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Abstract. We consider the following natural question. Given a matrix A with i.i.d.
random entries, what are the moments of the determinant of A? In other words, what
is E[det(A)k]? While there is a general expression for E[det(A)k] when the entries of A
are Gaussian, much less is known when the entries of A have some other distribution.

In two recent papers, we answered this question for k = 4 when the entries of A are
drawn from an arbitrary distribution and for k = 6 when the entries of A are drawn
from a distribution which has mean 0. These analyses used recurrence relations and
were highly intricate. In this paper, we show how these analyses can be simplified
considerably by using analytic combinatorics on permutation tables.
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1 Introduction

The determinant of a matrix is a fundamental quantity which is ubiquitous in linear
algebra. A natural question about the determinant which is only partially understood is
to determine the moments of the determinant of a matrix A with i.i.d. random entries.
In other words, given k ∈N, what is E[det(A)k]?

When the entries of A are drawn from the normal distribution N(0, 1), there is a
general formula for E[det(A)k]. In particular, Forsythe and Tukey [6] and Nyquist, Rice,

and Riordan [10] independently showed that when k is even, E[det(A)k] = ∏
k
2−1
j=0

(n+2j)!
(2j)! .

That said, only a few results were previously known about E[det(A)k] when the
entries of A are drawn from a distribution which is not Gaussian.
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1.1 Prior work for non-Gaussian entries and our results

In order to describe prior work and our results, we need a few definitions.

Definition 1. Given an n× n matrix A with i.i.d. entries drawn from some distribution Ω, we
make the following definitions:

1. We define mr = E[Ar
ij] to be the rth moment of the entries of A. When m1 ̸= 0, we define

Bij = Aij −m1 and µr = E[Br
ij] to be the rth centralized moment of the entries of A.

2. We define fk(n) = E[det(A)k] to be the kth moment of the determinant.

3. We define Fk(t) = ∑∞
n=0

tn

n!2 fk(n) to be the generating function for the determinant.

Example 1. When n = 2 and k = 4, we have f4(2)=E det(A)4=E (A11A22− A12A21)
4 =

E (A4
11A4

22 − 4A3
11A3

22A12A21 + 6A2
11A2

22A2
12A2

21 − 4A11A22A3
12A3

21 + A4
12A4

21)
= m2

4 − 4m2
3m2

1 + 6m4
2 − 4m2

1m2
3 + m2

4 = 2m2
4 − 8m2

3m2
1 + 6m4

2.
Example 2. For k = 6, when the entries of A are drawn from N(0, 1), we have f6(n) =
n!(n+2)!(n+4)!

48 and thus F6(t)=∑∞
n=0

f6(n)tn

n!2 = ∑∞
n=0 (n+1)(n+2)(n+4)!tn. Note that F6(t)

diverges everywhere except t = 0. That said, we can still treat it as a formal power series.
We now describe prior work on the moments of the determinant of a random matrix

with i.i.d. entries which are not Gaussian and our results. For k = 2, Turán observed
that when m1 = 0 and m2 = 1, f2(n) = n!. More generally, Fortet [7] showed that
f2(n) = n!(m2 + m2

1(n − 1))(m2 − m2
1)

n−1 and F2(t) = (1 + m2
1t)e(m2−m2

1)t. For k = 4,
Nyquist, Rice, and Riordan [10] showed that when m1 = 0, F4(t) = et(m4−3m2

2)/(1−m2
2t)3,

which implies that when m1 = 0, f4(n) = n!2 ∑n
j=0

1
j!
(
m4 − 3m2

2
)j m2n−2j

2 (n−j+2
2 ).

Recently, the authors made progress on analyzing E[det(A)k] in two different ways.
First, the first author [2] generalised Nyquist, Rice, and Riordan’s result for k = 4 to the
setting where m1 is arbitrary [2], showing that

f4(n) = n!2
2

∑
w=0

4−2w

∑
s=0

n−s

∑
c=0

(
4− 2w

s

)
(1 + c)ms+2w

1 µ2c−w
2 µs

3
(
µ4 − 3µ2

2
) n−c−s

(n− c− s)!(2− w)!w!
dw(c),

where d0(c) = 2 + c, d1(c) = c(2 + c) and d2(c) = c3.
Second, we solved the case when k = 6 and m1 = 0 [1]. In particular, we showed that

for any distribution Ω over R such that m1 = 0 and m2 = 1,

f6(n) = n!2
n

∑
j=0

j

∑
i=0

n−j

∑
k=0

(1+i)(2+i)(4+i)!
48(n− j− k)!

(
10
k

)(
14 + j + 2i

j− i

)
qn−j−k

6 qj−i
4 qk

3,

where q6 = m6 − 10m2
3 − 15m4 + 30, q4 = m4 − 3, and q3 = m2

3.
Both of these analyses were technical and involved intricate recurrence relations. In

this paper, we give a considerably simpler derivation of these results by using analytic
combinatorics on permutation tables.
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1.2 Related work

There are two natural variants of the question of determining the moments of the deter-
minant of a random matrix which have been analysed. First, for E[det(A)k] when A is
symmetric or Hermitian, Zhurbenko solved the k = 2 case for i.i.d. entries with mean 0
[11], and later works extended this to Wigner matrices [8, 9]. Recently, we generalised
these results for k = 2 to Hermitian A with i.i.d. entries above the diagonal with real
expected values and i.i.d. diagonal entries [3]. Second, for E[det(U⊤U)k/2] when U is an
n× p matrix with i.i.d. entries (p ≤ n), Dembo solved the k = 4 case for mean-0 entries
[4]. This was recently generalised to U with i.i.d. entries from an arbitrary distribution
by the first author [2].

2 Techniques

2.1 Analytic combinatorics

We now give an overview of the analytic combinatorics techniques we use for our anal-
yses. This overview is taken from our paper "On the second moment of the determinant
of random symmetric, Wigner, and Hermitian matrices" [3]. We follow the notation of
the textbook Analytic combinatorics [5] by Flajolet and Sedgewick.

Let A be a set of objects with a given structure where each α ∈ A has a size |α| ∈
N ∪ {0} and a weight w(α) ∈ C (may be negative or even complex). We call A a
combinatorial strucuture and view it in terms of the structure that its elements satisfy.

We say that A is labeled if each α ∈ A is composed of atoms labeled by [|α|] =
{1, 2, 3, 4, . . . , |α|}. Moreover, we assume that An = {α ∈ A : |α| = n} is finite for all
n ≥ 0. We define an = ∑α∈A:|α|=n w(α) to be the total weight of the objects with size n.

Combinatorial structures can be composed together. One common composition is the
star product. Note that a tuple (α, β) ∈ A × B cannot represent a labeled object of any
structure as the atoms of α and β are labeled by [|α|] and [|β|], respectively. Relabeling
our α, β as α′, β′ so that every number from 1 to |α|+ |β| appears once, we get a correctly
labeled object. There are of course many ways how to relabel the objects. The canonical
way is to use the star product. We say (α′, β′) ∈ α ⋆ β if the new labels in both α′ and β′

increase in the same order as in α and β separately. An example is illustrated below.

(
α′

6 5

2 4
, β′

3

1

)
∈ α

4 3

1 2
⋆ β

2

1

A key concept for labeled combinatorial structures is their exponential generating
function (EGF for short) defined as A(t) = ∑∞

n=0 ∑α∈An
w(α)tn

n! = ∑∞
n=0 an

tn

n! . These expo-
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nential generating functions encode the relationships between combinatorial structures
(i.e., how they are composed). We can write the following relations.

C representation of C wC(γ), γ ∈ C C(t)

A+ B A ∪ B
{

wA(γ) if γ ∈ A,
wB(γ) if γ ∈ B

A(t) + B(t)

A ⋆ B {γ | γ ∈ α ⋆ β, α ∈ A, β ∈ B} wA(α)wB(β) A(t)B(t)

Seq(A) ∑∞
k=0 Seqk(A) 1

1−A(t)

Set(A) ∑∞
k=0 Setk(A) exp (A(t))

Cyc(A) ∑∞
k=1 Cyck(A) ln

(
1

1−A(t)

)
The meaning of Seqk(A), Setk(A), and Seqk(A) is as follows.

• Seqk(A) is shorthand for a sequence and indeed it can be represented as (relabeled)
k-tuples of objects taken from A. Note that since everything is relabeled, even
though αi, αj might be the same for different i, j, the corresponding α′i, α′j are always
distinct. Formally, Seqk(A) = {(α′1, . . . , α′k) | αi ∈ A, i ∈ [k]}, where (α′1, . . . , α′k) ∈
α1 ⋆ · · · ⋆ αk.

• Setk(A) is a structure of sets of k relabeled elements, that is, the order of objects
α′i is irrelevant. Formally, Setk(A) = {{α′1, . . . , α′k} | αi ∈ A, i ∈ [k]}. Alternatively,
Setk(A) can be represented as the structure of classes of k-tuples in Seqk(A) which
differ up to some permutation.

• Cyck(A) represents the structure of classes of k-tuples in Seqk(A) which differ up
to some cyclical permutation.

For completeness, we briefly explain these results. To see that the exponential gen-
erating function for A ⋆ B is A(t)B(t), let an, bn, and cn be the total weight of the ob-
jects of size n in A, B, and A ⋆ B respectively. We have that cn = ∑n

j=0 (
n
j)ajbn−j, so

C(t) = ∑∞
n=0

cntn

n! = ∑∞
n=0 ∑n

j=0
ajtj

j! ·
bn−jtn−j

(n−j)! = A(t)B(t). The generating functions for

Seq(A), Set(A), and Cyc(A) come from the Taylor series 1
1−x = ∑∞

k=0 xk, ex = ∑∞
k=0

xk

k! ,

and − ln(1− x) = ∑∞
k=1

xk

k respectively.

Example 3. Let D be the combinatorial structure of all derangements (i.e., permutations
of [n] where no element is mapped to itself). Any derangement can be decomposed into
cycles of length at least two. Attaching a tag u to each cycle so that the weight of each
derangement is equal to u# of cycles, we get a structure Du which can be also constructed
as Du = Set

(
u Cyc≥2

(
1
))

. In terms of generating functions, this translates to Du(t) =
exp(−ut− u ln(1− t)) = e−ut/(1− t)u.
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2.2 Permutation tables

Definition 2. We say τ is a permutation (k-)table with n = col(τ) columns, if its rows are
permutations πj, j = 1, . . . , k of order n. We denote Fk,n the set of all such k-tables with n columns
and by Fk we denote k-tables with any number of columns. That is, structurally, Fk = ∑∞

n=0 Fk,n.

Definition 3. We define the sign of a table as the product of signs of permutations in its rows.

Definition 4. We define the weight of the i-th column of τ ∈ Fk as the expectation E ∏k
j=1 Aiπj(i).

Then we define the weight w(τ) of the whole table τ as the product of the weights of its columns.

Example 4. The following example in Figure 1 shows a permutation table τ ∈ F4,9 with
weight w(τ) = m12

1 m7
2m2

3m4. The weight of each individual column is shown below each
column. For instance, the second column corresponds to term A26A22A26A23, whose
expectation is obviously m2

1m2.

1 6 3 9 5 2 7 8 4 +
3 2 1 9 4 6 7 5 8 +
4 6 1 9 3 2 7 5 8 +
2 3 1 5 4 6 7 8 9 −

m4
1 m2

1m2 m1m3 m1m3 m2
1m2 m2

2 m4 m2
2 m2

1m2

Figure 1: A permutation table τ ∈ F4,9 with w(τ) = m12
1 m7

2m2
3m4 and sgn(τ) = −1.

Proposition 5. For any distribution Ω, we have fk(n) = ∑τ∈Fk,n
w(τ) sgn(τ).

Proof. This follows directly from the expansion det A = ∑π∈Fn sgn(π)∏i∈[n] Aiπ(i) raised
to the k-th power and by taking expectation as fk(n) = E (det A)k. ■

Example 6. The correspondence between fk(n) and permutation tables is shown below
for n = 2 and k = 2 showing f2(2) = 2m2

2 − 2m4
1 = 2(m2−m2

1)(m2+m2
1).

(det A)2 = A2
11 A2

22 − A11 A22 A12A21 − A12A21A11 A22 + A2
12A2

21

F2,2 : 1 2
1 2

1 2
2 1

2 1
1 2

2 1
2 1

Weight: m2m2 m2
1m2

1 m2
1m2

1 m2m2
Sign: + − − +
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2.3 Marked permutations and tables

Definition 5. We say σ is a marked permutation if it was formed from some π ∈ Fn in which
we replaced at most one element by the mark "×". We define sgn(σ) = sgn(π) and B×iσ(i) = m1

if i is marked and B×iσ(i) = Biπ(i) otherwise. We write G×n for the set of all marked permutations.

Proposition 7. In terms of marked permutations, det(A) = ∑σ∈G×n sgn(σ)∏n
i=1 B×iσ(i).

Definition 6. We say τ is a marked k-table with n columns if its rows are marked permutations
σj, j = 1, . . . , k of order n. We define G×k,n to be the set of all such tables and let G×k = ∑∞

n=0 G×k,n.
We define the marked weight w of the i-th column of τ ∈ G×k,n as the expectation E ∏k

j=1 B×iσj(i)
.

Similarly, we define the sign sgn(τ) of τ to be the product of the signs of σj, j = 1, . . . , k and we
define the marked weight w(τ) of τ to be the product of the weights of its individual columns.

Example 8. Figures 2 and 3 show two examples of marked permutation tables.

1 × 3 4 5 2 7 8 9
3 2 1 9 4 6 7 5 8
1 × 3 9 4 2 7 5 8
3 2 1 4 5 6 7 8 9

Figure 2: τ ∈ G2
4,9, w(τ) = m2

1µ15
2 µ4.

× 2 3 4 5 6 7 8 9
× 2 1 9 4 6 7 5 8
2 × 1 9 4 6 7 5 8
2 × 3 4 5 6 7 8 9

Figure 3: τ ∈ G4
4,9, w(τ) = m4

1µ12
2 µ2

4.

Since µ1 = 0, it turns out that most tables in G×k,n have w(τ) = 0.

Definition 7. We say a table τ ∈ G×k,n is trivial if its weight vanishes, otherwise the table is
nontrivial. The set all all nontrivial tables form a subset T×k,n ⊆ G×k,n.

Proposition 9. For any distribution Ω, we have fk(n) = ∑τ∈T×k,n
w(t) sgn(τ).

Example 10. The correspondence between fk(n) and marked permutation tables is shown
below for n = 2 and k = 2. By summing up the contribution from all nontrivial marked
tables and since µ2=m2−m2

1, we again get f2(2)=2µ2
2 + 4m2

1µ2=2(m2−m2
1)(m2+m2

1).

(det A)2 = B2
11B2

22 + B2
12B2

21 + m2
1B2

22 + m2
1B2

21 + B2
11m2

1 + B2
12m2

1

T×2,2 : 1 2
1 2

2 1
2 1

× 2
× 2

× 1
× 1

1 ×
1 ×

2 ×
2 ×

w: µ2µ2 µ2µ2 m2
1µ2 m2

1µ2 µ2m2
1 µ2m2

1
Sign: + + + + + +

Definition 8. We denote Fk,n as Fk,n tables with irrelevant column order and Fk = ∑∞
n=0Fk,n.

We define G×k,n and T ×k,n in the same way. These tables now have exponential generating functions
and can thus be analysed by tools of analytic combinatorics for labeled combinatorial structures.
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3 General fourth moment

In this section, we generalise the result for F4(t)|m1=0 by Nyquist, Rice and Riordan.

Theorem 11 (Beck 2023 [2]). For any distribution of Ω,

F4(t)=
et(µ4−3µ2

2)

(1− µ2
2t)3

(
(1+m1µ3t)4+6m2

1µ2t
(1 + m1µ3t)2

1− µ2
2t

+m4
1t

1 + 7µ2
2t + 4µ4

2t2

(1− µ2
2t)2

)
.

Corollary 11.1. Furthermore, defining d0(c) = 2 + c, d1(c) = c(2 + c) and d2(c) = c3,

f4(n) = n!2
2

∑
w=0

4−2w

∑
s=0

n−s

∑
c=0

(
4− 2w

s

)
(1 + c)ms+2w

1 µ2c−w
2 µs

3
(
µ4 − 3µ2

2
) n−c−s

(n− c− s)!(2− w)!w!
dw(c).

Proof. Without the loss of generality, we set µ2 = 1 (the general case is obtained by
the scaling property of determinants). Let a, b denote different numbers selected from
[n] = {1, 2, 3, . . . , n}. Up to a permutation of rows, the only way how the columns of 4
by n tables with nonzero weight could look like is the following:

Type: 4-column 2-column ×1-column ×2-column ×4-column

T ×4 :

a
a
a
a

a
a
b
b

×
a
a
a

×
×
a
a

×
×
×
×

Weight w: µ4 1 m1µ3 m2
1 m4

1

The ×1 columns contain a single element a, one instance of which is covered by ×,
hence they are disjoint from the rest of a table. As a result, we can consider only tables
S×4 ⊂ T

×
4 which do not contain ×1-columns. In any given table τ ∈ T ×4 , there could be

either four, two or no ×1-columns. In terms generating functions, this corresponds to

F4(t) = (1 + m1µ3t)4S0
4(t) + (1 + m1µ3t)2S2

4(t) + S4
4(t), (3.1)

where Sr
4(t) denotes EGF of tables S r

4 ⊂ S
×
4 with r marks containing no ×1 columns.

It is convenient to denote S r/s
4 ⊆ S r

4 as tables whose marks are distributed in exactly s
different columns. Since there is at most one mark per row, S r/s

4 tables contain only few
marked columns (see below). Structurally, S×4 = S0

4 + S2
4 + S4

4 with S4
4 = S4/1

4 + S4/2
4 .

S×4 :

×
×

×
×
×
×

×
×
×
×

S0
4 S2

4 S4/1
4 S4/2

4
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Proposition 12 (Nyquist, Rice and Riordan 1954 [10]). S0
4(t) = F4(t)|m1=0,m4→µ4 =

et(µ4−3)

(1−t)3 .

Proof. Since µ4 equals m4 when m1 = 0, S0
4(t) coincides with the expression for F4(t)|m1=0

obtained by Nyquist, Rice and Riordan. In S0
4 tables, the 4-columns are disjoint from the

remaining 2-columns. Furthermore, the 2-columns can be further divided into disjoint
components. To a given table of 2-columns, we can associate a derangement π whose
cycles correspond to disjoint sub-tables into which this table decomposes. To make this
association a bijection, there are 3 ways how the remaining elements in a given sub-table
can be arranged (see Figure 4, each arrangement is represented by a vertical box with
four slots filled with two dots representing in which rows the number in the first row
appears). Since each row of appears twice in any sub-table, the overall sign of those
sub-tables is always positive.

1 3
1 3
3 1
3 1

2 6 7
6 7 2
2 6 7
6 7 2

4 5 8 9
9 4 5 8
9 4 5 8
4 5 8 9

1

3

2 6

7

4

9

8

5

Figure 4: One-to-one correspondence between a table τ with nine 2-columns decom-
posable into three disjoint sub-tables, and its associated derangement π with cycles
labeled according to the repetitions of the number in the first row of τ

Hence, structurally, S0
4 = Set

(
m4 1

)
⋆ Set

(
+ 3 Cyc≥2

(
+ 1

))
and thus in terms of

generating functions, S0
4(t) = exp(µ4t) exp(−3t− ln(1− t)). ■

Proposition 13. S2
4(t) = m2

1(6− 2µ4)
∂S0

4(t)
∂µ4

+ 2m2
1t ∂S0

4(t)
∂t =

6m2
1tet(µ4−3)

(1−t)4 .

Proof. Let τ′ ∈ S0
4,n have c 4-columns and thus n− c 2-columns. Its weight is µc

4. From
this τ′, we create τ ∈ S2

4,n by covering one pair of identical elements by marks in either
4-column or 2-column. The contribution of τ′ to ∑τ∈S2

4,n
w(τ) sgn τ is then 6cm2

1µc−1
4 +

2(n− c)m2
1µc

4 = m2
1(6− 2µ4)

∂µc
4

∂µ4
+ 2m2

1nµc
4.

S2
4,n ← S0

4,n :

×
×
a
a

←
a
a
a
a

×
×
b
b

←
a
a
b
b

6 ways 2 ways

■
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Proposition 14. S4/1
4 (t) = m4

1(1− µ4)
∂S0

4(t)
∂µ4

+ m4
1t ∂S0

4(t)
∂t =

m4
1t(1+2t)
(1−t)4 et(µ4−3).

Proof. Let τ′ ∈ S0
4,n have c 4-columns and thus n− c 2-columns, w(τ′) = µc

4. From this
τ′, we create τ ∈ S4/1

4,n by covering an entire 4-column or 2-column. The contribution of

τ′ to ∑τ∈S4/1
4,n

w(τ) sgn τ is cm4
1µc−1

4 +(n−c)m4
1µc

4=m4
1(1−µ4)

∂µc
4

∂µ4
+m4

1nµc
4.

S4/1
4,n ← S0

4,n :

×
×
×
×
←

a
a
a
a

×
×
×
×
←

a
a
b
b

■

Proposition 15. S4/2
4 (t) = (3− µ4)

∂S4/1
4 (t)
∂µ4

+ t ∂S4/1
4 (t)
∂t − S4/1

4 (t) = 6m4
1t2(1+t)
(1−t)5 et(µ4−3).

Proof. Let τ′ ∈ S4/1
4,n have c 4-columns and thus n− c− 1 2-columns as now one column

is a ×4-column. The weight of τ′ is m4
1µc

4. From this τ′, we create τ ∈ S4/2
4,n by swapping

its two × marks with a pair of numbers in a 4-column or 2-column. By symmetry,
each table in S4/2

4,n is counted twice. The contribution of τ′ to 2 ∑τ∈S4/2
4,n

w(τ) sgn(τ) is

6cm4
1µc−1

4 +2(n−c−1)m4
1µc

4=(6−2µ4)
∂(m4

1µc
4)

∂µ4
+2nm4

1µc
4−2m4

1µc
4.

2S4/2
4,n ← S

4/1
4,n :

× a
× a
a ×
a ×

←
× a
× a
× a
× a

× a
× a
b ×
b ×

←
× a
× a
× b
× b

6 ways 2 ways

■

Corollary 15.1. S4
4(t) = S4/1

4 (t) + S4/2
4 (t) = m4

1t(1+7t+4t2)

(1−t)5 et(µ4−3).

Corollary 15.2. F4(t) = et(µ4−3)

(1−t)3

(
(1 + m1µ3t) 4 + 6m2

1t (1+m1µ3t)2

1−t + m4
1t 1+7t+4t2

(1−t)2

)
.

■

4 Sixth moment when m1 = 0

The proof of the following theorem was already established in our paper [1]. In this
section, we provide a more compact version of the proof based on inclusion/exclusion
and the fact we know the EGF for the special case where Aij is normally distributed.
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Theorem 16 (Beck, Lv, Potechin 2023 [1]). For any distribution of Ω with m1 = 0,

F6(t)|m1=0 = (1 + m2
3t)10 et(m6−15m4m2−10m2

3+30m3
2)(

1 + 3m3
2t−m4m2t

)15 N6

(
m3

2t(
1 + 3m3

2t−m4m2t
)3

)
.

Corollary 16.1. Furthermore, defining q6=m6−10m2
3−15m4m2+30m3

2 and q4=m4m2−3m3
2,

f6(n)|m1=0 = n!2
n

∑
j=0

j

∑
i=0

n−j

∑
k=0

(1+i)(2+i)(4+i)!
48(n− j− k)!

(
10
k

)(
14+ j+2i

j− i

)
qn−j−k

6 qj−i
4 m2k

3 m3i
2 .

Proof. Without the loss of generality, we assume m2 = 1 throughout the proof. The fact
we have m1 = 0 reduces the number of tables with nontrivial weight. It is convenient to
denote F cen

6 as the set of those tables (irrelevant column order), which in turn contribute
to the sum f6(n)|m1=0. These tables can be constructed out of the following columns
(apart from permutation of rows):

Type: 6-column 4-column 2-column 3-column

F cen
6 :

a
a
a
a
a
a

a
a
a
a
b
b

a
a
b
b
c
c

a
a
a
b
b
b

Weight: m6 m4 1 m2
3

In order to utilize inclusion/exclusion, we further divide the columns into two types
known and unknown. An unknown column is a column where the numbers are, in addi-
tion, paired up (only the same ones). Let a, b, c be distinct integers different from integers
a′, b′, c′ (which themselves are not necessarily distinct, so we might have a′ = b′). We
construct our new structure of tables F ∗6 built up from the following columns (apart
from permutation of rows) with carefully designed weights:

Type: known
6-column

known
4-column 3-column unknown

column

F ∗6 :
a

a

b′ b′
b′
b′
a
a
a a′

b′

c′

Weight: m6−15 m4−3 m2
3 1
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Figure 5 shows an example of a table τ ∈ F ∗6,9 with two known 4-columns (each
with weight m4 − 3) and one known 6-column. Note that since a 4-column can either be
known (weight m4− 3) or unknown (there are 3 ways how we can pair up the four iden-
tical elements), the total contribution is m4− 3+ 3 = m4, which matches the contribution
of a 4-column to F cen

6 . This decomposition is shown in Figure 6.

3
1

9
4

4

4
7

5

2 2

6

58

7 7

1

8 9

6 5

2

86

Figure 5: A table τ ∈ F ∗6,9 with
weight w(τ) = (m6 − 15)(m4 − 3)2.

b
b
a
a
a
a

= a

b

+

b

a

a
+

b

aa +

b

a
a

m4 m4−3 1 1 1

Figure 6: Inclusion/Exclusion of 4-
columns

A similar analysis holds for the 6-columns. Overall, we obtain that

f6(n)|m1,m3=0 = n! ∑
τ∈F cen

6

w(τ) sgn(τ) = n! ∑
τ∈F ∗6

w(τ) sgn(τ). (4.1)

The key idea is that permutation tables F ∗6 can be decomposed into several components.

1. Known 6-columns, composed as Set

(
(m6 − 15) 1

)
with EGF equal to e(m6−15)t.

2. Cycles of known 4-columns, or Set

(
15 Cyc≥2

(
(m4−3) 1

))
with EGF e−15(m4−3)t

(1−(m4−3)t)15 .

3. Cycles of 3-columns, or Set

(
− 10 Cyc≥2

(
−m2

3 1
))

with EGF (1+m2
3t)10e−10m2

3t.

4. A “core" of unknown columns together with paths of known 4-columns leading to
pairs in the core. We can analyze this part as follows. LettingN6 be the structure for
the Gaussian case, N6 is also the structure for the core without the attached paths
of known 4-columns with EGF being the known N6(t) = 1

48 ∑∞
n=0(n+1)(n + 2)(n +

4)! tn. We now observe that each column of the core has three paths (possibly of
length 0) of known 4-columns leading to it. Structurally, this gives

N6

 ⋆ Seq


 ⋆ Seq


 ⋆ Seq



 . (4.2)

Since the EGF for Seq

(
(m4 − 3) 1

)
is 1

1−(m4−3)t , the EGF for the core and the

paths of known 4-columns leading to it is N6
( t
(1−(m4−3)t)3

)
.



12 Beck, Lv, Potechin

11
2 3 7

7 2 3

9
9
1
9
1
1

1
1
9
1
9
9

4 6

5
10 4 6

8

10

8
5

8

10

1

9

23

7
ν

6

5

4

Figure 7: An F ∗6,11 table with disjoint components (known 6-columns, cycles of known
4-columns, cycles of 6-columns and the core with attached paths of known 4-columns)

By joining all disjoint components (see example in Figure 7), we get, in terms of EGF’s,

F6(t)|m1=0= e(m6−15)t e−15(m4−3)t

(1− (m4 − 3)t)15 (1+m2
3t)10e−10m2

3tN6

(
t

(1− (m4 − 3)t)3

)
.

■
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