & ap-

proaches —1 (see Theorem [221)), the statement of the proposition follows. |

+0(1) = +0(1).

Alternative proof. Alternatively, let v = {t7j | t € R} be a line passing through
the origin in the direction of ) and L.(7,y) = vol; (K7 N~) be the lengths of line
segments of v in K, below and above the section plane o, respectively. Then,
integrating out ¢t in Equation (4.20)), we get for any k£ > —1,

i) = Tl [ L y) + Ly Aa(dy), (4.25)
1+ k: NKq
from which we get for the limit limy_,_q)+ LE,’“)(J) =2voly_1(eNKy)/|n|l. N

Remark 225. In terms of invariant measures (see Lemma , We obtain

Wy d!

lim (1+ k) o™ (K / volt (o N K, d 4.26
kﬁ%fml) (+ ) ( ) = volg Ky A(d,d—l) i@ A gl (429)

4.2.2 Symmetries and parametrization of configurations

By affine invariancy of volumetric moments and when K; = P, is a polytope, we
may take advantage of its symmetries (see Appendix |C]) to obtain

WPy = Y werd (Pae, (4.27)
Cec(Py)

where the sum is carried over all representants C in the set of all equivalence
classes C(P;) of selections of vertices of P; which could be separated by some
section plane o and which are equivalent under affine transformations (section-
equivalent configurations). The weight w¢ then represents the size of the orbit of
C (see example of C(Os3) in Table [C.6)). Lastly,

d—1)!
WEge =" [ o0 ) G @)l @)dm). (4.28)
d (RA\P)c

where (R?\ Pg)c is the subset of R?\ P35 of all np-parametrisations of planes o
which only cut out vertices found in the given configuration C'. It may seem that
finding the precise integration domains (R?\ P§)¢ for various configurations is
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4.2. Canonical section integral

complicated. In fact, it is relatively easy. Recall that a configuration C' = P,(S)
is defined by the property of o separating some given vertices from the set S
out of the set of all vertices V of the polytope P;. The domain (R?\ PJ)¢ in
(M1, -..,ma)" is then the unique solution of the following inequalities

{ n'v<lforallves, n'v>1forallveV\S (4.29) }

or inequalities with <, > flipped (we then take the union of those two options).
Note that o always separates P into disjoint union P} U P;, where

{ Pf={xcPyn"x <1}, Py ={x€ Py|n'x>1}. (4.30) J

We have voly; P; = voly P(;L +voly P; trivially.

Remark 226. Fundamental Lemma of Conver Geometry tells us that a poly-
tope is described equivalently either by linear inequalities or as a convex hull
of its vertices (H- and V- representation equivalence). Hence, for example by
linear programming techniques, we can deduce the vertices of P; from the
inequalities for P; and vice versa. The same applies for the polytope o N Py
whose number of vertices is n¢ by definition.

4.2.3 lota function splitting

Splitting P; into P; U P; integration domains, we obtain that the computation
of L(k)(a') is also straightf d
d ghtforward as

() = /P (1= %)M A(dx) + /P (07 x — 1)*A(dx) (4.31)

d

for any real £ > —1. When k is an integer, let us denote
1 (o) = /P (n"x — 1)*A\g(dx), (4.32)
d

then, when k is even, we have Lflk)(a) = LEP(J)N. For any general integer k, we
get by inclusion/exclusion

i) = o) = (1= (=19 [ (n"x = 1) Auldx)

Fa (4.33)

= (D@ + (1= (=1 [ ("% = DFrul(dx).

d

4.2.4 Geometric interpretation of iota

Let M, MT™ and M~ be the centerpoint (centre of mass) of P;, P; and Pj,
respectively. By mass balance, those centrepoints satisfy the vectorial equation

MVOld Pd = 1\/[+ VOld Pj + M~ VOld Pc; (434)
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Chapter 4. Odd Volumetric Moments

On the other hand, by the definition of the centrepoints, [p, xA\y(dx) = Mvol, Py
(similarly for M and M™). Hence, we get for the iota function by Equations

(@31), (#.32) and (£.33) that .’ (o)x = (p"M — 1) voly P, and

o) =1 —n"™™MH)voly P + (n"M~ — 1) vol, Py,
= (n'M — 1) voly Py + 2(1 — " M*) vol, P (4.35)
= (1—n"M)voly P;+2(n" M~ — 1) voly P,

For higher values of k, we are no longer able to express L((f)(a) using centrepoints.

However, we can always express it in terms of geometric quantities (see Lemma
222))

4.2.5 Zeta section function

Lastly, note that (4(o) is a rational function of n. To see this, we know that
voly P is a rational function in (ny,...,74)". From homogeneity (Remark [297)),

1 ¢ dvoly Pf 1 4 dvoly Py
Cil0) =~ D = X (430)
b

voly Py = on; "~ voly Py =

which is also rational since differentiation preserves rationality. Note that, de-
noting I'} (o) = voly P; / volg Py and T'; (o) = volg P; / volg Py, we can write

‘ B ory (o)
= O =7 on

(4.37)

4.2.6 Line distance moments

Consider a trivial example of vgk) (), that is the k-th moment of a random line
length. Parametrising n = (a)", a > 1, we get (;(o) = 1/a,

1 |
(k) hgp — @D+
= -1 - 4.
B () /0 oz — 1k = S (4.38)
and thus by Theorem with R\ 77 = (1, 00) and \;(dn) = da,
B = [ -V 4l 2 139
v (1) 1 at3(k+1) ¢ (1+k)(2+k) (439)
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4.8. Two dimensions

4.3 Two dimensions

4.3.1 Triangle area moments

As a toy model, which already includes the Sylvester problem as its special case, is
the derivation of volumetric moments vék) (T3) from the canonical section integral
formula (Theorem 221)). We obtain values shown in Table [1.7 Note that we
already obtained those values in Chapter (1| via the Crofton Reduction Technique

(Table [1.13)).

ko1 2 3 4 5 6 7 8 9
U(k) (Ty) | 1 1 1 31 1 1063 403 211 13 2593
2 2 12 72 9000 900 2469600 2116800 2268000 2646000 93915360

Table 4.7: Volumetric moments U;k)(TQ) (triangle area moments)

First, from affine invariancy, v (T3) must be the same as ¥ (Ty), where

Ty = conv(0, ey, e3) = conv([0, 0], [1,0], [0, 1]) (4.40)

is the canonical triangle. Trivialy, or by Proposition , we have voly Ty = 1/2! =
1/2. Let n = (a,b)" be the Cartesian parametrisation of the line o € A(2, 1) such
that x € 0 & n'x = 1. We have ||n|| = Va2 + b2. Based on symmetries G(T3),
there is only one realisable configuration. Moreover, thanks to affine invariancy,
we can consider the only configuration I in C(Ty). Table shows specifically
which sets S of vertices are separated by a cutting plane o. The corresponding
configurations in 75 are shown in Figure [4.3]

C I
S | [0,0]
wc 3 \ \
Table 4.8: Configurations C(Ts). Figure 4.3: Conﬁgu(ryations C(T3)

By Theorem and for any C € C(Ty),

k 1 k k
Mo = 5 [ AENTIE S @N(am), ()
where
== = — 11" o (dx). 4.42
CQ(O-) ”TIH V012 Tg ) ) (0.) T, |77 X | 2( X) ( )

To ensure o separates only the point [0, 0] in Configuration I, we must force the
plane intersection coordinates %,% to lie in the interval (0,1). Or, by Equation

(4.29), we get a > 1 and b > 1 directly. Any way, that means (R?\ T3); = (1, c0)?
is our integration domain in a,b. See Figure 4.4}
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(R?\ T$)r = (1, 00)?

Figure 4.4: Configuration I in C(T3)
Denote
T8 = conv([0, 0], [1/a, 0], [0, 1/]). (4.43)

The line o splits Ty into disjoint union of two domains T3 LI T;, where the one
closer to the origin is precisely Ty = T%. Therefore,

(o) = /T (1m0 A (dx) + (0 x — 1)* g (dx). (4.44)

T2 \Tgb

This integral is easy to compute. In fact, for any real £ > —1, we get

k Cbla—1)F2 —a(b—1)F2 +a—b
@O = T T RE T (445)

Note that & N Ty = conv([1/a,0],[0,1/b]) and thus

va® +6* _ |nl

volj (e N'Ty) = =

(4.46)

and hence | AT 5
Go(o) = voli(eN'Ty) _ 2 (4.47)

|In|| voly Ty ab
Moreover, by affine invariancy of volumetric moments and using line distance
moments (Equation (4.39)),
2

(2+Ek)3+Ek)

W (e NTy) = o (1) = (4.48)

Alternatively, we can obtain Lgk)(a) directly from (3(o). First, more generally
and without the loss of generality assuming a > b > 1, we have for any s € (0, a),

VOll(SO' N Tg) 2 2s(a—s)
=17 22ty Tpcscas 4.49
C2(80-> HU” V012 TQ ab -s<b + ala—b) ~-b<s< ( )
from which. by Equation (4.22),
Lgk) (0-) - / (ﬁﬂs<b + ai(aaisb) ]lb<s<a) |S — 1|k ds. (450)
0

By Equation ((C.118)) and by affine invariancy,

V()= 3 wev (Th)e = 308 (Ty), (4.51)

CeC(T2)
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4.8. Two dimensions

from which, we get by Equation (4.41]) for any real k& > —1,

12 —a(b—1)>"* 4 a—b
_ 48/ / dadb. 452
ak+4bk+4 “D)(1+k)(2+ k)23 + k) a (4.52)

Let a = 1/x and b = 1/y, then, after some simple manipulations,

48 1,1 (1 — )2tk <x2+k _ y2+k)
vék)(Tz) - (1+k’)(2+k‘)2(3+k)/0/0 p— dedy  (4.53)

for any real £k > —1. This integral can be computed explicitly when k is an
integer. Dividing the numerator by x — y, we get

(k) 48 s 2+k k—j+1 g
v (0 = T e T G 1 Z// dedy
s - (4.54)
2+k J d
EEAICENDE (3+k:)j203+1/ van

which is, of course, a Beta integral. Therefore, for any non-negative integer k,

k+1 ! — il
(k) 48 k! (k +1 j).
T,) = . 4.55
vz (T2) (2+k)(3+k)z::( +1)(2k—j + 4)! (4.55)
Alternatively, note that the integral
PHR(1 — )2k g2k (] )2k
I, = / / o ‘z (1-y) dzdy (4.56)

vanishes, since by substitution + — 1 — 2z and y — 1 — y, we get —I;. Hence,
subtracting half of I}, from the integral in Equation (4.53) and by symmetry,

( B 24 Ltz — ay)* ™ — (y — ya)*
0y (1) = (1+k)(2+k)2(3+k)/o I Ty dody. (457)

Rewriting the numerator using the formula A*t* — B2tk = kT AT Bh+1=d,

( - 924 E R i 1 \2
(T = (1+k;)(2+k)2(3+k)j§% (/0 /(1 —x) dx) : (4.58)

which is another Beta integral. Therefore, for any non-negative integer k,

24
(1+k)(2+ k)2 (3—|—k)

'2(k3 +1—4)"
DL

Uék) (Ty) = (4.59)

1 M+

The result for Uék)<T2) is not new, in fact, it has been derived several times,

see Reed [59], Mathai [46, p. 391] or Alagar [2|. Finally, let us mention that
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that the particular case of even moments is easy to obtain independently also by
integrating even powers of the area over the unit triangle, see Figure below.

x1 yr 1
% det X2 Y2 1
x3 yz 1

Ay =

Figure 4.5: Random triangle area Ay written as a determinant

In general, writing the expectation as an integral, we have for even k and x; =
('riu yi)TJ L= 17 27 37

Uék)('ﬂ‘z) — 9ok+3 /TS A'; dxodxdxs,. (4.60)
2

Density

The density can be recovered from moments using inverse Mellin transform (see
appendix |A.5)). For the probability density f(s) of the random variable S = A, =

A,/ voly Ty, we have by Equation (4.57))

YL+ 14k
(k—1) —(y —yzx)
M) =B = s [ e =t ddy,
(4.61)
so formally,
Lrl (o oo \IHk (0 o1k
£(s) = 4 T2 ToM™ [//0 (z = 2y) $_;y ) G ay
(4.62)
1 2 _ 2 _ _
_ouT,T IQ// x? d(s—z(1— y)x)_yy(l x)*d(s—y(1 x))dmdy.

From Table (see Appendix [A)),

a? — s —2asln &

5 1y (4.63)

1-01-122:25(5 — C() =

via which we can deduce, with o = z(1 — y) and a = y(1 — z),

12/ / (1—y)*x? —s* —2s(1 — )91;1{1%1l
B 1 - y)(x - y) 8<w(1_y) (4 64)
(1—a)%? — 52 — 25(1 — x)yln =2 '
- T e e

We can deduce that f(s) is nonzero only when s € (0, 1). Evaluating this integral
is cumbersome. After a lot of simplifications, we arrive at the same formula as
derived in Chapter [1jon Crofton Reduction Technique (Equation ((1.345])) namely
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4.8. Two dimensions

( 7

12(1 —s) —6(1 4+ 24s+6slns)Ins
—12(1+26s)y/1—4sargtanh/1—4s p, 0<s<1/4,
—144s(1 + s)(% — argtanh® /T — 4s)
12(1 —s) —6(1 +24s+6slns)lns
—12(1+26s)v/4s—1(5 —arctan /4s—1) , 1/4<s< 1.
—144s(1 + s)(% — arctan /4s — 1)?

(4.65)

4.3.2 Square area moments

As another example, we deduce the volumetric moments vék)(Cg) from Theorem
221l We obtain values shown in Table 1.9

k|1 2 3 4 5 6 7 8 9
,U(k) (C ) 11 1 137 1 363 761 7129 61 83711
2 2) | 144 96 72000 2400 3512320 27095040 870912000 24192000 103038566400

Table 4.9: Volumetric moments vék)(Cg) (square area moments)

We may parametrise Cy with vol, Cy =1 as
Cy = COHV([Ov 0]7 [17 0]7 [07 1]7 [17 1])7 (466)

Let 7 = (a,b)" be the Cartesian parametrisation of the line & € A(2,1) such that
x € 0 & n'x=1. We have ||n| = Va2 + b2. Based on symmetries G(C5), there
are two configurations. Table shows specifically which sets S of vertices are
separated by a cutting plane o in which configurations in our local representation
of C5 above. Note that there is an ambiguity how to select those vertices as long
it is the same configuration.

C I 11
0.0

s | [0,0] {0 1}

w¢ 4 2

Table 4.10: Configurations C(Cs) in a local representation.

By Theorem and for any C € C(Cy),

1
WClo=op [ oo GG @) (@)haldn),  (467)
28 J@cs)e
where
_ voli(an(Chy) ), / T k
C2(0-> - ||’I’]||V012 C, ) D) (U) - o |77 X 1| )‘Q(dx) (468)
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Configuration I

By Equation (4.29)), we get the following set of inequalities which ensure o sep-
arates only the point [0, 0],

0<1, a>1, b>1, a+b>1, (4.69)
hence, our a, b integration domain is (R? \ C3); = (1, 00)?. Denote
15" = conv([0, 0], [1/a, 0], [0, 1/8]), (4.70)

then the line o splits Cy into disjoint union of two domains Cy U C5 , where the
one closer to the origin is precisely C3 = T4°. Therefore,

(o) = /T L= el [T u(ax), (4.71)

This integral is easy to compute. In fact, for any real £ > —1, we get

(k) B (@+b—1%2 — (a— 12— (h—1)F2 4+ 1
wlo)= ab(k + 1)(k + 2) : (4.72)

By Equation (4.47) from the P, = Ty case,

voly (o N Cy) 1

G(o) = Tnllvol, Cy — ab (4.73)

and by affine invariancy, as & N Cs is a line segment,

W (e N ) = (1) = o k)2(3 yol (4.74)

from which, we get by Equation (4.67)) for any real k£ > —1,

o - (a+b—1)F2— (a—1)F2— (b—1)F+241
=2 // dadb. (4.
aF AT+ k) (2 + k)2(3 + k) ¢ (4.75)

Integrating out b and substituting a = 1/x and after some simplifications, we get

(k) B 21719 11—2g +k
ve (Co)r = 1+ k)(2+k)23E+ k)2 /0 =z 9® (4.76)

for any real k > —1. When £k is an integer, we get

B 16Hy 4o
1+ E)Q2+E)2B + k)

(4.77)

where Hy, = Zle 1/j is the k-th harmonic number.
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Configuration 11

By Equation (4.29), we get the following set of inequalities which ensure o sep-
arates points [0,0] and [0, 1],

0<1, a>1, b<1, a+b>1, (4.78)

however, by symmetry, we may additionally require b > 0. In fact, both options
b > 0 and b < 0 give the same factor since they correspond to two possibilities
where o hits A([0, 0], [0, 1]). Therefore we only consider the following integration
half-domain (indicated by )

(R*\ C5)fy = (1,00) x (0,1) (4.79)

and in the end multiply the result twice. The plane o splits C5 into disjoint union
of two domains Cy U C; , where the one closer to the origin can be described as

Cf = conv ([0,0] | [io} , l:b 1] 10, 1]) , (4.80)

from which, by elementary geometry vol, C35 = (2—b)/(2a) and as a consequence

of Equation (4.36]),

0 (2—-b 0 (2-0 1
<2(U):_G&L<2a> b@b<2a>—a' (4.81)

Next, again, the following integrals

W (a) = /C =T n(x) [ T D) u(dx), (4.82)

are easy to compute for any real £k > —1, we get

b_1k+2_ _1k+2_ 1_bk+2 1
Pgy= etV —la DT~ (1 2741 (4.83)
ab(k + 1)(k + 2)
and by affine invariancy, as o N C5 is again a line segment,
2
W (o N Cy) = oF (1) = . (4.84)

24+ k)(3+k)
from which, we get by Equation (4.67) for any real £k > —1 (counted twice!),
(a+b—1)F2—(a—1)*2—(1-b)k*2+1

Cou = 5 / / ak+4b L+ k)2 +k)2(3+k) dadb.  (4.85)
Integrating out a and after some simplifications, we get
93—k _p2Hk
DO = T R BT | 1oy (4.86)
for any real £ > —1. When k is an integer, we get
o (Cy)u = T ki‘; :}1?;(23 ynst (4.87)
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Chapter 4. Odd Volumetric Moments

Contribution from all configurations

By Equation ((C.118),

v(C) = 3 wend? (Ch)e = 4 (Cy)r + 2087 (Co), (4.88)
CeC(Ch)

which gives for any real k > —1,
U(k)(02) _ 24 /1 1 — xht?
2 X1+ k) 2+ k)23 +k)2J0 1—x

For k being an integer, we get

dz. (4.89)

24Hyyo _ 245513 7
(A +k)(24k)2B+k)2  26(1+k)(2+EK)2(3+k)2

o (Cy) = (4.90)

This result is also not new, see Reed [59] or Henze [35]. We can also deduce

this result independently from the Canonical section integral by using Crofton
Reduction Technique (see Section in Chapter [1).

Density

The density can be recovered using inverse Mellin transform (see appendix [A.5]).
For the density f(s) of the random variable S = A, = Ay/voly Cy, we have by

Equation (4.89)

— WD () = 24 /1 Loat 4.91
MIf] = v (C) 261k(14+k)2(2+ k)2 )0 1—=x © (4.91)
so formally,
1] — gt 15(s—1)—2%6(s—%)
272 4 41 272
f(S):24IOIIIQM [/0 de]:24101112/0 2 e 2 d{L‘

(4.92)

From Table (see Appendix [A)),

— 0s) — 2s(2 In <

TLI2T25(s — o) = (2= 9@t 5s) = 25Qa F ) Ing (4.93)

40[3 s<a-

via which we can deduce, with & = 1/2 and o = z/2,
11 —20s% + 85 — 8(s+ 1)sln o~

—12 21
= Lo (4.94)
x? — 20s* 4+ 8sx — 8s(s + x)In & '
_ 51 T dCL’
z(1—x) 5<3

We can deduce that f(s) is nonzero only when s € (0,1/2). Calculating the
integral (for example, using Mathematica),

f(s) =12 (1 — 25 — 255%) — 167°s(1 + 5) + 125°(5 — 21In(2s))?

(4.95)
— 12 (1 + 85 — 205*) In(1 — 2s) + 965(1 + ) Liz(2s),
where Lip(z) = 3202, 47 is the dilogarithm function. This result is not new, see

Philip [55].
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4.8. Two dimensions

4.3.3 General 2-body area moments

Note that for any convex 2-body K5, we have thanks to affine invariancy,

2
v%kﬂ)(o’ NKy) = U§k+1)<T1) = CIhBLR) (4.96)

provided of course o N Ky # (). Hence by Theorem [221

1-k
(k) _ 2 3,y (k)
W) = G e G @A @ am), (w07
where
~ voli(o N Ky) ), To 1|k
Glo) =T )= /. T = 1 Xa(dx). (4.98)

Let us consider the spemal case when k£ = 1. By the geometrical interpretation

of 15" (or) (Equation [35)),

o) =(1=n "M vol, K + (n"TM™ — 1) voly K (4.99)
from which
voly K. _ _
() = 5 L @) (- TMOT (@) + (1M = 1T (o)) Xo(dm),
2
(4.100)

where I'; (o) = voly Ky / voly Ky and T'; () = voly K5 / voly K.

For higher moments, first, by polar coordinates, let n = 7j/q with ¢ € (0, 00) and
7 €S, 50 \y(dn) = idqag(dﬁ). In a slight abuse of notation, we identity o with
its closest point & from the origin. Hence o = ¢f) and Equation (4.97)) becomes

v (Ks) = 2+k iR /Sl/ 3 )P (g 1) 5 dq o5(dn), (4.101)

Note that we can express Lék)(qﬁ) using the following geometric integral (By

Equation (4.22))

7 (qn) = voly Ky / G2 an) r— 11" dr. (4.102)
Therefore, we get
(k)(K ) 1 V012K2 / / / Ck+3 )’S_ Hk dr d (dA)
v r dgo
2T 24 kB +k) Js Ir]q? 1923,
(4.103)

from which we can deduce the formula for density by inverse Mellin transform.
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Chapter 4. Odd Volumetric Moments

Density

The density can be recovered using inverse Mellin transform. For its basic prop-
erties and techniques, see appendix [A.5] In our case of two-dimensional bodies,
we have for the density f(s) of the random variable S = A, = Ay/ voly Ko,

227’6

MIf =) = T 5 a T

/RQ\KS C§+2(U)L§k71)(a))\2(dn), (4.104)

or by using Equation (4.103]). We can write the formal inversion as

r— 1! .
F(5) = volo I T oM [ /S 1 / / 2 (g )'2“’||3 dr dqos(dn)| .
(4.105)
From Table (see Appendix ,
LM " = T1Th6(s — a) = sa (o — 8)Lscq, (4.106)
we immediately get with o = %‘T — 1|¢(gm),
\7" — 1|¢2(gm) — 25
f(s) = 8svoly Ky / / / g — 17 L capriea(qny 97 dqoy(dn).
(4.107)

Let us make a substitution r = 1 4 t/q, we get

Calgm) — 2sq R
f( —85V012K2/ / / 42 ‘H l |\2(—|— t‘)|t’3 ]12$q<|t\Cz(qﬁ) de dq‘72(d77>~
(4.108)

4.4 Three dimensions

4.4.1 Tetrahedron odd volumetric moments

Let us investigate how we can obtain the volumetric moments vék) (T3). First,

since v:(,,k)(Tg) is an affine invariant, then it must be the same as vék)(']I‘g), where

T3 = conv(0, e, e2, e3) = conv(][0,0,0],[1,0,0],[0,1,0],[0,0,1]) (4.109)

is the canonical tetrahedron. By Proposition , we have vol3 T3 = 1/3! = 1/6.
Let 7 = (a,b,¢)" be the Cartesian parametrisation of o € A(3,2) such that
x € 0 & n'x=1. We have ||n| = va® + b2 + . Based on symmetries G(73),
there are two realisable configurations we need to consider (see its genealogy at
Figure or Figure in Appendix @ Moreover, thanks to affine invariancy,
we can consider instead the two C(T3) configurations (see Table[d.11]below, Figure
shows the correspoding configurations on the non-deformed T3).
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4.4. Three dimensions

C 1 II ﬂ
0,0,0

5 [0.0.0] 5 5. I gl

wc 4 3 ED

ngc 3 4

Figure 4.7:
Table 4.11: Config- Tetrahedron  ge-
urations C(T3). Figure 4.6: Configurations C(T3) nealogy

By Theorem and for any C € C(Tj3),

2
WMo = [ Ve N TGP @Nslan),  (4110)
(R3\TS)c
where
VOIQ(U N Tg) (k) / T %
S A . = — 1" \3(dx). 4.111
C3(0') ||’I’]||V013 Tg ) L3 (O') s |77 X | 3( X) ( )

In order to distinguish between configurations, we also write (3(o )¢ and Lgk)(a')c

instead of just (3(o) and Lgk)(a'). Here, C is only a subscript and does not imply
any decomposition of those functions.

Configuration 1

To ensure o separates only the point [0, 0, 0], plugging the remaining points into
Equation ([4.29)), we get a > 1, b > 1 and ¢ > 1. That means (R*\ T3); = (1, 00)?
is our integration domain in a, b, c. See Figure |4.8

z

x ([R\T§)r=(1,00)°

Figure 4.8: Configuration I in C(T3)

Denote

T5* = conv([0,0,0], [1/a,0,0],[0,1/b,0],[0,0,1/¢]). (4.112)
The plane o splits T into disjoint union of two domains T3 LI T3, where the one
closer to the origin is precisely T4 = T4%. Therefore, by inclusion/exclusion,

(@)= [ (1= N(dx) + [ (n"x— 1" Aa(dx)

3

= [ ("% = DFAglax) = (1= (1)) [ ("% = 1) s(dx).

T3 Tgbe

(4.113)
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Chapter 4. Odd Volumetric Moments

for any k integer. These integrals are easy to compute. Mathematica Code

computes Lgk)(a)l for various values of k. Running the code for k = 1,2, 3, we get

1 /2
Lgl)(a)I—M(abc+a+b+c—4> : (4.114)

1
ng)(a)l = <a2 +ab+ bc+ ac+ b® + ¢ — 5a — 5b — 5¢ + 10) . (4.115)

1 (2
Lz(f’)(a)l =120 <abc+15a+15b+15c—6a2—6b2—602—6ab—6ac
(4.116)

—6bc +a2b+a62+a20—|—b20+a02+bc2+a3+b3+cg+abc—20) .

In fact, we can also deduce a general formula for Lgk)(a). Rescaling the second
integral and applying Equation (A.28)),

(1)t k
) T (1 — g —5)*As(d
abc (1=21 =2 =25)" ds(dx) (4.117)
— 1 1y _(a=1)Ph (b—1)>+* (c=1)**
T (k+1)(k+2)(k+3) (abc + a(a—b)(a—c) + b(b—a)(b—c) c(cfa)(cfb)) :

Lg’“>(a)1:/T (azy+bry+crs—1)F—
3

Alternatively, at least for the first moment, we can utilize our knowledge of the
geometric interpretation of Lél)(a) to derive it more easily. Let M and M™ be
the centerpoints of Ty and T3, respectively. Clearly, since M and M+ are both
centerpoints of tetrahedra,

M=1(0+e+este3)=[1,5,5], M'=1(0+1e;+iertles)=[1 5. 5] (4.118)

Then, by Equation (4.35)) and since vols T3 = ¢ and vol3 T§ =

" 6abc’

Lél)(o')l = ("M —1)vol3 T3 + 2(1 — " M*) vol3 T4

= (et —Di42(1 -3 L =La+b+c—4+2).

(4.119)

Denote T§%¢ as the triangle conv([1/a, 0, 0], [0,1/b,0],[0,0,1/c]). Then the inter-
section of the plane o with Tj is precisely T¢%. That is,

o NTy =Ty (4.120)

By Equation (4.15)), the distance from T to the origin is dist,(0) = 1/||n||. By
base-height splitting,

V013 Tg VOIQ(G' N Tg)

Blmll

1
=voly T§ = 3 dist, (0) voly T5% = (4.121)

abc
from which we immediately get

voly(o N'Ts) 3

= = —. 4.122
Glo) IIn||vols T3 abe ( )

Finally, by scale affinity (we have n; = 3),

o (e ) = o TTE) = o (D), (4.123)
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4.4. Three dimensions

which implies for k£ = 1,2, 3 that (see Table or Tables and

1 31
72’ 9000

Putting everything into the integral in Equation (4.110f), we get when k = 1,

1
vs? (o N T3) = (o NT;) = v (e N'Ty) = 5007 (4124)

O (T,) /// 2+ abc(a+b+c— 4)d dbde — 3 i
vg " (Ta)r = 55 a8b6 6 adbde = 7o (4125)

For higher values of k, we get

279 37193
v§2)(T3)I = T annnn U:g,g)( 8)1 = e
4000000 6174000000 (4.126)
DTy = 031888 eyp | B6TAOST

Configuration 11

In this scenario, o separates two points [0, 0, 0] and [0, 0, 1] from T5. By Equation
(4.29), we get a > 1, b > 1 and ¢ < 1. We can split the condition for ¢ into to
cases: either 0 < ¢ < 1 or ¢ < 0. In fact, both options give the same factor
since they are symmetrical as they correspond to two possibilities where o might
intersect \A([0,0,0],[0,0,1]). Therefore we only consider the integration half-
domain (indicated by )

(R*\ T9)j; = (1,00)* x (0,1) (4.127)

and in the end multiply the result twice.

3(R*\ T3)u = (1,00)* x (0,1)

Figure 4.9: Configuration II in C(T3)

From Figure above, we can see the plane o intersects T3 at points %el, %62
(already in Configuration I) and additionally at

A:le +Oéle _le = ;6707 oL )
B = e3+5( 82—*83) - [077077]7
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Chapter 4. Odd Volumetric Moments

where we denote a = % and 0 = % Thus, the plane o splits T3 into
disjoint union of two domains Tj U T;, where T4 being the one closer to the
origin. Denote T4 = conv(0, éel,%eg,%e;g) and T3 = conv(eg,A,B,%eg), or

explicitly

T4 =conv ([0,0,0],[£,0,0], [0, 3,0],[0,0,]) . (4.129)
T; = conv ([0,0,1], [1=£,0,2=2] , [0, 3=2, 2], 0,0, 1]). (4.130)

Then we can write T3 = T3¢\ T} = conv(0, e3, %el, %62, A B), that is

Ty = conv ([0,0,0],[0,0,1],[£,0,0], 10, 3,0], [1¢,0, %=1], [0, }=¢, %=1]).  (4.131)

a—c’

By inclusion/exclusion,

(4.132)
+ (1= (=19 [ (7% = 1Frg(ax).

for any k inte er These integrals are again easy to compute. Mathematica Code
computes 1,3 (o)1 for various values of k. Running the code for & = 1 and
k = 3, we obtain

(o) = 1§ (o) — 126(65 — C)C()b 3 (4.133)
Lg?’)(a)n = ng)(a')l - (1= (4.134)

60c(a —c)(b—c¢)’

where the functions Lél)(a)l and L:())3)(0')1 are given by Equations (4.114]) and

(4.116f). In general case for any k integer, we have

1—(—1)F)(1 —c)**t*

T o
(k+1)(k+2)(k+3)c(a—c)(b—c)

For k even, we have Lgk)(a)n = Lgk)(a)l = Lgk)(a)N since the part with 1 — (—1)

(4.135)

vanishes. However, since the even metric moments vék) (T3) are trivial to compute
by integration alone, we will proceed by assuming k is odd. The calculation of
Lgk)(d)ll is again trivial when k& = 1 and can be done by hand from its geometric
interpretation. Note that -1 = vols T4 = 4| det(1e; —Lles | ea—1e3 | 0—2Les)]

and thus

vols Ts = & | det (a(Le; —Les) | B(Eer—Les) [ (1—c)(0—2es)) [=2E0-9  (4.136)

Let M, M M* and M be the centerpoints of Ty, T3, T% and T3, respectively.

Trivially, M = [1, 1, 1] and M = [.L L] Since also M* is a centerpoint of a

tetrahedron, namely T5 = conv(es, A, B, e3/c),

M = j(es + A+ B+ fes) = [, . 2527 (4.137)

4b? 4c

Since T3 = T4 \ T3, we have volz T3 = vols T4 — volz T3 and by mass balance,

M voly T3 = M volz T — M* vols Tj. (4.138)
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4.4. Three dimensions

Solving for M™ is left as an exercise for the reader, but it turns out one does not

need its knowledge to obtain Lgl)(a)n. To see this, plugging the mass balance

directly into Equation (4.35) and by our previous relation for Lél)(O')I, we get

(o)1 = (n"M — 1) voly T3 + 2(1 — " M*) voly T

. (4.139)
=157 (0) — 2(1 — M) voly T = 1§ (o) — 2BLe”
which matches Equation (4.133]). Denote
1 1 1
T$% = conv ([a 0, 0] , [0, - 0} , [0, 0, CD , (4.140)

l—¢c a-—1 l1—c b—-1 1
Ty = 0 0 0,0, - 4.141
2 COHV({@_Cv ’a—c}’[’b—c’b—c]’[’ ’C:|>’ ( )

we have for the intersection of o with Tj,

o NTs = T5"\ Ty = conv([2,0,00,[0, },0],[1=2,0, <] [0, 3=¢, 2=1]),  (4.142)

a—c’ a—c

so ny; = 4. By scale affinity
o o ) = T\ T5) = ) (057, (4.143)
where U3’ = conv([a, 0], [0, 8], [0,1], [1,0]) is a canonical truncated triangle with

a= a(al__cc>, B = b(bl__cc). (4.144)

See Figure below for an illustration of Ugﬁ and its volumetric moments.

Figure 4.10: Mean section moments in the second C(T3) configuration

Since voly Ugﬂ = %(1 — aff), we can write in general,

k+4
k « 2
B = () [, S8 b s

We would like to find vékﬂ)(Ugﬁ ) for odd k. This is, luckily, trivial, since we are
now integrating even powers of

1
Ay = o0 |det(x; — xq | X2 — X0)] - (4.146)
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Chapter 4. Odd Volumetric Moments

The calculation can be carried out in Mathematica using Code [4, which exploits
the symmetries and uses inclusion/exclusion. Running the code for £ = 1 and
k = 3, we obtain
04464 _ 80&353 + 8(1/362 _ 40[35 + 8&253
—10a23? + 8a28 — 4a B3 + 8aB? — 8aff + 1}
72(1 —ap)4 ’
abB5—6a°B—6aB°+18ap* + 32032 —19a3+1
—31la3® — 19a°3° + 32a°B* — 310”3 + 18a° 32
—31038 + 32a3° — 4704 B* + 46032 — 340432
+18a* 8 — 3103 3% + 4603 3% — 500333 + 4603 52
+18a235 — 34a2B* + 460233 — 4702 3% + 32023
900(1 — ap)s
Alternatively, since we have turned our problem to essentially finding the even

moments by recursions, we can use Example 219/in Chapter [3]on even volumetric
moments. Finally, by definition (alternatively by Equation (4.36))

VOIQ T;’bc

[m]| vols T3

W (USP) = { (4.147)

(UP) = (4.148)

voly(o N'T3)

Gon= 7= =(1-af)

— [In]| vol T3 (1 —aB)G(o)r (4.149)

Before we proceed to evaluate the final integral, we make the following change of
variables (a,b,c) — (a, 3, ¢) via transformation Equations (4.144)), which trans-
form the integration half-domain into

(RPN Tt lag.e = (1—¢,1)% x (0,1). (4.150)

Note that, if ¢ is treated as a parameter, the variables a,b depend on «, 3 sepa-
rately. As a consequence,

c(1—c¢) da c(l—c)dp
do = ———— db = ———+ 4.151
“Ta—c—a¥ 1—c—p)? (4.151)
and thus one has for the of transformation of measure
(1 —c¢)? dadpde
A3(dn) = dadbdc = ) 4.152
3( "7) a c (1-0-0&)2(1—0—6)2 ( 5)
Our functions in variables a, b, ¢ are transformed into
31—c—a)(l—c—p)(1—ap)
CS(O-)II = 03056 s (4153)
1 /20-c—a)(1—c=B)(1-(1-c)2aB o
Y (o) = 2 ( cm( ) ye (1- =2 - 25 - 4) (4.154)

and so on for Lél)(a)n with larger k. Putting everything into the integral in
Equation (4.110) with prefactor 2, we get when k =1,

Uig»l)(T:s)u _ 136/01/11_0 /ll_c (1—-0c)*)1—c—a)*(1—c—B)3*1—apB) y

130555
2(1—c—a)(1—c—p) (1—(1—c)’ap) a 3
( Aaf e <1_1—c—oz_1—c—ﬁ> _4> (4.155)

X (1 —8af + 8a%5 — 4028 + 8aB? — 10025 + 8a3 3% — 4af® + 80233
—8a’p® + 04464) dadade.
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4.4. Three dimensions

Integrating out «a, 8 can be done relatively easily, we end up with

12po4+4800¢(1—c)?p1 In(1—¢)+3600(1 —c)?py In?(1—c
vél)(Ta)HZ/o - Sy 1(9200>016 (1=c)pln( )dc, (4.156)

po = 8265600 — 49593600¢ + 111530400¢? — 103044000¢°
—10353200¢* + 114147200¢° — 1152292008 + 58917200¢" (4.157)
— 17280824¢® + 2861248¢° — 220122¢'° — 702 + 213¢12,

Py = 3444 — 15498¢ 4 220762 — 4942¢3 — 18060¢* + 21343¢°

4.158
— 11086¢5 + 3147¢" — 496¢® + 36¢°, ( )

P = 2296 — 11480c 4 19692¢* — 9888¢> — 11350¢* + 20442¢°

4.159
— 139715 + 5296¢" — 1191¢® + 154¢° — 9¢1°. ( )

The last ¢ integration can be carried out by Mathematica (alternatively, we can
use derivatives of the Beta function). We get

9217 2
(1) g _ _
vs (Ts)u = 23600 ~ 45045°

(4.160)

For higher values of k, the integration possesses similar difficulty, we got

3) 105199 7972
vy (T3)r = + ;
9261000000 7274767500 (4.161)
) 1890871 5472
’03 (Tg)[[ = — .
9601804800000  26831987910000
Contribution from all configurations
By Equation (C.118) and by affine invariancy,
vi(’)k)(Ti%) = Z wc U:(sk) (T3)C = 4Ug(;k) (T5)1 + 3U§k)(T3)H, (4.162)

CeC(T3)

from which, immediately, we get Buchta and Reitzner’s [18], Mannion’s [44] and
Philip’s [52] result for vgl)(T 3) and also some of its further generalisations

( 7

2

Wqy) = 25 T 0.0173982392 4.1
v (Ty) = o — 7o ~ 0.01739823925, (4.163)
(3) 733 797‘(2

T3) = ~ 0. 4961 4.164
vi (Ts) 12600000 * 2424922500 0.0000584961, (4.164)
) 5125739 54772

T3) = - ~ (0.000001176003. (4.165
va (Ts) 4356374400000 8943995970000 ( )
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Chapter 4. Odd Volumetric Moments

4.4.2 Octahedron odd volumetric moments

By affine invariancy, it does not matter how large is the volume of an octahedron
as long as the octahedron stays regular. Hence, we may select the following
representation of a regular octahedron

O5 = conv([£1,0,0],[0,£1,0], 0,0, £1]), (4.166)

which has vol3 O3 = 4/3. According to its genealogy C(Oj3), it has three con-
figurations as shown in Figure m (or in Appendix @[) Table shows
specifically which sets S of vertices are separated by a cutting plane o in which
configurations in our local representation of O3 above. Note that there is an
ambiguity how to select those vertices as long it is the same configuration.

C I II 111 II
1.0,0]
1,0,0 | L9
s 10,01 %9 | [01.q] 11
[07 17 0] [0’ 07 1] I / \
el G 2 1

Table 4.12: Configurations C(O3) in a lo-
cal representation. Figure 4.11: Octahedron genealogy

By Theorem and for any C € C(O3),

k 2 k k
o (O)e = 5 /<R3\o;>c o (a1 05) EF @)l (o) As(dm),  (4.167)
where
voly(or N O3) (k) / T A
= = — 1" X3(dx). 4.1
gg(O') ||’l’]” V013 03 ) l3 (U> 0s |77 X ‘ 3( X) ( 68)

We can describe the relation x = (x,y,2)" € O3 by the following set of eight
linear inequalities (all of them keep 0 € O3)

r+y+z<l, —zrx4+y+z<l, z+y—2z<1, —1axr+y—z<I, (4.169)
r—y+z2<1, —r—-y+z<l, z—y—2<1, —-wz—-y—2<1. '

Configuration I

First, we find (R?\ O3);. By Equation (4.29)), plugging the configurations points
from S into n'x > 1 and from V '\ S into n'x < 1 (flipped inequalities give the
empty set), we get that a, b, c must satisfy

c>1, —c<1, a<l, —-a<l, b<l, -b<l, (4.170)
so (R*\O3)1 = (—1,1)% x (1,00). Next, o splits O3 into OF U O;. We can

parametrise those domains by simultaneously solving Equation (4.30)) and (4.169)).
From those inequalities, we get by linear programming
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4.4. Three dimensions

0,0}, [0,-1,0],[0,0,—1],[0,0,1], [0, 1,0],
[”—1 =50, (25, 555,01, 25,0, a2, [282, 0, 521).

a+b’ a+b’ c—a’ "’ a—cd’ latc’ 77 a+tc

(4.171)

Note that a simultaneous system of inequalities can be reduced using the epony-
mous Reduce command in Mathematica (used also in the case above). As a
direct consequence of this parametrisation, we get

2 (c* +3¢® — 3¢ — 2a*c* — 2b*? + ¢ + 2a%D?)

;05 = 4.172
vols s 3(c— a)(c + a)(c— b)(c +b) (4.172)
from which, by Equation (4.36]),
3c(c—1)2
G(o) = ( ) (4.173)

2(c—a)(c+a)(c—Db)(c+b)
Also, thanks to our parametrisation, we get

(o) = /O (1= 1% Ag(dx) + /O (nTx — 1)FAs(dx) (4.174)

3

for any real k > —1 almost for free, namely for £ =1 and k£ = 3,

& +6¢® +4a*h* — 4 (1 +a®> +b?) + ¢

Wy 4.175

5 (o 3(c—a)(c+a)(c—Db)(c+D) ’ (4.175)
" +15¢° + 15¢% — 6¢% + 6ac? — 20b*c* — 6b*c?

3) —20a*c* — 6a*b*c* + ¢ + 20a%b* + 6a*H* + 6a*b*

(o) = (4.176)

15(c — a)(c+ a)(c — b)(c + b)
and also n; = 4 since

o N0 = conv ([2=2, 251 0], [, 10 0], [<2,0,2=1] (<520, 222]). (4.177)

b—a’® a—b’ a+b’ a+b’ c—a’ 7 a—cl’ late’ 77 ate

We can use a computer to deduce the following even moments

3¢t + P (a® + %) — a?V?

(2)(0. NOs) = T , (4.178)
{ 12¢% + 17a%¢* + 170%¢* + 3a*c?
—14a?bc? + 3b*c? — 3a*b? — 3a?bt
(e n0;) = (4.179)

28800
Therefore, putting everything together

)(03) / / / (a? + b — a®b? + 3c)
3 T 512 (c—a)f(c+a)(c—b)5(c+ b)S (4.180)

(4a2b2 —4a?® — AP — 4P + S + 663 + c) dadbdc,

similarly for v§ (03)1 Integration in Mathematica then reveals

" _ 2569561 11571 List

vs (O3l = 30000~ 10240 (4.181)
3260724307264561 10914364772

v§(O5)1 = al (4.182)

433954160640000 143360000

(5) 1306914286180250262095927 367607644653 77>
U3 (03)1 = — . (4183)
59965827237606850560000 1664719257600
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Chapter 4. Odd Volumetric Moments

Configuration 11

By Equation (4.29), plugging the configurations points from S into n'x > 1 and
from V' \ S into n"x < 1 (flipped inequalities give empty set), we get that a,b, c
must satisfy

c<1l, —c<1, a>1, —a<l, b>1, -b<], (4.184)

so (R3\ O3)ir = (1,00)? x (=1,1). Next, o splits O3 into OF U O5. We can
parametrise those domains by simultaneously solving Equation (4.30]) and (4.169)).
Then, by linear programming, we get n;; = 6 since we obtained

Of =conv ([~1,0,0],[0,~1,0],[0,0, -1],[0,0,1], [0, &=}, =1,

0 ct+1 1-b 1-b a+l b+1 1—a 0 c—1 0 a—j c+1 0 1—a <4185)
[ ) btc? m]v [m: atb’ ]a [T_H,a atb’ ]7 [E7 ) a—c]’ [T—I—c’ ) a+c]>’
from which, using Mathematica,
3a%b® +a3b? +a?b® — 2 +3ac® — 3a*c? — adc? +3bc?
—3abc® —a’bc? —3b%c? —ab*c? —b3c? + 2act +2bc* —ab
volz OF = (4.186)
3(a+b)(a—c)(b—c)a+c)(b+c)
which further yields, by Equation (4.36]),
3 (2ac* + 2bc? — ab + a?b* — a’c? — b*c® — abc® — 2
G(o)n = ( ) (4.187)
2(a+b)(a—c)(b—c)a+c)(b+c)
Next, for £ = 1, we obtain
a*b? —a*c?4-a®b —abc 4 a?bt — a?b*ct4-6a%b* —6a3c® —ab
) —ab®c® —6abc® +4act +4ac® — b2 — 6b*c? +4bc* +4bc* — 2
Ly (0)n= . (4.188)

3(a+b)(a—c)(b—c)a+c)(b+c)

As Lg?’)(a), vgm(a N O3) and v£4)(0' N O3) are rather long, we are not listing them
here. Putting everything together and integrating over a, b, ¢, we get

@ 7258807172 12023076361
_ _ 41
vs (s =~ o160~ 1548288000 " (4.189)

388096633880597%  830108924076197

(0. — _ 4.190
U (s = =5 839576000 206644338400000° (4.190)
(5)( ) 247063831934862574817%  6614474327656066615169519 (4.191)
v = — . .
3 s/ 22106368864419840000 599658272376068505600000
Configuration 111
By Equation (4.29)), a,b, ¢ must satisfy
c>1, —c<l1l, a>1, —-a<l, b>1 -b<l, (4.192)
or with < and > flipped,
c<l, —c¢>1, a<l, —-a>1 b<1l, -b>1, (4.193)
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4.4. Three dimensions

so (R*\O3)11=((—o00,—1) U (1,00))>. By symmetry, we may integrate only over
half-domain (R®\ 0%)}; = (1,00)3. Next, OF U O3, where, by simultaneously
solving Equations (4.30)) and (4.169)) and by linear programming,

Of = conv ([1,0,0],[0, —1,0], 0,0, —1], [0, 352, ¥11, [0, £, =2,

(52 255,00, (255, 15 00, [555, 0, 282, (22,0, 132)),

(4.194)

which means ny; = 6. Using Mathematica,

2 (3ab+a*b+ab*+3ac+a*c+3bc+2abc+b*c+ac? +bc* — 1)
3a+b)(at )b+

from which, by Equation (4.36)),

voly OF — (4.195)

3(ab+ ac+bc — 1)

Gl(o)m = 2@+ b)(at)b+c)

(4.196)

Next, for k =1 and k = 3, we obtained

6ab — 1 + a3b + a?b? + ab® + 6ac + a®c + 6bc
+2a%be + 2ab%c + b3c + a®c? + 2abc? + b2 + ac® + b3

3(a+b)(a+ )b+ c)

} (4.197)

L:(sl)(U)IH =

and

3ab—1—6a%+20a3b—6b>—18a%b? — 6a*b* +20ab?
+18a3b® —6a2b* — 21a*b* +3a°b® 4 3ac+20a3c+3bc
—12a%bc—12a*be—12ab*c+18a®b*c+20b3c+18a%b3c
—48a*b3c—12ab*c—48a®b*c+15a°b*c+15a*b’c— 62
—18a?c? —6a’c® —12abc® +18a>bc® — 18b*c? — 6b c?
—54a*b??+18ab?c? —84a>b3c* +30a°b3 >+ 108a%b? 2
—54ab ?+54a*b > +30a>b° > +20ac3 +18a3 P
+20bc3 +18a%bc® — 48abe +18ab*c — 84a3b?c3
+30a°b*c +18b% 3 — 84a2b3c® 4+ 78a*b3c® — 48ab* 3
+78ab4c®+30a%b°c® —6a%ct —21a*c* — 12abc?
—48abct4+15a°bc* —21b*c* — 54a?b*ct +54ab*ct
+30°® — 602t 4+ T8ab3 ¢ +-54ab ¢t +15ab’ ¢t +-3a° @
—48ab3c*4+15a*bc® 4+ 30a3b%c® +30a2b3c® + 15ab* @
288(ab + ac + be—1)>°

(o N 0y) = . (4.198)

As ng)(a) and 1154)(0' NOs) are rather long, we are not listing them here. Putting
everything together and integrating over a, b, c and multiplying by the factor of
two (as (1,00)? is only a half-domain of integration),

376079789 272172

D (O — _ 4.199
vs (Os)m = Sraii000 ~ 4096 (4.199)
2
)00y _ 192252545541087 90646167 1900
vs” (Os)m 964342579200000 1146880000’ (4.200)
3995047725382306264583 419523372772
087 (Os)m = ° (4.201)

9994304539601141760000 103582531584
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Chapter 4. Odd Volumetric Moments

Contribution from all configurations

By Equation ((C.118),
vP(05) = 3 wevd?(05)0 = 608 (05)1 41205 (0g) 1 +405 (Os)1r, (4.202)
CeC(03)

from which, immediately

2
(0, = 12297 6619 o 113637411 4.203
vs'(Os) = 3g3e10 ~ 184320 ~ ) G20
162835570972 81932629
®(0q) = _ ~ 0.0000152505 4.204
vg"(Os) 19864965120000 103219200000 » )
(5) _ 635636454439972 205491225433 -
vs (O3) = 1611922723697280000 - 5287025(1)49600000 ~5.215748 - 107, (4.205)

4.4.3 Cube odd volumetric moments

We use the following standard representation of the unit cube (vol; Cs = 1),
O =conv([0,0,0],[1,0,0,[0, 1,0],0,0, 1,0, 1, 1],[1, 0, 1],[1, 1,0],[1, 1, 1]). (4.206)

According to its genealogy C(C3), it has five configurations as shown in Figure

below (or in Appendix [D]). Table shows specifically which sets S

of vertices in which configurations are separated by a cutting plane o in our
standard representation of C3 above.

Cl 1 i m | v V 11 v
[0,0,0]][0,0,0]
T 0,0,1] [0’1’0] [0,1,0]] [0, 1,0]
" 7 10,0,1] | [1,1,0] 100 Y
we| 8 12 24 4 3 @
Table 4.13: Configurations C(C3) in the stan-
dard representation of Cj. Figure 4.12: Cube genealogy
By Theorem and for any C € C(Cs),
k 2 k k
o (Ca)e = 55 /<\> o (o N Cs) M (0)i (0)As(dm),  (4.207)
where
voly(o N Cs) (k) / T k
)= ——""—"H-, Ly (o) = x — 11" A3(dx). 4.208
C3( ) ||’I7HV01303 3 ( ) s |77 ‘ 3( ) ( )

We can describe the relation x = (z,y,2)" € C3 by the following set of three
linear inequalities

0<x<l, 0<y<l, 0<z<l1. (4.209)
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4.4. Three dimensions

Configurations I — V

For Configuration I, by Equation (4.29)), a, b, c must satisfy
a>1, b>1, a+b>1 a+c>1, b+c>1, a+b+c>1, (4.210)

so (R*\C5)1 = (1,00)3. Similarly for other configurations. Since the analysis is

similar as in the case of P3 being a regular octahedron O3, we only list the results
from all configurations, see Table 4.14}

(1) (3) (5)
c|  o(Cs)o v (C)e v (Cs)e
I 391 8717 932274811
82944000 1800338400000 50575353828920524800
H 34309 648789871 36816619074923
186624000 3089380694400000 51228618815877414912000
HI 319172 792503149 18202972 113292736592927 21303361972 47144185844633987

207360 5225472000 195955200  12357522777600000 634894848000  14235866239795200000

v 198785357 _ T7lm? 22659798780677 _ 91015772  26487208076498306317 2781443881772
217728000 768 411917425920000 163296000 1921073205595403059200  19910302433280

AV 7 29 22473091
5184 21870000 6271745266483200

Table 4.14: Sections integrals in various configurations C(C3).

Contribution from all configurations

Summing up the contributions from all configurations with appropriate weights,

Uék)(03> = Z we vék)(C’g)c = 8v§k)(03)1 + 12v§k)(C3)H
CeC(Cs) (4.211)
+ 24U§k)(03)[11 + 4U§k)<03)1\/ -+ 3U§k)(03)v,

from which immediately

2
D) = ST ™ 0.01384277574 4.212
vs"(Cs) = 16000 ~ 2160 ~ ) @A)
2
G (o) — A8 0000157883 4.213
vs"(Cs) = 1505082600000 ~ 3402000 ~ - ’ 21

(5) __ 3067491733517 2225580641145943786613 ~_ -7
U (C3> T 124439390208000 91479676456923955200000 3.673225 - 107" (4214)

We find it striking that even though an octahedron has fewer number of con-
figurations than a cube, the value Uél)(C;;) has been obtained by Zinani [78] by
carrying out the contributions from all configurations while the octahedron case
vél) (O3) remained unknown. Keep in mind that the configurations are the same in
our canonical approach as well as in the original method using the Efron section
formula.
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4.5 Four dimensions

4.5.1 Pentachoron odd volumetric moments

By a pentachoron, we mean a 4-simplex. The regular pentachoron is then 7. The
analysis is somewhat analogous to the three-dimensional case. Now, we obtain the
volumetric moments v!" (T}y) for odd k. First, since vik)(T4) is an affine invariant,

it must be the same as vflk)(Tzl), where

T, = conv([0,0,0,0], [L,0,0,0],0,1,0,0],[0,0,1,0],[0,0,0,1]) (4.215)

is the canonical pentachoron. By Proposition[276] we have voly Ty = 1/4! = 1/24.
Let n = (a,b,c,d)" be the Cartesian parametrisation of o € A(4,3) such that
x € 0 & n'x =1 We have |n|| = Va®+ b2+ 2 + d2. Based on symmetries
G(Ty), there are two realisable configurations we need to consider. Thanks to
affine invariancy, we can again consider instead the two C(T,) configurations (see

Table below).

T, I i
0,0,0,0

S | [0,0,0,0] %0 00 1}

we 5 10

Table 4.15: Configurations C(Ty).

By Theorem and for any C € C(Ty),

6
(o =5 [ e Ty e @)A(am),  (4.216)
(RA\T)c
where
volz(e N'Ty) (k) / T k
== = — 11" My (dx). 4.21
C4(U) ||77|| vol, T, ) 2 (0’) T, |77 X | 4( X) ( 7)

Again, in order to distinguish between configurations, we write (4(o)c and Lflk) (o)c
instead of just ¢4(o) and 1" (a).

Configuration I

To ensure o separates only the point [0, 0, 0, 0], we get from Equation (4.29)), that
a>1,b>1,¢>1andd > 1. That means (R*\T$); = (1,00)? is our integration
domain in a, b, ¢, d. Denote

TZde = CODV([O, 0, 0, O], [%7 07 07 0]7 [07 %7 07 0]7 [07 07 %7 0]7 [07 O’ 0’ éD (4218)
The hyperplane o splits T, into disjoint union of two domains T, LU T, where
the one closer to the origin is precisely T; = T4°?. Therefore

oy = [ =" (b + [ ("%~ 1) ()

4

= [ 7%= DM@x) = (1= (1) [ (7%= 1)),

abed
TF4

(4.219)
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4.5. Four dimensions

for any k integer. These integrals are easy to compute. Mathematica Code

computes Lflk)(a)l for various values of k. Running the code for £ =1 and k = 3,

we obtain

) :1(2 b d—5) 4,220
Ly (o) 50 \apeg Ta 0Tt : (4.220)

840 \ abcd
—Tab+ ac® + acd — Tac + ad® — Tad + 21a + b> + b?c + bd
— 6% + bc? + bed — The + bd® — Tbd + 21b + & + *d — 72

1 2
LE;S)(U)I = ( +a® + a®b + a’c + a*d — 7a® + ab® + abe + abd
(4.221)

+cd2—7cd+2lc+d3—7d2+21d—35>.

Alternatively, at least for Lz(ll)(o' )1, we can use its geometric interpretation to

derive it by hand. Let M and M™ be the centerpoints of T, and T}, respectively.
Clearly, since M and M™ are both centerpoints of pentachora (4-simplices),

M =

11 1]
1575750 (4.222)
M+ :

U= Ot

5
Then, by Equation 1} and since voly Ty = ﬂ and vol, T} = STabod 4albc =5

LA(LI)(O')I =(n"M —1)voly Ty +2(1 — ’r]TMJr) voly T

= (etbtetd 1)L 4 2(1 - 4o = (a+tb+te+d—5+ 2). (4.223)
5 24 24abed — 120 abed

Denote T = conv([1/a,0,0,0],[0,1/b,0,0],[0,0,1/¢c,0],[0,0, 0,1/d]), then the
intersection of the hyperplane o with T, is precisely tetrahedron 7§, That is,

oNT, =T (4.224)

By Equation (4.15), the distance from 7§ to the origin is dist,(0) = 1/||n].
By base-height splitting,
VOl4 T4 VOlg(O’ N T4)

Anll

1
=vol, T} = 1 dist, (0) vols T = (4.225)

abc
from which we immediately get
volg(e N'Ty) 4

= = . 4.226
Galo)r |In|| voly Ty abed ( )

Finally, by scale affinity (we have n; = 4),
o (0 NTy) = ofF D (Tebedy = o H(Ty), (4.227)

which implies for k = 1,2, 3 that (see Table|3.1{or Tables and and Equation
(4.164)),

( ) 3 ( ) 733 797‘(2
AT AT
(T = J500° (o NTa) = 15600000 T 2424922500°
(4.228)
Do T 871
(e NTs) = 153180000°
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Putting everything into the integral in Equation (4.216f), we get when k = 1,

% 2+abcd(a+b+c+d—5) 1
)(T,) //// dadbdedd = ——. (4.229
T b dT acvac Tos7s (4229)

For k =3 and k = 5, we get

(3) _ 26061191 (5) _ 27909940019
Uy (T4>1 — 1600967592000000 ’ Uy (T4)1 — 504189521813376000000 ° (4.230)

Configuration 11

In this scenario, o separates two points [0,0,0,0] and [0,0,0,1] from T,. By
Equation , wegeta>1,b>1,¢>1andd < 1. We can split the condition
for d into to cases: either 0 < d < 1 or d < 0. In fact, both options give the
same factor since they are symmetrical as they correspond to two possibilities
where o hits \A([0, 0,0, 0],[0,0,0,1]). Therefore we only consider the integration
half-domain

(R*\ Tk = (1,00)* x (0,1) (4.231)

and in the end multiply the result twice. The hyperplane o intersects T4 at points

e, 1€y, Ty (already in Configuration I) and additionally at

= e +a(zer — ges) = [3=4,0,0, 5=4).

= Jes+ B(bes — hey) = 0. =4.0,122) (4232)

= zes+7(ces — ges) = [0,0, =5, &3],
where we denote o = a(al__;), B = M and v = C(Cl__;). Thus, the hyper-
plane o splits T, into disjoint union of two domains Tj U T, , where T be-
ing the one closer to the origin. Let T = conv(0, iel,%eg, %eg, §e4) and

T; = conv(eq, A, B, C, ée4), or explicitly

L)
T; = conv ([0,0,0,1],[14,0,0, 2541, |0, 34,0, 1% ;] 0,0,2=4,<2].[0,0,0,1]),
(4.234)

T$"! =conv ([0,0,0,0, [£,0,0,0], [0, 4,0,0],]0,0,%,0],[0,0,0,2]),  (4.233)

Then we can write T} = T\ T; = conv(0, e4, Ze;, 7€5, 2€3, A, B, C) and thus,
by inclusion/exclusion

e = [ ("= 1N(d0) — (1= (1) [ n"x = D)

F(1= (DN [T = 1)),

*

(4.235)

for any £ inte er These integrals are again easy to compute. Mathematica Code
computes 1,4 o)y for various values of k. Running the code for £ = 1 and
k=3, we obtaln

(1—d)°

(1) _ (M
e = Lo e T b= d)e—d)’ (4.236)
(o) =157 (o); Ay (4.237)

~420d(a —d)(b—d)(c — d)
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4.5. Four dimensions

where the functions L( )( )1 and Lf)(O')I are given by Equations and
(4.221)) from the configuration I. The calculation of Lflk)(a)n is again trivial when
k =1 and can be done by hand from its geometric interpretation. Scaling the
volume of T4 we get

vol, T = 2210-4), (4.238)

Let M, M2 M* and M* be the centerpoints of Ty, T%? T% and Tj, respec-
tively. Trivially, M = [1, 1,1, 1] and M = [L L L 5d] Since also M* is a
centerpoint of a 4-simplex, namely T} = conv(eyq, A, B, C,e4/d),

M*=les,+A+B+C+le)=[2 2 2 Hdaba) (4.239)

Since Ty = T4\ T%, we have voly T = vol, T3¢ —vol, T} and by mass balance,

M vol, T = M vol, T$**¢ — M* voly T;. (4.240)

Solving for M™ is left as an exercise for the reader, but it turns out one does not
need its knowledge to obtain Lfll)(a)ll. To see this, plugging the mass balance

directly into Equation (4.35) and by our previous relation for LS)(U)I, we get

(o) = (™™ = 1) voly Ty + 2(1 — M) vol, T}

_ Lil)( )= 2(1 — p M*) vol, T — e )(0')1 B %11;3)27 (4.241)
which matches Equation . By denoting
75t = conv (|£,0,0,0],[0,4,0,0], [0,0,0,] ,[0,0,0,4]), (4.242)
Ty =conv ([1=4,0,0,221) |0, =4, 0, b—d} 10,0,2=4,<=1],[0,0,0,4]) . (4.243)
we have for the intersection of o with Ty,
o N'Ty = T5"\ T; = conv ( [1,0,0,0],]0, 1,0,0],]0,0,0, ], i)
50,0, 255 ] [0, =5, 0.355 ] [0.0. =5 =1 ),
so n;; = 6. By scale affinity
o (e NT) = oI T = o TR (U7, (4.245)
where
Uy = conv([a, 0,0], [0, 5,0],[0,0,],[1,0,0], [0, 1,0], 0,0, 1])
is a canonical truncated tetradedron with the already introduced
a= a(al__dd), B = b(bl__j), y = C(cl__j). (4.246)

See Figure below for an illustration of [Ugﬁ 7 and its volumetric moments.
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Chapter 4. Odd Volumetric Moments

Figure 4.13: Mean section moments in the second C(T4) configuration

Since vol3 US”" = 3 (1 — apy), we can write in general,

k+5
o 6
o (U5 = <1_am> /<Ugm)4 AFH! dxodxdxodxs, (4.247)

We would like to find vékﬂ)(Ug‘ﬁ ") for odd k. This is, luckily, trivial, since we are
now integrating even powers of

1
Ag = ? |det(x1 — Xp | X9 — Xp | X3 — Xo)’ . (4248)

The calculation can be carried out in Mathematica using Code [7], which exploits
the symmetries and uses inclusion/exclusion. Running the code for £ = 1, we get

+10a2By—160° 375 +10a° 422 +10a° B1°
_4045ﬂ5”}/3—2a55474—4@55375+100&45575—2C¥465’}/4
—204454754‘904454’724‘204453’73—1004453724‘90445274
_100545273+90546272_4a3ﬁ575+2a36473_1005364/72
+2a35374+2a35372—10@35274—1—20&35273—4@357
W6B676—10a2ﬁ473+9a25472_100425374‘1‘2012B3’73
‘1‘904254’}/44‘904252’74—206252’}/—2CV25’}/2—40653’}’
208272 +10a %y —4aBv3+10apy? —16aBv+1
4000(1 — af~)8

DU = , (4.249)

Finally, by definition (alternatively by Equation (4.36))

VOlg(O’ N T4)

Galo)n = Tl voli Ty (1—apy)

V013 Tngc

Tl vols Ty — (1 —aBy)lo).  (4.250)

Before we proceed to evaluate the final integral, we make the following change
of variables (a, b, c,d) — (a, 8,7, d) via transformation Equations (4.246[), which
transform the integration half-domain into

(RN Tt laysra = (1=d, 1)° x (0, 1). (4.251)

Note that, if d is treated as a parameter, the variables a, b, c depend on «, 3,7
separately. As a consequence,

~d(1—d) da ~d(1—d)dg _di-d)dy
=G gar P a—d—pp  “TG—d—ap (4.252)
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4.5. Four dimensions

and thus one has for the of transformation of measure
d3(1 — d)3 dadfdydd
(I-d—-a)*)(1—=d—p)*(1—d—7)*

Putting everything into the integral in Equation (4.216|), we get when k£ = 1 and
after integrating out «, 3,7,

A(dn) = dadbdedd =

(4.253)

1
1406250

+10800d(1 — d)*pa In*(1 — d) + 216000(1 — d)*ps In*(1 — d))

Uz(Ll)(TZL)II =

1
/ (po + 180d(1 — d)*p: In(1 — d)
0

W (4259)

a2 Z

where

po = 32480784000 — 324807840000d + 1556229024000d>
— 4749037776000d% + 10279357367400d" — 16555175611200d°
+20253161331700d° — 18987688381900d" + 13740024940130d°
— 7798431753680d° + 3604300565845d" — 1440768739775d"! (4.255)
+ 518639866862d'* — 161581999478d" + 39317696413d"*
— 6685392751d" + 700753210d"¢ — 34837616d'"
+6112d"® — 32724d" 4 784d*°,

p1 = 541346400 — 4060098000d + 14794437000d* — 34585687500d°
+56747312360d* —67139592080d° +57686267770d° —36408101115d"
+ 17574730626d° — 7114914681d° + 2659305113d"° — 8883303654
+ 229856455d'% — 40385468d™ + 4279933d** — 2132244,

(4.256)

po = 9022440 —72179520d+279656230d> —694452010d° +1216036193d*
— 1552509188d° + 1460599749d° — 1021377960d" + 544097150d°
— 234903968d" + 902924984 — 32050399d"" + 9632345
— 2161105d" + 327799d™* — 30254d"° + 13124,

(4.257)

p3 = 150374 — 1278179d + 5249902d* — 13810685d° + 25712115d*
—35209551d° +35968805d° —27633760d" +16221440d° — 7575685d°
+ 3035423d"° — 1117957d" + 369741d'? — 99030d"® + 19440d**
— 2588d" + 211d'6 — 84",

(4.258)

The last d integration can be carried out by Mathematica (or tediously using
Beta function derivatives). We get

2
DT — 89 2173w 4,959
v (Tai = 376000 ~ 520260750° (4.259)
For higher values of k, the integration possesses similar difficulty, we got
(3) _ 3947568673 6306588172
vs (T4)11 = 555i8379600000000 T+ 39669996140775000
(4.260)

v(5)(’]I‘) _ 700536944899 _ 126270180337172
4 \24JI1 = 7058653305387264000000  35570432728713733250400000 °
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Chapter 4. Odd Volumetric Moments

Contribution from all configurations

By Equation ((C.118) and by affine invariancy,

(M) = S werl (Ty)e = 508 (Ta)r + 1008 (T, (4.261)
CeC(Ty)

from which immediately

1) 97 2173712
Ty) = — ~ (0.0031803708487 4.262
vi (Ta) = 57600 ~ 52026975 ’ (4.262)
2
3) () — 1955399 630658817 ~ 50023 - 10~ 4.963
vs" (Ta) 3403417500000 * 39669996140775000 ’ ) (25
(5) _ 2 —~ -
Uy <T4) - 9803255?1126153?}250000 - 35570%3%2#??&?2%5040000 ~1.26573 - 107" (4'264)

Monte-Carlo simulation shows that the value vil)(T4> fits withing the 95% confi-
dence interval (0.00318034, 0.00318043) obtained from 4 x 10! trials of randomly
generated 4-simplices in Ty (We wrote and run Fortran program simplex.f90
for that purpose, see Attachements).

Moreover, by Buchta’s relation (Equation (5.36))), we get the value of mean 4-
volume of a convex hull of 6 points in the unit pentachoron as

(1) (1) 97 21737’(’2
T)) = T, = _ ~ 0.00954111. 42
vs ' (Ta) = 3va"(Th) = Goo6 ~ 7340305 ~ 0009 (4.265)

4.5.2 Hexadecachoron first volumetric moment

The hezxadecachoron, 16-cell or the 4-cross-polytope are alternative names of 4-
orthoplex Oy, a polychoron with standard representation with voly Oy = 2/3,

O, = conv([1,0,0,0],[0,1,0,0][0,0,1,0],[0,0,0, 1],

4.266
—-1,0,0,0],[0,-1,0,0],[0,0,—1,0],[0,0,0,—1]). ( )

The symmetry group G(O,) is isomorphic to Coxeter group By of order |B,| = 384.
We can describe the symmetry group using its four generators (one reflection, two
rotations and one double rotation) of permutations acting on vertices indexed as
in Equation ([£.266). In cycle notation (excluding fixed points), we have

G(O4) = ((48), (2367), (1256), (1256), (3478)) < S, (4.267)

where (-) denotes the algebraic closure and < the relation of being a subgroup.
From this group, we can generate 14 configurations, out of which only 4 are
realisable and section equivalent. These consist the genealogy C(Cy). Table
shows specifically which sets S of vertices in which configurations are separated
by a cutting plane o in our standard representation of O, in Equation (4.266).
By similar treatment as in the case of O3, we can easily find inequalities which
describe O and thus o N Of. We only list the section integrals obtained from
all configurations, see Table [4.17]

265



4.5. Four dimensions

C I 11 111 IV
1.0,0,0]

0,1,0,0] | L%0
0,0,1,0 | &L [0.1.0.0]
S I:O, O, 0’ 1] [07 0’ 07 1] |t87 8’ g)’ ?} [0’ 07 17 O]
P [0,0,0,1]

wWq 8 24 32 16

ng 6 10 12 0

Table 4.16: Configurations C(O4) in the standard representation of Oy.

e N\
(1)
C /04 (O4)C
I 2400441939¢(3)  71765769458062825751339 + 17305061231021972  127327345788535137 In 2
320000 8136689713152000000 3547315200000 130068224000000
11577920188509587165389181  13611484420925379¢(3)
II 2072472081039360000000 2928808960000
+69987566888072781151w2 7186630053372 In 2
1461358518681600000 1040060000
111 (not yet derived)
v (not yet derived)

Table 4.17: Sections integrals in various configurations C(Oy).

By Equation (C.118)), considering the contributions from all configurations,

Uik) <O4) :Z (e} Uik) <O4)C = 8U4(1k) <O4)1+24U4(1k) <O4)H+32U4(1k) (04)111 + 161)4(1@ (04)1\/
CeC(0y)
(4.268)
from which immediately for k =1,

(00 = XXX
~ XXX,

(4.269)

Remark 227. As of now, we have not found the expressions for vfll)(04)c for
configurations C' € {III[,IV}, we have succeeded in writing them as explicit
double integrals, but the shear scope of them have not enabled us to calculate
using our own computers. However, we think this might be doable and will
be part of our future papers. We have also attempted to find higher odd
moments, however, the section integrals became too complicated. The third
and the fifth moment are in principle derivable but it would be extraordinarily
time consuming. We found at least in the first configuration

v£3)(04)1 __ 8928188080691679¢(3) 13757679936170496961418065762637875149511

7867596800000 10097679414187456780038045696000000000 (4 270)
+ 42078388119943324628386972  138200770459501589499358193329 In 2 ’
1357358340088791040000000 20380735476433197465600000000
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Chapter 4. Odd Volumetric Moments

4.5.3 Tesseract odd volumetric moments

By tesseract, we mean Cj (4-cube). The standard representation of the unit
tesseract with voly Cy = 1 is

Cy = conv(]0,0,0,0],[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,1,0,0],
[1,0,1,0],1,0,0,1],[0,1,1,0],0,1,0,1],[0,0,1,1] [1,1,1,0], (4.271)
1,1,0,1),[1,0,1,1],[0,1,1,1],[1,1, 1, 1]).

The symmetry group G(C}) is isomorphic to Coxeter group By of order |By| = 384.
We can describe the symmetry group using its four generators (one reflection, two
rotations and one double rotation) of permutations acting on vertices indexed as
in Equation ([£.271). In cycle notation, we have

G(Cy) = ((1,5),(2,8), (3,10), (4,11), (6, 13), (7,14), (9, 15), (12, 16)
(1,3,9,4),(2,6,12,7), (5,10, 15, 11), (8, 13, 16, 14),
(1,2,6,3),(4,7,12,9), (5,8,13,10)(11, 14, 16, 15),
(1,7,16,10), (2,12,15,5), (3,4, 14,13), (6,9, 11,8)) < Sy.

(4.272)

From this group, we can generate 402 configurations, out of which 14 are realisable
and section equivalent. These consist the genealogy C(Cy). Table shows
specifically which sets S of vertices in which configurations are separated by a
cutting plane o in our standard representation of Cy in Equation (4.271).

C I 11 111 1A Vv VI VII
[0707070] [0’070,0] [0,0,0,0] [0,0,0,0]
S {10,0,0,0] | > %% 11 0,0,07| % DU LSO 56 6,01 0, 1,0, 0]
[1,0,0,0) 0,1,0.0] | 0,10, 0]
B 00 58 L0 19 0,0,1] | [1,1,0,0]
wWe 16 32 96 24 64 16 192
nc 4 6 8 8 10 12 10
C VIII IX X XI XII XIII XIV
[0,0,0,0] | [0,0,0,0] | 0,0, 0,0]
0,0,0,0] | 0,0,0,0] | 1% 0:01110.0,0,011 " " 6" 1 130" 0. 0] | 1.0, 0, 0]
10,00 | [1.0.0.0] | 1% {10,001 5" 0"l 161 0.0] | [0.1.0, 0]
0.1.0.0] | [0.1.0,0] | & 100110 LO0L 5" "y "1 10707 1.0 | [0,0, 1, 0]
S 110.0.1,0]| [0,0.1,0] | 0O LOFIO0.L,0 ey 1" 01 10.0.0.1] | [0, 0,0, 1]
1.0.1.0 | [0.0.0.1] | &L LI 00,0111 " "y "l 171 0.0 | [0.1,1, 0]
(11,00 | [1.1,0,0] | 1O LOHLOLOM Gy "6 o i1 071 0] | [1.0.1,0]
[1,2,0,00) [1.1,0,0 1 13"4 "4 61 | 11.0.0.1] | [1.1.0,0]
we 96 96 64 192 4 32 64
ng 10 12 10 12 8 12 12

Table 4.18: Configurations C(Cjy) in the standard representation of Cj.
By similar treatment as in the case of Oy, we can easily find inequalities which

describe Cf and thus o N C}. We only list the section integrals obtained from all
configurations, see Table[d.19, Also, for brevity, we only enlist the first volumetric
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4.5. Four dimensions

moment although we found also 1)4 (C4) for all configurations. For example

573495143 It turns out the last configuration XIV is tricky

(04) 783231158555529707520000 °
to integrate. In the end, one has to use the identity involving trilogarithms found

(rediscovered) by Shobhit Bhatnagar |11], the identity states that

3 2
1 1 In°3 = 13¢(3
Lis (_) 2L () B N 1O} (4.273)
3 6 6 6
4 N
(1)
C Uy (04)0
I 65598041
3386742443900928000000
I 102608713871
3292649334374400000
III 256081766015430731 630219172
345728180109312000000 83980800000
7383631
IV 1862358220800
Vv 74369¢(3)  15427192177655450593 + 3131880772 4+ 482072643302107In 2
92160000 2304854534062080000000 ' 149299200000 91462481510400000
VI | 2007170664939114317In2 1663466629¢(3)  210954160717218293347879  133847n>
38109367296000000 622080000 6338349968670720000000 124416000
VII 388451¢(3) + 596684331816745397 + 435489772 23489337302150729 In 2
29859840 29933175767040000000 ' 1343692800000 457312407552000000
VIII 188122446351063331 117068372 4 221036483033 In 2
10975497781248000000 671846400 ' 2494431313920000
[X | 373791108546507725849549 __6181971674(3)<+_ 7423897172  13334353102187236191n 2
38030099812024320000000 1866240000 671846400000 97995515904000000
X 2274497329¢(3)  21609245552433862937  1523317655658026279 In 2
69120000 4390199112499200000 30487493836800000
XI 24570427¢(3)  157440595529232693016981 + 4720592972 -+ 3002774140883958709 In 2
55296000 76060199624048640000000 24883200000 1371937222656000000
17
X 311040
XTI1 746581063847040871 64134620972
6602447884032000000 55987200000
XTIV | 10605967272168022814803 41203109797¢(3) 1219315372 - 4645960252158518597 In 2
1152427267031040000000 622080000 27993600000 45731240755200000
Table 4.19: Sections integrals in various configurations C(Cy).

By Equation ((C.118)), considering the contributions from all configurations,

Z U)CU4 (04)(;—161)4 (04) +321J4 <C4)H+96U4 (04)111

CeC(Cy)
+ 241}4(1]6)(04)1\/ -+ 641)4 (04)\/' + 16U4 (04)\/1 + 192U4 <O4)VII (4274)

+ 960 (CM)VH14—96U4 (Ch)p<%-64v4 (Ch)x-+»19204 (Cy)xa
+ 41}4 (04))(11 + 32U4 (04))(111 + 64?}4 (04))(1\/,

from which immediately
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v(l)(C )= 31874628962521753237 2600372 4 6102082 _ 536557¢(3)
4 4) ~ 1058357013719040000000 1399680000 1913625 2592000 (4.275)
~ (0.0021295294356445791857,
v(?’)(C )_ 19330626155629115959 5227689772 4+ 100045402391n2 6155594561 (3)
4 4) — 1682723192209145856000000  216801070940160000 ' 77977156950000  73741860864000

~ 7.5157-1078,
(4.276)

4.6 Higher dimensions

4.6.1 Hexateron odd volumetric moments

By the hezateron, we mean T5 (5-simplex). By affine invariancy, we may consider
Ts = conv(0, e, €2, €3, €4, €5) (4.277)

with configurations and C(75) weights given by Table [4.20]

C I II 11
[0,0,0,0,0]
s | 000 | DO0O | g0
T [0,0,0,0,1]

wc 6 15 10

Table 4.20: Configurations C(T5) in a local representation with C(75) weights.

By Theorem and for any C € C(T5),

24
Do =2 [l @nT) E o esldn),  (4.278)
o J(RS\TZ)c
where
voly(o N'T;) (k) / T k
== % = — 1/FAs(dx). 4.2
C5(0-) HnHVOlE) T5 ) L (U) T |T’ X | 5( X) ( 79)

Configurations I and II are analogous to the first two configurations of T3 and
T4, we have n; = 5 and nyy = 2n; — 2 = 8 (truncated 4-simplex). The last
configuration III, for which we have ny;; = 9, has no analogue in lower dimen-

sions. However, by similar procedure as before, we obtained contributions from
all configurations, see Table 4.21]
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(1)
C | o (T5)e
I _ 5
2722734
II 12732911 13942348737 + 162274
653456160000  3353951824423200 ' 2707566616755
III 146034151 354668488172 + 490474
3920736960000 3353951824423200 386795230965
(3)
I 9097367105
359796813461446459392
11 25351944803581 + 20404638348759049372 + 1358343557374
245954852952160665600000 98081004264127779106308096000 17098021963979168381769600
11 173514729599507 . 1202733881907826972 + 119114359691374
874506143829904588800000 9341048025155026581553152000 11398681309319445587846400

Table 4.21: Sections integrals in various configurations C(T5).

As a consequence, summing up the contributions from all configurations and by
affine invariancy,

() = 3 we vt (Ts)e = 608 (Ts)1 + 1508 (Ts )i + 1008 (Ts ), (4.280)
CeC(Ts)

from which immediately

W 2207 2441297 735227
= - - ~ 0.00052308272, (4.281
v (T5) = 3365020 ~ 14522720760 | 541513323351 (4.281)
U(3) (T ) _ 362173019 + 10217818563857 2 + 60236351624374
5 5) — 98363448852480000 557436796045056999751680 569934065465972279392320

~ 3.96585 - 1077,
(4.282)

Remark 228. Higher volumetric moments are difficult to compute. For the
fifth moment, we would need v§5)(T5)HI. However, even vé3) (T5)mr was al-
ready extremely difficult to compute (the file we worked with exceeded 1GB
of storage memory). The intricacy of the third configuration stems partly
from its asymmetry and from lacking the decoupling substitution (a — «,b —
B,c — ~,d — §), which we found in the second configuration of 7, (and which
generalises as well into higher dimensions) and which enables us to integrate
out a, 3,7,0 immediately. We have not attempted to obtain the fifth mo-
ment, such calculation is surely within our grasp but the shear monstrosity of

vflﬁ)(a N Ts) in Configuration III discourages us to finish the computation.

4.6.2 Heptapeton first volumetric moment
By the heptapeton, we mean Tg (6-simplex). By affine invariancy, we may consider
Tﬁ = COHV(O,81,82,63,64,85,86) (4283)

with configurations and C(7s) weights given by Table [4.22]
By Theorem and for any C € C(Ty),

120
) (Tg)e = — / o (6 N Te) (o)) (@) Ae(dm),  (4.284)
6% JRO\T)G
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C I I1 111
0,0,0,0,0,0]
S | 0.0,0,0,0,0 {88888% 0,0,0,0,0,1]
T [0,0,0,0,1,0]

we 7 21 35

Table 4.22: Configurations C(Tg) in a local representation with C(7s) weights.

where

. V015(0' N T()) (k)

Go(o) W (o) = /T T 1), (4.285)

~ |In|[ volg Ts ’

Configurations I and II are analogous to the first two configurations of Tj, T,
and Ts, we have n; = 6 and ny; = 2n; — 2 = 10 (truncated 5-simplex). The last
configuration III is analogous to third configuration of T5. We have ny; = 12.
Thanks to this similarity, since we already know how to handle this configuration
in the T case, we obtained contributions of all T configurations, see Table [4.23]

(1)
I 45
963780608
1I 3826171 . 1256036200432972 66073268552867
4182119424000 443562265371500795520 85176183364279644451815
111 71529389 _ 46255764482787197> + 4324029410597487*
24395696640000 33267169902862559664000 141960305607132740753025

Table 4.23: Sections integrals in various configurations C(Ts).

As a consequence, summing up the contributions from all configurations and by
affine invariancy,

’Uék) (T@) = Z w¢ Uék) (TG)C = 7Uék) (T6)1+21Uék) (T6)11+35’Uék) (Tﬁ)ln, (4286)
CeC(Ts)

from which immediately

(1)( ) 26609 339614660972 n 13183491528987*
v = -
6 V00T 917818720 621871356506400 | 12180206401298390455 (4.287)

~ 0.00007880487647920397.

We have not attempted to derive the higher moments. We leave this for our
readers and humbly add that this task will be extraordinarily difficult.

4.7 Unsolved problems

An obvious question is to deduce the volumetric moments vc(lk) (Ty) for d > 6.
When d = 7, there are four section equivalent configurations C' € {I,II, III,IV}

in C(T7). Evaluating the section integral vél)(T 7)1v for the fourth configuration
is beyond the capabilities of our computer. At least, since o N T, is always a
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T,_1 simplex in the first configuration of Ty, that is n; = d with wy =d + 1. By
Theorem [221

(d—1)!
o (T = o (1) i /Rd\K; ki1 (6), W) (g) Ag(dm) (4.288)

since @g’iﬁ”(Td,l) are constants. More specifically, for & = 1 by using Reed’s
formula, we found the following surprising relation

(1) (2) 2(d!
vy (Ty) = 2v, ' (Ty) = . 4.289
d ( d>I d ( d) (d—l—l)d( +2)d ( )
Based on the result we have seen so far for d-simplices, we conjecture
®) lr/2] o o
Upy1(Trg1) = Z Pq(as)ﬂ ’ (4.290)
s=0

for some rationals p® and r = 0,1,2,3, ... Since G(T}) is isomorphic to the sym-
metry group on d+ 1 elements (any permutation of vertices is a valid symmetry),

we have for the weights oc = (d‘gﬁ), where |S| is the number of vertices separated

by the section plane o in configuration C.

At time of submission of this thesis (May 30, 2025), we had some partial results

for vil)(04), where O, is the heradecachoron, the 4-dimensional analogy of an
octahedron, known also as 16-cell, 4-orthoplex or a 4-cross-polytope. However,
we were not able to solve all configurations.
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5. First-order Metric Moments

Let us clarify the name of this chapter. By order, we mean the power k in metric
moments v*)(P;). Hence, we are interested in v*)(P,;) for general n but with
k = 1 only. Moreover, we also restrict the dimension to be d = 2 or d = 3.
Hence, there is a natural overlap with Chapter 4] on Odd volumetric moments
v\ (Py). These two particular cases and the methods shown here are known and
well explored in literature.

5.1 Efron’s formulae

Let K3 C R? be a convex 3-body, from which we pick a random selection
X = (Xp,X;...,X,) of (n+ 1) random points uniformly and independently,
n > 3. The convex hull H,, = conv(X) of these points has volume vols(H,,).
When n < 3, we get E[vol3(H,)] = 0 trivially. When n = 3, Hj is almost
surely a tetrahedron. It turns out we can express the mean tetrahedron volume
E [vol3(H3)] by an integral over all possible cutting planes. By affine invariancy,

we have E [vols(Hs)] = Uél)(K:g) volz(K3) and

oK) = 2~ E [Ty (%) + Ty (2] (5.1)

where I (X) = vols K3/ vols K3 and T (X') = vols K5 / vols K3 are the volume
fractions of the two parts K3 Ul K3 into which K3 is divided by a cutting plane
o passing through the collection X' = (X, X}, X4) € K3. That is, Kj is split by
o = A(X') into disjoint union K3 U K; with vol3 K5 + voly K3 = volz K3. Note
that this result can be written out as an integral

1
W0 =5 - o [ HEPH PN, (6
where x’ = (x{, x5, x}) is the collection of points x; = (1, x5, 2%;) ", j € {1,2,3}
and A3(dx') = Ag(dx])As(dxh)A(dxb) = 17— daj; is the usual Lebesgue measure
on (R?)3. This formula is a special case of the more general Efron section
formula [26] as stated in Theorem 235 Similar result holds in dimension two
(Theorem [234)). In order to prove those theorems, let us recall some definitions

and show two intermediate results, the Efron vertex and facet identities.

5.1.1 Polytopes and their f-vector

First, we recall the following facts (cf. |71]) for any convex d-polytope Py C R?
(convex d-dimensional polytope).

Definition 229 (f-vector). We denote by fi(P;) the total number of k-faces
of Py, where fy(P;) stands for the number of its vertices, f;(P;) the number of
edges, f2(P,;) the number of faces and so on. The last value f;_1(P;) denotes

the number of facets of P;. Together, the values can be combined into a single
vector (fo(Py), fi(Py), ..., fa—1(Py)) called the f-vector of P,. Lastly, we denote
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5.1. Efron’s formulae

| by voly(P;) the volume (d-volume) of P, as usual.

The f-vector values fi(P;) are not independent and are connected via linear
relations. In d = 2, we have trivially for any P, that

fo(P2) = fi(P2). (5.3)

In d = 3, we have for any convex 3-polytope P3; the Euler polyhedral formula

Jo(P3) = fi(Ps) + fa(P3) = 2. (5.4)

In higher dimensions, there exists an analogue of the Euler’s polyhedral formula
called the Schléfli or the Euler-Poincaré formula [64]

d—1

> (=) fulPa) = 2(-1)" (5.5)

k=0

valid for any convex d-polytope P;. However, convex hulls H,, = conv(X) of
a random point collection X = (X,...,X,) form a more special class of d-
polytopes as their facets are just (d — 1)-simplices almost surely. Polytopes whose
facets are (d — 1)-simplices are called simplical polytopes. For any simplical d-
polytope Sy, by counting the total number of facets in two different ways,

2 fa-2(S4) = d fa-1(Sa). (5.6)

More generaly, the Dehn—Sommerville equations [66] form a complete set of
linear relations between the numbers of k-faces of S;. If we define f_1(S;) =
fa(Sq) = 1, they take the form

d—1 .
P (;ﬂ)fxsd) = (~1)" felSa)

valid for £ = —1,0,1,...,d — 2. The Schlafli formula is a special case when

k = —1. Dehn-Sommerville equations imply that the knowledge of all f;(.Sy) for
0 < < |d/2] uniquely determines all f;(Sy) with ¢ > [d/2] and vice versa.

5.1.2 Vertex identity

Proposition 230 (Extended Efron vertex identity). Let K4 C R? be a convex
d-body and let the points X;, j = 0,...,n, n > d be uniformly selected from
K,. Denote H,, their convex hull, volgH, its volume and fo(H,) its number
of vertices as usual. Then E (volgH, ;) = vfﬁ)k(Kd)(vold Kg)k with

v (Ky) =E kﬁl (1 - fom”)> . (5.7)

7 n—1t+1
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Chapter 5. First-order Metric Moments

Proof. Without the loss of generality, we assume that vol; K; = 1. Let us select
k indices from {0,1,2,3,...,n}, that is J C {0,1,2,3,...,n} with the number of
elements |J| = k is our set of indices. There are two ways how to express the
probability P that points X; with selected indices j € J do not form vertices of
H,,.

First, we can condition on the realisation of the remaining n+ 1 — k points. That
means, in Ky, we fix the position of those remaining n + 1 — k points X; with
indices j not in J. Then, the probability that those k given points with J indices
do not form vertices of Hl, is simply the probability that all those k points fall
into convex hull of the remaining n 4+ 1 — k points. Since they are independent,
that is

(volg Hl,,_1,)* (5.8)

By the law of total probability (or expectation), in order to get P, we must
average this over all conditions we have fixed, that is, over all realisations of
n + 1 — k points and thus we get

P =E (volgH,_;)* (5.9)

Second, by symmetry, since the points X; are indistinguishable, the probability
P that points with given k indices do not form vertices of H,, must be the same
as the probability ) that points with random k indices do not form vertices
(uniformly selected from the set {0,1,...,n}). We can compute this probability
() in two steps: First, we condition with respect to a given realisation of all X;
points according to the uniform distribution in K,. Let the convex hull of this
particular realisation of points have fo(H,) vertices (not random now). We then
select k£ points at random from this realisation, that is, we randomly select k
indices from {0, 1,2,...,n}. Number of points not being vertices now follow the
hypergeometric distribution. That is, probability () of randomly selected k points
(among those X;’s already realised) not being vertices is equal to the probability
of first point in not a vertex times the probability of the second point not being
a vertex (given 1st point not being a vertex already) and so on, i.e.

n+1 n n—1 n+2—k '

(5.10)

By the law of total probability, we must average over all realisations and thus

Mln—i+1— fo(H,)

=E 5.11
@ g) n—1it+1 ( )
Since P = @, we get the statement of the proposition. |
Remark 231. The special case of k£ =1 gives
E fo(H.,)
W (K =1-——"2"" 5.12
vnfl( d) n+1 ) ( )

or E fo(H,) = (n+1) (1 - Uﬁll_)l(Kd)), which is the original Efron vertex iden-
tity |26], the extended case shown here was first proven by Buchta [15], who
recently also provided a geometrical explanation for its dual version [16].
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5.1.3 Facet identity

Proposition 232 (Efron facet identity). Let K4 C RY be a convez body and
let X = (Xo,...,X,) be the collection of points X;, j = 0,...,n, n > d
uniformly selected from K4. Denote H,, their convexr hull and let fq—1(H,)
denote its number of facets as usual. Then

n+1

E fona@t) = ("

)E [T (X))~ 4+ T (X)) (5.13)

where Tf (X') = volg K /volg K4 and T (X') = voly K; /voly K4 are the d-

volume fractions of the two parts K] U K into which Ky is divided by a

hyperplane o = A(X') going through the collection X' = (X!, X}, ..., X)) of

random points X', j € {1,2,...,d} drawn from Kq uniformly and indepen-
dently.

Remark 233. We may write out the expectation into an integral to get the
following form of the proposition:

n+1 1
]E 7 Hn _ / 1—\+ N\n—d-+1 1’17 Nn—d+1\d /!
fa—1(Hy) ( d )(Volde)d Kg 4 (x) + Iy (x) Ag(dx),
(5.14)

! / / / . : : ! / /7 \T
where x' = (x},X,...,Xy) is the collection of points x} = (2f,,...,7y) ,

e {1,2,...,d} and \4(dx') = A\g(dx))Ng(dxD) - - - Ag(dx)) = [1¢._, da’. is the
J { 5 &5 ) } d 1 2 d ,5=0 iJ
usual Lebesgue measure on (R?)%.

Proof. Select a sub-collection X' C X of d points with a given set of fixed indices
and let o = A(X'). Cutting plane o divides body K, into two parts K U K
with d-volume fractions I'J (X’) and [; (X'). Fixing the position of the points in
collection X" in K, we see that H' = conv(X') is a facet of H, if and only if all
the remaining n + 1 — d points lie either on one side of & or on the other. Hence

P [H' is a facet of H, | X' fixed] = I}J (X/)*~4 4+ Iy (X)L (5.15)
By the law of total probability, averaging over all collections X', we get,
P [H' is a facet of H,] = E [I (X/)"*! 4+ I (X)"~*"], (5.16)

Let 1,4 be the set of subset of {0,1,...,n} with exactly d elements and for a
given 7 € I, 4 denote H, = conv(X,);e,, then

fa1(H,) = Z I1{H. is a facet of H,}. (5.17)

Te]n,d

Taking expectation, by linearity and by symmetry,

1
E fq_1(H,) = (n;il- )IP’ [H' is a facet of H,]. (5.18)
Together with Equation (5.16]), we get the statement of the proposition. |
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Chapter 5. First-order Metric Moments

5.1.4 Section formulae

We are now well equipped to show the Efron section formulae.

Two-dimensional

Theorem 234 (Efron 1965). Let Ky C R? be a conver 2-body, from which
we pick a collection X = (Xo,...,X,) of n + 1 random points uniformly
independently. Let voly(H,,) denote the area of the convex hull H,, = conv(X).
Then for all n = 2,3, ..., we have E [voly(H,,)] = v{V (K,) voly(Ks) with

n+1

v(Ky) =1— E [T (X)" + T; (X)), (5.19)
where Ty (X') = voly K/ voly Ky and Ty (X') = voly K5 / voly Ky are the area
fraction of the two parts KS UK into which Ko is divided by a line o = A(X')
going through the collection X' = (X1,X%) of random points X', j € {1,2}
drawn from Ky uniformly and independently.

- J

Proof. Since H,, is a polygon almost surely, we may write fo(H,) = fi(H,).
Taking expectation of both sides and by the Efron vertex and facet identities,

(n+1) (1o (Ky)) = (" ; 1>]E T (X! 4+ 15 (X)) (5.20)

Rearranging and replacing n by n + 1, we get the two-dimensional Efron section
formula. ]

Three-dimensional

{ 3\

Theorem 235 (Efron 1965). Let K3 C R? be a convexr 3-body, from which
we pick a collection X = (X, ..., X,) of n+1 random points uniformly inde-
pendently. Let vols(H,,) denote the volume of the convex hull H,, = conv(X).
Then for all n = 3,4, ..., we have E [vol3(H,,)] = vV (K3) vols(K3) with

n n(n+1)
n+2 12

v (K;) = E [T (X)" + Iy (X)), (5.21)
where T35 (X') = voly K5 / vols K3 and Ty (X') = volz K3 / volz K3 are the vol-
ume fractions of the two parts K3 U K3 into which Ks is divided by a plane
o = A(X') going through the collection X' = (X1, X%, X%) of random points
X%, € {1,2,3} drawn from K3 uniformly and independently.

\ J

Proof. In d = 3, almost surely, H,, = conv(X) is a simplical polyhedron whose
faces are triangles. That means, by Equation (5.6)),

2 fi(H,) = 3 fo(H,). (5.22)
Moreover, by Euler’s polyhedral formula (Equation (5.4))),
fo(Hy,) — fi(Hy,) + fo(H,) = 2. (5.23)
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5.1. Efron’s formulae

Combining these these two equations together, we get a linear relation

2fo(H,) — fo(H,) = 4. (5.24)
Taking expectation of both sides and by using the Efron vertex and facet identi-
ties,
n+ 1 + nn—2 — Nnn—2
2(n+1) (1 -0y (Ks)) — , |E X2+ T (X)" % =4, (5.25)

Rearranging and replacing n by n+ 1, we get the three-dimensional Efron section
formula. u

5.1.5 Cartesian reparametrisation

Let K4 C R? be a convex body and let X' = (X1, ..., X}) be a collection of points
X! drawn uniformly and independently from Kj. It is convenient to introduce
the gamma section functional

oK) = B [T ()42 4+ Ty () 4+2) (5.26)

where TJ (X') = volg K /voly K4 and T (X') = volg K /volg K4 are the d-
volume fractions of the two parts K LU K into which K} is divided by a hyper-
plane o = A(X’). Written as an integral, this is equivalent to

1
- K _ / F+ NnNn—d-+2 1—\— /n7d+2)\d d / 527
7( d) (VOlde)d Kj d(x) + d(x> d( X)? ( )
where x’ = (x,x},...,x}) is the collection of points x; = (x;,...,x)", j €

1,2,...,d} and M(dx') = A (X)) Ag(dxh) - - - A\g(dx)) = IIC-Z-: da!. is the usual
d 1 2 d 1,J=0 “ig
Lebesgue measure on (]Rd)d.

Note that 7,(Ky) is an affine functional. If K is some sufficiently symmetric
polytope P, we can further use genealogic decomposition (see Appendix |C))

Yn(Pa) = Z we Yn(Pa)c- (5.28)
cec(py)

Efron section formulae (Theorems and [235]) then can be written in the fol-
lowing compact form

n+1 n n(n+1
W) =1 - "), () = - M (). (5.09)

By Blaschke-Petkantschin formula (in the form of Corollary [296.2)) with k& = 0,

n(4) = (d=1)! volaF | s Je NG (@) () Do) ™))

where 7 is the Cartesian representation of o defined by the relation n'x = 1. In
this representation, we have K = {x € K4/m"x < 1} and (by Remark 297)

volg_1(o N Kq) i 6volde B d 8Fd (Kq)
Kd i ’

||’l’]||VOld Kd N VOld

Z j

Calo) = o, o,

(5.30)
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Chapter 5. First-order Metric Moments

Dimension two

When d = 2, the formula is extraordinarily simple. Since o N K is always a line
segment, we get vgl)(a N Ky) =1/3 and so

Ko) = fvob Ky [ Qo) (@) + T3 (@) ald)  (5.31)

Dimension three

When d = 3, we have

(K =2volyls [ o0 Ks)GH()(I (0)" 4T3 (0)" ) s(dm), (532

This integral can be always solved when the integrand is a rational function. This
happens when K35 = P; a convex polygon. Then, o N Pj is some convex polytope
P;. Since /Uél)(PQ) is known for any convex polytope (due to Buchta and Reitzner
[19]), in fact it is a rational function, we can plug this value into the integral
and then integrate everything out. We can use this formula to deduce the first
volume moment relatively easily regardless of the number of pomts in the convex
hull. This is the method that we originally used to derive v3 (Pg) for polyhedra

in Table [£.3]

5.1.6 Generalisations of Efron’s formula
Affentranger’s recurrence relations

It turns out that the first volume moments E [voly(H,)] = v{V(Ky) voly K4 in a

convex d-body K, for n > 3 are related via the formula (d = 3 and m > 1)

UL sz 2m +d
Uérr)z-i-d 1 (Kq) = Z Ué}?i—Zk—i-d(Kd)? (5.33)
= ko \2k—1
where By are the Bernoulli numbers (By = 1/6, By = —1/30, Bg = 1/42,
Bg = —1/30 and so on). Special cases up to m = 4 are listed below
o (Ks) = §og”) (K),
v (Ka) = 08" (Ks) — o3 (Ky), e
o) (B) = §0i) (Is) — 210" (K) + 6305 (KG),
vio (Ks) = Yoi) (Ks) — 500" () + 23108 (Ky) — 20 (Ky).

The identity is due to Affentranger [1] and Badertscher [3] and it is proven sim-
ply by comparing the coefficients of I'; (x) by expanding [; (x)" 42 as (1 —
[ (x))"~ %2 in the Efron section formula. Note that the same formula holds also
in two dimensions (put d = 2), from which we get up to m = 4
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v () = 20V (Ky),

vl (Kz) = 3u{" (K,) — 50 (Ky), (5.35)
v (K,) = 40§V (K) — 140V (K) + 280SM (K),

u§(K) = 5ol (K3) — 300 (1) + 126087 (K3) — 25508" (K3).

Buchta’s identity

However, Affentranger’s recurrence relation does not generalise to higher di-
mensions. That means, there is no recurrence formula relating E [voly(H,)] =
v (K4)voly K4 to each other when d > 4. The only exception where Affen-
tranger’s formula holds is the case m = 1 for which indeed for any d,

d+2
Uc(ll+)1(Kd) =5 Ufll)(Kd) (5.36)

as proven by Buchta in |14, p. 96] by a simple projection argument. Neither the
Efron section formula can be generalised to higher dimensions. This is because the
values fo(H,) and f;_;(H,) are no longer connected by a simple linear relation.
For example, when d = 4 and fy(H,,) = 6, then either fy(H,) = 8 or fo(H,) = 9.
The second option corresponds to H, being a cyclic polytope. It is thus believed
there is no analogue of Efron’s formula in higher dimensions [1], although partial
results connecting expected values of various polyhedral elements have been found
(see Cowan [22]).

Vertex-Facet polynomial

In d = 4, there are three ways how Hjy can look like. Either Hjy is
o a4-simplex, fo(H;) =5, fo(Hs) =5
« convex union of two 4-simplices sharing one facet, fo(Hs) = 6, f3(H;) =8
« or a cyclic polytope with fo(Hs) = 6, fo(Hs) = 9.

These three options can be combined into a single quadratic relation

12 fo(Hs) = 17 f3(Hs) — f3(Hs). (5.37)
More generally, we have the following observation:

Proposition 236. There is a polynomial pg : R — R of order |d/2] such that

Jfo(Hgt2) = pa(fa—1(Hgp2)). (5.38)

Proof. The proof is based on the classification of simplical polytopes with low
number of vertices (see [71, Chapter 15.]). A polytope P; with d + 2 vertices is
simplical if and only if it can be written as a direct sum of two lower-dimensional
simplices. That is, P; = T} & T;_r. There are L%J such polytopes since by
symmetry, k = 1,..., L%J Based on the property of direct sums, f; 1(P;) =
Jro-1(Tk) fa—k—1(Ty—r) = (k+ 1)(d — k + 1). Together with H,, being d-simplex
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Chapter 5. First-order Metric Moments

(k = 0), there are 1 + ng possible simplical polytopes for Hy,; and thus there
are 1+ L%J pairs of number of vertices and facets Hy,; can have. Therefore, in
general, we can construct a polynomial ps : R — R of order [d/2] as claimed by
the proposition. [ |

Example 237. For d = 2 upto d = 11, all possibilities are enlisted in Table [5.1]

(fo,fae) | k=0 k=1 k=2 k=3 k=4 k=5
d=2 (3,3)  (4,4)
d=3 (4,4)  (5,6)
d=4 (5,5)  (6,8)  (6,9)
d=5 (6,6)  (7,10) (7,12)
d=6 (7,7)  (8,12) (8,15)  (8,16)
d=17 (8,8)  (9,14) (9,18)  (9,20)
d=8 (9,9)  (10,16) (10,21) (10,24) (10,25)
d=9 |(10,10) (11,18) (11,24) (11,28) (11,30)
d=10 | (11,11) (12,20) (12,27) (12,32) (12,35) (12,36)
d=11 | (12,12) (13,22) (13,30) (13,36) (13,40) (13,42)

Table 5.1: Number of vertices and facets of Py =Hy11 =T} & Tyg—p-

From those values, we construct the following polynomials

pa(r) =, (5.39)
pa(z) = g +2, (5.40)
17 22
_ T A1
Pi(@) = 57— 5 (5:41)
11 2
Y SR 42
ps(e) =2+ 5o — 1, (5-42)
17¢ 4322 23
_ e 7 5.43
Pe(T) = 35"~ 350 T 360° (5-43)
223x 1322 3
_ 5 _ 5.44
() =24 o~ g0 T (5-44)
537x 274922 4323 xrt
_ _ _ 5.45
Ps(T) = e~ 0160 T 10080 ~ 20160” (5-45)
4192 10322 53 r?
—9 _ _ 4
Po(®) =2+ So0" = T1o0 T 2016 ~ 20320° (5.46)
@) 5281z 327432 . 29712% 2t . 25 (547
T) = — — :
P10 9520 226800 © 604800 12096 ' 1814400’
4307z 526722  2857x% 17t 25
—9 _ _ . 5.48
Pl®) =2+ S = 50400 T 907200 ~ 362880 T 3628800 (5-48)

o8 o g

Remark 238. The leading coefficient of py(z) is eEESE
- . 5 .
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5.2 Two dimensions

5.2.1 Triangle first-order metric moments

Let us re-derive the solution of the Silvester problem, that is to find the (volu)metric
moment Uél)(Tg), where T is a triangle. By symmetry, 7,,(7%) = 37, (7%)1, where
[ with w; = 3 is the only configuration in C(7%) separating one of its vertices.
By affinity, we may use Ty = conv([0,0],[1,0],[0,1]) instead of 7,. In order
o :n'x = ar+by = 1toseparate S = {[0, 0]}, we must have (R?\Ty); = (1, 00)?
to be the domain of integration of § = (a,b)" in configuration I. The area fraction
(closer to the origin) is given by I3 (o); = 1/(ab), so by Remark

a2 bt R = (5.49)

G(T)y = —

Hence,

1 [T 2\ 1\ 1\ 4H; 11
%(’JI‘Q)IZE/1 /1 (2)((3)" +(1-2%)") da dbzg(n+1)<+n+2), (5.50)

where H), = Zg‘f’:l 1/j is the k-th harmonic number, from which immediately

n+1 2H, .1
W(To) =1 — : 5.51
Yn(T2) " (5.51)

v(Ty) = o)(Ty) = 1 -

Those values are tabulated in Table 5.2

n |2 3 4 5 6 7 8 9 10
(1) 1 1 43 3 197 499 5471 589 82609
v (T2) 1260 12600 1260
n 126 180 10 560 1260 12600 1260 166320

Table 5.2: Convex hull area expectations vg)(Tg)

Silvester’s problem is the special case when n = 2, that is vél) (Ty) =1—-1Hs; = 1L.

5.2.2 Quadrilateral first area moment

We present a more elaborate example. In what follows, we find the first area
moment in a quadrilateral. The first area moment in a quadrilateral was essential
for Buchta and Reitzner (see their original 1992 paper [18]) to derive v:(,,l) (T3) since
the intersection of a section plane o with Tj is either a triangle (treated in the
previous section) or a quadrilateral — this is then plugged into three-dimensional
Efron’s section formula (Equation (5.32])). Although Buchta and Reitzner were
able to get the first area moment in a quadrilateral from the general formula for
v (P,) for P, being any polygon (which they described in [19]), they mentioned
that the special case of P, being a quadrilateral is already contained in a textbook
on geometric probability by Deltheil [23].
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Chapter 5. First-order Metric Moments

Any quadrilateral (apart from parallelograms) is affinely congruent to the canon-
ical truncated triangle defined as

U3 = conv([ev, 0], [0, 4], [0,1],[1,0]) (5.52)

with parameters «, 5 € (0,1). Note that a parallelogram can still be obtained
from Ugﬁ by the continuous limit a = § — 17. We have vol, Ugﬁ = %(1 — af).
This time, our goal will be to derive only the first area moment vél)(Ug‘B ). Let
1n = (a,b)" be the Cartesian parametrisation of the line o € A(2,1) such that
Xx € 0 & n'x =1. We have ||n|| = Va2 + b2 Table shows all possible
configurations C (Ugﬁ ) and their respective point selections S of vertices separated
by a cutting plane o which define those configurations.

CT I [ O I [IV] V YL
S | [ 0] | [8,0]| [0,1] | [1,0] [[(f’ (())]] E)’ [1)%
we 1 1 1 1 1 L

Table 5.3: Configurations C(U3”).

Each configuration is unique, thus we = 1 for any C. Although there are in gen-
eral no rigid symmetries of Ugﬁ , we are still able to jump between configurations
by using affine transformations. For any configuration C, we have for the gamma

section functional (Equation (/5.31])),

W)= G @ 4 Ty ), (559)
(R2\(U57)°)c

where I ()2 = voly(U5?) T/ vol, US? and Ty ()% = voly(U57) =/ vol, U are the
area fractions of domains (Uy”)* U (US”)~ = Us” onto which Us” is divided by
line . Furthermore, by definition of {;(o") and by Remark [297

(oo = 0@ N U3’) _ 00 (o) 00 (o)c.

= T2/ _ _q 5.54
[ vol U7 da o (5:54)

Here, C is only a subscript to distinguish between configurations and does not
imply any decomposition of (3(e) nor Ty (o).

Configuration I

Let us cut of the vertex [a,0]. By Equation (4.29)), we get the following set of
inequalities which ensure o separates only the point [«, 0],

ac < 1, bs > 1, a>1, b>1, (5.55)

hence, our a,b integration domain is (R2\ (U37)°); = (1,1/a) X gl/ﬁ, o0). The
line o splits US” into disjoint union of two domains (U3”)* L (US?)~, where

(U$7)* = conv <[a, 0], le 0] , [O;)(gﬁ_;;) 517(51 = ZZ)D , (5.56)
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5.2. Two dimensions

which has area equal to

B(1 — aa)?
(U7 = ———— 5.57
Vo 2( 2 ) 2&(()6—&04) ( )
from which we get for the area fraction (closer to the origin)
B(1 - an)?
I = : :
N (1 aB) (b3 —aa) (5.58)
Hence, by Equation ((5.54)),
o 28(1 — ax
GU) = el ) (5.59)

a(l —af)(bp — aa)’

Finally, for the gamma section functional,

oy [ 1/a 4(1 — aa)?’ﬁ?’
72(Uz")1 = /1/6/1 3ab(aa — bB)>(1 — afp)4 - (5.60)

(1 —aa)*B* + <a2oz + [ —abB(l — ap) — 2aaﬁ)2} da db.

Integrating out a and b, we get

(1—a)282 (18 — 1683 — 2008 + 982 — 2032 + 110243?)

aBy
72(02) = 54(1 — af)*

(5.61)

Configuration II

Note that Configuration II is obtained from Configuration I by reflection, that is
by replacing o with /5 and vice versa in Equation ({5.61)). We get

a?(1 — 3)2 (18 — 16a + 902 — 203 — 2025 + 11a%3?)
54(1 — ap)*

Y2 (Us ) = . (5.62)

Configuration 111

This configuration can be deduced from configuration II. Let x,v € R? and M €
R2%2 be a non-singular matrix. Consider an affine transformation x — Mx + v

with
1 -1 -1 1 1
M= ( 1 a/ﬂ) S s <_a> - (5:63)

Applying the transformation on US‘B , we get

US? — conv (|2, 0], |0, 29=L)} '10,1],[1,0]) , (5.64)
8 (1-6)

1-a? B(1—a)

which is another canonical truncated triangle Ugd with

_1-8 _a(l—p)
1o TG (5.65)

v
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Chapter 5. First-order Metric Moments

-
Since the vertex [0, 1] to be cut away by o maps to [0, gg:gﬂ under our affine

transformation, we realise that configuration III is equivalent to configuration II

with v, ¢ instead of «, 5. Replacing o — % and 8 — 28:5 ; in Equation ((5.62)),

(1—B)2(11 — 28 — 2003 + 98% — 16032 + 18a253?)
54(1 — aB)4

Although we should assume that o < § (otherwise v and § are negative), it turns

out the formula above is in fact valid for any «, 5 in [0, 1).

12(U5" ) = . (5.66)

Configuration IV

By symmetry, configuration IV is obtained from III by replacing a with § and
vice versa. Equation (5.66]) therefore yields
(1 —a)? (11 — 2a + 902 — 2003 — 16023 + 1822 3?)

(0571 = 54(1 = af)! . (5.67)

Configuration V

By Equation (4.29)), we get the following set of inequalities which ensure o sep-
arates points [1,0] and [0, 1],

ac < 1, bs < 1, a>1, b>1, (5.68)

from which we obtain the integration domain in (a,b) as
(R*\ (U5”)°)v = (1,1/a) x (1,1/). (5.69)
The plane o splits U3” into disjoint union of two domains (U57)*1LI(US?)~, where

(U3")~ = conv ([£,0], [0, 2] (0,1, [1,0) . (5.70)
which is again a canonical truncated triangle with area voly(US”)~ = s(1—24)
and the corresponding area fraction

vol,(U3)~  1-2%

5 (a)y = - , 5.71
2 () volb, USP  1—ap (5:71)

from which, by Equation (5.54)),

oy (o) Oy (o) 2
Glojy =a da * 0b ab(1 — af) (5:72)
Finally, for the gamma section functional, we get by Equation ({5.53])
/8 r1/a 4(2 — 2ab + a?b?® — 2abaf + a’b*a?3?)
u= [ da db.  (5.73
(0" 1N 3a°b° (1 — app)? ¢ (5:73)

Integrating out a and b, we get

11-18a%—183?+16a3+1632 —9a* — 954 — 165+ 360232

—16a383 + 11a4p* + 16048 + 16a8* — 18a23* — 180132
54(1 — afB)4

1 (U57)y = {

(5.74)
Note that 72(US?)y = 72(U5%)y as expected by symmetry.
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Configuration VI

Let x — Mx -+ v be the affine transformation from configuration III, that is with
M, v given by Equation (5.63). Again we have Uy’ — U3’ with
1—a’ Bl —a)
Therefore, configuration VI is equivalent to configuration V with ~, ¢ instead of
a, 3. Replacing o — % and § — 28:5; in Equation (5.74)),
24a + 2453 — 24a? — 24532 + 2002 + 2083 — 9a* — 98* — 7208
+106a25% — 720333 4 40283 + 4a3% — 20033 — 2052 + 20045
+2003* +4a3 B2 +4a2 32 — 240 2 — 2402 B +2401 33 42403 B4
54(1 — aB)4

(5.75)

’y:

Yo (U7 )y1 =

(5.76)
Note that again 75(U5” )y = 72(U5)vr as expected by symmetry.

Contribution from all configurations

By Equation (C.118)), we get after some simplifications,
11 2aB(1 —a)?(1 — B)?

aﬁ _ QIB _
72(U3") = ZQB we Y2(U37)c 12 + 27— af)t : (5.77)
Cec(Us”)

which yields by Equation (5.29) with n = 2 and for any «, 8 € [0, 1),

SOF) =1 - Spug) - L - PL_ U

2 T 12 9(1-—ap)t (5.78)

Remark 239. Note that as o = § = 0, we get Silvester’s vgl)(Tg) = 1/12 and
when o = 5 — 17, we get ’Uél)(02> = 11/144 as expected.

5.2.3 Half-disk first-order metric moments

What is the value of ’Uél)(]Dg) where Dy is the half-disk? Henze proposed me this
problem while I was at a conference in Bad Herrenbald. More concretely, let

Dy = {(z,9)" €R*|2? +> < 1Ay >0} (5.79)

and 7 = (a,b)" be the Cartesian parametrization of cutting plane o, that is
x = (2,9)" € 0 & n'x = ax + by = 1. Although the top part of the boundary
of Dy is smooth, we may still recognize two distinct configurations. See Figure
1] below.

Figure 5.1: Half-disk configurations C(D2)
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Chapter 5. First-order Metric Moments

Configuration I

Consider the following change of variables (a,b) — (¢, «), where a € [0,7) is
the angle of (left) incidence of o and 1 is the angle of a circular sector on Dy
intersected by o (see Figure on the left). By symmetry (symmetry factor of
2), we assume that o € [0, %) and thus 0 < ) < m — 2a. Point § (the closest
point of o to the origin) can be expressed as

€ = (cos Lsina, cos ¥ cosa)’, (5.80)
which follows from the slope angle being minus tana and from [|€]| = cos % or

equivalently 1/[|n|| = cos¥. Since n = &/|€||* and n = (a,b)", we get the
following transformation rules

sin «v COS «
oS % Cos 3

with the Lebesgue measure transforming as (by calculating the Jacobian)

; TZ’
No(dn) = da db = 2

; cos3 - dady. (5.82)

By simple geometry, we get for the length of intersection

voli (o N Dy) = 24/1— €2 = 2sin & (5.83)

and thus L ( Dy 4 2sin
voli (o M 1Dy . ¥ sin
— S = , 5.84
Go(o) TnlvolDy — 7 sin ¥ cos ¥ - (5.84)
For the area of the circular segment D5 (above o), we have
vol, Dy = ¥ — Lsiny (5.85)
and thus, since voly Dy = 7/2,
_ VOIQ DQ_ 1 .
r = —=—(¢— . 5.86
(o) = T = (0 —siny) (5.56)
By Equation (5.31)) (including the symmetry factor 2),
Vn (Dgy / /2 sin* —siny)" + (7 — ¢ +siny)") dodep. (5.87)
37r2+n

Integrating out o and writing sin* £ = (1 — cos))?/4, we get

4

Yn(D2)1 = 3a2tn

| (r =) (1= cos (@ —sin )"+ (r— psin )" )dp. (5.58)

This integral is elementary for a given n. Especially, when n = 2, we get

2 N 2816 131
3 8lxt 1872

’}/Q(Dg)l (589)
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Configuration 11

Consider another change of variables (a,b) — (1, s), where 1 is again the angle
of the circular sector and s = 1/a is the x-intercept of o (see Figure on the
right). Our integration domain in those variables is 0 < ¢ < w and —1 < s < 1.
By symmetry, we can restrict s € (0, ) (symmetry factor 2). By simple geometry,

vol, Dy = £ — 2siny, (5.90)

from which D
N 1
T3 (0) = 2222 = (3 — ssing). (5.91)

V012 ]DQ N ™

By the rule of cosines,

voly (o NDy) = \/1 + s2 — 2scos . (5.92)

Equating the area of triangle [0, 0], [0, s], [cos 1, sin 9] in two ways, we get for the
distance of the closest point & on o from the origin,

ssin
= 5.93
€l V1+s2—2scost (5.93)
and thus 1 ( D)) 2ssind
voli (o M 1Dy S sin
Glo) = g tr ) 22 (5.99)
Since [|€|| = 1/|In|| = 1/va? + b and a = 1/s, we get, solving for b,
5 — cos
b= —— 5.95
ssiny (5.95)
from which (by calculating the Jacobian)
1—scosy

By Equation ({5.31]), with the symmetry factor 2,

Yn(D2)11 = 37§+n /07r /01 sinty(1—scost)((—ssiny)"+ (r—1+ssin lp)")((isd;b).
5.9

This integral is again elementary for a given n. Especially, when n = 2, we get

16 1664
Dopp=-—-——. 5.98
Yo (D2 )11 372 Slnd ( )
Contribution from all configurations
Adding up the contributions from the two configurations,
n+1 n+1
o (Dy) = 1 — 5 tn(D2) =1~ (Y (D2)1 + Ya(D2)ur) - (5.99)

When n = 2, we get the answer for Henze’s question to be
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64
= = ~0.0765125. 1
o3~ g1~ 00765125 (5.100)

The first-order metric moments with higher n are tabulated in Table below.

no |2 | 3 | 4 | 5
(1) 35 64 | 35 _ 128 | 175 _ 69103 , 204800 | 204800 _ 53743 , 175
Un (DQ) 1272 34 672 34 1872 43274 + 2436 8176 14474 + 1272
n 6 | 7

U(l) (DQ) 245 _ 322441 + 954438853 _ 24090300416

245 _ 290185 + 6296189677 _ 96361201664
1272 43274 8640076 45562578

9m2 2167 1944007 45562578

Table 5.4: Convex hull area expectations /Uygl)(]D)Q)

Note that only the values of v("(ID,) with even n are independent. Values with
odd n can be deduces from other even values by Affentranger’s relations (Equation
(5.35)).

5.3 Three dimensions

5.3.1 Tetrahedron first-order metric moments

Let us rederive the result of Buchta and Reitzner, namely v’ (T3) (see their
original paper [18] from 1992) and v(!)(T3) for general n (see their follow-up pa-
per [20] from 2001). The auxiliary value of ~,(73) is split into configurations
C(T3) = {I,11} (shown in Figure[L.6). By affine invariancy, we can instead calcu-
late v, (T3)c, where

T3 = conv(0, e, €2, e3) = conv(]0,0,0],[1,0,0],[0,1,0],[0,0,1]) (5.101)

is the canonical tetrahedron with vol; T3 = 1/6. Its configurations are determined
by the points which are separated by the cutting plane o € A(3,2) (see Table
. Since the analysis is the same as in the Canonical integral approach, we
skip the unnecessary details. By Equation and for any C € C(T3),

W(Te =5 [, (@ N TG @) (@) +T5 (o) Moldm), - (5.102)

where 1 = (a,b,¢)" is the Cartesian parametrisation of o such that x € o <
n'x =1 and

B vola (o N'Ty)
[n]| volz T3~

V013 ']I‘gr

V013 T3 ’

V013 T;

C3(o) (o) = Iy (o) = (5.103)

V013 Tg
with Ty = {x €T3 | n'x <1} and T; = {x € T3 | p'x > 1}. In order to
distinguish between configurations, we also write (3(o)c, I's (0)c and I'; (o)c
instead of just (3(o), I'3 (o) and I'; (o). Here, C is only a subscript and does not
imply any decomposition of those functions.
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Configuration 1

We already calculated functions related with the canonical tetrahedron in config-
uration I. However, let us derive some of them again in a different way. First,

T = conv([0,0,0], [1/a,0,0],[0,1/b,0],[0,0,1/c]) (5.104)

from which its trivial to see that

1, T+ 1
IH(o) = 238 _ — 5.105
sloh vols T abce ( )
By handy Remark we get
. 0I'f (o) 0 0 0 3
G(o)r jz:lnj on; (aaa + 0b + C@c) 5 (o) abc (5.106)

Next, for any o by scale affinity and by the already obtained solution of the
Silvester problem (see Table [5.2)),

1
(e NTy) = o (Ty) = 3 (5.107)

Finally, our integration domain in a,b,c is (R*\ T3); = (1,00)® and therefore,
putting everything into the integral in Equation ([5.102)), we get

9 00 OO OO n—1 n—1
’}/n(Tg)I = 1/1 /1 /1 ﬁ ((zz})c) + (]. - i) > da db dc. (5108)

This triple integral can be solved exactly for any n. Consider the following sub-
stitution (a,b,c) — (z,y, z) where

a=1, b= 2 c=1 (5.109)
This substitution enables us easily to integrate out y and z to get a single integral
9 ! 2 n—1 n—1 2
Yn(T3); = g/ x ((1 —z)" 4z )ln x dz. (5.110)
0

After some manipulations, we arrive at the following formula

(5.111)

9 ((H,.2)* - 3H, H' 1 1
oy = (el =St ).

Ty n(n+1)(n+ 2) (n + 2)3

where Hy = Z§:1 1/j is the k-th harmonic number and Hj, = Z§=1 1/42 is the
k-th diharmonic number. Table below shows ~,,(T3); for low values of n.

n | 3 4 5 6 7 8 9 10
(T ) 2353 3059 182431 106583 8723171 9721567 1291624303 1402000513
Tn\L3)1 | 48000 96000 232000 6585600 711244800 1016064000 169047648000 225396364000

Table 5.5: Auxiliary integral 7, (Ts);
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Configuration 11

In this scenario, o separates two points [0,0,0] and [0,0,1] (see Figure [1.9).
We can split the integration domain (R?\ T$); into two halfs, each of which
contributes the same amount to 7,,(T3);;. One of the two domains is the following

(R*\ T9)i; = (1,00)* x (0, 1). (5.112)

The plane o splits T3 into disjoint union of two domains T3 LI T3, where

T5 = conv ([0, 0,0],[0,0, 1], [%, 0,0], [0, %, 0], [5, 0, Z:i], [0, g, Z%ﬂ), (5.113)
from which we obtain

15T ¢—a— b+ 3ab — 3abc + abc?
T (o) = 238 _ . 114
3 (@) volz T3 ab(a —¢)(b—c¢) (5.114)

and thus by Remark 297] we get

0 0 9,

Glo)n = — (aaa + b% + cac> Iy(o)=

3(c —a— b+ 2ab — abe)
ab(a —¢)(b—c¢)

(5.115)

We make the following change of variables (a, b, c) — («, 3, ¢) via transformation

a(l—c) b(1—c)

N (5116
by which
1—c—a)(1—c=B)(1—(1-c)ap)
| ey = ( A1
5 (o) Bl , (5.117)
3(1—c—a)(1—c— B)(1 - af)
Cg(d')n = 03045 . (5118)
For the intersection of o with T3, we have
o Ty = conv ([£,0,0],[0, 1,0, [1£,0, 2], [0, L=¢, L=1]), (5.119)
By scale affinity and recalling Equation (5.78)),
1 1 —a)?(1—pB)?
(o NTy) = o (Ugh) = = — P —a) U —F) (5.120)

T 12 9(1—ap)t

where U5? = conv(|a, 0], 0, 5], [0, 1], [1, 0]) is the canonical truncated triangle (see
Figure 4.10)). Our change of variables transform the integration half-domain into

(R*\ T lase = (1—¢,1)* x (0, 1). (5.121)

Note that, if ¢ is treated as a parameter, the variables a,b depend on «, 3 sepa-
rately. As a consequence,

(1 -¢)da

da — _c(l-c¢)dpB

G- T 0-c-pp o
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and thus one has for the of transformation of measure
(1 —¢)? dadfde
(= c=aPi—c-pF

Putting everything into the integral in Equation ([5.102)) with prefactor 2, we get

3t ol (1—e))(l—c—a)*)(1—c—p)?
Ton=5 [ x
Yo (Ts ) 2JoJ1—cJ1-c ol
n—1 n—1
(((1cax1i&fgu(1@aﬁ)) +}(1 __(1fcfaX1fchX17(Lfdaﬁ)) ) (5.124)

c3af

A3(dn) = dadbde = (5.123)

X (3(1 —aB) —4aB(1 —a)*(1 - ﬂ)2> dadade.

This integral is the same (apart from substitution) as I,,(ps, p3) in Buchta and
Reitzner [20, p. 23]. For a given n, integrating out «, 5 can be done relatively
easily, when n = 3, we end up with

1¢2pg+1200¢(1—¢)2pg In(1—c)+3600(1—c)2py In%(1—
’Y:gl)(r]r?))ll:/ c p0+ C( C) pO n( C)+ ( C) p2 n ( C) d67 (5125)
0 120016

where

po = 2318400 — 13910400¢ + 31299600¢* — 28986000¢>
— 5018800c* + 40976800¢” — 46746600c° + 28094200¢ (5.126)
— 9678136¢% + 1803672¢” — 151833¢!? — 903¢!t + 357¢12,

p1 = 3864 — 17388¢ + 24796¢% — 5642¢3 — 24680¢* + 35233¢°

5.127
— 22818¢5 + 7765¢" — 1358¢° + 114¢”, ( )

Py = 644 — 3220¢ + 5528¢% — 2792¢% — 4035¢* + 8353¢°

5.128
— 6960c° + 3181¢” — 814¢® + 115 — 8¢1°, ( )

The last ¢ integration can be carried out by Mathematica (alternatively, we can
use derivatives of the Beta function). We get

_lasor oo
108000 ' 45045

For higher values of n, the integration possesses similar difficulty, Table [5.6] below
shows 7, (Ts3)y for low values of n.

¥3(T3)m (5.129)

4 ) 6 7

n

1 2
589 4T

343339 178w
Yn(T3)11 | 72000 1 30080 +

588221 + 21172
6174000 ' 4849845

3139907 + 2282972
14817600 ' 5819814

106686720 ' 669278610

no | 8 | 9 | 10

446479763 + 611612272

475739497 + 1289087672
25357147200 ' 214886239425

33809529600 ' 501401225325

17135963 46172
%(T3)H 762048000 T 14709420

Table 5.6: Auxiliary integral 7, (T3)i
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Contribution from all configurations

By affine invariancy and by decomposition into configurations,

Y(Ts) = > weyn(Ts)e = 47 (Ts)1 + 37 (Ts)u, (5.130)
CeC(T3)

Recall Efron’s formula (Equation (5.29)))

n n(n+ 1)

wT) =S T T

Yo (T3). (5.131)

When n = 3, we get v3(13) = % + 15{)215, from which we immediately recover
Buchta and Reitzner’s 18]

3 13 w2

(1) T = = — ) = — — _
vs - (T4) (1) = 750 ~ 15015

: ~ (0.01739823925. (5.132)

Moreover, for general n > 3, we get the same result as derived by Buchta and
Reitzner in [20, Theorem 2]. Table [5.7| below shows v{V(T3) for low values of n.

e R
n ‘ 3 4 ) 6
U(l)(T) 13 r? 13 x? 127 89r? 307 21ix?
n 720 15015 288~ 6006 1680 323323 2880 ~ 554268
no | 7 8 9 10
U(l)(T) 41369 _ 2282972 11129 _ 461x> 641303 _ 3058061n> 37723 _ 644543872
n \*3/| 302400 47805615 67200 817190 3326400 4775249765 172800 9116385915
. 1
Table 5.7: Convex hull volume expectations S )(Tg)

Note that only the values of v{))(T3) with odd n are independent. Values with even
n can be deduces from other odd values by Affentranger’s recurrence relations
(Equation ((5.34))).

5.4 Unsolved problems

We have seen that the metric moments v*)(P;) having n = d can be computed
for all odd k via our canonical section integral method whereas for n > 1 and
d =3,k =1 we could use Efron’s formula. However, we have shown that Efron’s
formula cannot be generalised in higher dimensions nor for higher moments be-
cause of the inability to obtain linear relations between the number of vertices
and the number of facets. A natural question arises: How then can we compute
v®) (Py) for odd k > 1 and n > d? Or when d > 47?
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6. Radial Random Simplices

In this chapter, we deduce formulae for volumetric moments of random simplices
whose vertices are drawn independently from radially symmetric distributions.
Such simplices are called radial simplices (Miles [48] uses the term isotropic).
There are, in fact, multiple approaches as we can express the volume of random
simplices. For example, by using its facets, determinants of random matrices,
integrals over section planes, Wishart (and other special) distributions, Grass-
mann /fermionic variables, etc.

Originally, the main purpose of this chapter is to deduce Theorem [181] without
the knowledge of the properties of the (shifted) Wishart distribution. As a result,
we establish even more tight connection between random determinant moments
and their random simplices volumetric moments counterparts.

6.1 Definitions

We will be mainly interested in the following construction:

Definition 240. We call a collection X of random points X, j € Ny a (random)
sample if the points are independent and identically distributed according to
some distribution Dy in R%. Let 0 € R? denotes the origin. We define random
variables

V,(Dg) = vol, conv(0, X, ..., X,), (6.1)
A,(Dg) = vol, conv(Xg, X1, ..., X,) (6.2)

and their corresponding moments
¥ (Dg) =EVE(Dg),  v{?(Dg) = EAE(Dy). (6.3)

Remark 241. Again, we can see a tight connection to moments of random
matrices. For the former, let U = (X; | Xy | --- | X,) be a (random) matrix
whose columns are coordinates of the points X;. Using Gram matrix, we can
write

1
V,(Dy) = H\/det UTU. (6.4)

Remark 242. Note that if Dy = Unif (K ), that is a uniform distribution in some
convex d-body Kg, then v{") (Unif(K,)) coincides with the volumetric moments
v{¥)(K4) defined earlier in the Introduction of this thesis. The definition is
hence consistent.

Definition 243 (Conditional radial simplices). Let X;,j = 1,...d be ii.d.
random points following some generic distribution D, as before and let x; be
some point in R%. We define

A,(Dg | %0) & vol, conv(xg, X1, ..., X,) (6.5)
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and its corresponding moments
v (Dyg | x0) = EA(Dy | xo). (6.6)

Remark 244. By definition, the following relations hold

ny)(Da) = v{? (D4 | 0), (6.7)
v®(D,) = Ev® (Dy | Xo) = /]R 0%)(Dy | x0) Daldxo). (6.8)

6.1.1 Radially symmetric functionals

Definition 245. Let X;,7 = 0,...,p be i.i.d. random points in R? each dis-
tributed according to some common distribution D, with a probability measure
Dy(dx) = pa(x)Ng(dx), where pg(x) represents its probability density. We say
X, ~ Dy is radially symmetric if p4(x) = p4(]|x]|) for some function g, : R — R.
Since x and ||x|| are a vector and a scalar, we may denote the second function
simply as pq(]|x]||) without any additional diacritics. Similarly, we write for
the joint probability density of the sample X = (Xo,...,X,) using its joint
probability measure Dy(dx) = pg(x)dx

pulx) = L pa() = IT pulll), (6.9)

even though the symbol p, technically represents three different functions.

Let us select f(x) = AF g(o)pa(x) in the Blaschke-Petkantschin formula (The-
orem with p = ¢ and let us denote y as the closest point from the origin
to o = A(xq,...,%,) € G(d,p). We will assume that the function g(o) is sym-
metric under actions of SO(d) group (group of rotations in R?) on the sample
x. As a result, g must be a function of the distance of o to the origin only and
we may thus write g(o) = g(h), where h = ||y||. Under those assumptions of
radial symmetry and thanks to decomposition p,(do) = A\g_,(dy)v,(dy), where
~v € G(d,p), y € v, and o = v +y, Blaschke-Petkantschin formula (the special
case of Lemma with p = g and B4, = Bapp) turns into

B [ YD) ()] = Ay [ 07 g(h) [ AP ()0 s, (6.10)
where vy is any p-plane selected from G(d,p), u = (uy,...,u,) is a selection
of points from ~y and H is a random variable associated with h if the selec-

tion of points is random, that is H equals the distance to the affine p-plane
A(Xy,...,X,). Also, we decomposed x; =y + u; and defined

bylm) = H e (6.11)

with ¢, (u) = pa(y/h? + ||ul|?). There is an important special case to this formula:

Definition 246. Consider a family of radially symmetric distributions D, on
p-planes v € G(d,p),p = 0,...,d with density p,(u). We say the family is
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Chapter 6. Radial Random Simplices

shape-preserving, if for any u € v and y € -, there exist functions e4,(h) and
&(h), where h = ||y||, such that for any p < d,

pa(y + 1) = ap(h)pp(u/E(h)). (6.12)

Note that since both pg and p, are radial, we may write this, denoting s = |ju||,

pa (VB + 57) = eap(h)py(s/6(h). (6.13)

Proposition 247. Let D, be a family of shape-preserving radially symmetric
distributions with density p,(u), where u lie on a p-plane v € G(d, p), then

E [AL(Dy) g(H)| = Bapwa—p vl 79 (D,) T3 [9(h)], (6.14)

where Apy(11) = vol, conv(u) and Jd(;)[-] is the functional defined as

Tila()] = [~ H g () DL (h) db. (6.15)
Proof. Denote s; = ||u;||. Assuming the shape-preserving property,
P . P w
Pp(m) A2 (du) H Ap(duy) = 7 (h) TT oy (@) Ap(duy).  (6.16)
=0 =0

Let us make the change of variables u; = {(h)u;. We transform the Lebesgue

measures as \y(du;) = £(h)PA,(duj). Also, by scaling, Aj(m) = §(h)PA, (1),
where u’ = (uy, ..., u,). Overall,

AP () gy (m) A () = () IR () AL ) py () A ().

P

(6.17)
Since the transformation does not affect v, we get, integrating over m’ € 4?1,
the desired result. [ ]

Corollary 247.1. Let D, be a family of shape-preserving distributions, then

k
— i jd(p)m P way
P T8 11 20 Wath—
(k
1 jd )[hk] ﬁ wd_j (6 19)

(p+ D 780, [1) =0 Wark—s

v{(Dy) (6.18)

) (Da) =

Remark 248. Alternatively, we can express these formulae in terms of v’s as

1 «7 Ydtk—
(D)) — [T 2k, (6.20)
v d o
’ plEV/2m il jg)-i)-k)p[ ] j=0 Ya—j
1 _ s
7 (Dg) = Tay' 1] ] Zethd. (6.21)

k
/o (p+1)(p+ 1)k j((dolk)p[l] j=0 Yd—j
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6.1. Definitions

Proof. Set g(h) =1 in Proposition [247] then
k
0(By) = Bapeaap vy (D) T 1], (6.22)

plugging k = 0, we get 1 = Ba, wa—p pd P (D )jd [ ]. Since d can be arbitrary,

we replace d by d + k and get 1 = Batr)p Wasn—p vi (D) \Y(S)J)rk)p[l], from

which we obtain,

o
WDy = — P T U (6.23)

0
6(d+k)p Wd+k—p s7((dJ)rk)p [1]

which further simplifies, since by Remark [296} 84, wa—, = (p!)4? | Zii Next,
p—=J
by base-height splitting, we have when p < d,

H
vp+1(Dd) — ﬁAP(Dd) (624)
Thus, setting g(h) = h*/(p + 1)* in Proposition 247
k 1 k)
nl(,Jr)l(D )= TESL - Bap Wa—p pd p+k( )j( [hk] (6.25)
and therefore
(k) 13,k
1 Bapwa—p Ty [P"]
nih(Dy) = TESG PR v . (6.26)
p B(d-ﬁ-k) Wd+k—p jd—&-k)p[ﬂ
[ |
Proposition 249. Let D, p = .,d be a family of shape-preserving radially
symmetric distributions with denszty pp(u), where u lie on a p-plane v € G(d, p),
then for any function g(h),
Tip lg(h) SN D)
E [A}(Da) g(H)] = o (Da) 255 = (p + D))y (D) "=, (6.27)
|: P jl p jd(;f)[l] p+1 p jdk) [hk]

Shape-preserving distributions can either be Normal, Beta, Beta’ or Spherical
shell distribution, see Ruben & Miles [62].

6.1.2 General conditional radial simplices

Finally, to conclude this section, we derive the following result

Theorem 250. Let D, p =0, ...,d be a family of radially symmetric shape-
preserving distributions, then for any p < d and k = 2m, where m is an
integer,

m (2m 2m—2s

2m) 2m YaVd—ptam T, [P | (m i

vt (D | xo0) =iy (Da) S : g 1o, (6.28)
s=0 Vd+2sVd—p+2m—2s jdp [h m] s

. J
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Chapter 6. Radial Random Simplices

Proof. Let X = (Xy,...,X,+1) be a random sample of i.i.d. points X; ~ Dy,
j=1,...,p+1. By definition, v}(,’fgl(Dd | x0) = EAF, (Dqg | x0), where Apy1(Dy |
Xo) = vol,41 conv(xg, X1, ..., X,+1). Denote Y the closest point from the origin
to o = A(X) € A(d,p). The points U; = X; =Y, j =1,...,p+ 1 define a
linear subspace v € G(d, p) on which they lie. We have Y € «,. By base-height
splitting, we may write

1 )
Api1(Dy | x0) = p disty(x0)A,(Dy), (6.29)

+1

where A,(Dy) = vol, conv(X) and dist,(xp) is the distance from x, to o (see

Figure .

Figure 6.1: Base-height splitting of A,11(Dg | x0)

The distance is unchanged if we project it onto v,
dist,(x9) = || proj,, xo — Y] (6.30)

This is a scalar function of Y, but not H = ||'Y|| only. However, we may use the
following trick: By symmetry and the law of conditional expectation, we have

1

(k) (k)
Up1(Da | x0) = Evpi (Da | [[%0]|So) = E

E[ANDa)g(H)|,  (6.31)

where S ~ Unif(S%"!) (uniform distribution on the unit sphere S¢~!) and
g(H) = E [ %ol proj,, So — Y[* | X] (6.32)
is now a function of H = ||Y]| only. As a consequence, by Proposition 249}

T 1a(h)]

]d(f) e . (6.33)

k k
v (Dy | x0) = 71 (Dy)

299



6.2. Gaussian simplices

Let us express the function g(h). Since dim~, = d — p, we get by Lemma ,

By = proj,, So ~ Beta; ,(2 — p) (6.34)
on v, . Hence, for any fixed y € v, with h = ||y||,
g(h) = E [[[[Ixo[[Bo — yII*] (6.35)

Denote § = span(y) € G(d — p, 1) the line passing through y and the origin. By
the Law of Cosines,

g(h) = E [(Ixo ]2 1Boll? — 2][xo | projs By + h?)*/2] (6.36)

We can split random variable By into the product R,S{ of two independent
random variables Ry and S ~ S4_,. Since

T = projs Sy ~ Beta; (3 —d + p) (6.37)
we get, by first taking expectation with respect to T,
X, 2R2—2 Xo||Roht + h2)*/2
o(h) = exs. ME/ (Ixoll [0l Ro )

tz)(s d+p)/2
By substitution ¢t = cos# and expressing the normalisation factor ciz—ap),

dt. (6.38)

g(h) = 4P | "(I%o|I2R2 — 2||xo]| Roh + h2)*/? sin® 726 d.  (6.39)

7
Yd—p—1 27 Jo

This result is valid for any real k for which the expression makes sense. However,
when £ is an even integer as in the statement of the theorem, we can proceed
further. From Gradshteyn and Ryzhik |33, (3.665)] for m integer and p < d,

/ r —2rhcos€—|—h2) sin? P20 df = Z Jd—p—17d—p+2m <m>r25h2m—25'
s= O’Yd p+2m—2sYd—p+2s
(6.40)

1
V2T
Plugging r = ||x¢|| Ro,

m

- - m m s1.2m—2s s
g(h) _ Z Yd—pYd—p+2 <8>||XOH2 h2 2 ER(% ) (641)

s=0 Yd—p+2m—2s7Vd—p+2s

Recall that Ry = || Bo||, where By ~ Betay_,(2—p). So, by Lemma [267) (Equation
(A.13), we have E R3* = va_prasVa/ (Va—pVa+2s) and thus

< ’7 /7 - m m $1,2m—2s
g(h) = 3 It (), (6.42)
s=0 Yd+2sVd—p+2m—2s \ S

We conclude the proof by plugging this result into Equation (|6.33)). |

6.2 Gaussian simplices

In this section, we study random Gaussian simplices, that is, simplices whose
vertices are points selected according to multivariate normal distribution N4 (see
table of common distributions in Appendix). Using the standard method of base-
height splitting (see [24]), we were able to obtain a new formula for the volume
moments of Gaussian simplices with one vertex fixed. However, it turned out
the formula has been known because of its connections with random determinant
moments of some special matrix. More specfically, we provide an alternative
derivation of Theorem by reformulating it in terms of Gaussian simplices.
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Chapter 6. Radial Random Simplices

Definition 251. We call a collection Z = (Zy, ..., Z,) of random points Z; se-
lected from R? a standard normal sample if the points are independent and iden-
tically distributed according to the standard multivariate normal distribution
Ny, that is with density function pg(z) = e I%1°/2 /(27)%/2 for each i € {1,...,p}
and with joint density function

pa(z1,...,2,) = H pa(zi). (6.43)

We write Ng(dz) = e 1#I°/2/(2m)4/2 )\ y(dz) = r¢ e 7"/ /(27) 20 4(du)dr with
u € S"! for the probability measure associated with the standard multivariate
normal distribution and its decomposition into radial and spherical part.

Definition 252 (double factorial). Let m be an integer, we define the double
factorial standardly as

2m)!l=(2m) x (2m —2) x--- x4 x2 and

@m— 1= 2m—1)x (2m —3) x --- x 3 x L. (6.44)

Note that we can express the above in terms of the Gamma function as

@m)l=2"T(m+1)  and (2m—1)!!:\2/7;F<m+;>. (6.45)

Remark 253. If a and b are either both integers or both half-integers, one has

(@) _ pa(20 =2

I'(b) (26— 2)I° (6.46)

6.2.1 Radial volumetric moments

A lot is known about Gaussian random simplices. The following formula is due
to Miles [48, p. 377, (70)], which states

Proposition 254 (Miles, 1971). Let Zy,Z1.Zs,...,Z, be o standard nor-
mal sample in R?. Assuming p < d, we get for moments of the p—volume
A,(Ng) = vol, conv(Zy, . .., Z,) of a simplex formed by a convex hull of those
points

o®(N 1P opk/2p D (L(d+k—j
Oty = B0 1 ey 2R LGk ) o
(p+1) P izg va PR S T(3d-3)

for any real k >p—d—1.

. J

Proof. The crucial observation is that the normal distribution is shape-preserving.
Let v € G(d,p),u € v, s =|ul,y € v, h = [lyl| and s = [Jul|. Let r = ||x]|,
x € R? the density of the standard normal multivariate distribution Ny is pa(x) =
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6.2. Gaussian simplices

exp(—1?/2)/v 27Td, which we can identify as, plugging r = v/h? + s2,

1 ~5h s —gh?
_Llip24 62 € € e
a€ 27 = - d ppp(u)a (6.48)

V2T vV 27rd7p V2’ V2
where p,(u) is the density of the distribution N,. Hence, we got a family of

shape-preserving distributions with {(h) = 1 and g4,(h) = e~ 2" / Var' P,
let us compute jd(; )[h7]. We have

12

Pd(\/m) =

o0 pd=—pta—1p=(p+1)h?/2

(k q d+q—p— 1 (d+k+1)p p+1
(4] / h (h) (h)dh /0 —
V2 (6.49)
N Yd—p+q
(d—p)(p+1) d—p+q *

(2m) = (p + 1)

Hence, plugging first ¢ = k = 0 and then replacing d with d + k, we get

Vd+k—p
JO 1] = . . 6.50
(d+k)p[ ] (271_) (d+k 129)(p+1) (p N 1) d+}; P ( )

Dividing these two relations, we get

(k) ha )
‘7(%10)[ | _ diepg (2m) % (p+ 1) (6.51)

As a consequence of Corollary with ¢ = 0, we get

BNy = 2T D2 yap B v (0 D 9
vy (Na) = ——; II =——1II 2, (6.52)
b: Yd—p+k =0 Yd—j p: =0 Yd—j

Similarly, with ¢ = k, we get

p
(k) D)) — 1 Yd+k—j 6.53
w00 = L2 (059

which concludes the proof. |

Remark‘ 255. Note that when k = 2m for some m integer, 1(d + 2m — j) and
(d j) are either both integers or both half-integers. Using Remark .

of(Ng) 1 2 (d+2m—j-2)ll 1 ™' (d+ 20)!

2m)(N ) =

n = = : = Ny -

b (Na) (p+1)m plzm jl:[o (d—j5-—2)t  plzm g (d—p+2i)!

(6.54)
The last equality is a consequence of the following identity

— (d+2 —2 mt(d+ 2i0)!
H +m] )_H (d + 2i) (6.55)
j=0 - ] - 2)!! =0

(d—p+20)V

the proof of which is left as an easy exercise.
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Chapter 6. Radial Random Simplices

6.2.2 Conditional simplices

r

Proposition 256. Let Zy,Z,,...,Z, be a standard normal sample in R?
(that is, Z; ~ Ng) and zg € R? be some fived point. We assume that p < d, so
the convex hull of zg,Z1,Zs, . . ., Z, is almost surely a p—dimensional simplex

formed by those vertices. For the moments of its p—volume A,(Ng | zo) and
m natural,

1 (7 (d+2r)! \ & (m)\ (d—2)!
(2m) N _ |I } : s 2s
(M =0) prm <r:0 (d—p+2r)! ) 5\ s (d+23_2)”p Ioll™
(6.56)

. J

Proof. We already know that Ny is shape-preserving. By Equation (6.49)), we get

jd(Qm) [th—Qs]

e T 1 s Yd—p+2m—2s
— = (p+1) , (6.57)
jd(; )[h2m] Yd—p+2m
so by Theorem [250},
m m a Yd m s s
vt (Na | %0) = 37 (Ng) > ( )<p +1)°| 0|2 (6.58)
s—=0 Jd+2s \'S

) (@-2n
) T @iz u

) : r
as desired since 24— = — (
Yd+2s 261“(

[SJISU YT

Remark 257. The proposition is equivalent to Theorem [181 To see this,
define random points X; = (X, Xoj, ..., Xn;) " with X;; ~ N(g,0?) and
write U = (Xij)nxp- On one hand, E (det(UTU))¥/? = f,(n,p). On the other
hand, note that the Gram determinant \/det(UTU) is equal to the volume of
a parallelotope [0,X;] + ...+ [0,X,]. Equivalently, we can relate the Gram
determinant with the volume of a random polytope

det(UTU) = plvol, conv(0,Xy,...,X,) (6.59)

Since X;; ~ N(u,0?), we can shift the points by the point xg = (p, g, .. ., i),
SO

vol, conv(0, Xy, ..., X,) = vol, conv(—xg, Xy — X, ..., X, —Xg). (6.60)

Define a new set of points Z; = (X; —X¢) /0 and zy = —X¢/0. Now, the points
Z; ~ Ny form a standard normal sample. For the volumes, we immediately
get

vol, conv(0, Xy, ..., X,) = 0" vol, conv(zg, Z1, . . ., Z,), (6.61)

from which immediately, for any even k,

fr(n,p) = p*a?*"E AI;(Nd | zo) = p!kapkvl()k)(Nd | o). (6.62)

Finally, by spherically symmetry, the point z, can be chosen arbitrarily, the
result is a function of ||z|| only.
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6.3. Beta and Beta’ simplices

Note that the special case zg = 0 gives

1 =t (d+2r)!
2m _ ,(2m —

(6.63)

Similarly, by Remark [244] by integrating ||zo|| out from (6.56) with respect to
Ng(dzg), we recover the special case Miles’ formula for even moments. That is
the Proposition with £ = 2m, where m is an integer, which is equivalent to

Corollary 257.1 (Miles, 1971). Let p < d, then for any k = 2m with m integer,

(p+1)m =t (d+2r)!

11 (d—p+2r)

r=0

o™ (Ng) = (p+ 1)™n>™ (Ng) =

i (6.64)

Proof. To see that, we have v{*™(Ng) = Ev?™ (N4 | Zo). For the moments, we
have
2T ($45)  (d+25—2)N

r (%)  (d-2)t 7

then we use the Binomial formula. [ |

E 122 = 222 —

(6.65)

6.3 Beta and Beta’ simplices

Miles and Ruben [62] studied volumetric moments of random Beta and Beta’
simplices formed by vertices drawn independently from distribution Beta,(a) or
Beta);(a), respectively. Their method is to decompose certain class of distributions
into part dependent on H and points on <. This is essentially the method we
are using in this thesis. Moreover, they showed that the only distributions which
can form a shape-preserving families are either Gaussian, Beta or Beta' (with
degenerate subcase of uniform distribution on a sphere).

6.3.1 Radial volumetric moments

While 7"(-) already appeared in Miles ([48]), the values of v{*)(-) have only
been expressed recently by Kabluchko and Steigenberger [38].

Proposition 258. Let B = (By,Bs,...,B,) be a sample drawn form Betay(a)
distribution and let B' = (B}, BY, ..., B)) be a sample drawn form Betay(a) dis-
tribution. Assuming p < d, we get for moments of the p—volume V,(Betay(a)) =
vol, conv(0, By, ..., B,) and V,(Beta;(a)) = vol, conv(0,BY, ..., B)) of simplices
formed by a convex hull of those points

1 22 e iVae 1! —iVa—d—
(k) (B — Jdtk—jld—at2 (k) / — Vd+k—jVa—d—k
n etag(a)) = [] .y (Beta)(a)) [] :
bl (@) ptF j=0 Vd—jVd—a+2+k bl il pt j=0  Yd—jYa—d

Proof. By Lemma [267, there exists a set of random variables Vj ~ x4_q42 inde-
pendent of B, j = 1,...p, such that B;V; 4 Z; ~ N, for each j. By linearity of
determinants,

vol, conv(0,Zy,...,Z,) = Vi ---V,vol,conv(0,By,...,B,), (6.66)
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Chapter 6. Radial Random Simplices

from which, immediately,

P
W (Ng) = EVy(Ng) = (EV{")’E V(Betag(a)) = (Wc) n" (Betaa(a)).
Yd—a+2
(6.67)
Similarly, there is a set of random variables U; ~ x,_q independent of Z; ~ Ny
such that B < Z;/U; ~ Beta)(a) for each j =1,...,p. Hence

vol, conv(0,By, ..., B)) = vol, conv(0, Zy, ..., Z,), (6.68)

U ---U,

from which, immediately,

nt¥) (Betaly(a)) =K V¥ (Beta)(a)) = (E U *)P’E VE(N,) = <77“> ¥ (Ng). (6.69)

Proposition 259. Let B = (By,By,...,B,) be a sample drawn form Betay(a)
distribution and let B' = (By, BY,...,By) be a sample drawn form Betaj(a) dis-
tribution. Assuming p < d, we get for moments of the p—volume A,(Betay(a)) =
vol, conv(Bg, By, ..., By) and Ap(Betay(a)) = vol, conv(Bj, B, ... ,B)) of sim-
plices formed by a convex hull of those points

k (Betad( ) = L Ya—atk)(p+1)+27d—a+2 Pl b Vd—at2
plk V(d—a+k)(p+1)+2—kVd—at+2+k j—o Vd—jVd—a o]

1 p—1 A (6.70)
(k)(Beta;( ) = L Ya—d—k)(p+1)+kVa—d—k %Hk_ﬂa_d_k‘

P Vamd-mpr)Va—d oo Vi—jYa—d

Proof. Both Beta and Beta’ distributions are shape-preserving. As a consequence,
we can extract the moments from Proposition with g(h) = 1, which states,
for any shape-preserving family of distributions D, p =0, ...,d,

jdp[]

vl()k)(Dd) =(p+1) 77;(:+1(D )j k)[hk]

(6.71)

Let v € G(d,p), u € v, 5 = Jull, y € 71, h = |y] and s = [u]. Let r = x|,

x € R? the density of the multivariate distributions Betay(a) and Beta);(a) are

pa(x) = caalrcr/(1 —1r2)%? and ply(x) = ¢, /(1 + r2)¥/2, respectively. Plugging
= \/ma

Cpal =1
ey Cdalp2ys2cr G Lpa PRz
pd( h?+s ) = (1 —h2 — 82)a/2 - Cpa (1 _ h2)a/2 . 2\ @/2’
(-G )

(6.72)

c c 1 c
! (V]2 2) — da — _da pa ]
pd( +3) (1+h2+82)a/2 C;)a (1+h2)a/2 . 9\ a/2
(1+ ()

Hence, we got a family of shape-preserving distributions Beta,(a) with {(h) =
V1 —h% and g45(h) = cgalpar/(cpa(l — h?)¥2) and a family of shape-preserving
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6.3. Beta and Beta’ simplices

distributions Beta,(a) with &'(h) = V1 +h? and €),(h) = cj,/(c)a(1 + h?)/2),
respectively. Now, let us compute the corresponding functionals j;f) [h9] and
jg;) [h9] (for Beta,(a) and Beta),(a) families). We have

k) [h9] = / pérar-lg )d+k+1)p€§;1<h)dh

p+1 d— -1
+1)a—(d+k+1
c 0 (1 h2) (p+1) g )P

pa

jdp hq / hd+q p— 15 (h>(d+k+1) é,lp—i-l(h)dh

AN hd—prat dh
N\ /0 (1+h2)w

pa

+1
c;)a wd_l’+qcl(d—p+q)((p+1)a—(d+k+1)p)

Hence, plugging ¢ = 0 and ¢ = k, we get

k
Ja )[ 1] _ Wd—p+kC(d—p+k)((p+1)a—(d+k+1)p)
jdk) [hk] Wd—pC(d—p)((p+1)a—(d+k+1)p)

Y

(6.74)
Tl wapiraspinrna (D)

~ k -
jf“lp) [*] Wi pc(d p)((p+1)a—(d+k+1)p)

Our proof is concluded by plugging those results into Equation (6.71) and by
relations

Wd—p+kC(d—p+k)b _ Vd—pVd—p+k—b+2 wd—P'i‘kC/(d—p-i-k)b _ Yd—pVo—d+p
= ; = (6.75)
(

9 Y
Wd—pC(d—p)b Yd—p+kYd—p—b+2 Wd—pC(d—p)b Yd—p+kVo—d+p—k

which follow from Equations (A.13) and (A.15]) by replacing d with d — p and a
with b. ]

Remark 260. A simple consequence of the proposition is Miles’s formula for
the volumetric moments in the unit d-ball (Equation (4.3)), that is

4 1)\ d+1 (k) r(d _
’U(k)<Bd): F(2+1) d F( +1) (2> H ( 2 )
To see this, note that Unif(B,) is a special case of Betay(a) with @ = 0. Thus,
by Proposition [259| with p = d and a = 0, we get

1
(Unlf(IBd)) — V(d+k)(d+1)+27Vd+2 ’Yd+k: g7d+2 (6.76)
A Y(ark) (1) 12—k Vd+2+k jog Vd—iVdr2+k

Keeping in mind that v((ik)(-) is defined differently for bodies and distributions,
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Chapter 6. Radial Random Simplices

we get that these two results are ideed equivalent after appropriate normali-
sation Uc(z )(]Bd) = vd (Unlf(IB%d))//ed

6.3.2 Conditional simplices
We extend the work of Steigenberger and Kabluchko to conditional simplices.

Proposition 261. Let By, Bo,...,B, be a sample drawn form Betay(a) distri-
bution and let B}, BY, ... B} be a sample drawn form Betay(a) distribution and
bo, b, € R? be some fived points. Assuming p < d, we get for moments of the
p—volume A,(Betag(a) | by) = vol,conv(bg, By, Ba,...,B,) and A,(Betaj(a) |
bj) = vol, conv(bg, B}, BY, ..., B)) of simplices formed by a convex hull of those
points and for m natural,

1 m _
(2m)(B _ Yd+2m—jVd—a+2 YdY(d—a+2m)p+2 9%
o (Betau(a) [ bo) 1ol
’ p prm JI—IOW g Vd—a+2+2m 32% Yd+2s7(d—a+2m)p+2—2s

1 m— a— m m
UI(,Qm)(Beta;(aﬂbg): (H Yd+2m—;Va—d—2 )Z<S>%ﬁ(a d—2m)(p+1) 2s||b ”23‘

pl2m ) Yd—jVa—d =0 Vd+257 (a—d—2m)(p+1)
(6.77)

Proof. We already know that Betay(a) and Beta),(a) are shape-preserving. By
Equation (6.49)), we get

(2m m—2s
jd )[h2 2 ] o Wd—p+2mC(d—p+2m)((p+1)a—(d+2m+1)p)
TEMRIM] Waepi2m-25C(d—p+2m—25)((p+Da—(d+2m+1)p) 6.78)
(2m) m—9s :
j [h2 2 ] wd—p+2mcl(d—p+2m)((p+1)a—(d+2m+1)p)

j dp )[h2m] Wd—p+2m—2s0/(d—p+2m_2$)((p+1)a_(d+2m+1)p)

From which, by relations

/
Wd—p+kC(d—p+k)b _ Vd—p+k—b+2Vd—p+l Wd—p+kC(d—p+k)b _ Vd—p+Vo—d+p—1 (6 79)
= 5 / - 9 *
Wd—p+C(d—p+l)b  Vd—p+kVd—p+i—b+2 Wd—p+C(g—p+i)p  Vd—p+k Vo—d+p—k

we get
(2m m—2s
jd )[h2 2 ] _ Yd—p+2m—2s7(d—a+2m)(p+1)+2 (6.80)
jdﬁm [h2m]  VdoproamV(d-atom)(p41) 4225
(2m) m—9s
j [hQ 2 ] _ Yd—p+2m—2s7(a—d—2m)(p+1)—2s (6 81)
jdp [th] Yd—p+2mY(a—d—2m)(p+1)

and finally, by Theorem [250],

2m 2m = YdV(d—a+2m 1)+2 m s
o (Betag(a) | bo) = 2™ (Betag(a)) 3 — 1 d-atmiptiys ( )umu%
=0 Vd+2s7(d—a+2m)(p+1)+2—2s \ S

2m 2m = YdY(a—d—2m)(p+1)—2s [ T s
o) Betala) | ) = 1 (Bt a) 32 2Tt (1)
=0 Vd+2s57(a—d—2m)(p+1) \ S
(6.82)

as desired. [
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6.4 Spherical shell simplices

Let us call random simplices whose verices are drawn independently and uni-
formly from the surface of the unit (d — 1)sphere as spherical shell simplices. The
mean d-volume and the corresponding moments of those simplices were already
derived by Forsythe and Tukey [31]. However, note that our Beta simplices inher-
ently contain the special case in which the vertices are drawn from the uniform
distribution on the unit (d— 1)sphere S?~1. This is a consequence of the following
equivalence in distributions

Unif(S%") = lim Betagy(a). (6.83)

a—2~

6.4.1 Radial volumetric moments
By simply plugging a = 2 in Propositions and [259] we get

Proposition 262. Let S = (So,S1,...,S,) be a sample drawn form Unif(S%!)
distribution. Assumingp < d, we get for moments of the p—volume V,(Unif (S71))) =
vol, conv(0, Sy, ...,S,) and A,(Unif(S%1)) = vol,conv(Sy,Sy,...,S,) of sim-
plices formed by a convex hull of those points

Yd+k— ﬂd (k) (@d—1 _i V(d—2+k)(p+1)+277d n Yd+k—57d
H Up (S )_

(Sd 1 ]
p'k —0 Vd— ﬂd+k p!* V(d—2+k) (p+1)+2—kVd+k j—o Vd—jVd+k

6.4.2 Conditional simplices

Similarly, Proposition 261 with a = 2 becomes

Proposition 263. Let S;,Ss,...,S, be a sample drawn form Unif(S*1) distri-
bution and sy € R? be some fized point. Assuming p < d, we get for moments
of the p—volume A,(Unif(S™1) | s9) = vol, conv(sg, S1,Ss,...,S,) of simplices
formed by a convex hull of those points and for m natural,

" e rerd— (P Yarom_jva) & (m YdY(d—2+2m s
o™ (Unif (S 1>|So>=p.2m(H Sl DOI B e ]
: s=0

j=0 Vd—jVd+2m Yd+2s7Y(d—2-+2m)p+2—2s
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A Probability distributions and their stochastic
decomposition

A.1 Common 1-dimensional distributions

The following Table enlists common distributions Px of a real random vari-
able X its probability density function (PDF) fx(z) and (non-central) mo-
ments m, = EX? for ¢ possibly being a real number. As usual, B(z,y) =
I'(z)I'(y)/T'(x + y) is the Beta function.

distribution Py fx(z) m, = EX? notes
standard N(0, 1) e v/ (g—1)!, ¢ even
normal ’ V2T 0, q odd
i1 p—a?/2 94¢/2] (d%)
hi —— T _— > —d
chl Xd 2%71 F(g) (©, )(I‘) F(g) q
/21 /2 or (% + q)
chi-square 2 oo >—d/2
xd—le—x F(d—i—q)
r _
Gamma (d) Id) (0,00) () I(d) qg>—d
zH(1—a)! B(d + ¢, p)
Bet Beta(d 1 : > —d
cta € a( 7p) B(d, ) (0’1)({[’) B(d,p) q
r 1
exponential | Exp(}) Ae M1 g,00) (2) (q)\:—) qg>-—1
1 patl _ gatl
uniform Unif(a, b) b aﬂ(a’b) (SU) m b >a
Dirac da Sz —a) al

Table A.1: Common distributions and their properties
Some remarks: Let X; be i.i.d. random variables with distribution N(0, 1). Then

vV Z?:l Xi2 ~ Xd-

Let X ~ x4, then X? ~ x2 and X?/2 ~ '(d/2), from which we get the relation
between moments and density functions. It is convenient to denote

Vd = /0 rd=le=3mdp = 2871T (g) , (A.1)
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A. Probability distributions and their stochastic decomposition

using which we can write for the probability density of X ~ yq4

fx(z) = e 2 1(0,00) (A.2)

and for its moments E X9 = v4,/74.

A.2 Langford and related distributions

Let U,U’,U" ~ Unif(0,1) (independent), we define four random variables
A=U-U)U"-U), =U-UYU, =Z=U0U, Q=U1-U). (A3)

The equalities between A, Y, =, Q with U, U’,U” have to be interpreted only in
terms of distributions. That means, we will assume A, X, =, € to be in fact inde-
pendent. We say A follows the Langford distribution (A ~ Lang) [42]. We call
those variables as our thesis’ auxiliary Langford random wvariables. The proba-
bility density functions (PDFs) and the cumulative density functions (CDFs) of
those are shown in Table below. Trivially, PDF of U is fy(u) = 1 when
0 < u < 1 and zero otherwise.

X || PDF: fx(z) = L Fx(z) CDF: Fx(x) =P[X < 1]
4argtanh /1 + 4\ — 4/1 + 4, —ig)\<0,
fa(A) =4V —2In )\ — 4, 0<A<1,
0, otherwise
Al 0, A< —1
%(1—8)\)\/1+4)\+4)\argtanh\/1+4>\, —i <A<0
FA(N) =13, A =0,
%(1—6)\+8)\3/2)—2/\1n/\, 0<A<1,
1, A> 1
2 argtanh /1 + 4o, —1 <o <0,
fe(o) = {—3no, 0<o<1,
0, otherwise
g 0, o< —i
%m—i- 20 argtanh v/1 + 40, —i <o<0
Fy(o) =43, o=0,
s(1+o0—oclno), 0<o<1,
1, c>1
0, w>0
Q| w fg(w):{\/fm’ ngél/& Fo(w)=4¢1—y/1—4dw, 0<w < 1/4,
0, otherwise
1, w>1/4.
0, <0
=|¢ f5<5>={0’1“5’ = R = {ea-me, 0<e<n
1, E>1.

Table A.2: PDFs and CDFs of auxiliary Langford variables
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A step-by-step derivation of fy(\) is shown in Example . Similar derivation
of fs(o) is shown in Example and finally, derivation of fo(w) is shown in
Example [278]

A.3 Radial multi-dimensional distributions

The following Table enlists common radially symmetric distributions Px of a
real random vector X € R? and its density function fx(x), x € R%. Furthermore,
to emphasize these distributions are intimately related, distributions of the their
projections onto p-planes v € G(d, p), p < d are given.

distribution Px fx(x) ]Pproj_y <
standard 1 x)2/2
multi-normal Na Vot © N,
y _
umdf)égh on Unif (Ba) ,.Tld]]-||x||<1 Beta,(p — d)

o on | Uri(s4-1) | 501~ x]) | Betay(2 —d-+p)

a]]‘ X
multi-Beta Betay(a) m Beta,(a — d + p)
/
multi-Beta’ Beta;(a) (1_‘_?“”2)/2 Beta,, (¢ — d + p)
X a

Table A.3: Common multi-dimensional distributions of radial random vectors and
their properties

Normalisation

In the table above, wy is the surface of the unit S*! sphere and kg = wy /d is the
volume of the corresponding unit d-ball B;. For their exact value, we have the
following result

Lemma 264- Wq = Ud(Sd_l) = /Sd_l Ud(dﬁ) - F(d/2) ’

Proof. Note that the standard multi-normal distribution must normalise to one,
integrating over R? and realising that for radial functions A\g(dx) = wgr? tdr
where 7 = [|x||,

— 31|12 oo pd—1g=5r?
1= / € ] )\d(dX) = wd/ ! ¢ ; dr = Wdf)/dd’ (A4)
R /2 0 V2T V2T



A. Probability distributions and their stochastic decomposition

where vq = [$° rd-le " /2dr = 2511 (g) (see Equation (A.1])). |

Similarly, we can express cq, and ¢, in the exact form.

'7d—a+2 7&
Lemma 265. WaCda = , WaChy =

YdV2-a YdYa-d

Proof. First, let us write down how the normalisation conditions look like

d—1 Td_l

1 r , oo
1= CdaLUd/O m d?", 1= Cdawd/o m dr. <A5)
The remaining integrals can be solved in terms of the Beta function. Instead, we
show somewhat more elementary approach. Consider the following integral

o0 242 rd-1
/ rd=INTlem A2 ) = o, (A.6)
0

o
First, by plugging ¢ = v/1 + 72 and integrating out r over (0,00), we get
d—1

0 Na—d—1_-X32/2 1y _ /°° r A
’Yd/o A e dA =, 0 T2 dr, (A.7)

from which immediately v4vo—q = Va/(wacy, ). For the first integral, we substitute

r = s/v1+ s2, which gives

1 /1 ,r.dfl 00 Sd*l 1 (A )
WdCda o (1—r2)e/2 0 (14 s?)ldmat2)/2 wdcld(d—a-i—Q)
from which ¢y, = cii(d_a +2)- [ |

Radial moments and spherical representation

Note that any radially symmetric d-dimensional random vector X can be repre-
sented as a product of two independent random variables R and S,

X £ RS, (A.9)

where S ~ Unif(S?"!) and R has the distribution of ||X]|.

[ Lemma 266. Let Z ~ Ny, then ||Z|| ~ xa-

Proof. We only need to check for the radial moments, we have

1
122

OoTkerfle—%ﬂ

e 2 "
ENZI = [ ol halda) = g [y S Dk
“ V2m 0 Ver V27 Yd
(A.10)
which matches ||Z|| ~ xq4. =
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{ A

Lemma 267. Let B ~ Betay(a), B’ ~ Beta;(a) and Z ~ Ng,
d , d L
BV =7, B =—, (A.11)
U
where B is independent with V' ~ X4_q12 and Z is independent with U ~ Xq_q4.
We may write this as

N
Betag(a)Xa—ar2 = Ng,  Beta)(a) £ —%. (A.12)
Xa—d
Proof. Let R = ||Z|| ~ xq. For the radial moments, we have
Lokt WdCda Yd+kVd—a
E|BJ* decda/ a2 = = Jaikldaid (A.13)
o (1—12) WitkCld+k)a  VdVd+h—a+2
We can write this as
E ||B||k:’Yd—a+2+k _ Jd+k (A.14)

Vd—a+2 d
which is E||B||* EV* = ER* with some V ~ X4_q12 independent of B. Similarly,

BB = wach | o = oo = MBI (g
Wl (11292 waskcy, YdVa—d
which is E||B/||* = ERFEU* with U ~ x,_4 independent of R. [ |

Projections

Let v € G(d, p) be a p-plane. Note that the orthogonal projection proj., X of any
radial random vector X is again a radial random vector (on ). Moreover, by
symmetry, the distribution of this projection on -y is the same for any v € G(d, p).

Lemma 268. Let Z ~ Ny and v € G(d,p) any, then proj, Z ~ N, on ~.

Proof. Let Z ~ Ny, then there is a well known representation Z el (Zy,..., 297,
where Z; are identically and independently distributed according to the standard
normal distribution N(0,1). Let us select vo = span(ey, es, ..., €,), then

projy, Z = (Z1, Za, Z3, . ... Zp-1, 2, 0,0,...,0)T ~ N, (A.16)

on ~vp. By radial symmetry, the result applies for any v € G(d, p). [ |

Lemma 269. Let S ~ Unif(S™!) and v € G(d,p), then proj, S ~ Beta,(2 —
d+p) on ~.

Proof. Let Z ~ Ny, then Z 4 RS, where R ~ g4 is independent with S ~
Unif(S%1). Taking the projection, we get

proj. Z 4 Rproj., S. (A.17)
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Note that proj., S is again radial on 7. Since proj., Z ~ N, we get in distributions,

N, 2 Xd Proj, S. (A.18)
Comparing with Lemma 267 we get proj, S ~ Beta,(2 — d + p). [ ]

Lemma 270. Let B ~ Betay(a) and v € G(d,p), then proj., B ~ Beta,(a —
d+p) on 7.

Proof. Let V'~ x4_4+2 be a random variable independent on B ~ Beta,(a). By
Lemma , BV L7~ Ng. Taking the projection onto ~y, we get

(proj, B)V < proj, Z ~ N,,. (A.19)
By using Lemma again, we get proj, B ~ Beta,(a — d + p). |

Corollary 270.1. Let W ~ Unif(Bq) and v € G(d, p), then proj, W ~ Beta,(p—
d) on ~.

Proof. Follows trivially from Lemma with a = 0 as Unif(B,) = Betay(0). W

Remark 271. Note that, actually, also the uniform distribution Unif(S%!)
on the unit (d — 1)-sphere may be viewed as a singular case of multi-Beta
distribution with a = 2. The projection formula in Lemma then follows
also from Lemma by putting a = 2.

Lemma 272. Let B’ ~ Beta)(a) and v € G(d,p), then proj, B’ ~ Beta),(a —
d+p) on-~y.

Proof. Let U ~ x,_q be independent with Z ~ N,. By Lemmaﬁ B £ Z/U ~
Beta);(a). Taking the projection onto v, we get

o apoj,Z N,
proj, B’ = T _ ~ . A.20
Hence, Lemma W gives proj, B ~ Beta;(a —d+p) |

A.4 Dirichlet distribution

The following Table enlists one remaining distribution Py of a real random
vector Y = (Yp,Y1,...,Yy)" € R and its probability measure Py(dy), y €
R+ used in this thesis, namely the Dirichlet distribution.

distribution Py Py (dy)

T2 ) <ﬁ qi—1> 7a(dy)

Dirichlet | Dir(ay,...,« —_— i
(@020 | R h ) Vit

1=0

Table A.4: Dirichlet distribution of a random vector
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In the table above, 74 is the surface measure on a regular d-dimensional sim-
plex Tj = {(yo, - ya)" € [0, [y = 1} embedded in R (as a d-
dimensional surface). Dirichlet distribution is said to be symmetric if there exists
a single concentration parameter o such that a; = « for each i =0,...,d.

Remark 273. Often, the probability measure of the Dirichlet distribution

is written in terms of y,...,ys. This form can be recovered from the
probability measure by writing o = 1 — X%, y; and by realizing that by
the projection onto yo = 0 plane, we have the following transformation

Ta(dy) = vVd + 1dyidys - - - dyq.

We will see that the normalisation constant is correct using the following stochas-
tic decomposition argument:

Lemma 274. Let X = (Xo, X1,...,Xq)" be a random vector with X; ~ T'(ay)
being independent and let S = Y X;, then X/S ~ Dir(ap, oy, ..., o) and
S ~T(ag+ -+ aq). Moreover, X/S and S are stochastically independent.

Proof. Note that since X; ~ [(«;) are independent,

d ai,l

) = (T Fr s lom () e Soomhantax) (A2

Let us perform the change of variables x; = sy; such that Z?:o y; = 1 and s > 0.
Note that now y = (yo,...,%4)" lies on T; and thus the Lebesgue measure splits
as Agr1(dx) = s%74(dy)ds/v/d + 1. The additional factor v/d + 1 comes from the
projection of s into the direction of the vector (1,1,...,1). In total,

Px (dx) = <H ny(éa}) sao;;o% © oo (s)7aldy)ds = Py (dy)Ps(ds),
(A.22)

i=0
with S ~ I'(ap+ - -+ + o) since fg(s) = st FTeale=s1 4, 1 (s)/T(ag+ -+ aq).
Independence follows from the fact that we factorised the probability measure
into a product of two measures. |

The proof of Lemma [274] is somewhat standard. The version shown here is an
adaptation taken from Ranosova [5§].

Corollary 274.1.

vd+1

voly T = i (A.23)
Proof. Let o; =1 for all ¢ in Dir(ap, ..., aq). Then, since E1 =1,
Hdzo F(Oé1> \/m

lT*:/ dy) = (Vd 1)t El= . A.24

volta = ) = WA Do o Sty B

|

Definition 275. We define yet another set of simplices Ty which we call canon-
ical simplices as
Ty = conv(0,eq,es,...,€q). (A.25)
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Proposition 276.

VOld Td = (AQG)

a.
Proof. Let x = (z9,...,74)". The distance to the plane (1,...,1) x = 1 is equal
to 1/4/d + 1. By base-height decomposition, we have

1 1 1

V01d+1 Td+1 = rﬂ ] n VOld T; = m

(A.27)

—_

|
Remark 277. As a consequence of Remark we get the following formula

o — Hg: P(O&J
/Td (1-=hiw)™ Hy a(dy I‘(Zodi:ooz) (A.28)

where y = (y1,...,94)" € R%

A.5 Reconstruction of density of random variables from
moments via Inverse Mellin Transform

Positive random variables

Recall the definition of the Mellin transform of a function f : RT — R,

MIfl = MIFE)k) = [ 871 1(s) ds. (A:20)
For example, for any a > 0, we have
M([6(s — )] = o, (A.30)
If we know the moments of a positive real random variable S, say m;, = E S*,
that is my = [3° s*f(s)ds, we can then recover its density f(s) by the inverse
Mellin transform since my_; = M|[f(s)](k). Formally,
f(s) = M [my_1](s). (A.31)
Ezxample 278. Let us derive the PDF fq(w) of a positive random variable 2 =

X(1—X), where X ~ Unif(0,1). Let us write down an integral for moments of
Q) for k being a positive integer,

my, = E[QF] = /01 (1 — 2)* da. (A.32)

Taking the inverse Mellin Transform, we get, rather unsurprisingly, the Dirac
kernel method (which works not only for positive random variables)

folw) =M my_1] =M [/Olmk_l(l—x)k_l dx} :/015(:1;(1 —2)—w)de. (A.33)
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This integral is trivial and can be solved via the known formula
0g(x)) = > oz —y)/lgv) (A.34)
v,9(y)=0
valid for any suitable real function g, The roots of g(z) = (1 — z) —w = 0 are
Yr = % + %\/1 — 4w and thus ¢'(y+) = 1 — 2y+ = Fv/1 — 4w, from which
2

fﬂ(w> = m10<w<1/4- (A.35)
Integral operators
Let » > 0. Integrating by parts,
Mifl= - [T s = - MA@ (As)
== e s s))ds = — e s (s s))], .
SO
s sTTf(5)) = =Mk +r)MLS]] (A.37)
We define a (commutative) integral operator Z, with r > 0, such that
Tf(s) = [ T ) ar. (A.38)
We can invert Equation (A.37)) as follows,
f(s) = LM (k + r)M[f]]. (A.39)
[terating the process,
f(S) = Im ‘. -IrnMil[(k + Tl) o (k + rn)'/\/l[f“ (A4O)
Example 279. Assuming «,r > 0, we have
Zo(s —a)=s" /OO (s —a) dt = s"a " g, (A.41)
Example 280. Similarly, for ¢ # r non-negative,
) q~—q—1 _ or,—r—1
Z,7,0(s — a) = s* of’”’l/ a1, dt = oa 5 a lico. (A42)
S r—dq

Note that the result is only some linear combination of Z,.(s — a) and Z,6(s — ).
This pattern is general and arises from the partial fraction decomposition. To see
this, note that, by Equation (A.39)),

ML, f] = m (A.43)
- M(f] o~ B =
MU T = G S g~ 2 g W = LM (Ad4)

where 3 = 1/T1;4(r; — ;). Hence, taking the inverse Mellin transform,

Ty ... T, = 3 B, (A.45)
=1
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Ezample 281. Since m = h%k — ﬁ, we get 7172y = I; — I, and therefore,

by Z,6(s — a) = s"a "1, (Equation (A.41),
T 10(s — a) = sa*(a — 8)1,cq. (A.46)

Since the operator Z, is continuous, we can take the limit ¢ — r in Equation
(A.42) to get Z26(s — ) for r > 0 and a > 0. Alternatively, differentiating
Equation (A.43)) by r, we get Z? = —%L. Either way, we obtain

S'I1

I25(s —a) = ——In %ﬂm. (A.47)

ar—i—l

Ezample 282. Since " we get TyZP T, = %Io —

1 _ 1
14+k)2(2+k) — 2k (14k)2 2(2+k)’
77— %IQ and thus, after some simplifications

o —s* —2asln ¢
203

T I Th0(s — a) = loca. (A.48)
Differentiating Equation (A.43) by r twice, we get 73 = %%L. Hence, from
Z.6(s —a) = s"a " ,., (Equation (A.41))), we obtain

ST’

3 — 2 &
30(s —a) = St In . Tsca-

(A.49)

More generally, for any non-negative integer k, we have Zh+! = %%L SO

S'I‘

- g ar—i-l

janey

TF15(s — a) In ;ls<o¢‘ (A.50)

Table[A.5]shows selected products Zyy of integral operators Z,., their decomposition
into sum of individual operators (done via partial fractions decomposition) and
their action on the Dirac kernel §(s — a), a > 0.

In decomposition Ind(s — «)

7,7, I, — I, sa 3 (o — 8)4cq

T, T3 3T — 31 sar (0 = 5°)Lsca
Ty T, Ty — T + 3T, ors (o — 8)?Lcq
VAWEYE %Il =1y + %13 (o — 5)*Lsca
T,7:Ts 1 — 1T+ LT (- 5)?(2a + ) Lecq

LWL LI | 4T — 1T+ 1T 1T+ LT s (o — 5) 1,2,

LTI, 17— 12 - 11, o [0 — 82 = 20810 2] Liq
LT | 1T+L-T 30— 313 |k |(a—s)(a+5s)—2s(20+5)n 2] 1.

Table A.5: Decomposition of the product of integral operators and their action on
the Dirac kernel
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Real random variables

Let us slightly generalise the method of reconstructing the PDFs from moments.
Let S be a real random variable. Until now, we assumed that S is positive.
However, we split any real random variable S into its positive and negative part
and treat those cases separately by the technique introduced in the previous
section. We have

S=5,—-5_, (A.51)
where S, = max{S5,0} and S_ = max{—95,0}. For moments in general,
mg =E[SY) =E[S]] + (-1)E[S?] = m] + ¢™m,. (A.52)
Moreover, when ¢ = k is an integer, we get
my = mj + (—1)"m;. (A.53)
We can split the PDF fg(s) of S as

_ )50, 520
fs(s) = {fs<_5>7 5 <0, (A.54)

where fd(s) and fg(s) are now conditional, that is apart from a constant multi-
ple) PDFs of positive random variables S, and S_, respectively. Hence, by Mellin
Inverse transform, we can reconstruct those functions as

fE(s) = MM 0(s), [ (s) = M7 mi_y](s). (A.55)

Example 283. Let us derive PDF fy(0) of a random variable ¥ = (X — Y)X,
where X, Y ~ Unif(0,1). First, for the moments of ¥ for k a positive integer,

ky — /01 /Ol(x —y)*azk dady. (A.56)

Integrating out ,
k+1 1 I2k+l 1 xk(l—x)kﬂ

k+1
= kde= d —1k/7d A.57
M / 1+k: S r+(=1) o 14tk 7, (A57)

from which we immediately identify,

k:+1

1 x2k+1 d.T
+ _ — A
e /0 1+k / 1+k: i (A.58)

Taking the inverse Mellin Transform, we get for the positive part >, ,

fg(a):IoM_l[km:_l} =ToM™ [/le%_l dm} IO/ r6(z*—0)dr  (A.59)

and for the negative part ¥_, similarly,
1 1
fo(o)=ToM ™! U (1= g)F+! dx}:IO/ (1-2)6(z(1—2)—0)dz.  (A.60)
0 0
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Equation (A.41)) with » = 0 yields Zod(0 — @) = 11,44, so

11
fi)‘—(O-) = ]]-cr<12 dov = —3 11’1 olscar
" (A.61)
fs (o) :/0 ;]lgq(l_m)dm: 2argtanh(v1—40) L,<1/4.
Overall, by Equation (A.54)), we get for the full density of ¥ =3, —¥_|
2argtanh /1 + 40, —1<o<0
felo)=19 & 4 (A.62)
—3Ino, 0<o<l1

when o € [—-1/4,1] and fx(0) = 0 otherwise. Integrating, we get the CDF of ¥,

0, 0<—i
1 1
1./ v/ _lc
Fo(o) =42 1+ 40 + 20 argtanh /1 + 40, 1S0<0 (A.63)
s(1+o0—0olno), 0<o<1,
1 o> 1.

Ezample 284. Let us derive PDF fy(A) of a random variable A ~ Lang. By
definition, we can write A = (Y — X)(Z — X)), where X, Y, Z ~ Unif(0,1). Let us
calculate the moments of A for k being a positive integer. We have

=E[A"] = /01 /01 /Ol(y — )" (z — 2)* dedydz. (A.64)

Integrating out y and z and by symmetry,
1 k+1 k+1 19 2k+2 d 19 1— k+1
_/ v = (za) dx:/ VY @l =)™
1+k o (14+k)? 0 (1+k)?

from which we immediately identify,

1 21’2k+2 dx 1 2 k+1
= _ = dzx. A.
M /0 1+k2’ / 1+k ‘ (4.66)

Taking the inverse Mellin Transform, we get for the positive part A,

1 1
[ =2 M [RPm | =212M [ [ =232 [ #2522 -x) de - (A67)
0 0

and for the negative part A_, similarly,

1
Fo()=2T2M! U o (1—x) dx] 212/ (1—2) (z(1—2)—N)dz.  (A.68)
0
Equation (A.43)) with r = 0 yields Z36(A — ) = l In §1x<a, SO

O 2/ In = 1A<m2 dr = [4VA -2\ — 4] 1,y

2/1 IL)\@ (1-o)dx = 4{argtanh\/1 A\ —V1— 4)\} Trcya
(A.69)
Overall, by Equation , we get for the full density of A=A, — A_,
dargtanh VI +4X —4V/1+4X, -1 <A <0
fA(/\):{él\/X—an/\—él, 0<A<1
when X\ € [—1/4,1] and fx(A) = 0 otherwise. Integrating, we get the CDF of A.

(A.70)
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B Integral calculus on real affine subspaces

First, we shall discuss the common techniques of multidimensional integration.
The notation used in this section is borrowed from the textbook Lectures on
convez geometry by Hug and Weil [37]. Once again, let us recall some basic facts
and definitions.

Definition 285 (S% ! w,). Let S¥! be a unit sphere in R? with the usual
surface area measure o4(+). That is, for the surface area of S* !, we get

N

2
d

I'(5)

as shown in the proof of Lemma [264] Also note that we can decompose x = ru,

where u € S4~! and r € (0, c0), the usual Lebesgue measure \q splits into radial
and angular part as A\g(dx) = r?"1drog(du).

wa = /S oa(du) = 0y(8"Y) = (B.71)

Definition 286 (Bgy, 4). We write By C R? for the unit ball (with unit radius)
and kg for its volume. Splitting the Lebesgue measure into radial and angular
part,

/2

1

_ _ _ d—1 _ T

/id—voldIBd—/Bd)\d(dx)—wd/o r dr_wd/d_lj(%)'

Definition 287. We denote G(d, p) as the set of all linear p-dimensional sub-

spaces of RY, this set is often called the (linear) Grassmannian. More generally,

we denote A(d,p) as the set of all p-dimensional affine subspaces of R¢ (p-
planes), this set is called the affine Grasmannian.

(B.72)

Remark 288. Both spaces G(d, p) and A(d, p) smooth finite-dimensional man-
ifolds. More concretely, we have dim G(d,p) = (d — p)p and dim A(d,p) =

(d—p)(p+1).

Definition 289. Let K; C RY. We define Gk, (d,p) = {v € G(d,p) |y N Ky #
0} and analogously, Ak, (d,p) = {o € A(d,p)| o N K, # 0}.

Definition 290. Let v, be the probability Haar measure on G(d,p). That is,
v, is invariant under action of the group of proper rigid sphere transformations
SO(n) and v,(G(d,p)) = 1.

Definition 291. We define the standard Haar measure p, on A(d,p) by
)= [ [ 1y +y € Payldy)n(dy), (B.73)
G(dp) J

where v, € G(d,d—p) is the linear space orthogonal to «v. That is, v, B~y = R%.

Lemma 292. p,(Ag,(d,p)) = k4—p = wa—p/(d — p). ]
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Proof. By symmetry, we have for any v € G(d, p),

tp(As,(d,p)) = / I{vy +y € Ag,(d, p)}Aa—p(dy) = voly_p(Ba N yL) = Kap-

h (B.74)
n

B.1 Cartesian parametrisation

In the case of p = d—1, the affine Grassmannian A(d, d—1) consists of hyperplanes
of dimension d — 1. Note that dim A(d,d — 1) = d so in order to parametrise the
space of all affine planes, we need exactly d parameters. One choice of those
parameters are the coordinates of the closest point to a given hyperplane, we
write &€ = (£1,...,&) " to be the vector from the origin to the closest point on the
hyperplane o. Another choice of parametrisation is by using spherical inversion
of €. Namely,

§ §
n = = , B.75
€€ el 7
so €]l = 1/||m]||. There is a nice interpretation of 1. Namely, a plane o defined

uniquely by the vector ) has a nonempty intersection with convex body K; C R?
if and only if i does not lie in the polar body Kj defined as

K;={xecRx"y<1l,yec Ky} (B.76)

This follows from the fact that the points x on the hyperplane o € A(d,d — 1)
satisfy n7x = 1. Therefore, we must remember that

oNK;#0 < necR\ K. (B.77)

Finally, the following lemma gives us then the Jacobian of transformation between
the standard Haar measure on a Grasmannian of hyperplanes and the Lebesgue
measure of the closest point intercepts:

e )

Lemma 293. Let o € A(d,d — 1) andn = (m1,...,m4)" be the plane vector
associated to o such that x € o < n'x =1, then

2 1

fa—1(do) = —
149) = 5T

Proof. First, we show that our measure on the right hand side is invariant with
respect to action of the group G(d) of all proper rigid motions in RY. We may
view any g(M,b) € G(d) by its corresponding action on points x € R%. That is,

x'=g(M,b)ox=Mx+Db (B.79)

where b is a translation vector and the matrix M corresponds to (proper) rota-
tions, hence M satisfies

det M =1land M'M =MM" = I, (B.80)
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where I is the d x d identity matrix. Let us find 6/ = ¢~ '(M,b) o (&) onto
which o is mapped by applying ¢g~'(M,b). Its associated plane vector i’ must
satisfy n''x’ = 1. By multiplying Equation by MT from the left, we
obtain MTx' = x + M "b. Further multiplying by ' from the left, we get
n'M'x' =1+n"M"b, from which we identify

Mn
'=g¢g (M,b = B.81
n' =g (M,b)on T F b7 Aln (B.81)
For the norm, we have by using M "M = I,
: Il
= B.82
= e (3.5
Let us calculate the Jacobian of transformation from 0’ to 7. We have
on'  M(1+b"Mn)— Mugb"M L (B.83)
on (14+bTMn)2 T 14+bTMn’ '
By Matrix Determinant Lemma [L19]
on' det M b"M det M
det<">: b d(l— 7 ): S (B&4)
on (1+bTMn) 1+b"Mn (1+bTMn)'+
In total,
1 n |1+bT Mnttd det M 1
—_— = dn)=—"—=X4(d B.85
o ) = gt b g 4 () (B5)

for any M and b. Therefore, ||n|~179\¢(dn) is a Haar measure on A(d,d — 1)
and as such, it must differ from py_1(deo) by a constant multiple [37, Theorem

5.4], say .
pa—1(do) = Wkd(dn) (B.86)

for some c¢. To check this constant is indeed ¢ = 2/wy, let us calculate the pg_q
measure over planes which pass trough B, (the unit ball with radius one). On
one hand, by definition, we already know that pg—1(Ap,(d,d — 1)) =w; =2. On
the other, let us characterise the condition under which a (d — 1) hyperplane o
intercepts B,;. This happens exactly when the closest point on o lies inside of By.
That is, ||€]| < 1, or equivalently ||n|| > 1. Hence, by using spherical coordinates
and symmetry, A\;(dn) = war?=t dr, where r = |||, and therefore

o -1

pa—1(Ap,(d,d — 1)) = /Rd\Bd W/\d(dn) = wd/l CTHddr = wge, (B.87)

so ¢ = 2/w, indeed. [ |

Remark 294. Simple calculation of Jacobian of transformation between 1 and
& (only the radial part is affected) reveals that

s (@) = Linsul—dxd(de). (B.38)
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B.2 Section integral

In this section, we show an important result of integral geometry, namely the
section integral. Let x = (Xq,X1,...,Xq—1) be a collection of d points in Ky, let
Ay_1 = volg_j convx be the (d — 1)-volume of their convex hull and o = A(x)
be a section plane passing through those points. Section plane o is parametrised
by 1 € R? such that for any x € o, we have n'x = 1. We wish to integrate an
integrable functional f : K¢ — R over all points in K. Normally, this would be
a d*-dimensional integral (d degrees of freedom for each point). However, often
f(x) posseses some simple form (a function of As_y, o only or combination of
both). In that case, this multidimensional integral can be drastically simplified.
The overall idea is simple: Instead of integrating over individual points in a
collection, we may first fix the plane on which the points lie and then integrate
over all planes. See an illustration in Figure below.

Figure B.1: The section integral replaces integration over space by integration over
sections planes diving Ky into K, U Kj

The only remaining question is then to correctly write down the Jacobian of this
transformation. This leads to the section integral formula below

Jo MR == [ Al TN (@) ).

RI\K

B.3 Blaschke-Petkantschin formula

Apart from the already discussed Cartesian parametrisation, the section integral
is a direct consequence of the famous Blaschke-Petkantschin formula which en-
ables us to reparametrise an integral over set of points x = (%o, ..., X,) for any
p < d as an integral over g-planes in A(d, q) for any ¢ > p, on which these points
lie.
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( D'

Lemma 295 (Blaschke-Petkantschin formula). Let f : (RY)P*! — R be a
Lebesgue integrable function of a collection x = (Xo, . .. ,X,) of points x; € R%,
j=0,...,p. Denote H, = conv(x) and A, = vol, H,, then for any integer q
such that 0 < p < q <d,

p+1 —q\P
/(]RO‘)erl f(xp\d-i_ (dx) = qup/ A(dq) /a'P+1 f(X)AZ )\q+1(dX),LLq(d0'), (B.89)

where

a=i
g = o0 T T02) (B.90)
=0l (%)
AP (dx) = 15— Aa(dx;) and N+ (dx) = [T5_o A(dx;) are the Lebesgue mea-

sures on (RY)PTL and oP, respectively.

\ J

Proof. See Rubin [63] for an elementary proof. [ |

Remark 296. Denote 74 = [ rile /2 dr = 25~ 'T'(2) as before. We have

WiYa = V o (see Equation (A.1])). We can express [y, in terms of v’s and
w’s as follows:

— pil .
B = VIO T 2 i [T By

j=0 Yd—j j=0 Wa—j

The statement of the Blaschke-Petkantschin formula is way too general for our
purposes. We will only need its special cases. First, often we assume that the
affine plane on which the points lie is exactly their affine hull almost surely.
This corresponds to the case p = ¢q. Another special case is got by restricting
the domain of integration using the following choice of f: Let K4 C R? be a
compact convex body with dim Ky = d and let f(x) = f(x) [To<ick L, (x;) for
some f : Kffrl — R suitably integrable, then

g P = [ s TN (000 (B92)

In this thesis, mostly we use the special case with f(x) = g(A(x))AE, where g(-)
is a function of the cutting plane o = A(x) € A(d,q) only. In this case, the
Blaschke-Petkantschin formula restricted on K, as in Equation becomes,
using definition of v{"(-) and denoting 0%, = K4No (dim ok, = ¢ almost surely),

Jris 9@INNTH ) = By [ ol o) (ol 0, g (o) (00).
d

Kd(dvq)
(B.93)
This still very general relation can be further reformulated in terms of expected
values. Let us select the collection X = (X, Xy, ...,X,) of (p+1) random points
X; independently from the same distribution Unif(K;). Then

Corollary 296.1. With respect to the uniform probability measure Unif(K,),

k _M (d—q+k) 14(d+k) 2
B0 = o B a0l 016) () ).

(B.94)
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If moreover ¢ = d — 1, for which, by using Remark

p—1

Wy plw
Baa—ryp = p! [[ ——L = —2, (B.95)
j=0 Wd—1-j  Wd—p

we may use the Cartesian parametrisation x € o < n'x = 1, to get

2! (d+k)p Aq(dm)
B AF] — / (k+1) L 14 {&£h)
98] = o Rala R Jan (vl o) gl
(B.96)
where o is now a function of 7. If moreover p =q¢=d — 1, we get
d—1)! k1 Aa(dn)
E AR ] = ( / (k+1) 1, d+k+1 _
{9(0') d—l} (Vold Kd)d R\ K Vi1 (U'Kd)(VO d—1 O'Kd) 9(0’) HnH”d
(B.97)

We may write this relation in the form of the following corollary

Corollary 296.2. With respect to the uniform probability measure Unif(Ky),

E [g(0)Ah-,] = (d= Divola Ko [ o) (0, )¢+ (@)g(@)lIm] " Nalam)

RI\K?S
where we defined the zeta section function

. VOld_1<0' N Kd)

= B.
) = vol, K, (9
Especially, ford =3 and p=q=d — 1 = 2, we get
J 9N ) =2 [ ol ) (vola o) gl [l Aalctm). (B.99)
3 3

Remark 297. We show that ||n|| always cancels out in (4(o). First, note that
o always separates K, into disjoint union K; U K, where

Ki={xecKyln'x<1}, K;={xeKy|n'x>1}L (B.100)
+
From homogeneity of d-volume, % =— Z?Zl njavngd and thus
1 d 8v01d K+ 1 d 8V01d K
Calo) = — ) t= n——p —=  (B.101)
voly K, st on; volg Ky =i on;

does not depend on ||n||.

B.4 Spherical parametrization
Lastly, let o € A(d, 1) be a line in R%. Any o can be decomposed as
oc=~v+Yy, (B.102)

where v € G(d,1) (lines passing through the origin) and y € ~,. Note that
G(d, 1) is isomorphic to a half-sphere Si’l, since any -y can be associated with its
unit tangent vector i as

vy={th|teR fecS" '} (B.103)
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This isomorphism is a bijection as long as f is taken from half-spheres, since
for a given v € G(d, 1), both +fi would be its possible unit tangent vectors.
By the definition of the invariant measures, we may write the (half-)spherical
parametrization of py(do) as

vl = jd)\d_l(dy)ad(dﬁ). (B.104)

Moreover, it is convenient to denote iy = -y, (hyperplane perpendicular to fi),
soy € i, where i € S‘fr_l.

Blaschke-Petkantschin formula

Inserting the relation between measures into Blaschke-Petkantschin formula,

[, FE3ax)= |

Sd’l/A /( NK )2f(X)A(1i_1)‘%(dx)>‘d—1(dy)ad(dﬁ)7
d o TR (@

where x = (xg,x;) and A3(dx) = dxodx;. For arguments in the special form
f(x) = g(o)Ak, we may integrate out xg,X; to obtain

Proposition 298. Let K; C RY be a convex d-body and Xo, X1 ~ Unif(Ky) be
random points uniformly and independently selected from K,. Denote, as usual,
Ay = || Xy — Xyl the (random) distance between them and o = A(XoXy) the line

passing through them. Then, for any integrable function g(o), any d > 1 and any
(real) k > —d,

Kl 2/(\701de)2 d+k+1 “
E [g(o)A] = TR /S . / g(a) voli (o N Kg) ™+ (dy)oa(dd)
(B.105)

ng

where o0 = {y +tii | t € R} € A(d,1) (implicitly dependent on'y and fi).
Proof. By Blaschke-Petkantchin formula in form of Corollary [296.1| with p = ¢ =

Bt (d+k—1)
E kzif N ) voly (o N K g) ™+, (dor).
90)A] = o Ko Jur a9 (@ Ny voli (@ N K 1y (do)
(B.106)
By Remark 296 we have 411 = wg/wi = wa/2. Next, by affine invariancy, we get
_ _ 2

(e N Ky = o) = (d+Fk)(d+E+1) (B.107)

by Equation (4.39)) (7} is the line segment (0,1)). Hence,

1y K,)?

E [g(o)ak] = 2o/ (vola Ka / L(o N K"+ (do). (B.108
(90 = TR TT) a0 Vol N K (dr). (B.108)

The statement of the original proposition follows immediately from the spherical
parametrization of u;(de) (Equation (B.104)). [ ]
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Distance moments

As a direct consequence of the previous proposition with g(o) = 1, we get the
following formula on distance moments (Kingman [40, Eq. 34]).

Proposition 299. Let K; C RY be a convex d-body and Xo, X, ~ Unif(K,) be
random points uniformly and independently selected from K,. Denote, as usual,
Ay = || Xy = Xol| the (random) distance between them. Then, for any d > 1 and
any (real) k > —d,

ng

B at] - (dig?gﬁim /S/ voli(or N Kq) ™A1 (dy)oa(dh)  (B.109)

where o = {y +th | t € R} € A(d, 1) (implicitly dependent on'y and i).
As a special case, we get the following interesting corollary:

Corollary 299.1. For any convex d-body Kq C R? and any d > 1,

I E[Af] = =2 B.11
k:—}r—rzﬁ'(d + k) [ 1} volyg Ky ( O)
Proof. By Proposition 299 above,
2
. k] N
Jim (d+k)E [Af] = CLER /S . /n Vol (0N Ky (dy)oa(did). (B111)
The statement follows immediately from the trivial fact that fgifl oq(dii) = %

coupled with Fubini’s theorem: For any fixed fi € ST,

voly Ky = / Aa(dx) = / / A (dt) A (dy) = / voli (o N K) A1 (dy),
Ky n, JoNnKy n
(B.112)
where o = {y +thi | t € R} € A(d, 1) as usual. |
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C Symmetries and genealogic decomposition

C.1 Configurations

Let G(P,) be the group of all isometries of Py (the symmetric group of P;). That
is, G(P,) is isomorphic to the group of permutations of vertices of P; such that it
leaves P; unchanged upto rigid transformations (including reflections). Note that
in d = 3, G(P;) only consists of rotations, reflections and improper rotations. In
Schoenflies notation, they are denoted C,, 0, S, respectively (together with
inversion I and identity E).

Example 300. All isometries of a regular octahedron are given as
G(O3) = {E,6C,,8Cs,6Cy,3C% I,30,,604,654,85}. (C.113)

Let us select some subset S of vertices V' of P;. We can imagine the selected ver-
tices are coloured (black/white), this way we get a polytope P,(.S) with coloured
vertices. We denote Py as the set of all those polytopes with pre-selected (coloured)
vertices. We say two Py(S1), Py(S2) € Py are equivalent if there is g € G(Py)
such that gP,;(S;) = P;(S1). Moreover we say they are section equivalent if
gPi(S2) = Py(S1) or gPy(S2) = Py(V \ S1). We see that the first condition is
more strict since in the latter case, since in the section equivalent case we also
identify two coloured polytopes with switched colours. We call the representants
of all equivalent classes of coloured polytopes as configurations.

C.2 Weights and orders

The size of an orbit of some configuration C' = P,(S) with selected representant
vertices S is by definition oc = |G(P;)C|, where G(P;)C = {¢C|g € G(P,)} is the
orbit of C. By orbit-stabiliser lemma, oc = |G(Py)|/|Gc(Py)|, where Go(FPy) =
{g € G(Py) | gC = C} is the stabiliser subgroup. The total number of equivalent
configurations is given by Burnside’s lemma as

6Pl 2o, 1O 196 = €l (.1

where {C | gC = C} is the set of fixed points (that is the set of configurations
that are unchanged by the action of the group element g). We can find those
configurations via the help of computer, see GECRA (Code @ in the appendix.
The procedure is as follows: First, we represent G(FP;) as a subgroup of the sym-
metry group Sjy| with [V| whose elements (permutations) which act of vertices
of P; we represent as permutation matrices. This representation is of course an
isomorphism. Then, we can represent a selection (colouring) of vertices S as a
vector s of length |V of ones and zeros. Let us denote the set of all such vectors
as S. There are 2Vl such vectors. The set of all configurations is then simply the
classes

U [Swisl = U{gslg € Sy} (C.115)

seS seS
So far, we have not employed the section equivalence gC ~ C’, where we write
C' = Py(V'\ S). Therefore, for a given configuration C with S selected (coloured)
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vertices out of total n vertices of P;, we define the section weight w¢ as the size
of the orbit of C with respect to the section equivalence, that is, by symmetry

B {oc, 1S| < n/2

oc/2, |S|=n/2. (C.116)

Since o N Py is also a polytope (more precisely, a (d — 1)-polytope), we define the
order n¢ of a configuration C as the number of vertices of o N P;. We claim this
number is well defined for a given configuration.

C.3 Realisable configurations
E.20,,02\ (B,Cy) [E.2C5,2C,3C2,\ [E.2C5) (E,Cs,
g 03 g(Og) { 20’h, 20d } {O'h,O'd} {I 30’h, 20d, 254 3(Td Op,04q

wc : 1 6 12 3 4 6

Table C.6: Section equivalent configurations of O3

In the example above shown in Table [C.0] configurations N, I, 1T, IIT are those
whose points can be separated by a plane. In general that is, there exists a
(d — 1)-plane o such that all vertices in S lie on side of o and all remaining
vertices V'\ S lie on the other side. Those configurations are said to be realisable.
We write o/C, where C is a configuration and we write C(P;) for the set of all
realisable configurations. We can check whether a configuration is realisable by
checking whether there is a nonempty subset of R? satisfying Equations (4.29)).

C.4 Genealogy

Realisable configurations have a unique property — assuming P, is convex, we
can obtain them from realisable configurations with fewer coloured vertices by
successively adding (colouring) another neighbouring vertex. This corresponds to
a continuous shift of . The graph (in fact, a Hasse diagam) of such successions is
called the genealogy of P, configurations with section weights wc. Generalogies
for selected polyhedra are shown in Appendix [D] For example, the genealogy of
the octahedron section equivalent configurations from Table are shown in

Figure

C.5 Decomposition of functionals

Let P C R% be a convex d-polytope. Consider an affinely invariant functional
1

F(P) = (ol By /P J() A (). (C.117)
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By symmetry, we can decompose this functional as follows

F(P)= > wcF(P)c, (C.118)
CeC(P)
where 1
F(K)e = (oo Pyt Jpa HAG)/CHNI(), (C.119)

Note that the property A(x)/C is also affinelly invariant, since any affine trans-
formation does not change the set of vertices S separated by o. As a conse-
quence, also F(K) stays invariant under affine transformations of K. By defining
Pc ={x € P| A(x)/C}, we may also write

1
F(K)e = (ol i /Pg F(x)A(dx). (C.120)
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D Selected genealogies

Configurations C(P) derived from the empty configuration N (no points selected)
by succesively adding an extra vertex (I, II,III, etc.). Genealogic decomposition
is used to decompose affine functionals F/(K) as X cec(p) weF'(K)c. Each config-
uration is characterised by selection S of vertices (figures), by section equivalent
weights we and the number of vertices of o N P, which is the order n¢.

Nﬁ
II / 111
Cl1[o C |1
we | 4] 6 we | 6 12 4
ngc 3 4 nc 4 6 6

Figure D.2: Tetrahedron genealogy Figure D.3: Octahedron genealogy

N . L
Ij@i U v s Vo ow
~2 Ve

. ?/ < A TN

-

N

/

C |I|II II|IV C |I,II|III IV |V | VI|VII| VI IX

\Y
we | 8112124 | 4 |3 we 4146 12|12 12| 2 2 |3
nc |34 |5 |6 |4 nc |63 107|989 9 |8

Figure D.4: Cube genealogy Figure D.5: Triakis tetrahedron genealogy
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@ vnc86779776

III / \ / C XXV | XXVI | XXVII | XXVIII| XXIX XXX XXXI | XXXII
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0 IV no| 8 | 8 | 8|8 | 7| 7|99
C IXXXIIT XXXIV| XXXV | XXXVIIXXXVII[XXXVIIT| XXXIX| XL
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clilojur|iv nc| 6 | 8 | 8| 8|10 7 |79
'LUC 3 2 3 6 C XLI XLII XLIIT | XLIV XLV XLVI XLVII
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Figure D.8: Triangular bipyra-
mid genealogy Figure D.9: Truncated octahedron genealogy
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Figure D.10: Cuboctahedron genealogy
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Figure D.11: Tuncated tetrahedron genealogy
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E Codes in Mathematica

E.1 General formulae

Code 1: Code to evaluate eglk) for general d and k

efun[d_,1]:= (d+1)«*(a @@ ConstantArray[0,d]) " (d+1);
efun[d_,k_] := Simplify[ (d+1)!/(d!)" "k
Sum[Times (@@ Array|[Signature[p[#+1]] &, k-11x
(Times QQ@ (a @R Table[Count[#,1], {i,1,d}] &
/@ Table[Flatten[{i-1, Table[p[j][[i]]1-1, {3j,2,k
P11, {i,1,d+1}1])), ##] &
@@ Table[{p[i], Permutations[Range[d+1]]1}, {i,2,k}]1];

E.2 Tetrahedron area moments

Code 2: Code to evaluate L:(Sk) (o) in T3, configuration I

k = 1 (#desirable integer%);

Tcanon = Tetrahedron[{{0,0,0},{1,0,0},{0,1,0},{0,0,1}}1];

Tabc = Tetrahedron({{0,0,0},{1/4,0,0},{0,1/b,0},{0,0,1/c
PG

iotaint = Simplify[Integrate| (Dot[{a,b,c},x] - 1)"k, x \[
Element] Tcanon] - (1 - (-1)"k) Integrate] (Dot[{a,b,c
},x] - 1)7k, x \[Element] Tabc],Assumptions -> 1 < a

&& 1 < b && 1 < c]

Code 3: Code to evaluate Lgk)(d) in T3, configuration II

k = 1 (+xdesirable integerx);

Tcanon = Tetrahedron[{{0,0,0},{1,0,0},{0,1,0},{0,0,1}}1;

Tabc = Tetrahedron[{{0,0,0},{1/a,0,0},{0,1/b,0},{0,0,1/c
b1

Tstar = Tetrahedron[{{0,0,1},{(1 — ¢)/(a — ¢c),0,(a — 1)/ (
a-¢)},{0,(1L -¢c)/(b-¢),(b-1)/(b -1¢)},{0,0,1/c
Fr1;

5 lotaint = Simplify[ (Integrate[ (Dot[{a,b,c},x] - 1)k, x
\ [Element ]
Tcanon] — (1 - (-1)"k) Integrate[ (Dot[{a,b,c},x] — 1)~
k,
x \[Element] Tabc] + (1 - (-1)"k) Integrate[ (Dot[{a,b,
cl,x]

- 1)*k, x \[Element] Tstar]),
Assumptions -> 1 < a && 1 < Db && 0 < c < 1]

Code 4: Code to evaluate vékﬂ)(Ugﬁ), odd &

k = 1 (#desirable odd integerx);

2> Delta = 1/2! Det[{xl - x0, x2 - x0}]1;
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trianab = Triangle[{{0, 0}, {\[Alphal, 0}, {0, \[Beta

11
trianunit = Triangle[{{O, 0}, {1, 0}, {0, 1}}];

5 meancut =

6

1

2

!

6

8

9

11

Simplify[ (2/(1 - \[Alpha] \[Beta]))"(
k + 4) (Integrate[Delta”(k + 1), x0 \[Element]
trianunit,
x1 \[Element] trianunit, x2 \[Element] trianunit] -
3 Integrate[Delta” (k + 1), x0 \[Element] trianunit,
x1 \[Element] trianunit, x2 \[Element] trianab] +
3 Integrate[Delta”(k + 1), x0 \[Element] trianunit,
x1 \[Element] trianab, x2 \[Element] trianab] -
Integrate[Delta”(k + 1), x0 \[Element] trianab,
x1 \[Element] trianab, x2 \[Element] trianabl),
Assumptions -> 0 < \[Alpha] < 1 && 0 < \[Beta] < 1]

E.3 Pentachoron 4-volume moments

(k)

Code 5: Code to evaluate ¢, ' (o) in T4, configuration I

k = 1 (xdesirable integerx);
Tcanon =
Simplex[{{O, 0, O, 0O}, {1, O, 0, O}, {O, 1, O, 0}, {O,
0o, 1, 0}, {0, O, O, 1}}1;
Tabcd =
Simplex[{{0, 0, 0, 0}, {1/a, O, 0, 0}, {0, 1/b, 0, 0},
{0, 0, 1/c, 0O}, {0, O, 0, 1/d}}1;

iotaint =
Simplify|[
Integrate[ (Dot [{a, b, ¢, d}, x] - 1)"k, x \[Element]
Tcanon] - (1 - (-1)"k) Integrate[ (Dot[{a, b, ¢, d}, x
] -1
k, x \[Element] Tabcd],
Assumptions > 1 < a && 1 < b && 1 < c && 1 < d]
Code 6: Code to evaluate Lé(lk)(a) in T4, configuration II
k = 1 (xdesirable integerx);
Tcanon = Simplex[{{0, O, O, 0}, {1, O, O, 0},
{0, 1, o0, 0}y, {O, O, 1, 0}, {0, O, O, 1}}1;
Tabcd = Simplex[{{0, 0, 0, 0}, {1/a, 0, 0, 0},
{0, 1/b, 0, 0}, {0, O, 1/¢, 0O}, {0, O, O, 1/d}}1;
Tstar = Simplex[{{0, 0, 0, 1},
{((L. - d)/(a -d), 0, 0, (a - 1)/(a - 4d)},
{0, (1 —-d)/ (b -4d), 0, (b - 1)/(b - d)},
{0, 0, (1 —d)/(c = d), (c —1)/(c - d)},
{0, 0, 0, 1/d}}1;
iotaint = Simplify|[ (Integratel[ (Dot[{a, b, ¢, d}, x] - 1)"
k,
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x \[Element] Tcanon] - 2 Integrate[ (Dot[{a,b,c,d},x] -
1) "k,

x \[Element] Tabcd] + 2 Integrate[ (Dot[{a,b,c,d},x] -
1)k, x

\ [Element] Tstar]),
Assumptions —> 1 < a && 1 < Db && 1 < c && 0 < d < 1]

Code 7: Code to evaluate vékﬂ)(U?BW), odd k

k = 1 (+xdesirable odd integerx);
Delta = 1/3! Det[{xl - x0, x2 - x0, x3 - x01}1;

3 Tabc = Tetrahedron[{{0, 0, 0}, {\[Alphal, 0, 0}, {0, \I[

Beta], 0}, {0, 0, \[Gamma]}}];
Tcan = Tetrahedroni({{0, O, O}, {1, 0, 0O}, {O, 1, 0}, {O,
0, 1}}1;

5 meancut =

~

8

Simplify[ (6/(1 - \[Alpha] \[Beta] \[Gamma])) " (
k + 5) (Integrate[Delta”(k + 1), x0 \[Element] Tcan,
x1 \[Element] Tcan, x2 \[Element] Tcan,x3 \[Element]
Tcan]
- 4 Integrate[Delta”(k + 1), x0 \[Element] Tcan,
x1 \[Element] Tcan, x2 \[Element] Tcan, x3 \[Element]
Tabc]
+ 6 Integrate([Delta”(k + 1), x0 \[Element] Tcan,
x1 \[Element] Tcan, x2 \[Element] Tabc, x3 \[Element]
Tabc]
- 4 Integrate[Delta”(k + 1), x0 \[Element] Tcan,
x1 \[Element] Tabc, x2 \[Element] Tabc, x3 \[Element]
Tabc]
+ Integrate[Delta”(k + 1), x0 \[Element] Tabc, x1 \][
Element]
Tabc, x2 \[Element] Tabc, x3 \[Element] Tabc]),
Assumptions ->
0 < \[Alpha] < 1 && 0 < \[Beta] < 1 && 0 < \[Gamma] <
1]

E.4 GECRA: Genealogy creation algorithm

The following algorithm generates realisable configurations and their weights for
any polytopes by exploiting their symmetries. The code works on iterating over
nos (the number of selected vertices) and it has the following steps

o Step 0: initialise empty configuration N
« CYCLE
— Step I generate new configurations from old ones
— Step II: group them into classes, select first configuration from each
(the so called representant)
— Step III: for each representant, determine if it is realisable, discard
unrealisable
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o repeat step I until nos reaches half the number of vertices,

The algorithm is initialised by inserting vertices of P, into solid as a list of their
coordinates and the symmetry group G(P;) into symgroup as list of permuta-
tions on indexes of these vertices. In the code, dimen is the dimension d. Various
inputs and results are stored in the library in the file GENERAL EFRON.nb (see
Attachments). For example, Code [§] shows the input for P; = C3 (the three-
dimensional unit cube). Note that we only store the generators of G(Cj3) since
the whole symmetric group can be obtain by successive composition of the ele-
ments with themselves.

Code 8: Input for GECRA for P; = Cj3

solid = {{O/ O/ O}r {11 O/ O}I {O/ 1/ O}I {O/ OI 1}/
{0, 1, 1%+, {1, O, 1}, {1, 1, O}, {1, 1, 1}1};

3 generators = { (#reflection*){4, 6, 5, 1, 3, 2, 8, 7},

N

(#2fold rotationx*){3, 7, 5, 1, 4, 2, 8, 6},
(*3fold rotation=*){7, 8, 3, 2, 1, 6, 5, 4}};

s symgroup = FixedPoint [Union[Flatten|[Table|

PermutationProduct [#, p] & /@ #, {p, #}1, 111 &,
generators];

The output of the GECRA program is the following
e alltypes:the list of cofigurations, each configuration is represented by a
list of indices of vertices
e allweights: list of weights of configurations
e allgenealogy: the genealogy as a list of pairs ¢ — j, where 7,7 are
indices of configurations in the list of configurations
« gengraph: the genealogy graph (a Hasse diagram)

Code 9: GECRA: Genealogies from symmetry groups

Clear[classreps, rawclassreps, oineqgsel, isrealisable,
orbitmaker,
allsuccesors, weightsel, dimen];

3 dimen = 4;

14

15

16

ofvertices=Length[solid];
etaparams = Table[a[i], {i, dimen}];

s orbitmaker[sel ] :=

orbitmaker[sel] =
Union[Table|[ (sel) [[#[[1]1]], {i, ofvertices}] & /@
symgroup] ;
weightsel[sel_] :=
If[Total[sel] < ofvertices/2, Length[orbitmaker[sel]],
Length[orbitmaker[sel]]/2];
(#inequalities for etaparams a,b,c,d,... for a given 0,1
selection of \verticesx)

; oilnegsel[sel_] :=

oinegsel[sel] =
With[ {representant = Pick[solid, == 1 & /@ sell},
Reduce [Or [
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And (@@ Flatten|[{Dot|[etaparams, #] > 1 & /@
representant,
Dot [etaparams, #] < 1 & /@ Complement[solid,
representant]i}l],
And Q@@
Flatten|[{Dot [etaparams, #] < 1 & /@ representant,
Dot [etaparams, #] > 1 & /@
Complement [solid, representant]}]]]1];
isrealisable[sel_ ] :=
isrealisable[sel] = If[Length[oinegsel[sel]] == 0, O,
115
(xstep 0%)

s classreps[0] = {ConstantArray[0, ofvertices]};

(xstep Ix)
allsuccesors|[sel_ ] :=
allsuccesors[sel] = Replacelist[sel, {a
{a, 1, b}tl;
(*step IIx*)
rawclassreps[i_] :=

, 0, b }oi>

rawclassreps([i] =

Map [Last,
Union[orbitmaker [#] & /@
Union[Flatten[allsuccesors[#] & /@ classreps[i - 117,

111117
(xstep IIIx)
classreps[nos_] :=
classreps[nos] =(#xsort by weight of a configurationx)
SortBy[Select[rawclassreps[nos], isrealisable[#] == 1
&], weightsel];

(*QUTPUT %)

allreps = Flatten|[Table|[classreps([i], {i, 1, Floor|
ofvertices/21}1, 11;

(x01 representants as their indexx*)

s repstoindexesrule =

Flatten[{{ConstantArray[0, ofvertices] -> 0},
Table[allreps([[i]] —> i, {i, Length[allreps]}]}, 11;
allgenealogy =
Flatten[Table[ (sel /. repstoindexesrule) -> (suc /.
repstoindexesrule), {i, 0, Floor[ofvertices/2] - 1},
{sel, classreps[i]}, {suc,
Intersection|[Flatten| (orbitmaker[#] & /@ allsuccesors
[sel]l), 11, classreps([i + 111}1, 21;
gengraph =
GraphPlot [
RomanNumeral [#[[1]]] -> RomanNumeral [#[[2]]] & /@
allgenealogy,
VertexLabeling —> True, DirectedEdges —-> True];
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56 (*representants in coordinatesx)allrepscoord =

57 Pick[solid, # == 1 & /Q@ #] & /@ allreps;
ss alltypes = Pick[Range[ofvertices], # == 1 & /Q@ #] & /@
allreps;

50 allweights = weightsel[#] & /@ allreps;
s allnoofsel Total[#] & /@ allreps;
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F Auxiliary integrals

Recurrence relations for auxiliary integrals

Recall that D((,7) is the fundamental triangle domain with vertices [0, 0], [C, 0],
[(,Ctany] (¢ > 0,0 <y < 7/2). To express the integrals

o /2
[z(]p) <Q7 ’}/) = /D(q ) mzy] (1 + 1'2 + y2)p d%dy, (F121)

we mainly employ recursive relations. However, I{If)(q, 7v) can be expressed di-
rectly without recursions. We parametrise the domain D(q, ) as y € (0, z tan~),

x € (0,q), by integrating out y and then z, we get

_sin®y + cos®y (1 + ¢° sec? 7)2+§ —(1+ q2)2+§
(2+p)(d+p) '

1% (q,7) (F.122)

K’s

In case of I fg)(q, ) and [1(‘8)(q, 7v), we cannot integrate twice. To overcome this,
we first define our first auxiliary integral

K@) = [ Ta+e) (F.123)
0

satisfying symmetry
K® (=) = —K® () (F.124)

and, via integration by parts, the recurrence relation

24p T
KP@r) = —ZK®2(r) 4 ——(1 47217/ F.125
) = oK) + (1 40%) (F.125)
with boundary conditions
K@)y =r, K©9(r) = argsinhr- (F.126)

We can then express our [{’0’) (q,7v) and Il(g) (¢,7) in terms of K's as

3+p

1 = t .
]1(8)(%7) = l(l —|—q2> K® <q an(’y)) —siny K®(gsecy)|, (F.127)

2+p V1+¢?
1
80:7) = g oo K gseen) — K(g)]. (F-128)
J’s
We denote N
TP (g,7) = — +/0 (1 + ¢*sec® )72 dp, (F.129)

satisfying symmetry

and, via integration by parts, the recurrence relations

1+p t
TP (g,7) = TP (g,7) + q(1+ ¢ K#? ( T ) :

Ve (F.131)
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with boundary conditions

sin y
VIt
Remark  301. Note that we can  write J®(g,7) =
Iy ((1 + % sec? ) *P/2 — 1) dep.

J(g,v) =0, J"¥(q,7) = —y + arcsin (F.132)

We transform Iég) (¢,) by substitution into polar coordinates x = rcosp, y =
rsin ¢, our domain D((,7y) becomes parametrised as r € (0,gsecy), ¢ € (0,7)
and thus

qsecap
19 / / (1) drde, (F.133)

Integrating out r, we get

g 1
1§ (q,7) = / (14 ¢*sec? )72 — 1 dp = mﬂp)(q, v).  (F.134)

24+pJo

Note that, by this integral formula, we can extend the definition of I((]g)(q, ) for
negative 7 as well.

M’s
The last set of auxiliary integrals we define is
gl
M(p)<q’ ﬂy) — / C082 90 |:(1 + q2 SeC2 (10)1"1‘17/2 _ 1:| d(p7 <F135)
0

satisfying the recurrence relation

M®(q,7) = MY (q,7) + ¢ (v + 77 ?(a,7)) - (F.136)

Using standard techniques of calculus it is not hard to derive their specific values
for p = —2and p= —3 are M~ (q,~) = 0 and

L2 . .
M (g, 7) = 2q arcsmm_}rsuzw (\/m_com). (F.137)

Finally, we can express (q,7) and Iég)(q, 7). Note that we only need to express

the former as Iég) (q,7) can be extracted from other integrals since

1+p/2
8@ )+ 1 @+ @) = [ (ra4y?) T dady = 17 7),

(F.138)

Again, by using the polar coordinates substitution, we transform the integral into
gsecy 2

I(p)(q ) / / 3 cos? (1 +r )p/ drdep, (F.139)

Integrating out r, we get

p

g = [ cos p [(1+¢%sec? )" — 1] cos? o [(1+g%sec? ) F 1] d
20 \4,7) = A pps —
1 1

= pMet2) : _ MP) 7).
1 (a,7) > ) (2,7)

¥

(F.140)

Selected values of the auxiliary integrals Ii(f) (q,7) can be found below in the next
section.
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Special values of auxiliary integrals

The following Table
thesis.

lists some of the values of Il-(jl)(q, 7v) used throughout our

1 2
i + Zargecothv/3

2v/3 36 3
1 7w Targcoth?2
4 36 12\/5

1 LT 251n 3 V3
R —— — arcco
16v2 18 ' 1922 3

1 7ln3 1
—1—1— 1 3zaurccot\/_

6v2 12 242
vy E_‘_i_@—}arccotQ—{—EargsinhQ
6 48 60 192 6 96
o + m  13lnb }arccot2 + EargsinhQ
48 20 192 6 96

V3 argsinh /2
—_— -+ = th
8 8v/2 + g B0 V3

3 9

T\/ﬁ — \1/6_ argsinh v/2 + 35 argcoth v/2
ERNCUCIR
256 1024 16

7 3v3 argsinh V2 o1
— + =+ — ~ argcoth v/2
12v2 8 82 g argcoth V2

argcoth V3

3 /3 3 1 1
3 2—\2——8argcoth\/§+16argsmh\/§
142 3v3
30 15 10
13 [3 33
20 20 2 20
1, 1 7 1Bacothya
20v/3 180 120\/5
1 2 431
_ 9 _1 3In3 arccot\/_

203 6402 90 7680\/_

Table F.1: Selected values of Ii(jl)(q, «v) for various arguments
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List of equivalent values

Note that the values in Table [F.1] are get by not only recursions alone, but also
with addition to the following rules (equivalent replacement rules). These rules
are only aesthetic and have no effect on the correctness of our results.

1 T
arcsin — — 5~ arctan \/§

V3
) 2 T
arcsin \/; — 5 — arccot\@

argsinh 1 — argcoth v/2

1 In 3
argsinh — — i

32

1
— —ar COth\/g
V2 e

argsinh
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Attachments

GENERAL EFRON.nb

A Mathematica worksheet containing all necessary codes and implementations,
library of solid as well as integration algorithms and various simplifications sub-
routines.

simplex.f90

Fortran program which computes 1st and 2nd volume moments of random 4D
simplex (pentachoron) for Monte-Carlo simulation, see section on 4D sim-
plex volumetric moments.
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